JP2020098934A - 電界効果型トランジスタ、表示素子、画像表示装置及びシステム - Google Patents

電界効果型トランジスタ、表示素子、画像表示装置及びシステム Download PDF

Info

Publication number
JP2020098934A
JP2020098934A JP2020022658A JP2020022658A JP2020098934A JP 2020098934 A JP2020098934 A JP 2020098934A JP 2020022658 A JP2020022658 A JP 2020022658A JP 2020022658 A JP2020022658 A JP 2020022658A JP 2020098934 A JP2020098934 A JP 2020098934A
Authority
JP
Japan
Prior art keywords
cation
effect transistor
field effect
composition compound
oxide semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020022658A
Other languages
English (en)
Other versions
JP6904444B2 (ja
Inventor
植田 尚之
Naoyuki Ueda
尚之 植田
中村 有希
Yuki Nakamura
有希 中村
真二 松本
Shinji Matsumoto
真二 松本
雄司 曽根
Yuji Sone
雄司 曽根
美樹子 ▲高▼田
美樹子 ▲高▼田
Mikiko Takada
遼一 早乙女
Ryoichi Saotome
遼一 早乙女
定憲 新江
Sadanori Niie
定憲 新江
由希子 安部
Yukiko Abe
由希子 安部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Publication of JP2020098934A publication Critical patent/JP2020098934A/ja
Application granted granted Critical
Publication of JP6904444B2 publication Critical patent/JP6904444B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

【課題】活性層の酸化物半導体にn型の置換ドーピングを行うことによってキャリアを生成し、成膜時に充分な酸素量を導入して酸素濃度の厳密な制御を不要にするとともに、酸素空孔を低減して格子の安定性を高め、後工程での特性安定性を実現する電界効果型トランジスタなどを提供する。【解決手段】ゲート電極26と、ソース電極23及びドレイン電極24と、n型酸化物半導体からなる活性層22と、ゲート絶縁層25と、を備える電界効果型トランジスタであって、前記n型酸化物半導体が、2価のカチオン、3価のカチオン、4価のカチオン、5価のカチオン及び6価のカチオンの少なくともいずれかのドーパントで置換ドーピングされた、三斜晶組成化合物、単斜晶組成化合物及び三方晶組成化合物のいずれかであり、前記ドーパントの価数が、前記n型酸化物半導体を構成する金属イオン(ただし、前記ドーパントを除く)の価数よりも大きい。【選択図】図17

Description

本発明は、電界効果型トランジスタ、表示素子、画像表示装置及びシステムに係り、更に詳しくは、酸化物半導体からなる活性層を有する電界効果型トランジスタ、該電界効果型トランジスタを有する表示素子及び画像表示装置、該画像表示装置を備えるシステムに関する。
電界効果型トランジスタ(Field Effect Transistor:FET)は、ゲート電極に電圧をかけ、チャネルの電界により電子または正孔の流れに関門(ゲート)を設ける原理で、ソース電極とドレイン電極間の電流を制御するトランジスタである。
FETはその特性から、スイッチング素子や増幅素子として利用されている。そして、FETは、ゲート電流が低いことに加え、構造が平面的であるため、バイポーラトランジスタと比較して作製や集積化が容易である。そのため、現在の電子機器で使用される集積回路では必要不可欠な素子となっている。
FETは、薄膜トランジスタ(Thin Film Transistor:TFT)として、アクティブマトリックス方式のディスプレイ等に応用されている。
近年、平面薄型ディスプレイ(Flat Panel Display:FPD)として、液晶ディスプレイ(Liquid Crystal Display:LCD)、有機EL(エレクトロルミネッセンス)ディスプレイ(OLED)、電子ペーパー等が実用化されている。
これらFPDは、非晶質シリコンや多結晶シリコンを活性層に用いたTFTを含む駆動回路により駆動されている。そして、FPDは、さらなる大型化、高精細化、高速駆動性が求められており、それに伴って、キャリア移動度が高く、特性の経時変化が小さく、素子間のばらつきが小さいTFTが求められている。
しかしながら、非晶質シリコン(a−Si)や多結晶シリコン(特に低温ポリシリコン:LTPS)を活性層に用いたTFTは、それぞれに一長一短があり、同時に全ての要求を満たすことは困難であった。
例えば、a−Si TFTは大画面のLCD(Liquid Crystal Display)を高速駆動するには移動度が不足しており、また連続駆動時の閾値電圧シフトが大きいという欠点を抱えている。LTPS−TFTは、移動度は大きいが、エキシマレーザーアニーリングによって活性層を結晶化するプロセスのために閾値電圧のバラツキが大きく、量産ラインのマザーガラスサイズを大きくできないという問題が存在する。
そこで、a−Si TFTの長所とLTPS−TFTの長所を合わせ持つ新たなTFT技術が要求されている。この要求に応えるため、近年、a−Siを超えるキャリア移動度が期待できる酸化物半導体を用いたTFTの開発が活発に行われている。
特に、室温成膜が可能でアモルファス状態でa−Si以上の移動度を示すInGaZnO(a−IGZO)が提案され(非特許文献1参照)、これをきっかけとして、移動度の高いアモルファス酸化物半導体が精力的に研究されるに至った。
しかしながら、これら酸化物半導体においては、キャリア電子を酸素空孔によってつくりだしているため、成膜プロセスにおいて酸素濃度を厳密に制御する必要があった。高い移動度を実現しようとするとデプレッション状態になりやすく、ノーマリーオフを実現するプロセスウィンドウは非常に狭い。更に、成膜後のパターンニング工程やパッシベーション工程等で膜中の酸素濃度が変化し、特性が劣化しやすいという問題が存在した。
このような問題を解決するために、従来は2つの観点から対策が検討された。その一つは、キャリア濃度を低く保つために、p型ドーパントを導入(例えば、In3+をZn2+で置換)して、酸素空孔によって生成したキャリアを補償する方策である(特許文献1及び2参照)。この方策については、更に、前記p型ドーパントを安定化するためにカウンターカチオンを少量添加することも行われている(例えば、In3+をZn2+で置換し、更に微量のSn4+を添加する。[Zn2+]>[Sn4+])(特許文献3参照)。他の一つは、酸素との親和性の高い金属元素(Al、Zr、Hf等)を一定量導入して、キャリア生成を抑制する方法である(非特許文献2参照)。
しかし、いずれの方法とも、安定性が不十分であったり、移動度の低下を招いたりするなど、なお問題があった。
本発明は、従来における前記諸問題を解決し、以下の目的を達成することを課題とする。即ち、本発明は、電界効果型トランジスタの活性層の酸化物半導体にn型の置換ドーピングを行うことによってキャリアを生成し、成膜時に充分な酸素量を導入して酸素濃度の厳密な制御を不要にするとともに、酸素空孔を低減して格子の安定性を高め、後工程での特性安定性を実現することを目的とする。
前記課題を解決するための手段としては、以下の通りである。即ち、
本発明の電界効果型トランジスタは、
ゲート電圧を印加するためのゲート電極と、
電流を取り出すためのソース電極及びドレイン電極と、
前記ソース電極及びドレイン電極に隣接して設けられ、n型酸化物半導体からなる活性層と、
前記ゲート電極と前記活性層との間に設けられたゲート絶縁層と、
を備える電界効果型トランジスタであって、
前記n型酸化物半導体が、2価のカチオン、3価のカチオン、4価のカチオン、5価のカチオン、及び6価のカチオンの少なくともいずれかのドーパントで置換ドーピングされた、三斜晶組成化合物、単斜晶組成化合物、及び三方晶組成化合物のいずれかであり、
前記ドーパントの価数が、前記n型酸化物半導体を構成する金属イオン(ただし、前記ドーパントを除く)の価数よりも大きいことを特徴とする。
本発明によると、従来における前記諸問題を解決することができ、電界効果型トランジスタの活性層であるn型酸化物半導体にn型の置換ドーピングを行うことによって電子キャリアを生成し、成膜時に充分な酸素量を膜中に導入することで、酸素濃度の厳密な制御を不要にし、プロセスマージンを拡大するとともに、酸素空孔を低減して格子の安定性を高め、後工程での特性安定化を実現することができる。従って、素子間のばらつきも小さくすることが可能になり、大面積で高精細、高品質の電界効果型トランジスタを提供することができる。
図1は、トップコンタクト・ボトムゲート型の電界効果型トランジスタの一例を示す概略構成図である。 図2は、ボトムコンタクト・ボトムゲート型の電界効果型トランジスタの一例を示す概略構成図である。 図3は、トップコンタクト・トップゲート型の電界効果型トランジスタの一例を示す概略構成図である。 図4は、ボトムコンタクト・トップゲート型の電界効果型トランジスタの一例を示す概略構成図である。 図5は、本発明のシステムとしてのテレビジョン装置の一例を示す概略構成図である。 図6は、図5における画像表示装置を説明するための図(その1)である。 図7は、図5における画像表示装置を説明するための図(その2)である。 図8は、図5における画像表示装置を説明するための図(その3)である。 図9は、本発明の表示素子の一例を説明するための図である。 図10は、表示素子における有機EL素子と電界効果型トランジスタの位置関係の一例を示す概略構成図である。 図11は、表示素子における有機EL素子と電界効果型トランジスタの位置関係の他の一例を示す概略構成図である。 図12は、有機EL素子の一例を示す概略構成図である。 図13は、表示制御装置を説明するための図である。 図14は、液晶ディスプレイを説明するための図である。 図15は、図14における表示素子を説明するための図である。 図16は、実施例1と比較例1の電界効果型トランジスタの特性を説明するための図である。 図17は、実施例1と比較例1の電界効果型トランジスタの特性の成膜中の酸素濃度と電界効果移動度の関係を説明するための図である。
(電界効果型トランジスタ)
本発明の電界効果型トランジスタは、ゲート電極と、ソース電極と、ドレイン電極と、活性層と、ゲート絶縁層とを少なくとも有し、更に必要に応じて、その他の部材を有する。
<ゲート電極>
前記ゲート電極としては、ゲート電圧を印加するための電極であれば、特に制限はなく、目的に応じて適宜選択することができる。
前記ゲート電極の材質としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、Mo、Al、Ag、Cu等の金属乃至合金、ITO、ATO等の透明導電性酸化物、ポリエチレンジオキシチオフェン(PEDOT)、ポリアニリン(PANI)等の有機導電体などが挙げられる。
前記ゲート電極の形成方法としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、(i)スパッタ法、ディップコーティング法等による成膜後、フォトリソグラフィーによってパターニングする方法、(ii)インクジェット、ナノインプリント、グラビア等の印刷プロセスによって、所望の形状を直接成膜する方法などが挙げられる。
前記ゲート電極の平均厚みとしては、特に制限はなく、目的に応じて適宜選択することができるが、20nm〜1μmが好ましく、50nm〜300nmがより好ましい。
<ソース電極、及びドレイン電極>
前記ソース電極、及び前記ドレイン電極としては、電流を取り出すための電極であれば、特に制限はなく、目的に応じて適宜選択することができる。
前記ソース電極、及び前記ドレイン電極の材質としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、前記ゲート電極の説明において記載した材質と同じ材質が挙げられる。
前記ソース電極、及び前記ドレイン電極の形成方法としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、前記ゲート電極の説明において記載した形成方法と同じ方法が挙げられる。
前記ソース電極、及び前記ドレイン電極の平均厚みとしては、特に制限はなく、目的に応じて適宜選択することができるが、20nm〜1μmが好ましく、50nm〜300nmがより好ましい。
<活性層>
前記活性層は、前記ソース電極及びドレイン電極に隣接して設けられた層である。
本発明者らの以前の研究では、対称性の高い酸化物半導体ではn型ドーピングによって電子キャリアが生成することが示されていた(特開2011−192971号公報参照)が、後述のような対称性の低い酸化物半導体ではn型ドーピングが有効に機能することは必ずしも明らかでなかった。しかしながら、今回、本発明者らは、以下に示すように低対称性であっても有用な、n型ドーパントと酸化物半導体との組合せを見いだした。
前記活性層の材料は、本発明によれば、2価のカチオン、3価のカチオン、4価のカチオン、5価のカチオン、及び6価のカチオンの少なくともいずれかのドーパントで置換ドーピングされた、三斜晶組成化合物、単斜晶組成化合物、及び三方晶組成化合物のいずれかである、n型酸化物半導体である。
ここで、前記ドーパントの価数は、前記n型酸化物半導体を構成する金属イオン(ただし、前記ドーパントを除く)の価数よりも大きい。
なお、前記置換ドーピングは、n型ドーピングともいう。
<<三斜晶組成化合物>>
前記活性層の第一の候補は、本発明によれば、n型酸化物半導体であって、2価のカチオン、3価のカチオン、4価のカチオン、5価のカチオン、及び6価のカチオンの少なくともいずれかのドーパントで置換ドーピングされた三斜晶組成化合物である。
前記三斜晶組成化合物は、点群C及びCのいずれかに属することが好ましい。
前記三斜晶組成化合物は、空間群No.1〜2のいずれかに属することが好ましい。
前記三斜晶組成化合物は、Li、Cu、Ag、Au、Mg、Ca、Sr、Ba、Zn、Cd、Hg、La、Ga、In、Tl、Ge、Sn、Pb、Ti、As、Sb、Bi、V、Nb、Ta、Te、Mo、及びWの少なくともいずれかのカチオンを含むことが好ましい。
前記置換ドーピングは、Mg、Ca、Sr、Ba、Zn、Cd、Hg、Al、Ga、In、Tl、Ge、Sn、Pb、Ti、Zr、Hf、Ce、V、Nb、Ta、As、Sb、Bi、Mo、W、及びTeの少なくともいずれかのカチオンの導入によることが好ましい。
これらの例としては、CuWO、CdGe、HgTeO等が好適である。或いはこれらの固溶体であってもよい。ここでは、組成を整数で示しているが、予期しないノンストイキオメトリーや微量の不純物は、以下に記述するドーピングを妨げない限り許容される。特に、酸素空孔は生じ易く、通常、酸素の組成は示性式の値より小さくなっている。
n型ドーピングである前記置換ドーピングとしては、例えば、1価カチオンであるCuに対しては、より価数の大きいドーパント、即ち2価のMg2+、Ca2+、Sr2+、Ba2+、Zn2+、Cd2+、Hg2+、3価のAl3+、Ga3+、In3+、Tl3+、Y3+、La3+、4価のGe4+、Sn4+、Pb4+、Ti4+、Zr4+、Hf4+、Ce4+、5価のV5+、Nb5+、Ta5+、As5+、Sb5+、Bi5+、及び6価のMo6+、W6+、Te6+が利用できる。或いはこれらの複数種をドーピングしてもよい。
また、n型ドーピングである前記置換ドーピングとしては、例えば、2価カチオンであるCd2+、Hg2+に対しては、より価数の大きいドーパント、即ち3価のAl3+、Ga3+、In3+、Tl3+、Y3+、La3+、4価のGe4+、Sn4+、Pb4+、Ti4+、Zr4+、Hf4+、Ce4+、5価のV5+、Nb5+、Ta5+、As5+、Sb5+、Bi5+、及び6価のMo6+、W6+、Te6+が利用できる。或いはこれらの複数種をドーピングしてもよい。
また、n型ドーピングである前記置換ドーピングとしては、例えば、4価カチオンであるGe4+、Te4+対しては、より価数の大きいドーパント、即ち5価のV5+、Nb5+、Ta5+、As5+、Sb5+、Bi5+、及び6価のMo6+、W6+、Te6+が利用できる。或いはこれらの複数種をドーピングしてもよい。
イオン半径、配位数、軌道エネルギー等を考慮してドーパントを選択することが好ましい。ドーピング濃度は、母相の材料、ドーパントの種類や置換するサイト、成膜プロセス、所望のTFT特性等に応じて、適切に選択することができる。例えばスパッタ法により、ZnをドープしたCuWO膜を作製する場合、1%程度Znをドープしたターゲットを用意すればよい。Cuサイトを置換したZnがドナーをつくるので、ノンドープのCuWOを作製する時よりもスパッタガスの酸素濃度を高濃度にして、酸素空孔を減少させることができる。更に、その場合にもキャリア濃度を維持しソース・ドレイン電極との接触抵抗を低く保つことができるので、移動度の低下を抑制することができる。また、スパッタプロセスでは高励起状態を経由しているため、基板加熱をせずともキャリアを生成できる。
X線回折(XRD)等で回折線が観測されず長距離秩序が存在しない場合(一般にはこれをアモルファス状態と呼んでいる。)であっても、リジッドな構造を有する酸化物の場合、酸素配位多面体(例えばCdO八面体)やその連結様式(例えばCdO稜共有鎖)は維持されているので、置換ドーピングが有効に作用する。このような構造においてはアモルファス状態特有の裾状態(Tail States)の状態密度は小さいため、サブギャップ吸収は少なく光劣化特性はアモルファス性の高い材料よりも優れる。一方、結晶状態であれば勿論ドーピングは有効であって、重金属イオンの4s、5s、6sバンドから構成される伝導帯に対しては粒界の影響も少ない。但し、ドープ量が過多でドーパントが粒界に偏析するような場合には、ドーパント濃度を下げることが好ましい。また、ソース・ドレイン電極と活性層との界面の密着性や電気的な接触を良好にするために、200℃〜300℃でポストアニールすることも好ましい。また、より高温でアニールして結晶性を高めてもよい。
<<単斜晶組成化合物>>
前記活性層の第二の候補は、本発明によれば、n型酸化物半導体であって、2価のカチオン、3価のカチオン、4価のカチオン、5価のカチオン、及び6価のカチオンの少なくともいずれかのドーパントで置換ドーピングされた単斜晶組成化合物である。
前記単斜晶組成化合物は、点群C、C、及びC2hのいずれかに属することが好ましい。
前記単斜晶組成化合物は、空間群No.3〜15のいずれかに属することが好ましい。
前記単斜晶組成化合物は、Li、Cu、Ag、Au、Mg、Ca、Sr、Ba、Zn、Cd、Hg、La、Ga、In、Tl、Ge、Sn、Pb、Ti、As、Sb、Bi、V、Nb、Ta、Te、Mo、及びWの少なくともいずれかのカチオンを含むことが好ましい。
前記置換ドーピングは、Mg、Ca、Sr、Ba、Zn、Cd、Hg、Al、Ga、In、Tl、Ge、Sn、Pb、Ti、Zr、Hf、Ce、V、Nb、Ta、As、Sb、Bi、Mo、W、及びTeの少なくともいずれかのカチオンの導入によることが好ましい。
これらの例としては、SrGa、BaIn、ZnGe、CdGe等が好適である。或いはこれらの固溶体であってもよい。ここでは組成を整数で示しているが、予期しないノンストイキオメトリーや微量の不純物は、以下に記述するドーピングを妨げない限り許容される。特に、酸素空孔は生じ易く、通常、酸素の組成は示性式の値より小さくなっている。
n型ドーピングである前記置換ドーピングとしては、例えば、2価カチオンであるSr2+、Ba2+、Zn2+、Cd2+に対しては、より価数の大きいドーパント、即ち3価のAl3+、Ga3+、In3+、Tl3+、Y3+、La3+、4価のGe4+、Sn4+、Pb4+、Ti4+、Zr4+、Hf4+、Ce4+、5価のV5+、Nb5+、Ta5+、As5+、Sb5+、Bi5+、及び6価のMo6+、W6+、Te6+が利用できる。或いはこれらの複数種をドーピングしてもよい。
また、n型ドーピングである前記置換ドーピングとしては、例えば、3価カチオンであるGa3+、In3+に対しては、より価数の大きいドーパント、即ち4価のGe4+、Sn4+、Pb4+、Ti4+、Zr4+、Hf4+、Ce4+、5価のV5+、Nb5+、Ta5+、As5+、Sb5+、Bi5+、及び6価のMo6+、W6+、Te6+が利用できる。或いはこれらの複数種をドーピングしてもよい。
また、n型ドーピングである前記置換ドーピングとしては、例えば、4価カチオンであるGe4+に対しては、より価数の大きいドーパント、即ち5価のV5+、Nb5+、Ta5+、As5+、Sb5+、Bi5+、及び6価のMo6+、W6+、Te6+が利用できる。或いはこれらの複数種をドーピングしてもよい。
イオン半径、配位数、軌道エネルギー等を考慮してドーパントを選択することが好ましい。ドーピング濃度は、母相の材料、ドーパントの種類や置換するサイト、成膜プロセス、所望のTFT特性等に応じて、適切に選択することができる。例えばスパッタ法により、WをドープしたBaIn膜を作製する場合、0.5%程度Wをドープしたターゲットを用意すればよい。Inサイトを置換したWがドナーをつくるので、ノンドープのBaInを作製する時よりもスパッタガスの酸素濃度を高濃度にして、酸素空孔を減少させることができる。更に、その場合にもキャリア濃度を維持しソース・ドレイン電極との接触抵抗を低く保つことができるので、移動度の低下を抑制することができる。また、スパッタプロセスでは高励起状態を経由しているため、基板加熱をせずともキャリアを生成できる。X線回折(XRD)等で回折線が観測されず長距離秩序が存在しない場合(一般にはこれをアモルファス状態と呼んでいる。)であっても、リジッドな構造を有する酸化物の場合、酸素配位多面体(例えばGaOやInO八面体)やその連結様式(例えばInO稜共有鎖や面共有鎖)は維持されているので、置換ドーピングが有効に作用する。このような構造においてはアモルファス状態特有の裾状態(Tail States)の状態密度は小さいため、サブギャップ吸収は少なく光劣化特性はアモルファス性の高い材料よりも優れる。一方、結晶状態であれば勿論ドーピングは有効であって、重金属イオンの4s、5s、6sバンドから構成される伝導帯に対しては粒界の影響も少ない。但し、ドープ量が過多でドーパントが粒界に偏析するような場合には、ドーパント濃度を下げることが好ましい。また、ソース・ドレイン電極と活性層との界面の密着性や電気的な接触を良好にするために、200℃〜300℃でポストアニールすることも好ましい。また、より高温でアニールして結晶性を高めてもよい。
<<三方晶組成化合物>>
前記活性層の第三の候補は、本発明によれば、n型酸化物半導体であって、2価のカチオン、3価のカチオン、4価のカチオン、5価のカチオン、及び6価のカチオンの少なくともいずれかのドーパントで置換ドーピングされた三方晶組成化合物である。
前記三方晶組成化合物は、点群C3、3i、3、3v及びD3dのいずれかに属することが好ましい。
前記三方晶組成化合物は、空間群No.143〜167のいずれかに属することが好ましい。
前記三方晶組成化合物は、Li、Cu、Ag、Au、Mg、Ca、Sr、Ba、Zn、Cd、Hg、La、Ga、In、Tl、Ge、Sn、Pb、Ti、As、Sb、Bi、V、Nb、Ta、Te、Mo、及びWの少なくともいずれかのカチオンを含むことが好ましい。
前記置換ドーピングは、Mg、Ca、Sr、Ba、Zn、Cd、Hg、Al、Ga、In、Tl、Ge、Sn、Pb、Ti、Zr、Hf、Ce、V、Nb、Ta、As、Sb、Bi、Mo、W、及びTeの少なくともいずれかのカチオンの導入によることが好ましい。
これらの例としては、ZnTiO、ZnGeO、InZn、Ba、TlTeO等が好適である。或いはこれらの固溶体であってもよい。ここでは組成を整数で示しているが、予期しないノンストイキオメトリーや微量の不純物は、以下に記述するドーピングを妨げない限り許容される。特に、酸素空孔は生じ易く、通常、酸素の組成は示性式の値より小さくなっている。
n型ドーピングである前記置換ドーピングとしては、例えば、2価カチオンであるBa2+、Zn2+に対しては、より価数の大きいドーパント、即ち3価のAl3+、Ga3+、In3+、Tl3+、Y3+、La3+、4価のGe4+、Sn4+、Pb4+、Ti4+、Zr4+、Hf4+、Ce4+、5価のV5+、Nb5+、Ta5+、As5+、Sb5+、Bi5+、及び6価のMo6+、W6+、Te6+が利用できる。或いはこれらの複数種をドーピングしてもよい。
また、n型ドーピングである前記置換ドーピングとしては、例えば、3価カチオンであるIn3+、Tl3+に対してはより価数の大きいドーパント、即ち4価のGe4+、Sn4+、Pb4+、Ti4+、Zr4+、Hf4+、Ce4+、5価のV5+、Nb5+、Ta5+、As5+、Sb5+、Bi5+、及び6価のMo6+、W6+、Te6+が利用できる。或いはこれらの複数種をドーピングしてもよい。
また、n型ドーピングである前記置換ドーピングとしては、例えば、4価カチオンであるGe4+、Ti4+に対しては、より価数の大きいドーパント、即ち5価のV5+、Nb5+、Ta5+、As5+、Sb5+、Bi5+、及び6価のMo6+、W6+、Te6+が利用できる。或いはこれらの複数種をドーピングしてもよい。
イオン半径、配位数、軌道エネルギー等を考慮してドーパントを選択することが好ましい。ドーピング濃度は、母相の材料、ドーパントの種類や置換するサイト、成膜プロセス、所望のTFT特性等に応じて、適切に選択することができる。例えばスパッタ法により、NbをドープしたZnTiO膜を作製する場合、1%程度Nbをドープしたターゲットを用意すればよい。Tiサイトを置換したNbがドナーをつくるので、ノンドープのZnTiOを作製する時よりもスパッタガスの酸素濃度を高濃度にして、酸素空孔を減少させることができる。更に、その場合にもキャリア濃度を維持しソース・ドレイン電極との接触抵抗を低く保つことができるので、移動度の低下を抑制することができる。また、スパッタプロセスでは高励起状態を経由しているため、基板加熱をせずともキャリアを生成できる。X線回折(XRD)等で回折線が観測されず長距離秩序が存在しない場合(一般にはこれをアモルファス状態と呼んでいる。)であっても、リジッドな構造を有する酸化物の場合、酸素配位多面体(例えばInOやTiO八面体)やその連結様式(例えばInO稜共有鎖や面共有鎖)は維持されているので、置換ドーピングが有効に作用する。このような構造においてはアモルファス状態特有の裾状態(Tail States)の状態密度は小さいため、サブギャップ吸収は少なく光劣化特性はアモルファス性の高い材料よりも優れる。一方、結晶状態であれば勿論ドーピングは有効であって、重金属イオンの4s、5s、6sバンドから構成される伝導帯に対しては粒界の影響も少ない。但し、ドープ量が過多でドーパントが粒界に偏析するような場合には、ドーパント濃度を下げることが好ましい。また、ソース・ドレイン電極と活性層との界面の密着性や電気的な接触を良好にするために、200℃〜300℃でポストアニールすることも好ましい。また、より高温でアニールして結晶性を高めてもよい。
前記活性層の平均厚みとしては、特に制限はなく、目的に応じて適宜選択することができるが、5nm〜1μmが好ましく、10nm〜0.5μmがより好ましい。
<ゲート絶縁層>
前記ゲート絶縁層としては、前記ゲート電極と前記活性層との間に設けられた絶縁層であれば、特に制限はなく、目的に応じて適宜選択することができる。
前記ゲート絶縁層の材質としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、SiO、SiN等の既に広く量産に利用されている材料や、La、HfO等の高誘電率材料、ポリイミド(PI)やフッ素系樹脂等の有機材料などが挙げられる。
前記ゲート絶縁層の形成方法としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、スパッタ、化学気相蒸着(CVD)、原子層蒸着(ALD)等の真空成膜法、スピンコート、ダイコート、インクジェット等の印刷法などが挙げられる。
前記ゲート絶縁層の平均厚みとしては、特に制限はなく、目的に応じて適宜選択することができるが、50nm〜3μmが好ましく、100nm〜1μmがより好ましい。
前記電界効果型トランジスタの構造としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、トップコンタクト・ボトムゲート型(図1)、ボトムコンタクト・ボトムゲート型(図2)、トップコンタクト・トップゲート型(図3)、ボトムコンタクト・トップゲート型(図4)などが挙げられる。
なお、図1〜図4中、21は基材、22は活性層、23はソース電極、24はドレイン電極、25はゲート絶縁層、26はゲート電極を表す。
前記電界効果型トランジスタは、後述する表示素子に好適に使用できるが、これに限られるものではなく、例えば、ICカード、IDタグなどにも使用することができる。
<電界効果型トランジスタの製造方法>
前記電界効果型トランジスタの製造方法の一例を説明する。
まず、基材上にゲート電極を形成する。
前記基材の形状、構造、及び大きさとしては、特に制限はなく、目的に応じて適宜選択することができる。
前記基材の材質としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、ガラス基材、プラスチック基材などが挙げられる。
前記ガラス基材としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、無アルカリガラス、シリカガラスなどが挙げられる。
前記プラスチック基材としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、ポリカーボネート(PC)、ポリイミド(PI)、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)などが挙げられる。
なお、前記基材は、表面の清浄化及び密着性向上の点で、酸素プラズマ、UVオゾン、UV照射洗浄等の前処理が行われることが好ましい。
続いて、前記ゲート電極上にゲート絶縁層を形成する。
続いて、チャネル領域であって前記ゲート絶縁層上に、n型酸化物半導体からなる活性層を形成する。
続いて、前記ゲート絶縁層上に、前記活性層を跨ぐようにソース電極及びドレイン電極を離間して形成する。
以上により、電界効果型トランジスタが製造される。この製造方法では、例えば、図1に示すようなトップコンタクト・ボトムゲート型の電界効果型トランジスタが製造される。
(表示素子)
本発明の表示素子は、少なくとも、光制御素子と、前記光制御素子を駆動する駆動回路とを有し、更に必要に応じて、その他の部材を有する。
<光制御素子>
前記光制御素子としては、駆動信号に応じて光出力を制御する素子である限り、特に制限はなく、目的に応じて適宜選択することができ、例えば、エレクトロルミネッセンス(EL)素子、エレクトロクロミック(EC)素子、液晶素子、電気泳動素子、エレクトロウェッティング素子などが挙げられる。
<駆動回路>
前記駆動回路としては、本発明の前記電界効果型トランジスタを有する限り、特に制限はなく、目的に応じて適宜選択することができる。
<その他の部材>
前記その他の部材としては、特に制限はなく、目的に応じて適宜選択することができる。
前記表示素子は、本発明の前記電界効果型トランジスタを有しているため、高速駆動が可能、長寿命、かつ素子間のばらつきを小さくすることが可能となる。また、前記表示素子に経時変化が起きても駆動トランジスタを一定のゲート電圧で動作させることができる。
(画像表示装置)
本発明の画像表示装置は、少なくとも、複数の表示素子と、複数の配線と、表示制御装置とを有し、更に必要に応じて、その他の部材を有する。
<複数の表示素子>
前記複数の表示素子としては、マトリックス状に配置された複数の本発明の前記表示素子である限り、特に制限はなく、目的に応じて適宜選択することができる。
<複数の配線>
前記複数の配線は、前記複数の表示素子における各電界効果型トランジスタにゲート電圧と画像データ信号とを個別に印加可能である限り、特に制限はなく、目的に応じて適宜選択することができる。
<表示制御装置>
前記表示制御装置としては、画像データに応じて、各電界効果型トランジスタのゲート電圧と信号電圧とを前記複数の配線を介して個別に制御可能である限り、特に制限はなく、目的に応じて適宜選択することができる。
<その他の部材>
前記その他の部材としては、特に制限はなく、目的に応じて適宜選択することができる。
前記画像表示装置は、本発明の前記表示素子を有しているため、素子間のばらつきも小さくすることが可能になり、大画面で高品質の画像を表示することが可能となる。
(システム)
本発明のシステムは、少なくとも、本発明の前記画像表示装置と、画像データ作成装置とを有する。
前記画像データ作成装置は、表示する画像情報に基づいて画像データを作成し、該画像データを前記画像表示装置に出力する。
前記システムは、本発明の前記画像表示装置を備えているため、画像情報を高精細に表示することが可能となる。
以下、本発明の表示素子、画像表示装置、及びシステムを、図を用いて説明する。
まず、本発明のシステムとしてのテレビジョン装置を、図5を用いて説明する。
図5において、テレビジョン装置100は、主制御装置101、チューナ103、ADコンバータ(ADC)104、復調回路105、TS(Transport Stream)デコーダ106、音声デコーダ111、DAコンバータ(DAC)112、音声出力回路113、スピーカ114、映像デコーダ121、映像・OSD合成回路122、映像出力回路123、画像表示装置124、OSD描画回路125、メモリ131、操作装置132、ドライブインターフェース(ドライブIF)141、ハードディスク装置142、光ディスク装置143、IR受光器151、及び通信制御装置152を備える。
映像デコーダ121と、映像・OSD合成回路122と、映像出力回路123と、OSD描画回路125とが、画像データ作成装置を構成する。
主制御装置101は、CPU、フラッシュROM、及びRAMなどから構成され、テレビジョン装置100の全体を制御する。
前記フラッシュROMには、前記CPUにて解読可能なコードで記述されたプログラム、及び前記CPUでの処理に用いられる各種データなどが格納されている。
また、RAMは、作業用のメモリである。
チューナ103は、アンテナ210で受信された放送波の中から、予め設定されているチャンネルの放送を選局する。
ADC104は、チューナ103の出力信号(アナログ情報)をデジタル情報に変換する。
復調回路105は、ADC104からのデジタル情報を復調する。
TSデコーダ106は、復調回路105の出力信号をTSデコードし、音声情報及び映像情報を分離する。
音声デコーダ111は、TSデコーダ106からの音声情報をデコードする。
DAコンバータ(DAC)112は、音声デコーダ111の出力信号をアナログ信号に変換する。
音声出力回路113は、DAコンバータ(DAC)112の出力信号をスピーカ114に出力する。
映像デコーダ121は、TSデコーダ106からの映像情報をデコードする。
映像・OSD合成回路122は、映像デコーダ121の出力信号とOSD描画回路125の出力信号を合成する。
映像出力回路123は、映像・OSD合成回路122の出力信号を画像表示装置124に出力する。
OSD描画回路125は、画像表示装置124の画面に文字や図形を表示するためのキャラクタ・ジェネレータを備えており、操作装置132、IR受光器151からの指示に応じて表示情報が含まれる信号を生成する。
メモリ131には、AV(Audio−Visual)データ等が一時的に蓄積される。
操作装置132は、例えば、コントロールパネルなどの入力媒体(図示省略)を備え、ユーザから入力された各種情報を主制御装置101に通知する。
ドライブIF141は、双方向の通信インターフェースであり、一例としてATAPI(AT Attachment Packet Interface)に準拠している。
ハードディスク装置142は、ハードディスクと、該ハードディスクを駆動するための駆動装置などから構成されている。駆動装置は、ハードディスクにデータを記録するとともに、ハードディスクに記録されているデータを再生する。
光ディスク装置143は、光ディスク(例えば、DVDなど)にデータを記録するとともに、光ディスクに記録されているデータを再生する。
IR受光器151は、リモコン送信機220からの光信号を受信し、主制御装置101に通知する。
通信制御装置152は、インターネットとの通信を制御する。インターネットを介して各種情報を取得することができる。
図6は、本発明の画像表示装置の一例を示す概略構成図である。
図6において、画像表示装置124は、表示器300と、表示制御装置400とを有する。
表示器300は、図7に示されるように、複数(ここでは、n×m個)の表示素子302がマトリックス状に配置されたディスプレイ310を有する。
また、ディスプレイ310は、図8に示されるように、X軸方向に沿って等間隔に配置されているn本の走査線(X0、X1、X2、X3、・・・、Xn−2、Xn−1)と、Y軸方向に沿って等間隔に配置されているm本のデータ線(Y0、Y1、Y2、Y3、・・・、Ym−1)、Y軸方向に沿って等間隔に配置されているm本の電流供給線(Y0i、Y1i、Y2i、Y3i、・・・・・、Ym−1i)とを有する。
よって、走査線とデータ線とによって、表示素子を特定することができる。
以下、本発明の表示素子を図9を用いて説明する。
図9は、本発明の表示素子の一例を示す概略構成図である。
前記表示素子は、一例として図9に示されるように、有機EL(エレクトロルミネッセンス)素子350と、該有機EL素子350を発光させるためのドライブ回路320とを有している。即ち、ディスプレイ310は、いわゆるアクティブマトリックス方式の有機ELディスプレイである。また、ディスプレイ310は、カラー対応の32インチ型のディスプレイである。なお、大きさは、これに限定されるものではない。
図10には、表示素子302における有機EL素子350とドライブ回路としての電界効果型トランジスタ20との位置関係の一例が示されている。ここでは、電界効果型トランジスタ20の横に有機EL素子350が配置されている。なお、電界効果型トランジスタ10及びキャパシタ(図示せず)も同一基材上に形成されている。
図10には図示されていないが、活性層22の上部に保護膜を設けることも好適である。前記保護膜の材料としては、SiO、SiN、Al、フッ素系ポリマー等、適宜利用できる。
また、例えば、図11に示されるように、電界効果型トランジスタ20の上に有機EL素子350が配置されてもよい。この場合には、ゲート電極26に透明性が要求されるので、ゲート電極26には、ITO、In、SnO、ZnO、Gaが添加されたZnO、Alが添加されたZnO、Sbが添加されたSnOなどの導電性を有する透明な酸化物が用いられる。なお、符号360は層間絶縁膜(平坦化膜)である。この層間絶縁膜にはポリイミドやアクリル系の樹脂等を利用できる。
図12は、有機EL素子の一例を示す概略構成図である。
図12において、有機EL素子350は、陰極312と、陽極314と、有機EL薄膜層340とを有する。
陰極312の材質としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、アルミニウム(Al)、マグネシウム(Mg)−銀(Ag)合金、アルミニウム(Al)−リチウム(Li)合金、ITO(Indium Tin Oxide)などが挙げられる。なお、マグネシウム(Mg)−銀(Ag)合金は、充分厚ければ高反射率電極となり、極薄膜(20nm程度未満)では半透明電極となる。図12では陽極側から光を取り出しているが、陰極を透明、又は半透明電極とすることによって陰極側から光を取り出すことができる。
陽極314の材質としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、ITO(Indium Tin Oxide)、IZO(Indium Zinc Oxide)、銀(Ag)−ネオジウム(Nd)合金などが挙げられる。なお、銀合金を用いた場合は、高反射率電極となり、陰極側から光を取り出す場合に好適である。
有機EL薄膜層340は、電子輸送層342と、発光層344と、正孔輸送層346とを有する。電子輸送層342は、陰極312に接続され、正孔輸送層346は、陽極314に接続されている。陽極314と陰極312との間に所定の電圧を印加すると、発光層344が発光する。
ここで、電子輸送層342と発光層344が1つの層を形成してもよく、また、電子輸送層342と陰極312との間に電子注入層が設けられてもよく、更に、正孔輸送層346と陽極314との間に正孔注入層が設けられてもよい。
また、基材側から光を取り出すいわゆる「ボトムエミッション」の場合について説明したが、基材と反対側から光を取り出す「トップエミッション」であってもよい。
図9におけるドライブ回路320について説明する。
ドライブ回路320は、2つの電界効果型トランジスタ10及び20と、キャパシタ30を有する。
電界効果型トランジスタ10は、スイッチ素子として動作する。電界効果型トランジスタ10のゲート電極Gは、所定の走査線に接続され、電界効果型トランジスタ10のソース電極Sは、所定のデータ線に接続されている。また、電界効果型トランジスタ10のドレイン電極Dは、キャパシタ30の一方の端子に接続されている。
電界効果型トランジスタ20は、有機EL素子350に電流を供給する。電界効果型トランジスタ20のゲート電極Gは、電界効果型トランジスタ10のドレイン電極Dと接続されている。そして、電界効果型トランジスタ20のドレイン電極Dは、有機EL素子350の陽極314に接続され、電界効果型トランジスタ20のソース電極Sは、所定の電流供給線に接続されている。
キャパシタ30は、電界効果型トランジスタ10の状態、即ちデータを記憶する。キャパシタ30の他方の端子は、所定の電流供給線に接続されている。
そこで、電界効果型トランジスタ10が「オン」状態になると、信号線Y2を介して画像データがキャパシタ30に記憶され、電界効果型トランジスタ10が「オフ」状態になった後も、電界効果型トランジスタ20を画像データに対応した「オン」状態に保持することによって、有機EL素子350は駆動される。
図13は、本発明の画像表示装置の他の一例を示す概略構成図である。
図13において、画像表示装置は、表示素子302と、配線(走査線、データ線、電流供給線)と、表示制御装置400とを有する。
表示制御装置400は、画像データ処理回路402と、走査線駆動回路404と、データ線駆動回路406とを有する。
画像データ処理回路402は、映像出力回路123の出力信号に基づいて、ディスプレイにおける複数の表示素子302の輝度を判断する。
走査線駆動回路404は、画像データ処理回路402の指示に応じてn本の走査線に個別に電圧を印加する。
データ線駆動回路406は、画像データ処理回路402の指示に応じてm本のデータ線に個別に電圧を印加する。
また、上記実施形態では、光制御素子が有機EL素子の場合について説明したが、これに限定されるものではなく、例えば、光制御素子がエレクトロクロミック素子であってもよい。この場合は、上記ディスプレイは、エレクトロクロミックディスプレイとなる。
また、前記光制御素子が液晶素子であってもよく、この場合ディスプレイは、液晶ディスプレイとなり、図14に示されるように、表示素子302’に対する電流供給線は不要となる。また、図15に示されるように、ドライブ回路320’は、電界効果型トランジスタ10及び20と同様の1つの電界効果型トランジスタ40により構成することができる。電界効果型トランジスタ40において、ゲート電極Gが所定の走査線に接続され、ソース電極Sが所定のデータ線に接続されている。また、ドレイン電極Dが、キャパシタ361及び液晶素子370の画素電極に接続されている。
また、前記光制御素子は、電気泳動素子、無機EL素子、エレクトロウェッティング素子であってもよい。
以上、本発明のシステムがテレビジョン装置である場合について説明したが、これに限定されるものではなく、画像及び情報を表示する装置として画像表示装置124を備えていればよい。例えば、コンピュータ(パソコンを含む)と画像表示装置124とが接続されたコンピュータシステムであってもよい。
また、携帯電話、携帯型音楽再生装置、携帯型動画再生装置、電子BOOK、PDA(Personal Digital Assistant)などの携帯情報機器、スチルカメラやビデオカメラなどの撮像機器における表示手段に画像表示装置124を用いることができる。また、車、航空機、電車、船舶等の移動体システムにおける各種情報の表示手段に画像表示装置124を用いることができる。さらに、計測装置、分析装置、医療機器、広告媒体における各種情報の表示手段に画像表示装置124を用いることができる。
以下、本発明の実施例について説明するが、本発明は下記実施例に何ら限定されるものではない。
(実施例1)
無アルカリガラス基板を、中性洗剤、純水、及びイソプロピルアルコールを用いて超音波洗浄した。この基板を乾燥後、さらにUV−オゾン処理を90℃で10分間行った。
前記基板にDCマグネトロンスパッタリング法でMoを100nm成膜し、フォトリソグラフィー法によりパターニングし、ゲート電極を形成した。次に、RFマグネトロンスパッタリング法でSiOを200nm成膜してゲート絶縁層とした。次に、BaIn1.98Sn0.02焼結体ターゲットを用い、RFマグネトロンスパッタリング法でSnをドーピングしたBaInを50nm成膜した。スパッタガスとしてアルゴンガスと酸素ガスを導入した。全圧を1.1Paに固定し、酸素濃度をパラメータとして4%〜60%の範囲で変化させ、活性層を作製した。パターニングはメタルマスクを介して成膜することで行った。次にソース・ドレイン電極として、メタルマスクを介してAlを100nm蒸着した。チャネル長は50μm、チャネル幅は400μmとした。最後に、大気中で300℃で1時間のアニールを行い、電界効果型トランジスタを作製した。なお、活性層である、SnをドーピングしたBaInは、点群C2h及び空間群No.14の対称性を有する。
(比較例1)
上述した実施例1の電界効果型トランジスタ作製手順において、活性層作製時の焼結体ターゲットを下記表1に示すようにBaInに変えて活性層を成膜したこと以外は、実施例1と同様にして、電界効果型トランジスタを作製した。
(実施例2〜36)
上述した実施例1の電界効果型トランジスタ作製手順において、活性層作製プロセスの焼結体ターゲットを下記表2及び表3に示すように変えて活性層を成膜したこと以外は、実施例1と同様にして、電界効果型トランジスタを作製した。
<評価結果>
表1に、実施例1と比較例1における活性層成膜時の酸素濃度が4%と40%の時の電界効果型トランジスタの移動度の評価結果を示す。
なお、移動度は、トランスファー特性により算出した。
図16には実施例1と比較例1における活性層成膜時の酸素濃度40%のサンプルの電界効果型トランジスタのトランスファー特性(Vds=20V)を示す。活性層にSnをドーピングした実施例1では立ち上がりのオン電圧(Von)0V、移動度4.5cm/Vs、オンオフ比8桁と、ノーマリーオフの良好な特性を示した。一方、活性層にドーピングをしていない比較例1では、オン電圧(Von)1.5V、移動度0.2cm/Vs、オンオフ比7桁と、実施例1と比較して、オン電圧がプラス側にシフトし移動度が低下した。
なお、図16において、「E」は「10のべき乗」を表す。例えば、「E−04」は、「0.0001」である。
更に、図17に実施例1と比較例1の電界効果型トランジスタの成膜中の酸素濃度と電界効果移動度の関係を示す。実施例1では酸素濃度4%〜60%までは移動度が約4.7±0.4cm/Vsでほぼ一定で、酸素濃度依存性はなかった。一方、比較例1では酸素濃度4%では実施例1と同等の移動度を示すが、酸素濃度の増大とともに移動度は概ね単調に減少し、酸素濃度40%では1/10以下に低下した。これらの原因としては、実施例1ではSnを導入してn型ドーピングしたことによって、キャリアがBaサイトを置換したSnから生成されるため、酸素濃度を増加させてもほぼ一定に保たれるのに対し、ドーピングをしていない比較例1では酸素濃度の増大とともに活性層中の酸素空孔が減少することによって、キャリア濃度が減少してソース・ドレイン電極との接触抵抗が増加するとともに、移動度の低下が観測されたためと考えられる。
次に表2及び表3に、実施例2〜36における活性層成膜時の酸素濃度が4%と40%の時の電界効果型トランジスタの移動度の評価結果を示す。実施例1と同様に、酸素濃度4%と40%の時の移動度に変化がないことがわかった。即ち、置換したカチオンがn型ドーパントとして働き電子キャリアが生成して、酸素量に関わらず一定の特性を示したと考察される。
表2及び3中、結晶系における「T」は、「三斜晶」を表し、「M」は「単斜晶」を表し、「R」は、「菱面体(三方晶)」を表す。
即ち、カチオンを置換ドープして電子キャリアを生成したn型酸化物半導体を活性層として備える電界効果型トランジスタは、酸素量のみを制御してキャリアを生成している酸化物半導体を活性層として備える電界効果型トランジスタと比較して、広いプロセス範囲で安定して高い移動度を示し、ノーマリーオフの良好な特性が得られることが示された。
以上説明したように、本発明の電界効果型トランジスタによれば、プロセスマージンを拡大し、TFT特性を高いレベルで安定させるのに適している。また、本発明の表示素子によれば、高速駆動が可能で素子間のばらつきを小さくし信頼性を向上するのに適している。また、本発明の画像表示装置によれば、大画面で高品質の画像を表示するのに適している。また、本発明のシステムは、画像情報を高精細に表示することができ、テレビジョン装置、コンピュータシステムなどに好適に使用できる。
本発明の態様は、例えば、以下のとおりである。
<1> ゲート電圧を印加するためのゲート電極と、
電流を取り出すためのソース電極及びドレイン電極と、
前記ソース電極及びドレイン電極に隣接して設けられ、n型酸化物半導体からなる活性層と、
前記ゲート電極と前記活性層との間に設けられたゲート絶縁層と、
を備える電界効果型トランジスタであって、
前記n型酸化物半導体が、2価のカチオン、3価のカチオン、4価のカチオン、5価のカチオン、及び6価のカチオンの少なくともいずれかのドーパントで置換ドーピングされた、三斜晶組成化合物、単斜晶組成化合物、及び三方晶組成化合物のいずれかであり、
前記ドーパントの価数が、前記n型酸化物半導体を構成する金属イオン(ただし、前記ドーパントを除く)の価数よりも大きいことを特徴とする電界効果型トランジスタである。
<2> 前記n型酸化物半導体が、2価のカチオン、3価のカチオン、4価のカチオン、5価のカチオン、及び6価のカチオンの少なくともいずれかのドーパントで置換ドーピングされた三斜晶組成化合物である前記<1>に記載の電界効果型トランジスタである。
<3> 前記三斜晶組成化合物が、点群C及びCのいずれかに属し、
前記置換ドーピングが、Mg、Ca、Sr、Ba、Zn、Cd、Hg、Al、Ga、In、Tl、Ge、Sn、Pb、Ti、Zr、Hf、Ce、V、Nb、Ta、As、Sb、Bi、Mo、W、及びTeの少なくともいずれかのカチオンの導入による前記<2>に記載の電界効果型トランジスタである。
<4> 前記三斜晶組成化合物が、空間群No.1〜2のいずれかに属し、Li、Cu、Ag、Au、Mg、Ca、Sr、Ba、Zn、Cd、Hg、La、Ga、In、Tl、Ge、Sn、Pb、Ti、As、Sb、Bi、V、Nb、Ta、Te、Mo、及びWの少なくともいずれかのカチオンを含む前記<3>に記載の電界効果型トランジスタである。
<5> 前記n型酸化物半導体が、2価のカチオン、3価のカチオン、4価のカチオン、5価のカチオン、及び6価のカチオンの少なくともいずれかのドーパントで置換ドーピングされた単斜晶組成化合物である前記<1>に記載の電界効果型トランジスタである。
<6> 前記単斜晶組成化合物が、点群C、C、及びC2hのいずれかに属し、
前記置換ドーピングが、Mg、Ca、Sr、Ba、Zn、Cd、Hg、Al、Ga、In、Tl、Ge、Sn、Pb、Ti、Zr、Hf、Ce、V、Nb、Ta、As、Sb、Bi、Mo、W、及びTeの少なくともいずれかのカチオンの導入による前記<5>に記載の電界効果型トランジスタである。
<7> 前記単斜晶組成化合物が、空間群No.3〜15のいずれかに属し、Li、Cu、Ag、Au、Mg、Ca、Sr、Ba、Zn、Cd、Hg、La、Ga、In、Tl、Ge、Sn、Pb、Ti、As、Sb、Bi、V、Nb、Ta、Te、Mo、及びWの少なくともいずれかのカチオンを含む前記<6>に記載の電界効果型トランジスタである。
<8> 前記n型酸化物半導体が、2価のカチオン、3価のカチオン、4価のカチオン、5価のカチオン、及び6価のカチオンの少なくともいずれかのドーパントで置換ドーピングされた三方晶組成化合物である前記<1>に記載の電界効果型トランジスタである。
<9> 前記三方晶組成化合物が、点群C3、3i、3、3v及びD3dのいずれかに属し、
前記置換ドーピングが、Mg、Ca、Sr、Ba、Zn、Cd、Hg、Al、Ga、In、Tl、Ge、Sn、Pb、Ti、Zr、Hf、Ce、V、Nb、Ta、As、Sb、Bi、Mo、W、及びTeの少なくともいずれかのカチオンの導入による前記<8>に記載の電界効果型トランジスタである。
<10> 前記三方晶組成化合物が、空間群No.143〜167のいずれかに属し、Li、Cu、Ag、Au、Mg、Ca、Sr、Ba、Zn、Cd、Hg、La、Ga、In、Tl、Ge、Sn、Pb、Ti、As、Sb、Bi、V、Nb、Ta、Te、Mo、及びWの少なくともいずれかのカチオンを含む前記<9>に記載の電界効果型トランジスタである。
<11> 駆動信号に応じて光出力が制御される光制御素子と、
前記<1>から<10>のいずれかに記載の電界効果型トランジスタを含み、前記光制御素子を駆動する駆動回路と、
を備えることを特徴とする表示素子である。
<12> 前記光制御素子が、エレクトロルミネッセンス素子及びエレクトロクロミック素子のいずれかを含む前記<11>に記載の表示素子である。
<13> 前記光制御素子が、液晶素子及び電気泳動素子のいずれかを含む前記<11>に記載の表示素子である。
<14> 画像データに応じた画像を表示する画像表示装置であって、
マトリックス状に配置された複数の前記<11>から<13>のいずれかに記載の表示素子と、
前記複数の表示素子における各電界効果型トランジスタにゲート電圧を個別に印加するための複数の配線と、
前記画像データに応じて、前記各電界効果型トランジスタのゲート電圧を前記複数の配線を介して個別に制御する表示制御装置と、
を備えることを特徴とする画像表示装置である。
<15> 前記<14>に記載の画像表示装置と、
表示する画像情報に基づいて画像データを作成し、該画像データを前記画像表示装置に出力する画像データ作成装置と、
を備えることを特徴とするシステムである。
10 電界効果型トランジスタ
20 電界効果型トランジスタ
21 基材
22 活性層
23 ソース電極
24 ドレイン電極
25 ゲート絶縁層
26 ゲート電極
30 キャパシタ
40 電界効果型トランジスタ
100 テレビジョン装置
101 主制御装置
103 チューナ
104 ADコンバータ(ADC)
105 復調回路
106 TS(Transport Stream)デコーダ
111 音声デコーダ
112 DAコンバータ(DAC)
113 音声出力回路
114 スピーカ
121 映像デコーダ
122 映像・OSD合成回路
123 映像出力回路
124 画像表示装置
125 OSD描画回路
131 メモリ
132 操作装置
141 ドライブインターフェース(ドライブIF)
142 ハードディスク装置
143 光ディスク装置
151 IR受光器
152 通信制御装置
210 アンテナ
220 リモコン送信機
300 表示器
302、302’ 表示素子
310 ディスプレイ
312 陰極
314 陽極
320、320’ ドライブ回路(駆動回路)
340 有機EL薄膜層
342 電子輸送層
344 発光層
346 正孔輸送層
350 有機EL素子
360 層間絶縁膜
361 キャパシタ
370 液晶素子
400 表示制御装置
402 画像データ処理回路
404 走査線駆動回路
406 データ線駆動回路
特開2002−76356号公報 特開2006−165529号公報 国際公開WO2008−096768号パンフレット
K.Nomura,他5名、「Room−temperature fabrication of transparent flexible thin−film transistors using amorphous oxide semiconductors」、NATURE、VOL432、No.25、NOVEMBER、2004、p.488−492 J. S. Park,他5名、 「Novel ZrInZnO Thin−film Transistor with Excellent Stability」、 Advanced Materials、 VOL21、No.3、2009、p.329−333

Claims (15)

  1. ゲート電圧を印加するためのゲート電極と、
    電流を取り出すためのソース電極及びドレイン電極と、
    前記ソース電極及びドレイン電極に隣接して設けられ、n型酸化物半導体からなる活性層と、
    前記ゲート電極と前記活性層との間に設けられたゲート絶縁層と、
    を備える電界効果型トランジスタであって、
    前記n型酸化物半導体が、2価のカチオン、3価のカチオン、4価のカチオン、5価のカチオン、及び6価のカチオンの少なくともいずれかのドーパントで置換ドーピングされた、三斜晶組成化合物、単斜晶組成化合物、及び三方晶組成化合物のいずれかであり、
    前記ドーパントの価数が、前記n型酸化物半導体を構成する金属イオン(ただし、前記ドーパントを除く)の価数よりも大きいことを特徴とする電界効果型トランジスタ。
  2. 前記n型酸化物半導体が、2価のカチオン、3価のカチオン、4価のカチオン、5価のカチオン、及び6価のカチオンの少なくともいずれかのドーパントで置換ドーピングされた三斜晶組成化合物である請求項1に記載の電界効果型トランジスタ。
  3. 前記三斜晶組成化合物が、点群C及びCのいずれかに属し、
    前記置換ドーピングが、Mg、Ca、Sr、Ba、Zn、Cd、Hg、Al、Ga、In、Tl、Ge、Sn、Pb、Ti、Zr、Hf、Ce、V、Nb、Ta、As、Sb、Bi、Mo、W、及びTeの少なくともいずれかのカチオンの導入による請求項2に記載の電界効果型トランジスタ。
  4. 前記三斜晶組成化合物が、空間群No.1〜2のいずれかに属し、Li、Cu、Ag、Au、Mg、Ca、Sr、Ba、Zn、Cd、Hg、La、Ga、In、Tl、Ge、Sn、Pb、Ti、As、Sb、Bi、V、Nb、Ta、Te、Mo、及びWの少なくともいずれかのカチオンを含む請求項3に記載の電界効果型トランジスタ。
  5. 前記n型酸化物半導体が、2価のカチオン、3価のカチオン、4価のカチオン、5価のカチオン、及び6価のカチオンの少なくともいずれかのドーパントで置換ドーピングされた単斜晶組成化合物である請求項1に記載の電界効果型トランジスタ。
  6. 前記単斜晶組成化合物が、点群C、C、及びC2hのいずれかに属し、
    前記置換ドーピングが、Mg、Ca、Sr、Ba、Zn、Cd、Hg、Al、Ga、In、Tl、Ge、Sn、Pb、Ti、Zr、Hf、Ce、V、Nb、Ta、As、Sb、Bi、Mo、W、及びTeの少なくともいずれかのカチオンの導入による請求項5に記載の電界効果型トランジスタ。
  7. 前記単斜晶組成化合物が、空間群No.3〜15のいずれかに属し、Li、Cu、Ag、Au、Mg、Ca、Sr、Ba、Zn、Cd、Hg、La、Ga、In、Tl、Ge、Sn、Pb、Ti、As、Sb、Bi、V、Nb、Ta、Te、Mo、及びWの少なくともいずれかのカチオンを含む請求項6に記載の電界効果型トランジスタ。
  8. 前記n型酸化物半導体が、2価のカチオン、3価のカチオン、4価のカチオン、5価のカチオン、及び6価のカチオンの少なくともいずれかのドーパントで置換ドーピングされた三方晶組成化合物である請求項1に記載の電界効果型トランジスタ。
  9. 前記三方晶組成化合物が、点群C3、3i、3、3v及びD3dのいずれかに属し、
    前記置換ドーピングが、Mg、Ca、Sr、Ba、Zn、Cd、Hg、Al、Ga、In、Tl、Ge、Sn、Pb、Ti、Zr、Hf、Ce、V、Nb、Ta、As、Sb、Bi、Mo、W、及びTeの少なくともいずれかのカチオンの導入による請求項8に記載の電界効果型トランジスタ。
  10. 前記三方晶組成化合物が、空間群No.143〜167のいずれかに属し、Li、Cu、Ag、Au、Mg、Ca、Sr、Ba、Zn、Cd、Hg、La、Ga、In、Tl、Ge、Sn、Pb、Ti、As、Sb、Bi、V、Nb、Ta、Te、Mo、及びWの少なくともいずれかのカチオンを含む請求項9に記載の電界効果型トランジスタ。
  11. 駆動信号に応じて光出力が制御される光制御素子と、
    請求項1から10のいずれかに記載の電界効果型トランジスタを含み、前記光制御素子を駆動する駆動回路と、
    を備えることを特徴とする表示素子。
  12. 前記光制御素子が、エレクトロルミネッセンス素子及びエレクトロクロミック素子のいずれかを含む請求項11に記載の表示素子。
  13. 前記光制御素子が、液晶素子及び電気泳動素子のいずれかを含む請求項11に記載の表示素子。
  14. 画像データに応じた画像を表示する画像表示装置であって、
    マトリックス状に配置された複数の請求項11から13のいずれかに記載の表示素子と、
    前記複数の表示素子における各電界効果型トランジスタにゲート電圧を個別に印加するための複数の配線と、
    前記画像データに応じて、前記各電界効果型トランジスタのゲート電圧を前記複数の配線を介して個別に制御する表示制御装置と、
    を備えることを特徴とする画像表示装置。
  15. 請求項14に記載の画像表示装置と、
    表示する画像情報に基づいて画像データを作成し、該画像データを前記画像表示装置に出力する画像データ作成装置と、
    を備えることを特徴とするシステム。
JP2020022658A 2013-06-28 2020-02-13 電界効果型トランジスタ、表示素子、画像表示装置及びシステム Active JP6904444B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2013136422 2013-06-28
JP2013136422 2013-06-28
JP2018196261A JP6662432B2 (ja) 2013-06-28 2018-10-18 電界効果型トランジスタ、表示素子、画像表示装置及びシステム

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2018196261A Division JP6662432B2 (ja) 2013-06-28 2018-10-18 電界効果型トランジスタ、表示素子、画像表示装置及びシステム

Publications (2)

Publication Number Publication Date
JP2020098934A true JP2020098934A (ja) 2020-06-25
JP6904444B2 JP6904444B2 (ja) 2021-07-14

Family

ID=66107724

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2018196261A Active JP6662432B2 (ja) 2013-06-28 2018-10-18 電界効果型トランジスタ、表示素子、画像表示装置及びシステム
JP2020022658A Active JP6904444B2 (ja) 2013-06-28 2020-02-13 電界効果型トランジスタ、表示素子、画像表示装置及びシステム

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2018196261A Active JP6662432B2 (ja) 2013-06-28 2018-10-18 電界効果型トランジスタ、表示素子、画像表示装置及びシステム

Country Status (1)

Country Link
JP (2) JP6662432B2 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102401958B1 (ko) * 2020-11-19 2022-05-25 한양대학교 산학협력단 양이온/음이온 치환형 도핑을 통해 개선된 저항을 갖는 산화물 반도체 및 그의 제조 방법
WO2022108074A1 (ko) * 2020-11-19 2022-05-27 한양대학교 산학협력단 오믹 접합 구조의 산화물 반도체, 이를 갖는 박막 트랜지스터 및 그들의 제조 방법들

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005235831A (ja) * 2004-02-17 2005-09-02 Toyota Central Res & Dev Lab Inc p型半導体及び半導体デバイス
JP2007042783A (ja) * 2005-08-02 2007-02-15 Nippon Telegr & Teleph Corp <Ntt> 酸化物半導体
JP2011192971A (ja) * 2010-02-16 2011-09-29 Ricoh Co Ltd 電界効果型トランジスタ、表示素子、画像表示装置及びシステム
WO2013035842A1 (ja) * 2011-09-08 2013-03-14 株式会社タムラ製作所 Ga2O3系半導体素子

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101468591B1 (ko) * 2008-05-29 2014-12-04 삼성전자주식회사 산화물 반도체 및 이를 포함하는 박막 트랜지스터
JP2010132545A (ja) * 2008-12-05 2010-06-17 Korea Electronics Telecommun 金属酸化物の形成方法及びこれを含むトランジスタ構造体の形成方法
JP4670948B2 (ja) * 2008-12-08 2011-04-13 富士ゼロックス株式会社 表示媒体及び表示装置
KR20110037220A (ko) * 2009-10-06 2011-04-13 삼성모바일디스플레이주식회사 박막 트랜지스터, 그의 제조 방법 및 박막 트랜지스터를 구비하는 유기전계발광 표시 장치
JP4982620B1 (ja) * 2011-07-29 2012-07-25 富士フイルム株式会社 電界効果型トランジスタの製造方法、並びに、電界効果型トランジスタ、表示装置、イメージセンサ及びx線センサ

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005235831A (ja) * 2004-02-17 2005-09-02 Toyota Central Res & Dev Lab Inc p型半導体及び半導体デバイス
JP2007042783A (ja) * 2005-08-02 2007-02-15 Nippon Telegr & Teleph Corp <Ntt> 酸化物半導体
JP2011192971A (ja) * 2010-02-16 2011-09-29 Ricoh Co Ltd 電界効果型トランジスタ、表示素子、画像表示装置及びシステム
US20120306834A1 (en) * 2010-02-16 2012-12-06 Naoyuki Ueda Field effect transistor, display element, image display device, and system
WO2013035842A1 (ja) * 2011-09-08 2013-03-14 株式会社タムラ製作所 Ga2O3系半導体素子

Also Published As

Publication number Publication date
JP6904444B2 (ja) 2021-07-14
JP2019057712A (ja) 2019-04-11
JP6662432B2 (ja) 2020-03-11

Similar Documents

Publication Publication Date Title
JP6421446B2 (ja) 電界効果型トランジスタ、表示素子、画像表示装置及びシステム
KR102267890B1 (ko) N형 산화물 반도체 제조용 도포액, 전계 효과 트랜지스터, 표시 소자, 화상 표시 장치, 및 시스템
JP5776192B2 (ja) 電界効果型トランジスタ、表示素子、画像表示装置及びシステム
US10115828B2 (en) Field-effect transistor, display element, image display device, and system
JP5644071B2 (ja) 電界効果型トランジスタ、表示素子、画像表示装置及びシステム
WO2017159810A1 (ja) 電界効果型トランジスタ、表示素子、画像表示装置、及びシステム
JP6904444B2 (ja) 電界効果型トランジスタ、表示素子、画像表示装置及びシステム
JP5716407B2 (ja) 電界効果型トランジスタ、表示素子、画像表示装置、及びシステム
US11462646B2 (en) Field-effect transistor, display element, image display device, and system
JP5904242B2 (ja) 電界効果型トランジスタ、電界効果型トランジスタの活性層に用いられる酸化物半導体、表示素子、画像表示装置及びシステム
JP2020021814A (ja) 電界効果型トランジスタの製造方法、並びに表示素子、画像表示装置、及びシステム

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200304

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200304

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210210

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210216

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210311

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210525

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210607

R151 Written notification of patent or utility model registration

Ref document number: 6904444

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151