JP2020094970A - 感知装置及び感知方法 - Google Patents

感知装置及び感知方法 Download PDF

Info

Publication number
JP2020094970A
JP2020094970A JP2018234429A JP2018234429A JP2020094970A JP 2020094970 A JP2020094970 A JP 2020094970A JP 2018234429 A JP2018234429 A JP 2018234429A JP 2018234429 A JP2018234429 A JP 2018234429A JP 2020094970 A JP2020094970 A JP 2020094970A
Authority
JP
Japan
Prior art keywords
oscillation
difference
sensing
region
sample
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2018234429A
Other languages
English (en)
Inventor
和歌子 忍
Wakako Shinobu
和歌子 忍
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nihon Dempa Kogyo Co Ltd
Original Assignee
Nihon Dempa Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nihon Dempa Kogyo Co Ltd filed Critical Nihon Dempa Kogyo Co Ltd
Priority to JP2018234429A priority Critical patent/JP2020094970A/ja
Publication of JP2020094970A publication Critical patent/JP2020094970A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

【課題】簡単な方法で、検体中の夾雑物による感知精度への影響を抑制可能な感知装置及び感知方法を提供すること。【解決手段】感知装置に、検体と、既知量の前記添加成分とを含む試料液が供給されたときの第1の発振領域の発振周波数と、参照用の発振領域の発振周波数との差分である第1の差分と、前記試料液が供給されたときの第2の発振領域の発振周波数と、参照用の発振領域の発振周波数との差分である第2の差分と、前記検体を含まず、既知量の添加成分を添加した基準液が供給されたときの第2の発振領域の発振周波数と、参照用の発振領域の発振周波数との差分である基準の差分を求める。基準の差分と第2の差分との相違に基づき、前記試料液に検体が含まれることに起因する発振周波数の差分への影響度を求め、この影響度に基づいて第1の差分を補正し、この補正値に基づいて感知対象物の感知結果を得る。【選択図】図4

Description

本発明は、圧電振動子の発振周波数に基づいて、試料液に含まれる感知対象物を感知するための感知装置及び感知方法に関する。
試料流体中の感知対象物、例えば血液中あるいは血清中の微量なタンパク質を感知する方法として、QCM(Quartz Crystal Microbalance)を利用した感知センサが知られている。QCMは励振電極の表面に、例えば感知対象物と結合する膜が設けられた水晶振動子を用い、試料溶液中の感知対象物の吸着による質量負荷を、水晶振動子の周波数の変化として捉えて、感知対象物の有無や定量を行うものである。
この基本原理を利用し、医療現場での診断に用いられている簡易計測への応用も可能である。医療現場では、ヒト由来の生体サンプルを試料溶液として用い、計測対象である目的物質(感知対象物)の検出を行うが、生体サンプルには目的物質以外に、タンパク質や脂質等の多種多様な夾雑物が含まれている。このため、目的物質以外の夾雑物が励振電極に影響を与え、これにより水晶振動子の周波数が変化し、目的物質の検出を精度よく行うことができない場合がある。
目的物質以外の成分が付着しないように、励振電極の表面にブロッキング剤を塗布することも考えられるが、検体によっては、夾雑物の影響度が高く、ブロッキング剤を塗布しても夾雑物の影響を抑制できない場合もある。また、生体サンプルよりなる試料溶液を励振電極に供給して、励振電極に目的物質を吸着させた後、励振電極に付着している目的物質以外の成分を洗浄して夾雑物を除去することも考えられる。しかしながら、洗浄処理には煩雑な工程が必要であり、手間と時間がかかるので、この手法は得策ではない。
特許文献1には、水晶振動子を用いた検出装置において、水晶振動子にプラズマ重合膜を被覆して、その質量を検出し、水晶振動子の質量負荷と検出質量を比較することにより、校正を行う技術が記載されている。また、特許文献2には、ワンチップアッセイにおける内部補正方法において、1つのチップ上で被検物質の測定を行うアッセイ系と、ビオチン等の内部標準物質を測定するアッセイ系を実行して補正係数を算出し、被検物質の測定値の補正を行う技術が記載されている。しかしながら、これらの文献には、生体サンプル中に目的物質と共に含まれる夾雑物による、目的物質の測定精度への影響を抑制する手法については、記載されていない。
特開2001−304945号公報 特開2015−127694号公報
本発明はこのような事情の下になされたものであり、生体由来の検体を含む試料液中の感知対象物を感知するにあたり、前記試料液中に含まれる夾雑物による感知精度への影響を抑制する技術を提供する。
本発明の感知装置は、
両面に励振電極が形成された圧電振動子の、生体由来の検体を含む試料液が供給される一面側の励振電極に設けられ、前記試料液中の感知対象物を感知するために、当該試料液中の吸着対象成分と特異的に結合する第1の吸着層が形成された領域の励振電極と、他面側の励振電極との間に構成された第1の発振領域と、前記一面側の励振電極に設けられ、前記検体には含まれていない成分であって、前記試料液に対して添加された添加成分と特異的に結合する第2の吸着層が形成された領域の励振電極と、他面側の励振電極との間に構成され、前記第1の発振領域から弾性的に分離された第2の発振領域と、前記一面側の励振電極に設けられ、前記第1の吸着層及び第2の吸着層のいずれも形成されていない励振電極と、他面側の励振電極との間に構成され、前記第1の発振領域及び第2の発振領域から弾性的に分離された参照用の発振領域と、を有する感知センサと、
前記感知センサに対して電気的に接続され、前記第1、第2、及び参照用の発振領域を発振させるための発振回路と、
前記発振回路の発振周波数を測定するための周波数測定部と、
前記検体と、既知量の前記添加成分とを含む試料液が供給されたときの第1の発振領域の発振周波数と、前記参照用の発振領域の発振周波数との差分である第1の差分を求めるステップと、前記試料液が供給されたときの前記第2の発振領域の発振周波数と、前記参照用の発振領域の発振周波数との差分である第2の差分を求めるステップと、予め求めておいた、前記生体由来の検体を含まず、前記既知量の添加成分を添加した基準液が供給されたときの前記第2の発振領域の発振周波数と、前記参照用の発振領域の発振周波数との差分である基準の差分と、前記基準の差分と前記第2の差分との相違に基づき、前記試料液に検体が含まれることに起因する発振周波数の差分への影響度を求めるステップと、前記影響度に基づいて前記第1の差分を補正した値に基づいて前記感知対象物の感知結果を得るステップと、を実行する演算部と、を備えたことを特徴とする。
また、本発明の感知方法は、
両面に励振電極が形成された圧電振動子の、生体由来の検体を含む試料液が供給される一面側の励振電極に設けられ、前記試料液中の感知対象物を感知するために、当該試料液中の吸着対象成分と特異的に結合する第1の吸着層が形成された領域の励振電極と、他面側の励振電極との間に構成された第1の発振領域と、前記一面側の励振電極に設けられ、前記検体には含まれていない成分であって、前記試料液に対して添加された添加成分と特異的に結合する第2の吸着層が形成された領域の励振電極と、他面側の励振電極との間に構成され、前記第1の発振領域から弾性的に分離された第2の発振領域と、前記一面側の励振電極に設けられ、前記第1の吸着層及び第2の吸着層のいずれも形成されていない励振電極と、他面側の励振電極との間に構成され、前記第1の発振領域及び第2の発振領域から弾性的に分離された参照用の発振領域と、を有する感知センサを用い、
前記生体由来の検体を含まず、前記既知量の添加成分を添加した基準液が供給されたときの前記第2の発振領域の発振周波数と、前記参照用の発振領域の発振周波数との差分である基準の差分を求める工程と、
前記検体と、既知量の前記添加成分とを含む試料液が供給されたときの第1の発振領域の発振周波数と、前記参照用の発振領域の発振周波数との差分である第1の差分を求める工程と、
前記試料液が供給されたときの前記第2の発振領域の発振周波数と、前記参照用の発振領域の発振周波数との差分である第2の差分を求める工程と、
前記基準の差分と前記第2の差分との相違に基づき、前記試料液に検体が含まれることに起因する発振周波数の差分への影響度を求める工程と、
前記影響度に基づいて前記第1の差分を補正した値に基づいて前記感知対象物の感知結果を得る工程と、を含むことを特徴とする。
本発明は、生体由来の検体を含む試料液に対し、前記検体には含まれていない既知量の添加成分を添加して、当該添加成分の励振電極への吸着に伴う発振周波数の変化量への検体中の夾雑物の影響度を特定する。そして、この添加成分を用いて特定した夾雑物による発振周波数の変化量への影響度を利用して、感知対象物の励振電極への吸着に伴う発振周波数の変化量に対する夾雑物の影響をキャンセルするので、感知精度への影響を抑制することができる。
本発明の一実施形態に係る感知装置及び感知センサの斜視図である。 前記感知センサの分解斜視図である。 前記感知センサの縦断側面図である。 水晶振動子の一面側及び他面側を示す平面図である。 前記感知装置の概略構成図である。 前記感知センサの作用を説明する説明図である。 前記感知センサの作用を説明する説明図である。 前記感知センサを用いた評価試験の結果を示す特性図である。
以下、本発明の感知装置の一実施形態について説明する。この感知装置は、生体由来の検体を含む試料液、例えば人間の鼻腔の拭い液から得られた試料液中のウイルス抗体やウイルスなどの感知対象物を感知し、人間のウイルスの感染の有無を判定することができるように構成されている。図1の外観斜視図に示すように、感知装置1は、測定器である本体部12と、本体部12に形成された差込口17に着脱自在に接続される感知センサ2と、を備えている。本体部12の上面には、例えば液晶表示画面により構成される表示部16が設けられており、表示部16は、例えば後述する発振回路の出力周波数、或いは周波数の変化分等の測定結果、若しくは感知対象物の検出の有無等を表示する。
続いて、感知センサ2について説明する。図2は図1に示した感知センサ2における上側カバー体21を外した状態を示す斜視図、図3は感知センサ2の縦断側面図である。感知センサ2は、上側カバー体21と下側ケース22とで構成される容器20を備えている。下側ケース22の上方には、長さ方向(図2、図3中X方向)に延伸された形状の配線基板3が設けられ、配線基板3における長さ方向の一端側には、差込口17に差し込まれる差込部31が形成されている。以下明細書中では、感知センサ2の差込部31側を前方、他端側を後方とする。
配線基板3の後方側の位置には貫通孔32が形成されており、配線基板3は貫通孔32が下側ケース22の底面によって塞がれると共に、下側ケース22の外側に差込部31が突出するように配置される。配線基板3の表面側には、長さ方向に伸びる5本の配線251〜255が設けられている。各配線251〜255の一端側には、差込部31において、夫々端子部261〜265が形成され、各配線251〜255の他端側には貫通孔32の外縁にて、夫々図示しない5つの端子部が形成されている。なお、図1では、図示の便宜上、差込部31表面の配線251〜255及び端子部261〜265の図示を省略している。
続いて、圧電振動子をなす水晶振動子4について、その一面側(表面側)、他面側(裏面側)を夫々示した図4(a)、図4(b)も参照しながら説明する。水晶振動子4は、例えばATカットの円板状の水晶片41を備えている。図4(b)に示すように水晶片41の他面側には、4つの励振電極45、46、47及び48が、互いに隙間を介して離間するように設けられている。これら励振電極45〜48は、例えば金(Au)により、前後方向に伸びる帯状に形成され、励振電極45、48を左右に並べた電極対と、励振電極46、47を左右に並べた電極対とが前後に並べて配置される。
図4(a)に示すように、水晶片41の一面側には、共通電極44が他面側の4つの励振電極45〜48と、水晶片41を介して対向する領域に跨るように設けられている。この共通電極44は、例えばAuにより、前後方向に伸びる略楕円形状に形成される。本例では、試料液中の吸着対象成分と特異的に結合する吸着層を第1の吸着層42としており、試料液中に吸着対象成分が複数種類存在する場合には、第1の吸着層42が複数種類設けられる。この実施形態では、吸着対象成分が2種類である場合を例にして説明する。なお、感知対象物と吸着対象成分との関係については後述する。
共通電極44において、励振電極45、46、47、48に対向する4つの対向領域441、442、443、444の内、励振電極46に対向する領域442と、励振電極48に対向する領域444には、互いに異なる種類の第1の吸着層42(421、422)が形成されている。この例では、人間の鼻腔の拭い液から得られた試料液中の2種類の吸着対象成分の一方は、ウイルスA抗体(以下「A型抗体」という)であり、この吸着対象成分と特異的に結合する第1の吸着層421はウイルスA核タンパク質(以下「A型NP」という)である。
また、前記試料液中の吸着対象成分の他方は、ウイルスB抗体(以下「B型抗体」という)であり、この吸着対象成分と特異的に結合する第1の吸着層422はウイルスB核タンパク質(以下「B型NP」という)である。吸着対象成分であるA型抗体は、試料液中の感知対象物であるウイルスAに競合阻害される成分であり、吸着対象成分であるB型抗体は、試料液中の感知対象物であるウイルスBに競合阻害される成分である。従って、既知量のA型抗体、B型抗体を添加した試料液中のこれらの抗体の吸着量の変化を特定することにより、試料液中に含まれる各ウイルス量を検出することができる。
共通電極44における励振電極45と対向する領域441には、第2の吸着層43が形成されている。第2の吸着層43は、前記検体には含まれていない成分であって、試料液に対して添加された添加成分と特異的に結合するものである。この例では、添加成分は増感剤であるBSA(ウシ血清アルブミン)にビオチンを結合させたビオチン結合BSA(以下「ビオチン」ともいう)であり、第2の吸着層43はストレプトアビジンである。また、共通電極44における励振電極47と対向する領域441には、第1の吸着層42及び第2の吸着層43はいずれも形成されていない。
図5にも示すように、共通電極44における第2の吸着層43が設けられた領域441と励振電極45との間には、第2の発振領域101が形成され、共通電極44における第1の吸着層421が設けられた領域442と励振電極46との間には、発振領域102が形成される。また、共通電極44における第1の吸着層422が設けられた領域444と励振電極48との間には、発振領域103が形成され、共通電極44における吸着層が設けられていない領域443と、励振電極47との間には、参照用の発振領域104が形成される。これら発振領域101〜104は、互いに弾性的に分離されており、発振領域102、103は本例の第1の発振領域に相当する。
図4に示すように、共通電極44には水晶片41の前方側周縁に向けて伸びる配線401の一端が接続されており、配線401の他端側は、水晶片41の側面を介して他面側に引き回され、前記他面の前方側周縁にて電極402に接続される。水晶振動子4の他面側の励振電極45〜48には、夫々配線451、461、471、481の一端が接続され、各配線451、461、471、481の他端側は水晶片41の他面側周縁に向けて伸び、当該他面側周縁にて電極452 、462、472、482と接続されている。なお、水晶片41の他面側に形成されている電極492は、水晶振動子4を配線基板3に固定したときに水晶片41の前後の高さを揃えるためのダミー電極である。水晶振動子4は、図4(b)に示すように他面側の励振電極45〜48が配線基板3の貫通孔32(同図中に破線で示してある)に臨むように配置され、 電極402、452、462、472、482が夫々配線基板3の貫通孔32の外縁に形成された図示しない5つの端子部の夫々と導電性接着剤により接続される。
図3に示すように配線基板3の上面側には、例えばPDMS(ポリジメチルシロキサン)で構成された板状の流路形成部材5が設けられている。流路形成部材5の下面側には、流路形成部材5が配線基板3側に押圧されたときに水晶振動子4の表面との間に試料液の供給流路52を区画形成するための囲み部51が設けられている。流路形成部材5は、配線基板3に設置されると、囲み部51が水晶振動子4の上面に配置され、供給流路52の下面側が水晶振動子4により塞がれる。この時、他面側の4つの励振電極45〜48が供給流路52の中心に並んで収まる。なお、図3では、他面側の励振電極を符号45にて示している。また、図4(a)には、囲み部51の内周縁からなる供給流路52を破線で示してある。
流路形成部材5には、供給流路52の前端と後端とに夫々開口し、流路形成部材5を厚さ方向に貫通する貫通孔531、532が穿設され、これら貫通孔531、532には、夫々多孔質の部材で構成された入口側毛細管部材54と出口側毛細管部材55が着脱自在に設けられている。入口側毛細管部材54は、例えば円柱状の部材であり、例えばポリビニルアルコール(PVA)などの化学繊維束により構成されている。入口側毛細管部材54は、その上端が後述する上側カバー体21に形成された液受け部23に露出し、下端が供給流路52内に進入するように設けられている。出口側毛細管部材55も同様にPVAなどの化学繊維束により構成され、上方に伸びた後、屈曲して水平に伸びるL字型に形成される。出口側毛細管部材55は、その下端が供給流路52内に進入するように配置されている。
出口側毛細管部材55の他端側は、例えば親水性のガラス管で構成される廃液流路56の一端側に挿入されている。廃液流路56の他端側には、例えば廃液流路56から流出する液体を吸引する毛細管シート571と、毛細管シート571で吸引された液体を吸収する吸収体572から構成される廃液吸収部57が接続されている。図3に示すように下側ケース22には、廃液吸収部57を収納すると共に、吸収体572からの液漏れを防ぐためのケース体58が設けられている。なお、図中符号581は廃液流路56を支持する支持部材である。
上部カバー体21は、下部ケース体22の周囲を上方側から覆うように設けられる。上側カバー体21の上面側にはすり鉢状に傾斜した、処理液を注入するための液受け部23が形成されている。図3に示すように上側カバー体21の他面側には、流路形成部材5を配線基板3に押圧するために下方側へ突出した押圧部59が設けられている。
続いて、感知センサ2を用いた感知装置1の全体構成について説明する。前記感知センサ2の差込部31が本体部12に差し込まれると、差込部31に形成された端子部251〜254が、これらの端子部251〜254と対応するように形成された本体部12側の図示しない端子部に夫々電気的に接続されて、図5に概略図で示す感知装置1を構成する。本体部12内には、例えばコルピッツ回路で構成された発振回路62が設けられており、この発振回路62はスイッチ部61により、前記4つの発振領域101〜104に切り替えて接続されるように構成されている。
各発振領域101〜104(詳しくは各発振領域101〜104の間における水晶片41)は、発振回路62に接続されて発振し、発振出力(周波数信号)を出力するように構成されている。
具体的には、スイッチ部61は、図5に示すように、3つのスイッチ611、612、613により構成されている。発振領域101、102と発振回路62との間には、第1のスイッチ611と第2のスイッチ612とが水晶振動子4側からこの順番で配置されており、第1のスイッチ611は、発振回路62と、発振領域101、102のいずれか一方とを接続するように構成されている。
また、発振領域103 、104と第2のスイッチ612との間には、発振回路62に対して発振領域103、104のいずれか一方を接続できるように構成された第3のスイッチ613が配置されている。第2のスイッチ612は、これら発振領域101、102側の接続点と、発振領域領103、104側の接続点との間で切り替え自在に配置されている。
発振回路62の後段側には、当該発振回路62における発振周波数を測定するための周波数測定部63が設けられており、この周波数測定部63には、制御部7が接続されている。制御部7は、CPU、例えば作業者が感知対象物の測定を開始するためのボタンなどからなる入力部、測定結果を表示する表示部及び感知対象物の測定を行うための演算部71等を備えている。
演算部71は、前記検体と、既知量の添加成分とを含む試料液が供給されたときの第1の発振領域の発振周波数と、参照用の発振領域の発振周波数との差分である第1の差分を求めるステップを実行するように構成されている。この例では、発振領域102、103が第1の発振領域に相当するので、発振領域102の発振周波数f11と参照用の発振領域104の発振周波数f0との差分Δ(f11−f0)と、発振領域103の発振周波数f12と前記発振周波数f0との差分Δ(f12―f0)を求める。これら差分は、いずれも第1の差分に相当するものである。
また、演算部71は、前記試料液が供給されたときの第2の発振領域101の発振周波数f2と、参照用の発振領域の発振周波数f0との差分である第2の差分Δ(f2−f0)を求めるステップを実行するように構成されている。
さらに、演算部71は、予め求めておいた、基準の差分と、この基準の差分と前記第2の差分Δ(f2−f0)との相違に基づき、前記試料液に検体が含まれることに起因する発振周波数の差分への影響度を求めるステップを実行するように構成されている。前記基準の差分とは、基準液が供給されたときの第2の発振領域101の発振周波数f20と、参照用の発振領域104の発振周波数f0との差分Δ(f20−f0)であり、基準液とは、生体由来の検体を含まず、既知量の添加成分を添加した生理食塩水などの液体である。
さらにまた、演算部71は、前記影響度に基づいて第1の差分を補正した値に基づいて、前記感知対象物の感知結果を得るステップを実行するように構成されている。また、演算部71は、前記第1の差分を補正した値を用いて特定した前記吸着対象成分の吸着量から、前記試料液中の感知対象物の含有量を特定するステップを実行するように構成してもよい。前記影響度を求める手法、影響度に基づく第1の差分の補正方法、第1の差分を補正した値を用いて、試料液中の感知対象物の含有量を特定する手法については後述する。
続いて、感知装置1を用いた、生体由来の検体を含む試料液中の感知対象物の感知方法について説明する。先ず、基準液として、生理食塩水に既知量の添加成分であるビオチンを添加した液体を用い、前記基準の差分Δ(f20−f0)を求める工程を実施する。添加成分としては、試料液中の感知対象物や吸着対象成分、第1の吸着層を構成する成分に対して、結合しないか、結合量が微量で発振周波数の変化の検出限界以下となるものが好ましい。
始めに、感知センサ2の差込部31を本体部12に挿入し、差込部31の各端子部を、本体部12側の端子部に接続して、図5に示す発振回路を構成する。その後、図示しないインジェクタを用いて、液受け部23に、前記基準液を注入する。基準液は、毛細管現象により入口側毛細管部材54に吸収されて通流し、供給流路52に流れ込む。
水晶振動子4を構成する水晶片41の表面は親水性であるため、基準液は、供給流路52内を濡れ拡がって供給流路52を満たし、出口側毛細管部材55に到達すると、毛細管現象により出口側毛細管部材55に吸収され、当該出口側毛細管部材55内を流れて廃液流路56へ滲み出る。ここで、毛細管現象に加えてサイホンの原理が働き、引き続き液受け部23に供給された基準液が水晶振動子4の表面を通過して廃液流路56へと排出される。
第2の発振領域101、参照用の発振領域104は、供給流路52内の基準液の通流による圧力変化をほぼ均等に受け、当該圧力変化によって発振周波数が互いに揃って変化する。そして、スイッチ部61を第2の発振領域101と参照用の発振領域104に対して切り替えて接続し、第2の発振領域101の発振周波数f20、及び参照用の発振領域104の発振周波数f0を時分割処理により夫々取得する。
第2の発振領域101では、ストレプトアビジンよりなる第2の吸着層43に基準液中のビオチンが特異的に結合するが、参照用の発振領域104には結合しない。このため、第2の吸着層43へのビオチンの結合量に応じて、第2の発振領域101の発振周波数f20が低下する。なお、参照用の発振周波数f0との差分(基準の差分)を取得することにより、基準液の粘性や、温度変化、振動等による発振周波数への影響がキャンセルされる。こうして予め取得した基準の差分は、第2の吸着層43であるストレプトアビジンと、添加成分であるビオチンとを利用した、検体中の夾雑物の影響をキャンセルする計算に利用することができる。なお、当該基準の差分を求める工程は、感知装置1、感知センサ2のメーカーにて予め実施しておき、制御部7内の不図示のメモリに当該基準の差分を記憶させておいてもよい。
続いて、試料液中の感知対象物の感知を行う感知センサ2を用意し、感知装置1の本体部12に装着する。そして、前記第1の差分Δ(f11−f0)、Δ(f12−f0)を求める工程と、前記第2の差分Δ(f2−f0)を求める工程を実施する。即ち、図示しないインジェクタを用いて、液受け部23に試料液を注入する。例えば試料液は、生体由来の検体である既述の人間の鼻腔の拭い液と、既知量のA型抗体及びB型抗体と、既知量の添加成分であるビオチンと、を所定量の生理食塩水に添加したものである。この試料液は、入口側毛細管部材54を介して供給流路52に流れ込む。既述の基準液の供給の場合と同様に、第1の発振領域102、103、第2の発振領域101及び参照用の発振領域振104は流路52内への試料液の通流による圧力変化を均等に受け、当該圧力変化により、発振領域101〜104の発振周波数が互いにほぼ揃った状態で変化する。
そして、スイッチ部61を第1の発振領域102、103と、第2の発振領域101と参照用の発振領域104とに対して切り替えて接続し、夫々の発振周波数f11、f12、f2、f0を時分割処理により取得する。第1の発振領域102では、A型NPよりなる第1の吸着層421に試料液中の吸着対象成分であるA型抗体が特異的に結合する。また、第1の発振領域103においても、B型NPよりなる第1の吸着層422に試料液中の吸着対象成分であるB型抗体が特異的に結合する。これら吸着対象成分であるA型抗体、B型抗体は、既述のようにいずれも試料液中の感知対象物であるウイルスAまたはウイルスBに競合阻害される成分である。この競合阻害を利用した感知対象物の感知、及び、当該感知に対する検体中の他の成分(夾雑物)の影響について、第1の吸着層421を例にして、図6を参照して説明する。
図6に示すように、共通電極44の領域442には、ウイルスA核タンパク質(A型NP)91からなる第1の吸着層421が形成されている。ここでは、試料液に、感知対象物であるウイルスA92と、感知対象物に競合阻害される吸着対象成分であるウイルスA抗体(A型抗体)93と、例えばタンパク質や脂質等の他の成分である夾雑物94と、添加成分であるビオチン結合BSA(ビオチン)95が含まれているものとする。A型抗体93は、ウイルスA中の核タンパク質に特異的に結合するので、ウイルスA92又は第1の吸着層421のいずれにも結合することができる。また、溶液中には、これらウイルスA92、第1の吸着層421のいずれとも結合していないA型抗体93が遊離していることもある。なお、図6では、ウイルスB及びウイルスB抗体(B型抗体)は図示を省略している。
A型抗体93は第1の吸着層421と結合するので、試料液中にウイルスA92が存在しない場合には、最大量のA型抗体93が第1の吸着層421に結合する。一方、試料液中にウイルスA92が存在すると、第1の吸着層421へのA型抗体93の結合と、ウイルスA92へのA型抗体93の結合が競合する。この結果、第1の吸着層421へのA型抗体93の結合量(吸着量)が低下する。
このように、吸着対象成分であるA型抗体93は、感知対象物であるウイルスA92に競合阻害され、試料液中のウイルスA92の量が多いほど、第1の吸着層421に結合するA型抗体の量は少なくなるため、発振領域102の発振周波数f11の変化量は小さくなる。そして、第1の差分Δ(f11−f0)を取得することにより、試料液の粘性や、温度変化、振動等による発振周波数への影響がキャンセルされた、A型抗体93の結合量及び夾雑物94の付着量に基づく、発振周波数f11の変化量が求められる。
上述の手法に基づくウイルスA92の感知に対し、試料液中の夾雑物94が影響を及ぼす理由について推定する。例えば夾雑物94が、ウイルスA92やA型抗体93、吸着層421には結合しない場合であっても、沈着などにより吸着層421に付着する場合がある。この場合には、夾雑物94の質量負荷効果によっても、発振周波数f11が変化してしまうおそれがある。
さらに、共通電極44の領域444には、ウイルスB核タンパク質(B型NP)からなる第1の吸着層422が形成されている。この場合においても、吸着対象成分であるB型抗体は、感知対象物であるウイルスBに競合阻害され、試料液中のウイルスBの量が多いほど、第1の吸着層422に結合するB型抗体の量は少なくなるため、発振領域103の発振周波数f12の変化量は小さくなる。こうして、第1の差分Δ(f12−f0)を取得することにより、試料液の粘性や、温度変化、振動等による発振周波数への影響がキャンセルされた、B型抗体の結合量及び夾雑物の付着量に基づく、発振周波数f12の変化量が求められる。そして、試料液中の夾雑物94がウイルスBやB型抗体、吸着層422と結合しない場合であっても、吸着層422への沈着などにより発振周波数f12が変化するおそれがある点については、図6を用いて説明した領域442の例と同様である。
さらにまた、共通電極44には、以上に説明した夾雑物94の影響を抑制するため、領域441には、第2の吸着層43が設けられている。本例において、第2の吸着層43はストレプトアビジン96により構成され、図7に示すように、試料液中の添加成分であるビオチン95が特異的に結合する。一方で、ストレプトアビジン96は、ウイルスA92、ウイルスB、A型抗体93、B型抗体に対しては結合しないか、結合量が微量で発振周波数の変化は検出限界以下である。
またこのとき、試料液中の夾雑物94は、ストレプトアビジン96や第2の吸着層43と結合しない場合であっても、沈着などにより当該吸着層43に付着し、発振周波数f2が変化するおそれがある。既述のように第2の吸着層43に対しては、ウイルスA92、ウイルスB、A型抗体93、B型抗体が殆ど結合しない。従って、既知量のビオチン95が添加された試料液中を測定した際の参照用の発振領域104の発振周波数f0との差分である第2の差分Δ(f20−f0)と、既述の基準液を用いて得た基準の差分との相違は、夾雑物94の影響によるものと推定することができる。そこで、第2の差分Δ(f2−f0)を取得することにより、試料液の粘性や、温度変化、振動等による発振周波数への影響をキャンセルしつつ、ビオチン95の結合量の検出に対する夾雑物94の影響度を求めることができる。なお、図7においても、ウイルスB及びB型抗体は図示を省略している。
上記の考え方に基づいて、基準の差分と第2の差分との相違に基づき、試料液に検体が含まれることに起因する発振周波数の差分への影響度を求める工程を実施する。基準の差分は、生理食塩水中に含まれるビオチンに起因する発振周波数の変化量である。一方、既述のように、第2の差分は試料液(検体)に含まれるビオチンの量に加え、試料液中に夾雑物94が含まれていることに起因する影響を受けた発振周波数の変化量に相当すると推定できる。このときビオチンの添加量は既知量であるため、基準の差分と第2の差分との相違は、試料液中の夾雑物94に由来するものと捉えることができる。このため、本例では前記影響度を、第2の差分に対する基準の差分の比率{(基準の差分)/(第2の差分)}により求めている。
この後、前記影響度に基づいて、第1の差分を補正した値に基づいて感知対象物の感知結果を得る工程を実施する。第1の差分の補正は、例えば前記影響度に基づき補正係数を算出し、この補正係数を第1の差分に乗じることにより行う。この例では、A型抗体の第1の差分Δ(f11−f0)に対し、前記影響度を補正係数として乗じて、感知対象物の感知結果を得る。また、B型抗体については、第1の差分Δ(f12−f0)にに0.8を乗じた値を補正係数として、感知対象物の感知結果を得る。前記補正係数による補正を行うことにより、後述する評価試験の結果からも明らかなように、試料液中の夾雑物の影響がキャンセルされる。
ここで例えば、感知装置1によっては、ウイルスA、ウイルスBの各抗体と第1の吸着層421、422との結合のしやすさなどに応じて、検出感度を変化させている場合もある。このため、一律に共通の補正係数を用いることが好ましくない場合もある。このような場合を考慮して、例えば補正係数を乗じた後の差分の周波数が、所定の規格範囲内の値となるように、影響度に一定の定数を乗じて補正係数を算出してもよい。
この工程では、こうして得られた感知対象物の感知結果に基づいて、例えばウイルスAやウイルスBの有無を判定してもよい。例えば第1の差分Δ(f11−f0)の補正値、Δ(f12−f0)の補正値毎に予めしきい値A1、B1を設定しておく。そして、第1の差分Δ(f11−f0)の補正値がしきい値A1よりも低い場合にウイルスAが存在し、第1の差分Δ(f12−f0)の補正値がしきい値B1よりも低い場合にウイルスBが存在すると判定する。
さらに、第1の差分を補正した値を用いて特定した吸着対象成分の吸着量から、前記試料液中の感知対象物の含有量を特定する工程を実施してもよい。この工程は、例えば予め第1の差分を補正した値と、吸着対象成分の吸着量(濃度)とを対応付けた関数式や検量線を取得しておき、第1の差分を補正した値に基づいて吸着対象成分の吸着量を特定する。吸着対象成分が感知対象物である場合には、吸着対象成分の吸着量が試料液中の感知対象物の含有量(濃度)に相当する。また、吸着対象成分が感知対象物に競合阻害される成分である場合には、予め吸着対象成分の吸着量と感知対象物の含有量とを対応付けた関数式や検量線を取得しておき、これに基づいて感知対象物の含有量を特定する。
上述の実施形態によれば、試料液に検体が含まれることに起因する発振周波数の差分への影響度を求め、この影響度に基づいて、試料液が供給されたときの第1の発振領域の発振周波数と、参照用の発振領域の発振周波数との差分である第1の差分を補正し、この補正した値に基づいて感知対象物の感知結果を得ている。前記影響度は、検体に含まれるたんぱく質や脂質などの夾雑物の存在に起因する発振周波数の変化量に基づいて求められており、この影響度に基づく補正により、夾雑物に起因する発振周波数の変化量がキャンセルされる。また、参照用の発振領域の発振周波数との差分を求めることで、試料液の粘性、温度変化及び振動等に起因する発振周波数の変化分がキャンセルされる。このため、感知対象物の感知精度を高めることができる。
生体由来の検体を含む試料液では、検体によって夾雑物の濃度は様々であるが、検体毎に前記影響度を求め、これにより前記第1の差分を補正しているので、夾雑物の濃度によらず、夾雑物の影響を最小限に抑制することができる。これにより、試料液中の感知対象物の感知を高い精度で行うことができ、誤判定を防ぐことができる。また、試料液を感知装置1に供給するだけでよく、洗浄処理等の煩雑な工程が不要であるため、簡易な手法で精度よく感知対象物の感知を行うことができる。
以上において、吸着対象成分が感知対象物に競合阻害する成分である場合を例にして説明したが、吸着対象成分は感知対象物であってもよい。例えば吸着対象成分がウイルスA、ウイルスBの場合には、第1の吸着層421にはウイルスA抗体、第1の吸着層422にはウイルスB抗体が用いられる。
ここで感知対象物は、ウイルス等の各種の生体由来の検体に含まれる成分としてよい。この場合は、感知対象物である吸着対象成分と結合する物質、または当該感知対象物との競合阻害の関係にある吸着対象成分と結合する物質により第1の吸着層42を構成する。そして、これら感知対象物、吸着対象成分、第1の吸着層42に対して結合しないか、結合量が微量である添加成分と、この添加成分に対して特異的に結合する物質からなる第2の吸着層43とが選択される。
また、上述の例では、発振領域が4つである場合を例にして説明したが、発振領域は3つ以上であればよい。例えば、試料液中の感知対象物が1つである場合、例えばウイルスA及びウイルスBのいずれか一方を感知する場合には、発振領域を3つとし、第1の吸着層42を備えた第1の発振領域と、第2の吸着層43を備えた第2の発振領域と、参照用の発振領域のみを含む構成であってもよい。さらに、試料液中の感知対象物が3つ以上である場合には、発振領域を5つ以上備える構成としてもよい。この場合には、異なる吸着対象成分と特異的に結合する複数種類の第1の吸着層がされた複数の第1の発振領域と、第2の吸着層を備えた第2の発振領域と、参照用の発振領域を含む構成となる。
添加成分と第2の吸着層43との組み合わせは、ビオチン結合BSA95とストレプトアビジン96とに限定されない。例えば、ビオチン結合BSA95とアビジンとの組み合わせや、CRP(C-reactive protein)と抗ウサギIgG抗体との組み合わせ、マウスIgGと抗マウスIgG抗体との組み合わせ等を用いることができる。
さらに、本例の感知装置は、3つ以上の発振領域を備えた感知センサを用いる場合に限定されず、2つ以上の発振領域を備えた感知センサを2種類用いるものであってもよい。つまり、第1の発振領域と参照用の発振領域とを含む水晶振動子(圧電振動子)を有する第1の感知センサと、第2の発振領域と参照用の発振領域とを含み、第1の感知センサの圧電振動子とは異なる圧電振動子を有する第2の感知センサとを用いて、本例の感知方法を実施するものであってもよい。
本例実施の形態の効果を検証するために以下の試験を行った。上述の感知装置1にて、既述の手法で基準液を供給し、基準の差分Δ(f02−f0)を求めた。基準液は、生理食塩水に既知量のビオチン結合BSAを添加成分として添加したものを用いた。このときの基準の差分は600Hzであった。
次いで、既知量の鼻腔の拭い液よりなる検体1と、既知量のA型抗体及びB型抗体と、既知量のビオチンよりなる添加成分と、所定量の生理食塩水に添加して得た試料液に感知装置1に供給し、A型抗体に起因する第1の差分Δ(f11−f0)、B型抗体に起因する第1の差分Δ(f12−f0)を求めた。同様に、鼻腔の拭い液よりなり、検体1とは異なる検体2について同様に調製した試料液を感知装置1に供給し、第1の差分Δ(f11−f0)、Δ(f12−f0)を求めた。検体1は夾雑物の影響が標準的なもの、検体2は夾雑物の影響が標準よりも高いものである。
この結果を、次に示す。
検体1の第1の差分Δ(f11−f0):1247.91Hz
検体1の第1の差分Δ(f12−f0):1068.78Hz
検体2の第1の差分Δ(f11−f0):2131.18Hz
検体2の第1の差分Δ(f12−f0):1750.05Hz
また、前記検体1を含む試料液を感知装置1に供給した結果に基づき、前記第2の差分(f2−f0)を求めた。さらに、前記検体2を含む試料液を感知装置1に供給した結果に基づき、前記第2の差分(f2−f0)を求めた。
この結果を、次に示す。
検体1の第2の差分Δ(f2−f0) :528.05Hz
検体2の第2の差分Δ(f2−f0) :866.36Hz
続いて、基準の差分と第2の差分との相違に基づき、基準の差分/第2の差分より、前記影響度を求めた。
この結果、検体1の影響度は、600/528.05=1.14
検体2の影響度は、600/866.36=0.69であった。
この後、影響度に基づいて、第1の差分を補正した値に基づいて、感知対象物の感知結果を求めた。A型抗体の第1の差分の補正は、第1の差分に影響度を補正係数として、当該補正係数を乗じることにより行った。
この結果を次に示す。
検体1の補正:1247.91×1.14=1417.95Hz
検体2の補正:2131.18×0.69=1475.95Hz
また、B型抗体の第1の差分の補正は、第1の差分に影響度に0.8を乗じた値を補正係数とした。なお、0.8の値は、当該第1の差分が既述の規格範囲内の値となるように事前検証を行い、求めたものである。
この結果を次に示す。
検体1の補正:1247.91×1.14×0.8=941.53
検体2の補正:2131.18×0.69×0.8=969.60Hz
検体2のA型抗体、B型抗体の補正前の周波数変化量と、補正後の周波数変化量を図8に示す。図8中、A型抗体、B型抗体共に、補正前のデータは斜線がない棒グラフにて示し、補正後のデータは斜線がある棒グラフにて示している。また、点線にて囲んだ周波数変化量の領域は、各差分の規格範囲である。
A型抗体の周波数の変化量について、夾雑物の影響が標準的な検体1、夾雑物の影響が高い検体2共に、各試料液における夾雑物の影響度を個別に把握することができた。これにより、周波数の変化量を規格範囲内には収めつつ、夾雑物の影響度に応じて前記周波数の変化量を補正し、A型抗体の吸着量に起因する周波数変化を推定することができた。この結果、精度の高い感知を行うことができることが確認された。
また、B型抗体の周波数の変化量についても、検体1、検体2共に、各試料液における夾雑物の影響度を個別に把握し、前記周波数の変化量を補正して、精度の高い感知を行うことができることが確認された。
これらの結果により、夾雑物の影響度が異なる検体1、検体2においても、本例の感知方法によりこれらの影響度を個別に把握することができることが分かった。従って、本例の感知装置1、感知センサ2は、夾雑物の量が一定ではない、生体由来の検体を含む試料液中の感知対象物の感知を高感度に実施可能であることを理解できる。
1 感知装置
2 感知センサ
3 配線基板
4 水晶振動子
42、421、422 第1の吸着層
43 第2の吸着層
44 共通電極
45、46、47、48 励振電極
62 発振回路
63 周波数測定部
演算部
101 第2の発振領域
102、103 第1の発振領域
104 参照用の発振領域

Claims (10)

  1. 両面に励振電極が形成された圧電振動子の、生体由来の検体を含む試料液が供給される一面側の励振電極に設けられ、前記試料液中の感知対象物を感知するために、当該試料液中の吸着対象成分と特異的に結合する第1の吸着層が形成された領域の励振電極と、他面側の励振電極との間に構成された第1の発振領域と、前記一面側の励振電極に設けられ、前記検体には含まれていない成分であって、前記試料液に対して添加された添加成分と特異的に結合する第2の吸着層が形成された領域の励振電極と、他面側の励振電極との間に構成され、前記第1の発振領域から弾性的に分離された第2の発振領域と、前記一面側の励振電極に設けられ、前記第1の吸着層及び第2の吸着層のいずれも形成されていない励振電極と、他面側の励振電極との間に構成され、前記第1の発振領域及び第2の発振領域から弾性的に分離された参照用の発振領域と、を有する感知センサと、
    前記感知センサに対して電気的に接続され、前記第1、第2、及び参照用の発振領域を発振させるための発振回路と、
    前記発振回路の発振周波数を測定するための周波数測定部と、
    前記検体と、既知量の前記添加成分とを含む試料液が供給されたときの第1の発振領域の発振周波数と、前記参照用の発振領域の発振周波数との差分である第1の差分を求めるステップと、前記試料液が供給されたときの前記第2の発振領域の発振周波数と、前記参照用の発振領域の発振周波数との差分である第2の差分を求めるステップと、予め求めておいた、前記生体由来の検体を含まず、前記既知量の添加成分を添加した基準液が供給されたときの前記第2の発振領域の発振周波数と、前記参照用の発振領域の発振周波数との差分である基準の差分と、前記基準の差分と前記第2の差分との相違に基づき、前記試料液に検体が含まれることに起因する発振周波数の差分への影響度を求めるステップと、前記影響度に基づいて前記第1の差分を補正した値に基づいて前記感知対象物の感知結果を得るステップと、を実行する演算部と、を備えたことを特徴とする感知装置。
  2. 前記演算部は、前記第1の差分を補正した値を用いて特定した前記吸着対象成分の吸着量から、前記試料液中の感知対象物の含有量を特定するステップを実行することを特徴とする請求項1に記載の感知装置。
  3. 前記吸着対象成分は、前記感知対象物であることを特徴とする請求項1または2に記載の感知装置。
  4. 前記吸着対象成分は、前記感知対象物に競合阻害される成分であることを特徴とする請求項1または2に記載の感知装置。
  5. 前記一面側の励振電極には、異なる吸着対象成分と特異的に結合する複数種類の第1の吸着層が形成され、互いに弾性的に分離された複数の第1の発振領域を備えることを特徴とする請求項1ないし4のいずれか一つに記載の感知装置。
  6. 両面に励振電極が形成された圧電振動子の、生体由来の検体を含む試料液が供給される一面側の励振電極に設けられ、前記試料液中の感知対象物を感知するために、当該試料液中の吸着対象成分と特異的に結合する第1の吸着層が形成された領域の励振電極と、他面側の励振電極との間に構成された第1の発振領域と、前記一面側の励振電極に設けられ、前記検体には含まれていない成分であって、前記試料液に対して添加された添加成分と特異的に結合する第2の吸着層が形成された領域の励振電極と、他面側の励振電極との間に構成され、前記第1の発振領域から弾性的に分離された第2の発振領域と、前記一面側の励振電極に設けられ、前記第1の吸着層及び第2の吸着層のいずれも形成されていない励振電極と、他面側の励振電極との間に構成され、前記第1の発振領域及び第2の発振領域から弾性的に分離された参照用の発振領域と、を有する感知センサを用い、
    前記生体由来の検体を含まず、前記既知量の添加成分を添加した基準液が供給されたときの前記第2の発振領域の発振周波数と、前記参照用の発振領域の発振周波数との差分である基準の差分を求める工程と、
    前記検体と、既知量の前記添加成分とを含む試料液が供給されたときの第1の発振領域の発振周波数と、前記参照用の発振領域の発振周波数との差分である第1の差分を求める工程と、
    前記試料液が供給されたときの前記第2の発振領域の発振周波数と、前記参照用の発振領域の発振周波数との差分である第2の差分を求める工程と、
    前記基準の差分と前記第2の差分との相違に基づき、前記試料液に検体が含まれることに起因する発振周波数の差分への影響度を求める工程と、
    前記影響度に基づいて前記第1の差分を補正した値に基づいて前記感知対象物の感知結果を得る工程と、を含むことを特徴とする感知方法。
  7. 前記第1の差分を補正した値を用いて特定した前記吸着対象成分の吸着量から、前記試料液中の感知対象物の含有量を特定する工程を含むことを特徴とする請求項6に記載の感知方法。
  8. 前記吸着対象成分は、前記感知対象物であることを特徴とする請求項6または7に記載の感知方法。
  9. 前記吸着対象成分は、前記感知対象物に競合阻害される成分であることを特徴とする請求項6または7に記載の感知方法。
  10. 前記第1の発振領域と前記参照用の発振領域とを含む圧電振動子を有する第1の感知センサと、前記第2の発振領域と前記参照用の発振領域とを含み、前記第1の感知センサの圧電振動子とは異なる圧電振動子を有する第2の感知センサとを用いて、前記各工程を実施することを特徴とする請求項6ないし9のいずれか一つに記載の感知方法。
JP2018234429A 2018-12-14 2018-12-14 感知装置及び感知方法 Pending JP2020094970A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018234429A JP2020094970A (ja) 2018-12-14 2018-12-14 感知装置及び感知方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018234429A JP2020094970A (ja) 2018-12-14 2018-12-14 感知装置及び感知方法

Publications (1)

Publication Number Publication Date
JP2020094970A true JP2020094970A (ja) 2020-06-18

Family

ID=71085281

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018234429A Pending JP2020094970A (ja) 2018-12-14 2018-12-14 感知装置及び感知方法

Country Status (1)

Country Link
JP (1) JP2020094970A (ja)

Similar Documents

Publication Publication Date Title
JP5066551B2 (ja) 圧電センサ及び感知装置
JP6227219B2 (ja) 感知センサー及び感知装置
US9791412B2 (en) Sensing device
JP2005274164A (ja) バイオセンサー装置
JP2018112469A (ja) 感知センサ、情報処理装置、感知方法及びソフトウェア
TWI436063B (zh) Concentration sensor and concentration detection device
JP2020094970A (ja) 感知装置及び感知方法
JP6730819B2 (ja) 感知センサ及び感知方法
WO2016076019A1 (ja) 感知方法
JP5292359B2 (ja) 感知装置
JP6966266B2 (ja) 感知センサの製造方法
JP5138729B2 (ja) 感知装置
JP7209432B2 (ja) 測定装置、測定方法および計算装置
JP6471084B2 (ja) 感知センサ
JP2013024648A (ja) 感知装置及び感知方法
JP5708027B2 (ja) 感知装置
JP2017156159A (ja) 感知方法
CN107991385B (zh) 一种确定凝血时间的方法及装置
JP6966283B2 (ja) 感知センサー及び感知装置
JP2017116502A (ja) 感知センサ及び感知装置
JP4369452B2 (ja) 濃度センサー及び濃度検出装置。
JP6106446B2 (ja) 感知センサー及び感知装置
JP2003315235A (ja) 分析方法
JP2019168284A (ja) 感知センサ
JP2014016272A (ja) 感知センサー