JP2020096080A - Method of manufacturing semiconductor device - Google Patents

Method of manufacturing semiconductor device Download PDF

Info

Publication number
JP2020096080A
JP2020096080A JP2018232913A JP2018232913A JP2020096080A JP 2020096080 A JP2020096080 A JP 2020096080A JP 2018232913 A JP2018232913 A JP 2018232913A JP 2018232913 A JP2018232913 A JP 2018232913A JP 2020096080 A JP2020096080 A JP 2020096080A
Authority
JP
Japan
Prior art keywords
region
semiconductor substrate
mask layer
forming
ion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2018232913A
Other languages
Japanese (ja)
Inventor
清水 智子
Tomoko Shimizu
智子 清水
渡辺 行彦
Yukihiko Watanabe
行彦 渡辺
泰 浦上
Yasushi Uragami
泰 浦上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2018232913A priority Critical patent/JP2020096080A/en
Publication of JP2020096080A publication Critical patent/JP2020096080A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • H01L29/7813Vertical DMOS transistors, i.e. VDMOS transistors with trench gate electrode, e.g. UMOS transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0611Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices
    • H01L29/0615Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE]
    • H01L29/0619Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE] with a supplementary region doped oppositely to or in rectifying contact with the semiconductor containing or contacting region, e.g. guard rings with PN or Schottky junction
    • H01L29/0623Buried supplementary region, e.g. buried guard ring
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/08Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/0843Source or drain regions of field-effect devices
    • H01L29/0847Source or drain regions of field-effect devices of field-effect transistors with insulated gate
    • H01L29/0852Source or drain regions of field-effect devices of field-effect transistors with insulated gate of DMOS transistors
    • H01L29/0873Drain regions
    • H01L29/0878Impurity concentration or distribution

Abstract

To provide a method of manufacturing a semiconductor device for suppressing formation of a large amount of crystal defects and also suppressing manufacturing costs.SOLUTION: The method of manufacturing a semiconductor device includes the steps of: forming a JFET resistance reduction region at a position in contact with both a drift region and a body region by ion-implanting a first conduction type impurity toward a first range of a semiconductor substrate surface exposed from an opening of a second mask layer; and forming a source region on the body region by ion-implanting the first conduction impurity towards the first range of the semiconductor substrate surface exposed through the opening of the second mask layer.SELECTED DRAWING: Figure 1

Description

本明細書が開示する技術は、トレンチゲートを備える半導体装置の製造方法に関する。 The technique disclosed in the present specification relates to a method for manufacturing a semiconductor device including a trench gate.

特許文献1は、トレンチゲートの底面を覆うように設けられているp型の電界緩和領域を備えている半導体装置を開示する。このような電界緩和領域は、トレンチゲートの底面に集中する電界を緩和することができる。これにより、半導体装置の耐圧が向上する。 Patent Document 1 discloses a semiconductor device including a p-type electric field relaxation region provided so as to cover the bottom surface of the trench gate. Such an electric field relaxation region can relax the electric field concentrated on the bottom surface of the trench gate. This improves the breakdown voltage of the semiconductor device.

このようなp型の電界緩和領域が設けられていると、p型の電界緩和領域からn型のドリフト領域内に伸びてくる空乏層によって抵抗が増加すること、即ち、JFET抵抗の増加が懸念される。このようなJFET抵抗の増加を抑えるために、特許文献1は、ドリフト領域よりも不純物濃度が濃いn型のJFET抵抗低減領域(特許文献1では、電流分散領域と称される)を設ける技術を提案する。JFET抵抗低減領域が設けられていると、電界緩和領域から伸びてくる空乏層を迂回するように電流が流れることができるので、JFET抵抗の増加が抑えられる。 If such a p-type electric field relaxation region is provided, there is concern that the depletion layer extending from the p-type electric field relaxation region into the n-type drift region may increase the resistance, that is, the JFET resistance may increase. To be done. In order to suppress such an increase in JFET resistance, Patent Document 1 discloses a technique of providing an n-type JFET resistance reduction region (referred to as a current dispersion region in Patent Document 1) having an impurity concentration higher than that of the drift region. suggest. When the JFET resistance reduction region is provided, a current can flow so as to bypass the depletion layer extending from the electric field relaxation region, so that an increase in JFET resistance can be suppressed.

特開2017−50516号公報JP, 2017-50516, A

このような半導体装置を製造する場合、製造コストを抑えるために、p型のボディ領域とp型のボディコンタクト領域とn型のJFET抵抗低減領域とn型のソース領域の各々をイオン注入によって形成することが望まれる。この場合、ボディコンタクト領域をイオン注入で形成するとき、多量のp型の不純物をイオン注入しなければならない。このため、ボディコンタクト領域の下方には、イオン注入時に形成された結晶欠陥が多量に存在することとなる。ボディコンタクト領域の下方には、ボディ領域が設けられている。このボディ領域をイオン注入で形成するときも、結晶欠陥が形成される。さらに、ボディコンタクト領域の下方であってドリフト領域とボディ領域の間にJFET抵抗低減領域が設けられていると、そのJFET抵抗低減領域をイオン注入で形成するときに形成される結晶欠陥も、ボディコンタクト領域の下方に形成されることとなる。 When manufacturing such a semiconductor device, in order to suppress the manufacturing cost, each of a p-type body region, a p-type body contact region, an n-type JFET resistance reduction region, and an n-type source region is formed by ion implantation. It is desirable to do. In this case, when forming the body contact region by ion implantation, a large amount of p-type impurities must be ion-implanted. Therefore, a large amount of crystal defects formed during the ion implantation exist below the body contact region. A body region is provided below the body contact region. Crystal defects are also formed when this body region is formed by ion implantation. Further, when the JFET resistance reducing region is provided below the body contact region and between the drift region and the body region, the crystal defects formed when the JFET resistance reducing region is formed by ion implantation are also included in the body. It will be formed below the contact region.

このように、p型のボディ領域とp型のボディコンタクト領域とn型のJFET抵抗低減領域とn型のソース領域の各々をイオン注入によって形成する場合、ボディコンタクト領域の下方に多量の結晶欠陥が形成される可能性がある。このような多量の結晶欠陥は、リーク電流が増大する原因となる。本願明細書は、多量の結晶欠陥の形成が抑えられるとともに、製造コストも抑えられた半導体装置の製造方法を提供する。 As described above, when each of the p-type body region, the p-type body contact region, the n-type JFET resistance reduction region, and the n-type source region is formed by ion implantation, a large number of crystal defects are formed below the body contact region. May be formed. Such a large amount of crystal defects causes an increase in leak current. The present specification provides a method for manufacturing a semiconductor device in which a large number of crystal defects are suppressed and the manufacturing cost is also suppressed.

本明細書で開示する半導体装置の製造方法は、第1導電型のドリフト領域が表面に露出する半導体基板を準備する工程と、前記半導体基板の前記表面に向けて第2導電型不純物をイオン注入し、前記ドリフト領域上にボディ領域を形成する工程と、前記半導体基板の前記表面に第1マスク層を成膜する工程であって、前記第1マスク層は、前記半導体基板の前記表面の第1範囲を被膜し、前記半導体基板の前記表面の前記第1範囲とは異なる第2範囲に開口を有する、第1マスク層を成膜する工程と、前記第1マスク層の前記開口から露出する前記半導体基板の前記表面の前記第2範囲に向けて第2導電型不純物をイオン注入し、前記ボディ領域上にボディコンタクト領域を形成する工程と、前記半導体基板の前記表面に第2マスク層を成膜する工程であって、前記第2マスク層は、前記半導体基板の前記表面の前記第2範囲を被膜し、前記半導体基板の前記表面の前記第1範囲に開口を有する、第2マスク層を成膜する工程と、前記第2マスク層の前記開口から露出する前記半導体基板の前記表面の前記第1範囲に向けて第1導電型不純物をイオン注入し、前記ドリフト領域と前記ボディ領域の双方に接する位置にJFET抵抗低減領域を形成する工程と、前記第2マスク層の前記開口から露出する前記半導体基板の前記表面の前記第1範囲に向けて第1導電型不純物をイオン注入し、前記ボディ領域上にソース領域を形成する工程と、前記半導体基板の前記表面の前記第1範囲において、前記ソース領域と前記ボディ領域と前記JFET抵抗低減領域を貫通するトレンチゲートを形成する工程と、を備えることができる。なお、JFET抵抗低減領域を形成する工程とソース領域を形成する工程を実施する順序は特に限定されない。 A method of manufacturing a semiconductor device disclosed in the present specification includes a step of preparing a semiconductor substrate in which a drift region of the first conductivity type is exposed on the surface, and ion implantation of impurities of the second conductivity type toward the surface of the semiconductor substrate. Then, a step of forming a body region on the drift region and a step of forming a first mask layer on the surface of the semiconductor substrate, wherein the first mask layer is the first mask layer on the surface of the semiconductor substrate. A step of forming a first mask layer which covers one area and has an opening in a second area different from the first area of the surface of the semiconductor substrate; and exposing from the opening of the first mask layer. Forming a body contact region on the body region by ion-implanting a second conductivity type impurity toward the second region of the surface of the semiconductor substrate; and forming a second mask layer on the surface of the semiconductor substrate. In the step of forming a film, the second mask layer covers the second area of the surface of the semiconductor substrate, and has an opening in the first area of the surface of the semiconductor substrate. A step of forming a film, and ion-implanting a first conductivity type impurity toward the first range of the surface of the semiconductor substrate exposed from the opening of the second mask layer to form the drift region and the body region. Forming a JFET resistance reduction region at a position in contact with both, and ion-implanting a first conductivity type impurity toward the first range of the surface of the semiconductor substrate exposed from the opening of the second mask layer, Forming a source region on the body region; forming a trench gate penetrating the source region, the body region, and the JFET resistance reducing region in the first range of the surface of the semiconductor substrate; Can be provided. The order of performing the step of forming the JFET resistance reduction region and the step of forming the source region is not particularly limited.

上記製造方法によると、前記JFET抵抗低減領域は、前記ソース領域の下方に選択的に形成され、前記ボディコンタクト領域の下方には形成されない。このため、前記JFET抵抗低減領域をイオン注入で形成するときに形成される結晶欠陥は、前記ボディコンタクト領域の下方に形成されない。これにより、前記ボディコンタクト領域の下方に多量の結晶欠陥が形成されることが抑えられる。さらに、上記製造方法によると、前記ソース領域と前記JFET抵抗低減領域を共通の第2マスク層を用いて形成することができる。これにより、上記製造方法では、製造コストが抑えられる。 According to the above manufacturing method, the JFET resistance reducing region is selectively formed below the source region and is not formed below the body contact region. Therefore, crystal defects formed when the JFET resistance reduction region is formed by ion implantation are not formed below the body contact region. This suppresses formation of a large number of crystal defects below the body contact region. Further, according to the above manufacturing method, the source region and the JFET resistance reducing region can be formed using the common second mask layer. As a result, the manufacturing cost can be suppressed in the above manufacturing method.

本実施形態の半導体装置の要部断面図を模式的に示す。1 schematically shows a cross-sectional view of a main part of a semiconductor device of this embodiment. 本実施形態の半導体装置の製造過程の要部断面図を模式的に示す。FIG. 3 is a schematic sectional view showing an essential part of a manufacturing process of the semiconductor device of this embodiment. 本実施形態の半導体装置の製造過程の要部断面図を模式的に示す。FIG. 3 is a schematic sectional view showing an essential part of a manufacturing process of the semiconductor device of this embodiment. 本実施形態の半導体装置の製造過程の要部断面図を模式的に示す。FIG. 3 is a schematic sectional view showing an essential part of a manufacturing process of the semiconductor device of this embodiment. 本実施形態の半導体装置の製造過程の要部断面図を模式的に示す。FIG. 3 is a schematic sectional view showing an essential part of a manufacturing process of the semiconductor device of this embodiment. 本実施形態の半導体装置の製造過程の要部断面図を模式的に示す。FIG. 3 is a schematic sectional view showing an essential part of a manufacturing process of the semiconductor device of this embodiment. 本実施形態の半導体装置の製造過程の要部断面図を模式的に示す。FIG. 3 is a schematic sectional view showing an essential part of a manufacturing process of the semiconductor device of this embodiment. 本実施形態の半導体装置の製造過程の要部断面図を模式的に示す。FIG. 3 is a schematic sectional view showing an essential part of a manufacturing process of the semiconductor device of this embodiment. 本実施形態の半導体装置の製造過程の要部断面図を模式的に示す。FIG. 3 is a schematic sectional view showing an essential part of a manufacturing process of the semiconductor device of this embodiment. 本実施形態の半導体装置の製造過程の要部断面図を模式的に示す。FIG. 3 is a schematic sectional view showing an essential part of a manufacturing process of the semiconductor device of this embodiment.

図1に示されるように、半導体装置1は、MOSFET(Metal Oxide Semiconductor Field Effect Transistor)と称されるパワー半導体素子であり、半導体基板10、半導体基板10の裏面を被覆するドレイン電極22、半導体基板10の表面を被覆するソース電極24及び半導体基板10の表層部に設けられているトレンチゲート30を備えている。トレンチゲート30は、半導体基板10の表面に対して直交する方向から観測したときに、例えばストライプ状に配置されている。 As shown in FIG. 1, a semiconductor device 1 is a power semiconductor element called a MOSFET (Metal Oxide Semiconductor Field Effect Transistor), and includes a semiconductor substrate 10, a drain electrode 22 that covers the back surface of the semiconductor substrate 10, and a semiconductor substrate. A source electrode 24 covering the surface of the semiconductor substrate 10 and a trench gate 30 provided in the surface layer portion of the semiconductor substrate 10 are provided. The trench gates 30 are arranged, for example, in a stripe shape when observed from a direction orthogonal to the surface of the semiconductor substrate 10.

半導体基板10は、炭化珪素(SiC)を材料とする基板であり、n+型のドレイン領域11、n型のドリフト領域12、p型の電界緩和領域13、n+型のJFET抵抗低減領域14、p型のボディ領域15、p+型のボディコンタクト領域16及びn+型のソース領域17を有している。 The semiconductor substrate 10 is a substrate made of silicon carbide (SiC), and includes an n + type drain region 11, an n type drift region 12, a p type electric field relaxation region 13, and an n + type JFET resistance reduction region 14. , P type body region 15, p + type body contact region 16 and n + type source region 17.

ドレイン領域11は、半導体基板10の裏層部に配置されており、半導体基板10の裏面に露出する。ドレイン領域11は、後述するドリフト領域12がエピタキシャル成長するための下地基板でもある。ドレイン領域11は、半導体基板10の裏面を被膜するドレイン電極22にオーミック接触している。 The drain region 11 is arranged in the back layer portion of the semiconductor substrate 10 and is exposed on the back surface of the semiconductor substrate 10. The drain region 11 is also a base substrate for the epitaxial growth of the drift region 12 described later. The drain region 11 is in ohmic contact with the drain electrode 22 that coats the back surface of the semiconductor substrate 10.

ドリフト領域12は、ドレイン領域11上に設けられている。ドリフト領域12は、エピタキシャル成長技術を利用して、ドレイン領域11の表面から結晶成長して形成される。ドリフト領域12の不純物濃度は、半導体基板10の厚み方向に一定である。 The drift region 12 is provided on the drain region 11. The drift region 12 is formed by crystal growth from the surface of the drain region 11 using an epitaxial growth technique. The impurity concentration of the drift region 12 is constant in the thickness direction of the semiconductor substrate 10.

電界緩和領域13は、トレンチゲート30の底面を覆うように設けられており、トレンチゲート30の底面に集中する電界を緩和することができる。この断面では、電界緩和領域13がドリフト領域12及びJFET抵抗低減領域14によってボディ領域15から隔てられている。しかしながら、図示しない断面において、電界緩和領域13がボディ領域15に接続されていてもよい。電界緩和領域13は、イオン注入技術を利用して、トレンチゲート30を形成するためのトレンチの底面に向けてアルミニウムをイオン注入し、そのトレンチの底面に形成される。 The electric field relaxation region 13 is provided so as to cover the bottom surface of the trench gate 30, and can alleviate the electric field concentrated on the bottom surface of the trench gate 30. In this cross section, the electric field relaxation region 13 is separated from the body region 15 by the drift region 12 and the JFET resistance reduction region 14. However, the electric field relaxation region 13 may be connected to the body region 15 in a cross section (not shown). The electric field relaxation region 13 is formed on the bottom surface of the trench by ion-implanting aluminum toward the bottom surface of the trench for forming the trench gate 30 by using the ion implantation technique.

JFET抵抗低減領域14は、ドリフト領域12とボディ領域15の間に設けられており、ドリフト領域12よりもn型不純物の濃度が濃い領域である。JFET抵抗低減領域14は、トレンチゲート30の側面に接しており、半導体基板10の表面に直交する方向から見たときに(以下、「平面視したときに」という)、ソース領域17と重複する位置に配置されている。このため、JFET抵抗低減領域14は、隣り合うトレンチゲート30の間において面方向に離間しており、その離間する部分にドリフト領域12の一部が位置している。換言すると、JFET抵抗低減領域14は、ボディコンタクト領域16の下方に形成されておらず、ボディコンタクト領域16の下方に対応する部分において面方向に離間しており、その離間する部分にドリフト領域12の一部が位置している。JFET抵抗低減領域14は、イオン注入技術を利用して、半導体基板10の表面に向けて窒素をイオン注入し、ドリフト領域12とボディ領域15の双方に接する位置に形成される。 The JFET resistance reduction region 14 is provided between the drift region 12 and the body region 15 and has a higher concentration of n-type impurities than the drift region 12. The JFET resistance reduction region 14 is in contact with the side surface of the trench gate 30 and overlaps with the source region 17 when viewed from a direction orthogonal to the surface of the semiconductor substrate 10 (hereinafter, referred to as “when viewed in plan”). It is located in a position. Therefore, the JFET resistance reduction region 14 is separated in the surface direction between the adjacent trench gates 30, and a part of the drift region 12 is located in the separated portion. In other words, the JFET resistance reduction region 14 is not formed below the body contact region 16 and is separated in the plane direction in the portion corresponding to the lower portion of the body contact region 16, and the drift region 12 is located in the separated portion. Part of is located. The JFET resistance reduction region 14 is formed at a position in contact with both the drift region 12 and the body region 15 by ion-implanting nitrogen toward the surface of the semiconductor substrate 10 using an ion implantation technique.

ボディ領域15は、ドリフト領域12及びJFET抵抗低減領域14上に設けられており、半導体基板10の表層部に配置されている。ボディ領域15は、トレンチゲート30の側面に接している。ボディ領域15は、イオン注入技術を利用して、半導体基板10の表面に向けてアルミニウムをイオン注入し、半導体基板10の表層部に形成される。 The body region 15 is provided on the drift region 12 and the JFET resistance reduction region 14, and is arranged in the surface layer portion of the semiconductor substrate 10. The body region 15 is in contact with the side surface of the trench gate 30. The body region 15 is formed in the surface layer portion of the semiconductor substrate 10 by ion-implanting aluminum toward the surface of the semiconductor substrate 10 using an ion implantation technique.

ボディコンタクト領域16は、ボディ領域15上に設けられており、半導体基板10の表層部に配置されており、半導体基板10の表面に露出しており、ボディ領域15よりもp型不純物の濃度が濃い領域である。ボディコンタクト領域16は、半導体基板10の表面を被膜するソース電極24にオーミック接触している。ボディコンタクト領域16は、イオン注入技術を利用して、半導体基板10の表面に向けてアルミニウムをイオン注入し、半導体基板10の表層部に形成される。 The body contact region 16 is provided on the body region 15, is disposed on the surface layer portion of the semiconductor substrate 10, is exposed on the surface of the semiconductor substrate 10, and has a p-type impurity concentration lower than that of the body region 15. It is a dark area. The body contact region 16 is in ohmic contact with the source electrode 24 that coats the surface of the semiconductor substrate 10. The body contact region 16 is formed in the surface layer portion of the semiconductor substrate 10 by ion-implanting aluminum toward the surface of the semiconductor substrate 10 using an ion implantation technique.

ソース領域17は、ボディ領域15上に設けられており、半導体基板10の表層部に配置されており、半導体基板10の表面に露出する。ソース領域17は、ボディ領域15によってドリフト領域12及びJFET抵抗低減領域14から隔てられている。ソース領域17は、トレンチゲート30の側面に接している。ソース領域17は、半導体基板10の表面を被膜するソース電極24にオーミック接触している。ソース領域17は、イオン注入技術を利用して、半導体基板10の表面に向けて窒素をイオン注入し、半導体基板10の表層部に形成される。 The source region 17 is provided on the body region 15, is disposed on the surface layer portion of the semiconductor substrate 10, and is exposed on the surface of the semiconductor substrate 10. Source region 17 is separated from drift region 12 and JFET resistance reduction region 14 by body region 15. The source region 17 is in contact with the side surface of the trench gate 30. The source region 17 is in ohmic contact with the source electrode 24 that coats the surface of the semiconductor substrate 10. The source region 17 is formed in the surface layer portion of the semiconductor substrate 10 by ion-implanting nitrogen toward the surface of the semiconductor substrate 10 using an ion implantation technique.

トレンチゲート30は、半導体基板10の表面から深部に向けて伸びており、ゲート絶縁膜32及びゲート電極34を有している。トレンチゲート30は、ソース領域17とボディ領域15とJFET抵抗低減領域14を貫通してドリフト領域12に達している。ゲート絶縁膜32は、酸化シリコンである。ゲート電極34は、ゲート絶縁膜32で被覆されており、不純物を含むポリシリコンである。 The trench gate 30 extends from the surface of the semiconductor substrate 10 toward the deep part, and has a gate insulating film 32 and a gate electrode 34. The trench gate 30 penetrates the source region 17, the body region 15, and the JFET resistance reduction region 14 to reach the drift region 12. The gate insulating film 32 is silicon oxide. The gate electrode 34 is covered with the gate insulating film 32 and is polysilicon containing impurities.

次に、図1を参照し、半導体装置1の動作を説明する。ドレイン電極22に正電圧が印加され、ソース電極24が接地され、トレンチゲート30のゲート電極34が接地されていると、半導体装置1はオフである。半導体装置1では、電界緩和領域13がトレンチゲート30の底面を覆うように設けられている。このため、トレンチゲート30の底面のゲート絶縁膜32における電界集中が緩和され、半導体装置1は高い耐圧を有することができる。 Next, the operation of the semiconductor device 1 will be described with reference to FIG. When a positive voltage is applied to the drain electrode 22, the source electrode 24 is grounded, and the gate electrode 34 of the trench gate 30 is grounded, the semiconductor device 1 is off. In the semiconductor device 1, the electric field relaxation region 13 is provided so as to cover the bottom surface of the trench gate 30. Therefore, the electric field concentration in the gate insulating film 32 on the bottom surface of the trench gate 30 is relaxed, and the semiconductor device 1 can have a high breakdown voltage.

ドレイン電極22に正電圧が印加され、ソース電極24が接地され、トレンチゲート30のゲート電極34にソース電極24よりも正となる閾値電圧以上の電圧が印加されていると、半導体装置1はオンである。このとき、ソース領域17とJFET抵抗低減領域14を隔てるボディ領域15のうちのトレンチゲート30の側面に対向する部分に反転層が形成される。ソース領域17から供給される電子は、その反転層を経由してJFET抵抗低減領域14に達する。JFET抵抗低減領域14に達した電子は、JFET抵抗低減領域14を経由してドリフト領域12に流れる。このようなJFET抵抗低減領域14が設けられていると、電界緩和領域13からドリフト領域12内に伸びてくる空乏層を迂回するように電流が流れることができる。このため、このような空乏層による抵抗の増加、即ち、JFET抵抗の増加が抑えられる。 When a positive voltage is applied to the drain electrode 22, the source electrode 24 is grounded, and a voltage equal to or higher than the threshold voltage which is more positive than the source electrode 24 is applied to the gate electrode 34 of the trench gate 30, the semiconductor device 1 is turned on. Is. At this time, an inversion layer is formed in a portion of the body region 15 that separates the source region 17 and the JFET resistance reduction region 14 from the side face of the trench gate 30. The electrons supplied from the source region 17 reach the JFET resistance reduction region 14 via the inversion layer. The electrons that have reached the JFET resistance reduction region 14 flow into the drift region 12 via the JFET resistance reduction region 14. When such a JFET resistance reduction region 14 is provided, a current can flow so as to bypass the depletion layer extending from the electric field relaxation region 13 into the drift region 12. Therefore, an increase in resistance due to such a depletion layer, that is, an increase in JFET resistance is suppressed.

次に、半導体装置1の製造方法を説明する。まず、図2に示されるように、ドレイン領域11とドリフト領域12が積層した半導体基板10を準備する。この半導体基板10は、エピタキシャル成長技術を利用して、ドレイン領域11からドリフト領域12を結晶成長して形成される。 Next, a method for manufacturing the semiconductor device 1 will be described. First, as shown in FIG. 2, the semiconductor substrate 10 in which the drain region 11 and the drift region 12 are stacked is prepared. The semiconductor substrate 10 is formed by crystal growth of the drift region 12 from the drain region 11 using an epitaxial growth technique.

次に、図3に示されるように、イオン注入技術を利用して、半導体基板10の表面に向けてアルミニウムをイオン注入し、半導体基板10の表層部にボディ領域15を形成する。なお、このイオン注入に先立って、ボディ領域15を形成する範囲外の半導体基板10の表面にマスクを成膜してもよい。このイオン注入は、アルミニウムを厚み方向に多段で注入し、ボディ領域15のp型の不純物濃度が厚み方向に概ね一定となるように実施される。ボディ領域15のp型の不純物濃度は、約4×1017cm-3となるように調整されている。 Next, as shown in FIG. 3, using the ion implantation technique, aluminum is ion-implanted toward the surface of the semiconductor substrate 10 to form the body region 15 in the surface layer portion of the semiconductor substrate 10. A mask may be formed on the surface of the semiconductor substrate 10 outside the area where the body region 15 is formed, prior to the ion implantation. This ion implantation is performed so that aluminum is implanted in multiple stages in the thickness direction so that the p-type impurity concentration in the body region 15 is substantially constant in the thickness direction. The p-type impurity concentration of the body region 15 is adjusted to be about 4×10 17 cm −3 .

次に、図4に示されるように、フォトリソグラフィー技術を利用して、半導体基板10の表面に第1マスク層42を成膜する。第1マスク層42は、半導体基板10の表面の第1範囲10Aを被膜し、第2範囲10Bに開口を有している。後述するように、第1範囲10Aは、JFET抵抗低減領域14とソース領域17を形成する位置に対応しており、第2範囲10Bは、ボディコンタクト領域16を形成する位置に対応している。 Next, as shown in FIG. 4, the first mask layer 42 is formed on the surface of the semiconductor substrate 10 by using the photolithography technique. The first mask layer 42 covers the first area 10A on the surface of the semiconductor substrate 10 and has openings in the second area 10B. As will be described later, the first range 10A corresponds to the position where the JFET resistance reduction region 14 and the source region 17 are formed, and the second range 10B corresponds to the position where the body contact region 16 is formed.

次に、図5に示されるように、イオン注入技術を利用して、第1マスク層42から露出する半導体基板10の表面に向けてアルミニウムをイオン注入し、ボディ領域15上であって半導体基板10の表面に露出する位置にボディコンタクト領域16を形成する。ボディコンタクト領域16のp型の不純物濃度は、最大濃度が約1×1020cm-3となるように調整されている。イオン注入後に、第1マスク層42を除去する。 Next, as shown in FIG. 5, using the ion implantation technique, aluminum is ion-implanted toward the surface of the semiconductor substrate 10 exposed from the first mask layer 42, and the aluminum is ion-implanted on the body region 15 and on the semiconductor substrate. A body contact region 16 is formed at a position exposed on the surface of 10. The p-type impurity concentration of the body contact region 16 is adjusted so that the maximum concentration is about 1×10 20 cm −3 . After the ion implantation, the first mask layer 42 is removed.

次に、図6に示されるように、フォトリソグラフィー技術を利用して、半導体基板10の表面に第2マスク層44を成膜する。第2マスク層44は、半導体基板10の表面の第2範囲10Bを被膜し、第1範囲10Aに開口を有している。 Next, as shown in FIG. 6, the second mask layer 44 is formed on the surface of the semiconductor substrate 10 by using the photolithography technique. The second mask layer 44 covers the second area 10B on the surface of the semiconductor substrate 10 and has an opening in the first area 10A.

次に、図7に示されるように、イオン注入技術を利用して、第2マスク層44から露出する半導体基板10の表面に向けて窒素をイオン注入し、ドリフト領域12とボディ領域15の双方に接する位置にJFET抵抗低減領域14を形成する。この例では、JFET抵抗低減領域14は、ドリフト領域12とボディ領域15の界面のうちのドリフト領域12側に形成されているが、この例に代えて、ボディ領域15側に形成されてもよく、ドリフト領域12とボディ領域15の双方の側に形成されてもよい。JFET抵抗低減領域14のn型の不純物濃度は、最大濃度が約1×1015cm-3となるように調整されている。 Next, as shown in FIG. 7, nitrogen is ion-implanted toward the surface of the semiconductor substrate 10 exposed from the second mask layer 44 by using the ion-implantation technique, so that both the drift region 12 and the body region 15 are exposed. A JFET resistance reduction region 14 is formed at a position in contact with. In this example, the JFET resistance reduction region 14 is formed on the drift region 12 side of the interface between the drift region 12 and the body region 15, but instead of this example, it may be formed on the body region 15 side. It may be formed on both sides of the drift region 12 and the body region 15. The n-type impurity concentration of the JFET resistance reduction region 14 is adjusted so that the maximum concentration is about 1×10 15 cm −3 .

次に、図8に示されるように、イオン注入技術を利用して、第2マスク層44から露出する半導体基板10の表面に向けて窒素をイオン注入し、ボディ領域15上であって半導体基板10の表面に露出する位置にソース領域17を形成する。ソース領域17のn型の不純物濃度は、最大濃度が約1×1020cm-3となるように調整されている。イオン注入後に、第1マスク層42を除去する。なお、この例では、JFET抵抗低減領域14を形成した後にソース領域17を形成したが、この例に代えて、ソース領域17を形成した後にJFET抵抗低減領域14を形成してもよい。 Next, as shown in FIG. 8, nitrogen is ion-implanted toward the surface of the semiconductor substrate 10 exposed from the second mask layer 44 by using the ion-implantation technique, so that the semiconductor substrate is on the body region 15 and on the semiconductor substrate. A source region 17 is formed at a position exposed on the surface of 10. The n-type impurity concentration of the source region 17 is adjusted so that the maximum concentration is about 1×10 20 cm −3 . After the ion implantation, the first mask layer 42 is removed. In this example, the source region 17 is formed after the JFET resistance reduction region 14 is formed, but instead of this example, the JFET resistance reduction region 14 may be formed after the source region 17 is formed.

次に、図9に示すように、ドライエッチング技術を利用して、半導体基板10の表面の第1範囲10AにトレンチTRを形成する。トレンチTRは、半導体基板10の表面からソース領域17とボディ領域15とJFET抵抗低減領域14を貫通してドリフト領域12に達するように形成される。なお、トレンチTRは、ソース領域17とボディ領域15を貫通していればよく、その底面がJFET抵抗低減領域14内に位置するように形成されてもよい。 Next, as shown in FIG. 9, a trench TR is formed in the first area 10A on the surface of the semiconductor substrate 10 by using a dry etching technique. Trench TR is formed so as to reach drift region 12 from the surface of semiconductor substrate 10 through source region 17, body region 15 and JFET resistance reduction region 14. It is sufficient that trench TR penetrates source region 17 and body region 15, and the trench TR may be formed so that the bottom surface thereof is located in JFET resistance reduction region 14.

次に、図10に示されるように、イオン注入技術を利用して、トレンチTRの底面に露出するドリフト領域12に向けてアルミニウムをイオン注入し、ドリフト領域12上であってトレンチTRの底面に露出する電界緩和領域13を形成する。なお、このイオン注入に先立って、トレンチTRの側面にアルミニウムが導入されるのを抑えるために、トレンチTRの側面に保護膜を成膜してもよい。 Next, as shown in FIG. 10, using an ion implantation technique, aluminum is ion-implanted toward the drift region 12 exposed on the bottom surface of the trench TR, and on the drift region 12 and on the bottom surface of the trench TR. The exposed electric field relaxation region 13 is formed. Prior to this ion implantation, a protective film may be formed on the side surface of trench TR in order to suppress the introduction of aluminum to the side surface of trench TR.

次に、CVD技術を利用して、そのトレンチTR内にゲート絶縁膜32を堆積する。次に、CVD技術を利用して、ゲート電極34をトレンチ内に充填する。最後に、半導体基板10の裏面にドレイン電極22を成膜し、半導体基板10の表面にソース電極24を被膜すると、半導体装置1が完成する。 Next, using the CVD technique, the gate insulating film 32 is deposited in the trench TR. Next, the gate electrode 34 is filled in the trench using the CVD technique. Finally, the drain electrode 22 is formed on the back surface of the semiconductor substrate 10, and the source electrode 24 is coated on the front surface of the semiconductor substrate 10, whereby the semiconductor device 1 is completed.

上記製造方法によると、JFET抵抗低減領域14は、ソース領域17の下方に選択的に形成され、ボディコンタクト領域16の下方には形成されない。このため、JFET抵抗低減領域14をイオン注入で形成するときに形成される結晶欠陥は、ボディコンタクト領域16の下方に形成されない。例えば、JFET抵抗低減領域14がボディコンタクト領域16の下方にも形成された場合、JFET抵抗低減領域14とボディ領域15とボディコンタクト領域16の各々をイオン注入で形成するときに形成される結晶欠陥が、ボディコンタクト領域16の下方に多量に存在することとなる。このような多量の結晶欠陥は、リーク電流の原因となる可能性がある。一方、上記製造方法では、JFET抵抗低減領域14がボディコンタクト領域16の下方に形成されないので、ボディコンタクト領域16の下方に多量の結晶欠陥が形成されることが抑えられる。さらに、上記製造方法によると、ソース領域17とJFET抵抗低減領域14を共通の第2マスク層44を用いて形成することができる。これにより、上記製造方法では、製造コストが抑えられる。 According to the above manufacturing method, the JFET resistance reduction region 14 is selectively formed below the source region 17 and is not formed below the body contact region 16. Therefore, crystal defects formed when the JFET resistance reduction region 14 is formed by ion implantation are not formed below the body contact region 16. For example, when the JFET resistance reduction region 14 is also formed below the body contact region 16, crystal defects formed when the JFET resistance reduction region 14, the body region 15, and the body contact region 16 are formed by ion implantation. However, a large amount of them exist below the body contact region 16. Such a large amount of crystal defects may cause a leak current. On the other hand, in the above manufacturing method, since the JFET resistance reduction region 14 is not formed below the body contact region 16, it is possible to suppress the formation of a large number of crystal defects below the body contact region 16. Further, according to the above manufacturing method, the source region 17 and the JFET resistance reducing region 14 can be formed using the common second mask layer 44. As a result, the manufacturing cost can be suppressed in the above manufacturing method.

以上、本発明の具体例を詳細に説明したが、これらは例示に過ぎず、特許請求の範囲を限定するものではない。特許請求の範囲に記載の技術には、以上に例示した具体例を様々に変形、変更したものが含まれる。また、本明細書または図面に説明した技術要素は、単独であるいは各種の組合せによって技術的有用性を発揮するものであり、出願時請求項記載の組合せに限定されるものではない。また、本明細書または図面に例示した技術は複数目的を同時に達成し得るものであり、そのうちの一つの目的を達成すること自体で技術的有用性を持つものである。 Specific examples of the present invention have been described above in detail, but these are merely examples and do not limit the scope of the claims. The technology described in the claims includes various modifications and changes of the specific examples illustrated above. Further, the technical elements described in the present specification or the drawings exert technical utility alone or in various combinations, and are not limited to the combinations described in the claims at the time of filing. In addition, the technique illustrated in the present specification or the drawings can achieve a plurality of purposes at the same time, and achieving one of the purposes has technical utility.

1 :半導体装置
10 :半導体基板
11 :ドレイン領域
12 :ドリフト領域
13 :電界緩和領域
14 :JFET抵抗低減領域
15 :ボディ領域
16 :ボディコンタクト領域
17 :ソース領域
22 :ドレイン電極
24 :ソース電極
30 :トレンチゲート
32 :ゲート絶縁膜
34 :ゲート電極
1: semiconductor device 10: semiconductor substrate 11: drain region 12: drift region 13: electric field relaxation region 14: JFET resistance reduction region 15: body region 16: body contact region 17: source region 22: drain electrode 24: source electrode 30: Trench gate 32: Gate insulating film 34: Gate electrode

Claims (1)

第1導電型のドリフト領域が表面に露出する半導体基板を準備する工程と、
前記半導体基板の前記表面に向けて第2導電型不純物をイオン注入し、前記ドリフト領域上にボディ領域を形成する工程と、
前記半導体基板の前記表面に第1マスク層を成膜する工程であって、前記第1マスク層は、前記半導体基板の前記表面の第1範囲を被膜し、前記半導体基板の前記表面の前記第1範囲とは異なる第2範囲に開口を有する、第1マスク層を成膜する工程と、
前記第1マスク層の前記開口から露出する前記半導体基板の前記表面の前記第2範囲に向けて第2導電型不純物をイオン注入し、前記ボディ領域上にボディコンタクト領域を形成する工程と、
前記半導体基板の前記表面に第2マスク層を成膜する工程であって、前記第2マスク層は、前記半導体基板の前記表面の前記第2範囲を被膜し、前記半導体基板の前記表面の前記第1範囲に開口を有する、第2マスク層を成膜する工程と、
前記第2マスク層の前記開口から露出する前記半導体基板の前記表面の前記第1範囲に向けて第1導電型不純物をイオン注入し、前記ドリフト領域と前記ボディ領域の双方に接する位置にJFET抵抗低減領域を形成する工程と、
前記第2マスク層の前記開口から露出する前記半導体基板の前記表面の前記第1範囲に向けて第1導電型不純物をイオン注入し、前記ボディ領域上にソース領域を形成する工程と、
前記半導体基板の前記表面の前記第1範囲において、前記ソース領域と前記ボディ領域を貫通するトレンチゲートを形成する工程と、を備える、半導体装置の製造方法。
A step of preparing a semiconductor substrate in which a drift region of the first conductivity type is exposed on the surface;
Ion-implanting a second conductivity type impurity toward the surface of the semiconductor substrate to form a body region on the drift region;
Forming a first mask layer on the surface of the semiconductor substrate, the first mask layer covering a first area of the surface of the semiconductor substrate, and forming a first mask layer on the surface of the semiconductor substrate. Forming a first mask layer having an opening in a second range different from the first range;
Forming a body contact region on the body region by ion-implanting a second conductivity type impurity toward the second region of the surface of the semiconductor substrate exposed from the opening of the first mask layer;
Forming a second mask layer on the surface of the semiconductor substrate, the second mask layer covering the second area of the surface of the semiconductor substrate, and forming the second mask layer on the surface of the semiconductor substrate. A step of forming a second mask layer having an opening in the first range,
A first conductivity type impurity is ion-implanted toward the first range of the surface of the semiconductor substrate exposed from the opening of the second mask layer, and a JFET resistor is provided at a position in contact with both the drift region and the body region. Forming a reduced region,
Forming a source region on the body region by ion-implanting a first conductivity type impurity toward the first region of the surface of the semiconductor substrate exposed from the opening of the second mask layer;
Forming a trench gate that penetrates the source region and the body region in the first area of the surface of the semiconductor substrate.
JP2018232913A 2018-12-12 2018-12-12 Method of manufacturing semiconductor device Pending JP2020096080A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018232913A JP2020096080A (en) 2018-12-12 2018-12-12 Method of manufacturing semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018232913A JP2020096080A (en) 2018-12-12 2018-12-12 Method of manufacturing semiconductor device

Publications (1)

Publication Number Publication Date
JP2020096080A true JP2020096080A (en) 2020-06-18

Family

ID=71084112

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018232913A Pending JP2020096080A (en) 2018-12-12 2018-12-12 Method of manufacturing semiconductor device

Country Status (1)

Country Link
JP (1) JP2020096080A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116646391A (en) * 2023-07-26 2023-08-25 深圳市锐骏半导体股份有限公司 Trench power device and manufacturing method thereof
CN117672865A (en) * 2024-01-30 2024-03-08 爱特微(张家港)半导体技术有限公司 Silicon carbide groove type MOSFET device and preparation process thereof
CN117672865B (en) * 2024-01-30 2024-05-17 爱特微(张家港)半导体技术有限公司 Silicon carbide groove type MOSFET device and preparation process thereof

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011044688A (en) * 2009-07-21 2011-03-03 Rohm Co Ltd Semiconductor device and manufacturing method thereof
JP2013098315A (en) * 2011-10-31 2013-05-20 Toyota Motor Corp Switching element and method of manufacturing the same
JP2013222932A (en) * 2012-04-19 2013-10-28 Denso Corp Silicon carbide semiconductor device and manufacturing method of the same
WO2015049815A1 (en) * 2013-10-04 2015-04-09 三菱電機株式会社 Silicon carbide semiconductor device and method for manufacturing same
JP2015072999A (en) * 2013-10-02 2015-04-16 株式会社デンソー Silicon carbide semiconductor device
JP2017050516A (en) * 2015-09-04 2017-03-09 株式会社豊田中央研究所 Silicon carbide semiconductor device
JP2017188607A (en) * 2016-04-07 2017-10-12 トヨタ自動車株式会社 Semiconductor device using SiC substrate
WO2018163593A1 (en) * 2017-03-06 2018-09-13 三菱電機株式会社 Silicon carbide semiconductor device, power conversion device, method for manufacturing silicon carbide semiconductor device, and method for manufacturing power conversion device

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011044688A (en) * 2009-07-21 2011-03-03 Rohm Co Ltd Semiconductor device and manufacturing method thereof
JP2013098315A (en) * 2011-10-31 2013-05-20 Toyota Motor Corp Switching element and method of manufacturing the same
JP2013222932A (en) * 2012-04-19 2013-10-28 Denso Corp Silicon carbide semiconductor device and manufacturing method of the same
JP2015072999A (en) * 2013-10-02 2015-04-16 株式会社デンソー Silicon carbide semiconductor device
WO2015049815A1 (en) * 2013-10-04 2015-04-09 三菱電機株式会社 Silicon carbide semiconductor device and method for manufacturing same
JP2017050516A (en) * 2015-09-04 2017-03-09 株式会社豊田中央研究所 Silicon carbide semiconductor device
JP2017188607A (en) * 2016-04-07 2017-10-12 トヨタ自動車株式会社 Semiconductor device using SiC substrate
WO2018163593A1 (en) * 2017-03-06 2018-09-13 三菱電機株式会社 Silicon carbide semiconductor device, power conversion device, method for manufacturing silicon carbide semiconductor device, and method for manufacturing power conversion device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116646391A (en) * 2023-07-26 2023-08-25 深圳市锐骏半导体股份有限公司 Trench power device and manufacturing method thereof
CN117672865A (en) * 2024-01-30 2024-03-08 爱特微(张家港)半导体技术有限公司 Silicon carbide groove type MOSFET device and preparation process thereof
CN117672865B (en) * 2024-01-30 2024-05-17 爱特微(张家港)半导体技术有限公司 Silicon carbide groove type MOSFET device and preparation process thereof

Similar Documents

Publication Publication Date Title
JP6707498B2 (en) Method for forming a silicon carbide device having a shield gate
JP7059555B2 (en) Semiconductor device
JP6099749B2 (en) Silicon carbide semiconductor device and manufacturing method thereof
JP4192281B2 (en) Silicon carbide semiconductor device
US9825166B2 (en) Silicon carbide semiconductor device and method for producing same
JP6231422B2 (en) Semiconductor device
JP7182850B2 (en) Silicon carbide semiconductor device and method for manufacturing silicon carbide semiconductor device
JP6996302B2 (en) Nitride semiconductor device and its manufacturing method
CN108604600B (en) Silicon carbide semiconductor device and method for manufacturing same
JP2019071338A (en) Nitride semiconductor device
KR101360070B1 (en) Semiconductor device and method manufacturing the same
WO2020121371A1 (en) Silicon carbide semiconductor device and method for manufacturing same
JP2020064910A (en) Switching element
JP2020096080A (en) Method of manufacturing semiconductor device
JP7151446B2 (en) Semiconductor device manufacturing method
JP2018064070A (en) Semiconductor device manufacturing method
JP6988261B2 (en) Nitride semiconductor equipment
JP7443853B2 (en) silicon carbide semiconductor device
JP6606819B2 (en) Semiconductor device
JP7006389B2 (en) Semiconductor devices and methods for manufacturing semiconductor devices
JP7331653B2 (en) Semiconductor device manufacturing method
JP7107284B2 (en) Semiconductor device and its manufacturing method
JP2019125625A (en) Semiconductor device, and method of manufacturing semiconductor device
JP2014192191A (en) Semiconductor device and semiconductor device manufacturing method
JP2013251494A (en) Semiconductor device and method for manufacturing the same

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20200720

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211013

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220915

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220920

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20230314