JP2020091692A - 隊列走行制御装置 - Google Patents

隊列走行制御装置 Download PDF

Info

Publication number
JP2020091692A
JP2020091692A JP2018228884A JP2018228884A JP2020091692A JP 2020091692 A JP2020091692 A JP 2020091692A JP 2018228884 A JP2018228884 A JP 2018228884A JP 2018228884 A JP2018228884 A JP 2018228884A JP 2020091692 A JP2020091692 A JP 2020091692A
Authority
JP
Japan
Prior art keywords
platoon
vehicle
acceleration
traveling
speed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2018228884A
Other languages
English (en)
Inventor
昌一郎 上園
Shoichiro Uesono
昌一郎 上園
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Astemo Ltd
Original Assignee
Hitachi Automotive Systems Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Automotive Systems Ltd filed Critical Hitachi Automotive Systems Ltd
Priority to JP2018228884A priority Critical patent/JP2020091692A/ja
Publication of JP2020091692A publication Critical patent/JP2020091692A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Traffic Control Systems (AREA)
  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)
  • Regulating Braking Force (AREA)

Abstract

【課題】道路の制限速度が切り替わる場合に、隊列全体が制限速度に応じて速やかに速度変更する。【解決手段】本発明の一態様の隊列走行制御装置は、隊列が走行する道路上の制限速度切替り地点を検知する制限速度切替り検知部と、この制限速度切替り検知部の検知結果から自車両の走行速度を変更する必要があるか否かを判定する走行速度変更要否判定部と、自車両の走行速度を変更する必要がある場合、かつ道路の制限速度が下がる方向に変更される場合に、隊列の先頭車両から制限速度変更開始地点までの距離と、切替り前及び切替り後の制限速度の速度差とを用いて減速側加速度を演算し、当該減速側加速度に基づいて自車両の走行速度を変更する隊列走行制御部と、を備える。【選択図】図2

Description

本発明は、他の車両と隊列を編成している車両の走行を制御する隊列走行制御装置に関する。
近年、自動運転技術の開発が進められている。例えば特許文献1には、自車両から隊列走行可能な所定のサービス区間の終了地点までの距離が所定距離よりも短くなったときに、自車両の直前を走行する前方車両との目標車間距離を大きな値に変更する技術が開示されている。
特開2001−344686号公報
ところで、速度制限標識等に基づいて隊列走行中に道路の制限速度が切り替わることを検知した場合には、隊列全体が制限速度に応じて速やかに速度変更することが求められる。この制限速度は、最高速度や指定速度とも呼ばれる。しかし、特許文献1には、このような制限速度が切り替わる場合の隊列走行制御について開示されていない。
本発明は、上記の状況に鑑みてなされたものであり、隊列走行中に道路の制限速度が切り替わる場合に、隊列全体が制限速度に応じて速やかに速度変更できるようにすることを目的とする。
上記課題を解決するために、本発明の一態様の隊列走行制御装置は、自車両の前方車両及び/又は後方車両、並びに道路設備側の通信機器との通信を行いながら、それら車両と隊列を編成した状態で自車両を走行させる隊列走行制御装置であって、隊列が走行する道路上の制限速度切替り地点を検知する処理を行う制限速度切替り検知部と、この制限速度切替り検知部の検知結果から隊列を編成する自車両の走行速度を変更する必要があるか否かを判定する処理を行う走行速度変更要否判定部と、自車両の走行速度を変更する処理を行う隊列走行制御部と、を備える。
上記隊列走行制御部は、走行速度変更要否判定部により自車両の走行速度を変更する必要があると判定された場合、かつ隊列が走行している道路の制限速度が下がる方向に変更される場合に、隊列の先頭車両から制限速度切替り地点までの距離と、切替り前の制限速度と切替り後の制限速度とから算出される速度差と、を用いて、走行速度が下がる側に作用する減速側加速度を演算し、当該減速側加速度に基づいて自車両の走行速度を変更する。
また、本発明の他の態様の隊列走行制御装置は、隊列が走行する道路上の制限速度切替り地点を検知する処理を行う制限速度切替り検知部と、この制限速度切替り検知部の検知結果から隊列を編成する自車両の走行速度を変更する必要があるか否かを判定する処理を行う走行速度変更要否判定部と、自車両の走行速度を変更する処理を行う隊列走行制御部と、を備える。
上記隊列走行制御部は、走行速度変更要否判定部により自車両の走行速度を変更する必要があると判定された場合、かつ隊列が走行している道路の制限速度が上がる方向に変更される場合に、切替り前の制限速度と切替り後の制限速度とから算出される速度差を用いて、走行速度が上がる側に作用する加速側加速度を演算し、当該加速側加速度に基づいて自車両の走行速度を変更する。
本発明の少なくとも一態様によれば、隊列走行中に道路の制限速度が切り替わる場合に、隊列全体が制限速度に応じて速やかに速度変更することができる。
上記した以外の課題、構成及び効果は、以下の実施形態の説明により明らかにされる。
本発明の第1の実施形態に係る走行制御装置を含む走行制御システムの全体構成例を示すブロック図である。 本発明の第1の実施形態に係る走行制御装置の内部構成例を示す機能ブロック図である。 本発明の第1の実施形態に係る走行制御装置による走行制御処理の手順例を示すフローチャートである。 本発明の第1の実施形態に係る減速隊列走行制御処理の手順例を示すフローチャートである。 本発明の第1の実施形態に係る加速隊列走行制御処理の手順例を示すフローチャートである。 本発明の第1の実施形態に係るABS制御作動がない場合の減速隊列走行制御の例(実施例1−1)を示す図である。 車両の加速度と移動距離の一例を示すグラフである。 本発明の第1の実施形態に係るABS制御作動がある場合の減速隊列走行制御の例(実施例1−2)を示す図である。 本発明の第1の実施形態に係る制限速度切替り標識の位置が隊列の先頭の車両の位置より進行方向後方にある場合であって、かつABS制御作動がない場合の減速隊列走行制御の例(実施例2−1)を示す図である。 本発明の第1の実施形態に係る制限速度切替り標識の位置が隊列の先頭の車両の位置より進行方向後方にある場合であって、かつABS制御作動がある場合の減速隊列走行制御の例(実施例2−2)を示す図である。 本発明の第1の実施形態に係る制限速度の段階的変化に連動した減速隊列走行制御の例(実施例3)を示す図である。 本発明の第1の実施形態に係るTCS制御作動がない場合の加速隊列走行制御の例(実施例4−1)を示す図である。 本発明の第1の実施形態に係るTCS制御作動がある場合の加速隊列走行制御の例(実施例4−2)を示す図である。 本発明の第2の実施形態に係る走行制御装置による走行制御処理の手順例を示すフローチャートである。 本発明の第2の実施形態に係る減速隊列走行制御処理の手順例を示すフローチャートである。
以下、本発明を実施するための形態(以下、「実施形態」と記述する)の例について、添付図面を参照して説明する。本明細書及び添付図面において実質的に同一の機能又は構成を有する構成要素については、同一の符号を付して重複する説明を省略する。
<1.第1の実施形態>
[走行制御装置を含む走行制御システム]
図1は、本発明の第1の実施形態に係る走行制御装置を含む走行制御システムの全体構成例を示すブロック図である。この走行制御システムは、後述する隊列を編成する車両1〜n(図6参照)の各々に搭載されている。
走行制御装置100は、自車両の前方車両及び/又は後方車両、並びに道路設備側の不図示の通信機器との通信を行いながら、それら車両と隊列を編成した状態で自車両を走行させる制御を行うように構成されている。走行制御装置100は、隊列の走行を制御する隊列走行制御装置の一例であるが、本実施形態では、走行制御装置100が自車両の通常の走行制御を行う機能を備える。
走行制御装置100、道路情報受信モジュール110、車車間情報受信モジュール120、車車間距離測定装置130、ABS制御モジュール140、TCS制御モジュール150、車速センサ160、ブレーキ協調制御モジュール170、及びトルク協調制御モジュール180を備える。走行制御装置100と各ブロックは、例えばCAN(Controller Area Network)規格に基づいて相互に通信可能に接続されており、各ブロックから走行制御装置100へ隊列走行に必要な情報が入力される。
走行制御装置100は、マイクロコンピューターを備え、処理内容はプログラミング言語によりマイクロコンピューターへ実装される。必要な情報は、記憶領域(ROM100b、RAM100c)へ格納される。マイクロコンピューターでは、CPU100aのクロック周波数などの演算周期ごとに処理が実行される。一例として、走行制御装置100として、ECU(Engine Control Unit)を用いることができる。隊列走行制御は、走行制御装置100による走行制御の一機能であり、自車両が隊列走行中ではない場合には、走行制御装置100は通常の走行制御を行う。
道路情報受信モジュール110は、道路設備側の通信機器から道路情報を無線通信により受信し、受信した情報を走行制御装置100へ出力する。道路情報受信モジュール110は、例えば現在走行中の道路の前方若しくは後方で制限速度の切替りがあるかどうかの情報、制限速度が切替ること示す標識(制限速度切替り標識)の位置、自車両の走行位置、切替り前(変更前)の制限速度、及び切替り後(変更後)の制限速度などの情報を受信する。
車車間情報受信モジュール120は、隊列の車両全てで共有する情報を受信し、受信した情報を走行制御装置100へ出力する。隊列の車両全てで共有する情報としては、例えば隊列走行を実施中であることを示す情報、隊列走行車両の中で自車両が先頭から何台目を走行中であるかの情報、自車両が隊列の先頭車両であるかどうかの情報、自車両が隊列の最後尾車両であるかどうかの情報、先頭車両の走行位置、及び隊列の全体の走行速度がある。さらに、隊列の車両全てで共有する情報として、ABS(アンチロック・ブレーキ・システム)制御作動の有無、ABS制御作動時の加速度、TCS(トラクション・コントロール・システム)制御作動の有無、及びTCS制御作動時の加速度などが挙げられる。
車車間距離測定装置130は、ミリ波レーダーや超音波レーダー等により、自車両と前後の車両との車車間距離を測定し、車車間距離の情報を走行制御装置100へ出力する。
ABS制御モジュール140は、自車両のABS制御を実施する装置である。ABS(Antilock Brake System)は、急ブレーキをかけた時などにタイヤがロック(回転が止まること)するのを防ぐことにより、車両の進行方向の安定性を保ち、また、ハンドル操作による障害物回避の可能性を高めるシステムである。ABS制御モジュール140は、ABS制御の作動の有無を検知したり、ABS制御作動時の加速度を算出したりし、検知結果や算出結果を走行制御装置100へ出力する。
TCS制御モジュール150は、自車両のTCS制御を実施する装置である。TCS(Traction Control System)は、滑りやすい路面などで発進したり加速するとき、過度な駆動力でタイヤが空転するのを抑えるため、駆動力(エンジン出力)を絞ったり車輪にブレーキをかけたりする制御を行うシステムである。TCS制御モジュール150は、TCS制御の作動の有無を検知したり、TCS制御作動時の加速度を算出したりし、検知結果や算出結果を走行制御装置100へ出力する。
車速センサ160は、自車両の走行速度を車輪の回転速度から計算し、計算結果を走行制御装置100へ出力する。
ブレーキ協調制御モジュール170は、走行制御装置100の制御の下、ブレーキアクチュエータ171に駆動信号を出力してブレーキを制御し、ブレーキの協調制御を実施する。また、ブレーキ協調制御モジュール170は、TCS制御モジュール150のTCS制御作動有無の検知結果やTCS制御作動時の加速度の算出結果に基づいて、スロットル機構181を制御することもある。
トルク協調制御モジュール180は、走行制御装置100の制御の下、スロットル機構181に駆動信号を出力してスロットル機構181を制御し、トルクの協調制御を実施する。
車車間情報送信モジュール190は、走行制御装置100の制御の下、上記隊列の車両全てで共有する情報を他の車両へ送信する。
[走行制御装置の構成]
図2は、本発明の第1の実施形態に係る走行制御装置100の内部構成例を示す機能ブロック図である。
走行制御装置100は、制限速度切替り検知部101、走行速度変更要否判定部102、及び隊列走行制御部103を備える。
制限速度切替り検知部101は、道路情報受信モジュール110が受信した情報に基づいて、隊列が走行する道路上の制限速度の切替り地点(図6参照)を検知する処理を実施する。
走行速度変更要否判定部102は、制限速度切替り検知部101の検知結果から隊列を編成する自車両の走行速度を変更する必要があるか否かを判定する処理を実施する。
隊列走行制御部103は、ブレーキ協調制御モジュール170を通じてブレーキアクチュエータ171を制御し、トルク協調制御モジュール180を通じてスロットル機構181を制御して、自車両の走行速度を変更する処理を行う。
この隊列走行制御部103は、走行速度変更要否判定部102により自車両の走行速度を変更する必要があると判定された場合、かつ隊列が走行している道路の制限速度が下がる方向に変更される場合には、減速隊列走行制御を実施する。例えば、隊列走行制御部103は、隊列の先頭車両から制限速度切替り地点までの距離と、切替り前の制限速度と切替り後の制限速度とから算出される速度差と、を用いて走行速度が下がる側に作用する減速側加速度を演算し、その減速側加速度に基づいて自車両の走行速度を変更する。
また、隊列走行制御部103は、走行速度変更要否判定部102により自車両の走行速度を変更する必要があると判定された場合、かつ隊列が走行している道路の制限速度が上がる方向に変更される場合には、加速隊列走行制御を実施する。例えば、隊列走行制御部103は、切替り前の制限速度と切替り後の制限速度とから算出される速度差を用いて、走行速度が上がる側に作用する加速側加速度を演算し、その加速側加速度に基づいて自車両の走行速度を変更する。
さらに隊列走行制御部103は、図2に示すように、加速度設定部103a、及び安定機能作動検知部103bを備える。
加速度設定部103aは、減速隊列走行制御の際、減速側加速度を演算し、当該減速側加速度を予め設定された減速側加速度の上限値と比較して、いずれか小さい方を隊列の減速側加速度に設定する処理を行う。また、加速度設定部103aは、加速隊列走行制御の際、加速側加速度を演算し、当該加速側加速度を予め設定された加速側加速度の上限値と比較して、いずれか小さい方を隊列の加速側加速度に設定する処理を行う。
安定機能作動検知部103bは、車両の走行を安定させる機能であるABS制御及びTCS制御の作動を検知する処理を行う。加速度設定部103aは、ABS制御の作動時の減速側加速度を、隊列の減速側加速度に設定する。例えば、加速度設定部103aは、安定機能作動検知部103bにより隊列内のABS制御が作動した車両が検知された場合に、該当車両から隊列の先頭の車両までを含む新たな隊列を設定(編成)し、ABS制御の作動時の減速側加速度を、新たな隊列の各車両の減速側加速度に設定する。
また、加速度設定部103aは、TCS制御の作動時の加速側加速度を、隊列の加速側加速度に設定する。例えば、加速度設定部103aは、安定機能作動検知部103bにより隊列内のTCS制御が作動した車両が検知された場合に、該当車両から隊列の最後尾の車両までを含む新たな隊列を設定(編成)し、TCS制御の作動時の加速側加速度を、新たな隊列の各車両の加速側加速度に設定する。なお、車両の走行を安定させる機能としてABS及びTCSを挙げたが、この例に限らない。
[走行制御処理の手順例]
図3は、本発明の第1の実施形態に係る走行制御装置100による走行制御処理の手順例を示すフローチャートである。本フローチャートの処理は、例えば0.5秒おきのように周期的に実施(ループ処理)される。
図3に示すように、まず走行制御装置100は、車車間情報受信モジュール120により得られる情報(隊列走行を実施中であることを示す情報)に基づき、自車両が隊列走行中であるかどうかを判定する(S1)。ここで、隊列走行中ではないと判定した場合(S1のNO)、走行制御装置100は、通常の走行制御を行う(S2)。
一方、隊列走行中であると判定した場合(S1のYES)、走行制御装置100の制限速度切替り検知部101は、走行中の道路において隊列の前方もしくは隊列の途中に、制限速度の切替りが有るかどうかを判定する(S3)。制限速度の切替りが無い場合(S3のNO)、走行制御装置100は、通常の隊列走行制御を実施する(S11)。ここでの通常の隊列走行制御とは、一般的に知られた隊列走行制御のことである。
また、制限速度の切替りが有る場合(S3のYES)、走行速度変更要否判定部102は、判定条件に基づいて隊列走行速度Vと切替り後の制限速度VBを比較する処理及び判定処理を行う(S4)。本実施形態では、走行速度変更要否判定部102は、「|VB−V|<(閾値)、かつ、VB−V≧0」が成立するかどうかを判定する。即ち、走行速度変更要否判定部102は、切替り後の制限速度VBと現在の隊列走行速度Vとの差分が閾値よりも小さく、かつ、切替り後の制限速度は現在の隊列走行速度Vから増速する方向であるか否かを判定する。
ここで、|VB−V|<(閾値)、かつ、VB−V≧0が成立する場合(S4のYES)、隊列走行制御部103は、通常の隊列走行制御を実施する(S11)。前回のループ処理時に本実施形態に係る減速隊列走行制御又は加速隊列走行制御を実行している場合には、減速隊列走行制御又は加速隊列走行制御から通常の隊列走行制御に移行する。また、前回のループ処理時に通常の隊列走行制御を実行している場合には、引き続き通常の隊列走行制御を実行する。
また、|VB−V|<(閾値)かつ VB−V≧0が不成立である場合(S4のNO)、走行速度変更要否判定部102は、ステップS3での制限速度の変化が減速側であるか加速側であるかを判別するため、切替り前の制限速度VAと切替り後の制限速度VBとの差分(制限速度差ΔV=VA−VB)を計算する(S5)。ΔVが正の場合、制限速度の変化は減速方向への変化である。
次いで、走行速度変更要否判定部102は、制限速度差ΔVの符号を判定する(S6)。ΔV>0の場合、即ちステップS3での制限速度の変化が減速方向への変化である場合には(S6のYES)、走行速度変更要否判定部102は、現在の隊列走行速度Vが切替り後の制限速度VB以下かどうかを判定する(S7)。
走行速度変更要否判定部102により現在の隊列走行速度Vが切替り後の制限速度VB以下であると判定された場合には(S7のYES)、隊列車両の減速が不要である。このため、隊列走行制御部103は、通常の隊列走行制御を実施する(S11)。前回のループ処理時に本実施形態に係る減速隊列走行制御又は加速隊列走行制御を実行している場合には、減速隊列走行制御又は加速隊列走行制御から通常の隊列走行制御に移行する。また、前回のループ処理時に通常の隊列走行制御を実行している場合には、引き続き通常の隊列走行制御を実行する。
また、走行速度変更要否判定部102により現在の隊列走行速度Vが切替り後の制限速度VBより大きいと判定された場合には(S7のNO)、隊列車両の減速が必要である。このため、隊列走行制御部103は、本実施形態の減速隊列走行制御処理を実行する(S8)。
一方、ステップS6においてΔV≦0の場合(S6のNO)、走行速度変更要否判定部102は、ΔV=0であるかどうかを判定する(S9)。ΔV=0ではない場合、即ちステップS3での制限速度の変化が加速方向への変化である場合には(S9のNO)、隊列車両の加速が必要である。このため、隊列走行制御部103は、本実施形態の加速隊列走行制御処理を実行する(S10)。また、ΔV=0の場合、即ち減速も加速も不要な場合には(S9のYES)、隊列走行制御部103は、通常の隊列走行制御を実施する(S11)。
そして、ステップS2の通常の走行制御、ステップS8の減速隊列走行制御処理、ステップS10の加速隊列走行制御処理、又はステップS11の通常の隊列走行処理が終了後、本フローチャートの一連の処理を終了する。あるいは、ステップS2,S8,S10,S11のいずれかの制御を実行中に所定の時間が経過したら、図3のステップS1の処理に戻る。
[減速隊列走行制御処理の手順例]
図4は、本発明の第1の実施形態に係るステップS8(図3)の減速隊列走行制御処理の手順例を示すフローチャートである。
図4に示すように、まず隊列走行制御部103の加速度設定部103aは、隊列車両の減速側加速度aを算出済みであるかどうかを判定する(S21)。例えば、加速度設定部103aが減速側加速度aを算出する度に、RAM100c、又はCPU100a若しくは走行制御装置100が備える不図示のレジスタに減速側加速度aを算出済みであることを示すフラグを記録しておく。加速度設定部103aは、このフラグの有無に基づいて減速側加速度aが算出済みであるか否かを判定する。そして、加速度設定部103aは、減速側加速度aを算出済みである場合には(S21のYES)、ステップS22の処理に移行する。
また、減速側加速度aを算出済みではない場合には(S21のNO)、加速度設定部103aは、減速側加速度aを算出する(S24)。次いで、加速度設定部103aは、減速側加速度aが減速側加速度の上限値a1よりも大きいかどうかを判定する(S25)。
減速側加速度aが減速側加速度の上限値a1よりも大きい場合(S25のYES)、加速度設定部103aは、減速側加速度の上限値a1を減速側加速度aに設定する(S26)。次いで、ステップS26の処理後、又はステップS25において減速側加速度aが減速側加速度の上限値a1以下である場合(S25のNO)、処理がステップS22に移行する。
次いで、ステップS21でYES判定の場合、ステップS25でNO判定の場合、又はステップS26の処理後、安定機能作動検知部103bは、ABS制御モジュール140の検知結果に基づいて、ABS制御が隊列車両で作動したかどうかを判定する(S22)。そして、ABS制御が隊列車両で作動していない場合(S22のNO)、隊列走行制御部103は、算出した減速側加速度a(S21のYES判定又はS24参照)、又は減速側加速度の上限値a1(S26参照)で減速隊列走行制御を行う(S23)。
また、ABS制御が隊列車両で作動した場合(S22のYES)、加速度設定部103aは、ABS制御が作動した該当車両とその後ろの車両(後方車両)の間を境に、隊列を前方隊列と後方隊列に分ける設定(編成)をする(S27)。ABS制御が作動した該当車両は、前方隊列の最後尾の車両となる。
次いで、加速度設定部103aは、該当車両のABS制御が作動した際の減速側加速度(以下「ABS制御作動加速度」と表記)を、該当車両が属する前方隊列の各車両の減速側加速度aに設定する(S28)。ABS制御が作動した際の減速側加速度についての情報は、ABS制御モジュール140から提供される。
次いで、ステップS28の処理後、隊列走行制御部103は、ABS制御が作動した際の減速側加速度で減速隊列走行制御を行う(S23)。ステップS23の減速隊列走行制御が終了後、本フローチャートの処理を終了する。あるいは、ステップS23の減速隊列走行制御を実行中に所定の時間が経過したら、図3のステップS1の処理に戻る。
[加速隊列走行制御処理の手順例]
図5は、本発明の第1の実施形態に係るステップS10(図3)の加速隊列走行制御処理の手順例を示すフローチャートである。
図5に示すように、まず隊列走行制御部103の加速度設定部103aは、隊列車両の加速側加速度aを算出済みであるかどうかを判定する(S31)。加速度設定部103aは、加速側加速度aを算出済みである場合には(S31のYES)、ステップS32の処理に移行する。
また、加速側加速度aを算出済みではない場合には(S31のNO)、加速度設定部103aは、加速側加速度aを算出する(S33)。次いで、加速度設定部103aは、加速側加速度aが加速側加速度の上限値a1よりも大きいかどうかを判定する(S34)。
加速側加速度aが加速側加速度の上限値a1よりも大きい場合(S34のYES)、加速度設定部103aは、加速側加速度の上限値a1を加速側加速度aに設定する(S35)。次いで、ステップS35の処理後、又はステップS34において加速側加速度aが加速側加速度の上限値a1以下である場合(S34のNO)、処理がステップS32に移行する。なお、隊列の加速に関して、予め設定した移動距離の範囲内で目標走行速度(制限速度VB以下)まで加速できればよい。加速側加速度の上限値を設定しておく重要性は、減速側加速度の上限値ほど高くはないと考えられるため、ステップS34の判定処理及びステップS35の処理を省略してもよい。
次いで、ステップS31でYES判定の場合、ステップS34でNO判定の場合、又はステップS35の処理後、制限速度切替り検知部101は、隊列の最後尾の車両nが制限速度切替り標識の位置B(「制限速度切替り地点B」とも称す。)を通過したかどうかを判定する(S32)。隊列の最後尾の車両nが制限速度切替り地点Bを通過していない場合には(S32のNO)、本フローチャートの一連の処理を終了し、加速隊列走行制御は実施されない。
一方、隊列の最後尾の車両nが制限速度切替り地点Bを通過した場合には(S32のYES)、安定機能作動検知部103bは、TCS制御モジュール150の検知結果に基づいて、TCS制御が隊列車両で作動したかどうかを判定する(S36)。そして、TCS制御が隊列車両で作動していない場合(S36のNO)、隊列走行制御部103は、算出した加速側加速度a(S31又はS33参照)で加速隊列走行制御を実施する(S37)。
また、TCS制御が隊列車両で作動した場合(S36のYES)、加速度設定部103aは、TCS制御が作動した該当車両とその前の車両(前方車両)の間を境に、隊列を前方隊列と後方隊列に分ける設定(編成)をする(S38)。TCS制御が作動した該当車両は、後方隊列の先頭の車両となる。
次いで、加速度設定部103aは、該当車両のTCS制御が作動した際の加速側加速度(以下「TCS制御作動加速度」と表記)を、該当車両が属する後方隊列の各車両の加速側加速度aに設定する(S39)。TCS制御が作動した際の加速側加速度についての情報は、TCS制御モジュール150から提供される。
次いで、ステップS37の処理後、隊列走行制御部103は、TCS制御が作動した際の加速側加速度で加速隊列走行制御を実施する(S37)。そして、ステップS37の加速隊列走行制御が終了後、本フローチャートの一連の処理を終了する。あるいは、ステップS37の加速隊列走行制御を実行中に所定の時間が経過したら、図3のステップS1の処理に戻る。
上述のように構成された第1の実施形態によれば、隊列走行中に道路の制限速度が減速側及び加速側のいずれに切り替わる場合でも、隊列全体(隊列を構成する複数の車両)が制限速度に応じて速やかに速度変更することができる。
また、隊列を構成する任意の車両において安定機能(例えばABSやTCSなど)が使用された場合でも、該当車両がその前後の車両と接触することなく、隊列全体が制限速度に応じて速やかに速度変更することができる。
[減速隊列走行制御の例(実施例1−1)]
次に、第1の実施形態に係る減速隊列走行制御の各実施例について図6〜図11を参照して説明する。
図6は、ABS制御作動がない場合の減速隊列走行制御の例(実施例1−1)を示す図である。この実施例1−1は、図4におけるステップS22のNO判定の場合に相当する。
図6において、走行制御装置100を搭載した複数の車両1〜nが、隊列10を形成して道路上を走行することを示している。時刻t=t1(図6A)では、隊列10は速度制限標識rs1(制限速度VA)に基づいて制限速度100km/h以下の一定の速度で走行している。隊列10の走行速度V01は制限速度VA以下を保持するように制御されている。隊列10の先頭の車両1から進行方向前方に制限速度が50km/hに切替ることを示す速度制限標識rs2(「制限速度切替り標識rs2」と称する場合がある。)がある。
先頭の車両1の道路上での現在の位置A0、制限速度切替り標識rs2の位置B、及び制限速度が位置Bで切替ることの各情報は、車両1〜nの各道路情報受信モジュール110により道路設備側の通信機器から受信され各々の走行制御装置100に入力される。先頭の車両1から制限速度切替り標識rs2までの距離L1(移動距離)は、先頭の車両1の道路上での位置A0と、制限速度切替り標識rs2の位置B(制限速度切替り地点B)との差分の絶対値として算出される。
車両1の道路上での位置A0(速度変更開始地点A)から位置Bまでの距離L1で、隊列全体で走行速度V01から走行速度V21に減速制御を実施する。速度変更開始地点Aを「位置A」とも表記する。図6A〜図6Cは、時刻t=t1(図6A)から時刻t=t2(図6B)、時刻t=t3(図6C)と減速し、t=t3で隊列の先頭の車両1は位置Bに到達し、走行速度V11を経て走行速度V21まで減速した場合を示している。t=t1からt=t3までの減速側加速度を一定とした場合、時間Δt=t3−t1の間に、速度差ΔV=|V21−V01|で表すと、加速度aは式(1)で計算できる。
a=ΔV/Δt=|V21−V01|/(t3−t1) ・・・・(1)
図7は、車両の加速度と移動距離の一例を示すグラフである。図7上段のグラフの縦軸は加速度[G]、図7下段のグラフの縦軸は移動距離[m]、各グラフの横軸は時間[s]である。V01=100[km/h]=27.8[m/s]、V21=50[km/h]=13.9[m/s]の場合を例に、時間Δtと加速度Gの関係を図7上段に示し、時間Δtと移動距離の関係を図7下段に示す。急ブレーキの場合、一般に車両の加速度は0.3G〜0.4Gであることから、減速側加速度は0.3Gより小さいことが望ましい。この場合、移動距離は130[m]よりも長くなり、制限速度まで減速するのに要する時間は4.5sとなる。1Gは、9.80665[m/s]である。
図7下段のグラフに示す関係を用いて、例えば減速側加速度に0.1Gを選ぶと、移動距離は340[m]、減速に要する時間が12[s]となる。L1>340[m]の場合、減速側加速度は0.1Gであり、制限速度切替りの位置Bまでの減速が可能となる。
また、先頭の車両1から制限速度切替り地点Bまでの距離L1が短いと、算出した減速側加速度が大きな値となることもある。このような場合には、図7上段の関係から、減速側加速度の上限値a1を設定しておいて、算出した減速側加速度が上限値a1を上回る場合に、上限値a1を隊列10の減速側加速度に設定する(S26参照)。算出した減速側加速度と上限値a1のいずれか小さい方を隊列10の減速側加速度に設定する処理を行うことにより、運転者に違和感を与えない範囲で、できるだけ速やかに制限速度まで減速することができる。
例えば、隊列10の先頭の車両1が、制限速度が減速側に変わるタイミングを検知した場合、車両1は制限速度切換り地点Bに到達する手前で、制限速度VB以下に減速可能である。しかし、従来の手法では、隊列10の最後尾の車両nが、制限速度切換り地点Bに到達する手前で制限速度VB以下に減速できない可能性があった。実施例1−1では、隊列全体で設定した減速側加速度で減速することにより、このような制限速度VB以下に減速できない車両が発生することを防止できる。
[減速隊列走行制御の例(実施例1−2)]
図8は、ABS制御作動がある場合の減速隊列走行制御の例(実施例1−2)を示す図である。この実施例1−2は、図4におけるステップS22のYES判定の場合に相当する。
図8において、走行制御装置100を搭載した複数の車両1〜nが、隊列10を形成して道路上を走行中に、車両3のABS制御が作動したことを示している。減速側加速度の上限値a1を設定しても、路面状況、車両の積載量、タイヤの空気圧やタイヤの溝の状況などによって、車両1〜nにおいてABS制御が作動する可能性が有る。一例として隊列全体で減速側加速度a2で減速中に、車両3でABS制御が作動した場合の対応を説明する。
時刻t=t1で減速を開始し(図8A)、時刻t=t2(図8B)で車両3のABS制御が作動すると、車両3のABS制御作動加速度a23は減速側加速度a2よりも小さくなる。ABS制御が作動したこと、及びABS制御が作動した車両が車両3であることは、車車間情報受信モジュール120の車車間通信によって隊列10を構成する車両1〜nの全ての車両に伝達される。
ここで、車両3がABS制御作動加速度a23のまま減速を継続すると、車両3とその前方の車両2との車間距離が短くなり、接触する可能性もある。そこで、車両3より前の車両1と車両2では、隊列走行制御部103の加速度設定部103aが減速側加速度にABS制御作動加速度a23を設定する。これにより、車両1と車両2は、車両3と同じABS制御作動加速度a23で減速を継続する。車両4〜車両nは、当初の減速側加速度a2のまま減速を継続する。つまり、加速度設定部103aは、車両1〜車両3で前方隊列11を形成し、車両4〜車両nで後方隊列12を形成する(図8C)。
前方隊列11のABS制御作動加速度a23は、後方隊列12の減速側加速度a2よりも小さいので、図8Cに示すように、前方隊列11の走行速度V211は後方隊列12の走行速度V212よりも大きくなる。そのため、ABS制御が作動した車両3と車両4との車間距離が大きくなり、車間距離が短くなること、更には接触することを回避できる。
隊列10を前方隊列11と後方隊列12に分けて走行後、制限速度の切替り地点が無い場合には、図3のステップS11により、走行制御装置100は隊列10の車両1〜nに対し通常の隊列走行制御を行う。
[減速隊列走行制御の例(実施例2−1)]
図9は、制限速度切替り標識rs2の位置Bが隊列10の先頭の車両1の位置より進行方向後方にある場合であって、かつABS制御作動がない場合の減速隊列走行制御の例(実施例2−1)を示す図である。この実施例2−1は、図4におけるステップS26及びステップS22のNO判定の場合に相当する。
図9Aは、時刻t=t1で位置Aを車両1が走行中に、車両1よりも後方の位置Bの制限速度切替り標識rs2で、制限速度が100km/hから50km/hへ切替ることが示された場合を示している。気象状況や事故対応などの様々な事情によって制限速度が決定(変更)されるため、このような事象が生じうる。この場合、制限速度切替り標識rs2を通り過ぎた車両1はもとより、車両2〜車両nも即座に制限速度の50km/hまで減速若しくは減速の準備をする必要がある。そのため、車両1〜nにおける隊列走行制御部103の加速度設定部103aは、減速側加速度の上限値a1(ステップS25,S26参照)を設定する。そして、車両1〜nの各々の隊列走行制御部103は、減速側加速度の上限値a1で自車両の減速を実施する。
このように、隊列全体において減速側加速度の上限値a1で減速することで、過剰な急減速を回避することができる。そして、隊列10の車両1〜nは、制限速度切替り標識rs2に基づき、走行速度V13(図9B)を経て、走行速度V03から制限速度VB以下の走行速度V23(図9C)まで速やかに減速することができる。
[減速隊列走行制御の例(実施例2−2)]
図10は、制限速度切替り標識rs2の位置Bが隊列10の先頭の車両1の位置より進行方向後方にある場合であって、かつABS制御作動がある場合の減速隊列走行制御の例(実施例2−2)を示す図である。この実施例2−2は、図4におけるステップS26及びステップS22のYES判定の場合に相当する。
図10において、隊列全体が減速側加速度の上限値a1で減速中に、隊列10を構成する車両3のABS制御が作動した場合を示している。一例として隊列全体で減速側加速度の上限値a1で減速中に、車両3でABS制御が作動した場合の対応を説明する。
時刻t=t1(図10A)で減速を開始し、時刻t=t2(図10B)で車両3のABS制御が作動すると、車両3のABS制御作動加速度a23は上限値a1よりも小さくなる。ABS制御が作動したこと、及びABS制御が作動した車両が車両3であることは、車車間情報受信モジュール120の車車間通信によって隊列10を構成する車両1〜nの全ての車両に伝達される。
車両3がABS制御作動加速度a23のまま減速を継続すると、車両3の前方の車両2との車間距離が短くなり、接触する可能性もある。そこで、車両3より前の車両1と車両2では、隊列走行制御部103の加速度設定部103aが減速側加速度にABS制御作動加速度a23を設定する。これにより、車両1と車両2は、車両3と同じABS制御作動加速度a23で減速を継続する。車両4〜車両nは、当初の減速側加速度の上限値a1のまま減速を継続する。つまり、加速度設定部103aは、車両1〜車両3で前方隊列11を形成し、車両4〜nで後方隊列12を形成する(図10C)。
前方隊列11のABS制御作動加速度a23は、後方隊列12の減速側加速度の上限値a1よりも小さいので、図10Cに示すように、前方隊列11の走行速度V231は後方隊列12の走行速度V232よりも大きくなる。そのため、ABS制御が作動した車両3と車両4との車間距離が大きくなり、車間距離が短くなること、更には接触することを回避できる。
なお、上述した実施例1−2及び実施例2−2では、隊列10を編成する車両にABS制御が作動した場合、該当車両を含む小隊列(図8では前方隊列11)はABS制御作動加速度が小さいために速やかに減速できず、制限速度切替り地点Bまでに制限速度VBまで減速できない可能性もある。そのような場合には、該当車両を含む小隊列が制限速度切替り地点Bを過ぎたら、小隊列の各車両の隊列走行制御部103は、各車両を速やかに制限速度VBまで減速させる。その後、分かれた小隊列同士(図8では前方隊列11と後方隊列12)を所望の隊列(車間距離)に戻すため、車両1〜nの各隊列走行制御部103は、通常の隊列走行制御を行う。
また、上述した実施例1−2及び実施例2−2では、隊列10をABS制御が作動した車両3が属する隊列と、それ以外の隊列に分けたがこの例に限らない。例えば、隊列10にABS制御が作動した車両が発生した場合、一時的に隊列10を構成する車両1〜nのすべてにABS制御作動加速度を設定してもよい。これにより、減速中にABS制御が作動した車両とその前の車両との接触を回避することができる。その後、隊列10が制限速度切替り地点Bを過ぎたら、隊列10の車両1〜nの各隊列走行制御部103は、各車両を速やかに制限速度VBまで減速させる。
[減速隊列走行制御の例(実施例3)]
図11は、制限速度の段階的変化に連動した減速隊列走行制御の例(実施例3)を示す図である。実施例3は、制限速度切替り標識rs2の位置Bが隊列10の先頭の車両1の位置Aより進行方向後方にある場合であって、かつ制限速度が一定の時間間隔で段階的に減少する場合の例である。図11では、時刻t=t1(図11A)から時刻t=t2(図11B)にかけて制限速度が10km/h低下し、時刻t=t2から時刻t=t3(図11C)にかけて制限速度が10km/h低下している。
制限速度が減速側に切替ること、切替り開始時刻t=t1、切替り時間間隔、切替り制限速度の変化量(本例では5km/s)、切替り終了時の制限速度の各情報は、道路設備側の通信機器から車両1〜nに伝達される。切替り制限速度の変化量が10km/h、及び切替り時間間隔が2sの場合、式(1)より減速側加速度は0.14Gとなる。
切替り開始時刻t=t1のとき、隊列10の車両1〜nの走行速度はV05(図11A)である。そして、隊列走行制御部103は、減速側加速度0.14Gに基づいて、隊列10の車両1〜nの走行速度を、時刻t=t2のとき制限速度90km/h以下のV15(図11B)に、t=t2のとき制限速度80km/h以下のV25(図11C)に減速する。
このように、隊列走行制御部103の加速度設定部103aは、隊列10が走行している道路の制限速度が下がる方向に変更され、かつ所定の時間の間に制限速度から段階的に減少する場合に、制限速度の切替り時間間隔と当該切替り時間間隔内の制限速度の減少量とから減速側加速度を演算する。
そして、隊列走行制御部103は、演算した減速側加速度で減速隊列走行制御を実施することで、制限速度の段階的変化に連動した減速隊列走行制御が可能となる。隊列10の車両1〜nは、制限速度切替りrs2VBに基づき、走行速度V15(図11B)を経て、走行速度V03から制限速度VB以下の走行速度V25(図11C)まで速やかに減速することができる。
[加速隊列走行制御の例(実施例4−1)]
次に、第1の実施形態に係る加速隊列走行制御の各実施例について図12〜図13を参照して説明する。
図12は、TCS制御作動がない場合の加速隊列走行制御の例(実施例4−1)を示す図である。この実施例4−1は、図5におけるステップS36のNO判定の場合に相当する。
図12において、走行制御装置100を搭載した複数の車両1〜nが、隊列10を形成して道路上を走行することを示している。図12の例では、時刻t=t1(図12A)における隊列10の走行速度V06は50km/h以下であり、隊列10の先頭の車両1から進行方向前方の位置Bに制限速度が80km/hに切替ることを示す制限速度切替り標識rs2がある。即ち、本例では、制限速度が例えば50km/hから80km/hのように大きくなる方向に変化する。
制限速度が大きくなる側に切替ること、制限速度切替り標識rs2の位置B(制限速度切替り地点B)、及び隊列10の最後尾の車両nの位置C(例えば後端部)の各情報は、車両1〜nの各道路情報受信モジュール110により道路設備側の通信機器から受信され各々の走行制御装置100に入力される。隊列走行制御部103は、位置Bを車両nの位置Cが越えるまでは、隊列全体の走行速度V06が制限速度50km/h以下となるように制御する(図12B)。そして、隊列走行制御部103の加速度設定部103aは、制限速度の切替り後の加速側加速度を計算及び設定する。そして、車両1〜nの各々の隊列走行制御部103が、位置Bを車両nの位置Cが越えた後、設定した加速側加速度で自車両を加速することで、隊列全体が制限速度80km/h以下の走行速度V26に加速する(図12C)。
このように、隊列走行制御部103の加速度設定部103aは、隊列10の最後尾の車両nが、制限速度切替り地点Bを通過した時点から加速側加速度に基づいて自車両の走行速度の変更(加速隊列走行制御)を実施する。これにより、隊列10を構成する全ての車両が、法定速度を守りながら速やかに制限速度まで加速することができる。
例えば、隊列10の先頭の車両1が、制限速度が加速側に変わるタイミングを検知した場合、車両1は制限速度切換り地点Bに到達してから、制限速度まで加速可能である。しかし、車両1の後続の車両2〜車両nが先頭の車両1に追従して加速すると、隊列10の最後尾の車両nが制限速度切換り地点Bに到達する手前で制限速度を超えてしまう可能性がある。実施例4−1では、車両nが制限速度切換り地点Bを通過してことを確認してから隊列全体が加速することで、このような制限速度を超えてしまう車両が発生することを防止できる。
[加速隊列走行制御の例(実施例4−2)]
図13は、TCS制御作動がある場合の加速隊列走行制御の例(実施例4−2)を示す図である。この実施例4−2は、図5におけるステップS36のYES判定の場合に相当する。
図13において、車両1〜nが隊列10を形成して道路上を走行中に、車両3のTCS制御が作動したことを示している。加速側加速度の上限値a1を設定しても、路面状況、車両の積載量、タイヤの空気圧やタイヤの溝の状況などによって、車両1〜nにおいてTCS制御が作動する可能性が有る。一例として隊列全体で加速側加速度a2で減速中に、車両3でTCS制御が作動した場合の対応を説明する。
時刻t=t1(図13A)では隊列10の最後尾の車両nの後端部(位置C)が位置Bを越えていないため隊列10は走行速度V07で走行し、車両1〜nは加速しない。次に、隊列10の最後尾の車両nの位置Cが位置Bを越えると加速を開始する。そして、時刻t=t2(図13B)において走行速度V17で走行中に車両3のTCS制御が作動すると、車両3のTCS制御作動加速度a23はa2よりも小さくなる。TCS制御が作動したこと、TCS制御が作動した車両が車両3であることは、車車間通信によって隊列10を構成する車両1〜nの全ての車両に伝達される。
ここで、車両3がTCS制御作動加速度a23のまま加速を継続すると、車両3とその後方の車両4との車間距離が短くなり、接触する可能性もある。そこで、車両3より後ろの車両4〜車両nでは、隊列走行制御部103の加速度設定部103aが加速側加速度にTCS制御作動加速度a23を設定し、車両3より後ろの車両4〜車両nは、車両3と同じTCS制御作動加速度a23で減速を継続する。車両1及び車両2は、当初の加速側加速度a2のまま加速を継続する。つまり、加速度設定部103aは、車両1及び車両2で前方隊列11を形成し、車両3〜車両nで後方隊列12を形成する(図13C)。
後方隊列12のTCS制御作動加速度a23は、前方隊列11の加速側加速度a2よりも小さいので、図13Cに示すように、後方隊列12の走行速度V272は前方隊列11の走行速度V271よりも小さくなる。そのため、実施例4−2では、TCS制御が作動した車両3と車両2との車間距離が大きくなり、車間距離が短くなること、更には接触することを回避できる。
その後、小隊列(図13では前方隊列11と後方隊列12)に分かれた車両1〜nを一つの隊列(隊列走行時の設定された車間距離)に戻すため、車両1〜nの各隊列走行制御部103は通常の隊列走行制御を実施する。
なお、実施例4−2では、隊列10をABS制御が作動した車両3が属する隊列と、それ以外の隊列に分けたがこの例に限らない。例えば、隊列10にTCS制御が作動した車両が発生した場合、隊列10を構成する車両1〜nのすべてにTCS制御作動加速度を設定してもよい。これにより、加速中にTCS制御が作動した車両とその後ろの車両との接触を回避することができる。
さらに、上記のように車両1〜nのすべてにTCS制御作動加速度を設定した場合、そのまま各車両1〜nにTCS制御作動加速度を設定して車両1〜nを制限速度VBまで加速させてもよい。または、一定時間が経過後に、TCS制御作動加速度以外の加速度(例えば加速側加速度a)を適用して車両1〜nを速やかに制限速度VBまで加速させるようにしてもよい。
<2.第2の実施形態>
第1の実施形態では、図3の走行制御処理の手順例を示すフローチャートにおいて、本当に減速隊列走行制御を行う必要があるかどうかを判定する判定処理(ステップS7)を設けたが、このステップS7の判定処理を、図4の減速隊列走行制御処理に対して設けてもよい。
[走行制御処理の手順例]
図14は、本発明の第2の実施形態に係る走行制御装置による走行制御処理の手順例を示すフローチャートである。図14に示す走行制御処理の手順例を示すフローチャートは、図3に示したフローチャートに対してステップS7の判定処理がない点が異なる。本実施形態では、第1の実施形態に係る走行制御システム及び走行制御装置と同じものを用いることができる。
図14において、走行速度変更要否判定部102(図2参照)は、制限速度差ΔVの符号を判定し(S6)、ΔV>0の場合、即ちステップS3での制限速度の変化が減速方向への変化である場合には(S6のYES)、ステップS8の減速隊列走行制御処理へ移行する。また、走行速度変更要否判定部102は、ΔV≦0の場合(S6のNO)、続いてΔV=0であるかどうかを判定する(S9)。ΔV=0ではない場合、即ちステップS3での制限速度の変化が加速方向への変化である場合には(S9のNO)、隊列走行制御部103は、ステップS10の加速隊列走行制御処理へ移行する。また、ΔV=0の場合、即ち減速も加速も不要な場合には(S9のYES)、隊列走行制御部103は、通常の隊列走行制御を実施する(S11)。
ステップS3のNO判定、又はステップS4のYES判定の場合に、走行制御装置100は、通常の隊列走行制御を実施する(S11)。
[減速隊列走行制御処理の手順例]
図15は、本発明の第2の実施形態に係る減速隊列走行制御処理の手順例を示すフローチャートである。図15に示す減速隊列走行制御処理の手順例を示すフローチャートは、図4に示したフローチャートに対してステップS41及びステップ42が追加されている点が異なる。ステップS41の判定処理はステップS7に相当し、ステップS42の処理はステップS11に相当する。
図15において、隊列走行制御部103の加速度設定部103a(図2参照)が減速側加速度aを算出した後(S24)、走行速度変更要否判定部102は、現在の隊列走行速度Vが切替り後の制限速度VB以下かどうかを判定する(S41)。そして、走行速度変更要否判定部102により現在の隊列走行速度Vが切替り後の制限速度VBより大きいと判定された場合には(S41のNO)、隊列車両の減速が必要であるため、ステップS25の判定処理へ移行する。
一方、走行速度変更要否判定部102により現在の隊列走行速度Vが切替り後の制限速度VB以下であると判定された場合には(S41のYES)、隊列車両の減速が不要であるため、ステップS42へ移行する。次いで、走行制御装置100は、通常の隊列走行制御を実施する(S42)。そして、ステップS42の通常の隊列走行処理が終了後、本フローチャートの一連の処理を終了する。あるいは、ステップS42の制御を実行中に所定の時間が経過したら、図3のステップS1の処理に戻る。
なお、ステップS24の処理とステップS25の判定処理は順番が逆でもよい。順番が逆の場合、現在の隊列走行速度Vが切替り後の制限速度VB以下(S41のYES)と判定した時点で減速側加速度aの算出を行わないため、CPU100aの処理負荷が軽減される。
なお、加速側のフローチャートにおいても、ステップS41及びステップS42に対応する判定処理を設けてもよい。すなわち、図5に示す加速側隊列走行制御処理のフローチャートに対して、ステップS33の下に、本当に加速隊列走行制御を行う必要があるかどうかを判定する判定処理ステップを設ける。そして、加速隊列走行制御を行う必要がないと判定された場合には、ステップS42と同様に通常の隊列走行制御が行われるように構成する。
<3.変形例>
さらに、本発明は上述した各実施形態例に限られるものではなく、特許請求の範囲に記載した本発明の要旨を逸脱しない限りにおいて、その他種々の応用例、変形例を取り得ることは勿論である。
例えば、上述した実施形態例は本発明を分かりやすく説明するために走行制御装置及び走行制御システムの構成を詳細かつ具体的に説明したものであり、必ずしも説明した全ての構成要素を備えるものに限定されない。また、ある実施形態例の構成の一部を他の実施形態例の構成要素に置き換えることは可能である。また、ある実施形態例の構成に他の実施形態例の構成要素を加えることも可能である。また、各実施形態例の構成の一部について、他の構成要素の追加、削除、置換をすることも可能である。
また、上記の各構成、機能、処理部等は、それらの一部又は全部を、例えば集積回路で設計するなどによりハードウェアで実現してもよい。また、上記の各構成要素、機能、処理部等は、プロセッサがそれぞれの機能を実現するプログラムを解釈し、実行することによりソフトウェアで実現してもよい。例えばCPU100aがROM100bに記録されたプログラムを読み出して実行することにより、図2に示す各ブロックの機能が実現される。各機能を実現するプログラム、テーブル、ファイル等の情報は、半導体メモリやハードディスク、SSD(Solid State Drive)等の記録装置、又は磁気や光を利用する記録媒体に置くことができる。
1〜n…車両、 10…隊列、 11…前方隊列、 12…後方隊列、 100…走行制御装置、 100a…CPU、 100b…ROM、 100c…RAM、 101…制限速度切替り検知部、 102…走行速度変更要否判定部、 103…隊列走行制御部、 103a…加速度設定部、 103b…安定機能作動検知部、 110…道路情報受信モジュール、 120…車車間情報受信モジュール、 130…車車間距離測定装置、 140…ABS制御モジュール、 150…TCS制御モジュール、 160…車速センサ、 170…ブレーキ協調制御モジュール、 171…ブレーキアクチュエータ、 180…トルク協調制御モジュール、 181…スロットル機構、 190…車車間情報送信モジュール

Claims (8)

  1. 自車両の前方車両及び/又は後方車両、並びに道路設備側の通信機器との通信を行いながら、それら車両と隊列を編成した状態で自車両を走行させる隊列走行制御装置であって、
    前記隊列が走行する道路上の制限速度切替り地点を検知する処理を行う制限速度切替り検知部と、
    前記制限速度切替り検知部の検知結果から前記隊列を編成する自車両の走行速度を変更する必要があるか否かを判定する処理を行う走行速度変更要否判定部と、
    自車両の走行速度を変更する処理を行う隊列走行制御部と、を備え、
    前記隊列走行制御部は、前記走行速度変更要否判定部により自車両の走行速度を変更する必要があると判定された場合、かつ前記隊列が走行している道路の制限速度が下がる方向に変更される場合に、前記隊列の先頭車両から制限速度切替り地点までの距離と、切替り前の制限速度と切替り後の制限速度とから算出される速度差と、を用いて、走行速度が下がる側に作用する減速側加速度を演算し、当該減速側加速度に基づいて自車両の走行速度を変更する
    隊列走行制御装置。
  2. 前記隊列走行制御部は、前記減速側加速度を演算し、当該減速側加速度を予め設定された減速側加速度の上限値と比較して、いずれか小さい方を前記隊列の前記減速側加速度に設定する処理を行う加速度設定部、を含む
    請求項1に記載の隊列走行制御装置。
  3. 前記隊列走行制御部は、アンチロック・ブレーキ・システム制御の作動を検知する処理を行う安定機能作動検知部、を備え、
    前記加速度設定部は、前記アンチロック・ブレーキ・システム制御の作動時の減速側加速度を、前記隊列の前記減速側加速度に設定する
    請求項2に記載の隊列走行制御装置。
  4. 前記安定機能作動検知部により前記隊列内の前記アンチロック・ブレーキ・システム制御が作動した車両が検知された場合に、前記加速度設定部は、該当車両から前記隊列の先頭の車両までを含む新たな隊列を設定し、前記アンチロック・ブレーキ・システム制御の作動時の前記減速側加速度を、前記新たな隊列の各車両の前記減速側加速度に設定する
    請求項3に記載の隊列走行制御装置。
  5. 前記隊列走行制御部は、前記隊列が走行している道路の制限速度が下がる方向に変更され、かつ所定の時間の間に前記制限速度から段階的に減少する場合に、前記制限速度の切替り時間間隔と当該切替り時間間隔内の前記制限速度の減少量とから前記減速側加速度を演算する
    請求項1又は2に記載の隊列走行制御装置。
  6. 自車両の前方車両及び/又は後方車両、並びに道路設備側の通信機器との通信を行いながら、それら車両と隊列を編成した状態で自車両を走行させる隊列走行制御装置であって、
    前記隊列が走行する道路上の制限速度切替り地点を検知する処理を行う制限速度切替り検知部と、
    前記制限速度切替り検知部の検知結果から前記隊列を編成する自車両の走行速度を変更する必要があるか否かを判定する処理を行う走行速度変更要否判定部と、
    自車両の走行速度を変更する処理を行う隊列走行制御部と、を備え、
    前記隊列走行制御部は、前記走行速度変更要否判定部により自車両の走行速度を変更する必要があると判定された場合、かつ前記隊列が走行している道路の制限速度が上がる方向に変更される場合に、切替り前の制限速度と切替り後の制限速度とから算出される速度差を用いて、走行速度が上がる側に作用する加速側加速度を演算し、当該加速側加速度に基づいて自車両の走行速度を変更する隊列走行制御部と、を備える
    隊列走行制御装置。
  7. 前記隊列走行制御部は、前記隊列の最後尾の車両が、前記制限速度切替り地点を通過した時点から前記加速側加速度に基づいて自車両の走行速度の変更を実施する
    請求項6に記載の隊列走行制御装置。
  8. 前記隊列走行制御部は、前記加速側加速度を演算し、当該加速側加速度を予め設定された加速側加速度の上限値と比較して、いずれか小さい方を前記隊列の前記加速側加速度に設定する加速度設定部、を含む
    請求項6又は7に記載の隊列走行制御装置。
JP2018228884A 2018-12-06 2018-12-06 隊列走行制御装置 Pending JP2020091692A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018228884A JP2020091692A (ja) 2018-12-06 2018-12-06 隊列走行制御装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018228884A JP2020091692A (ja) 2018-12-06 2018-12-06 隊列走行制御装置

Publications (1)

Publication Number Publication Date
JP2020091692A true JP2020091692A (ja) 2020-06-11

Family

ID=71012913

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018228884A Pending JP2020091692A (ja) 2018-12-06 2018-12-06 隊列走行制御装置

Country Status (1)

Country Link
JP (1) JP2020091692A (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021240861A1 (ja) 2020-05-26 2021-12-02 株式会社フジクラ 無線通信モジュール

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021240861A1 (ja) 2020-05-26 2021-12-02 株式会社フジクラ 無線通信モジュール

Similar Documents

Publication Publication Date Title
US10906544B2 (en) Dynamic gap control for automated driving
JP6221445B2 (ja) 車両用走行制御装置
CN107406077B (zh) 控制车队中的车辆之间间隙的方法
CN103269935B (zh) 车辆驾驶辅助装置、方法和车辆
JP5273250B2 (ja) 車両制御装置、車両制御方法及び車両制御システム
WO2017204006A1 (ja) 車両制御装置
JP4254936B2 (ja) 車両の警報発生装置
JP5503260B2 (ja) 車両運動制御装置
JP2007523787A (ja) 自動車の間隔制御システム
CN109689450A (zh) 转向控制系统和用于控制转向的方法
CN114789714B (zh) 车辆控制装置
JP2020052607A (ja) 情報処理システム
JP6326968B2 (ja) 運転支援システム及び運転支援方法
CN111836746A (zh) 车辆控制装置、车辆控制方法和车辆追随行驶系统
KR101899998B1 (ko) 이동 경로를 따라 차량이 주행하는 중에 차량의 속도를 수정하기 위한 시스템 및 방법
JP4424387B2 (ja) 走行制御装置
CN108025707B (zh) 用于使商用车减速的方法
JP7190345B2 (ja) 車両運動制御装置及びその方法
US7228220B2 (en) Device for adaptive distance and speed control with having torque dampening
JP2020091692A (ja) 隊列走行制御装置
KR20190003096A (ko) 전기 모터를 구비하는 차량 및 그를 위한 코스팅 토크 제어 방법
JP2021133892A (ja) 運転支援装置及び運転支援方法
JP2010143551A (ja) 運転支援システム
JP2020009093A (ja) 制御装置及び制御方法
KR20220008959A (ko) 차량 및 그 제어 방법