JP2020091398A - 露光用光源装置 - Google Patents

露光用光源装置 Download PDF

Info

Publication number
JP2020091398A
JP2020091398A JP2018228435A JP2018228435A JP2020091398A JP 2020091398 A JP2020091398 A JP 2020091398A JP 2018228435 A JP2018228435 A JP 2018228435A JP 2018228435 A JP2018228435 A JP 2018228435A JP 2020091398 A JP2020091398 A JP 2020091398A
Authority
JP
Japan
Prior art keywords
optical system
semiconductor laser
light
light source
emitted
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018228435A
Other languages
English (en)
Other versions
JP7068659B2 (ja
Inventor
三浦 雄一
Yuichi Miura
雄一 三浦
林 賢志
Kenji Hayashi
賢志 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ushio Denki KK
Ushio Inc
Original Assignee
Ushio Denki KK
Ushio Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ushio Denki KK, Ushio Inc filed Critical Ushio Denki KK
Priority to JP2018228435A priority Critical patent/JP7068659B2/ja
Priority to TW108139627A priority patent/TWI780373B/zh
Priority to PCT/JP2019/044321 priority patent/WO2020116099A1/ja
Priority to CN201980073618.1A priority patent/CN112969969B/zh
Publication of JP2020091398A publication Critical patent/JP2020091398A/ja
Application granted granted Critical
Publication of JP7068659B2 publication Critical patent/JP7068659B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • Formation Of Various Coating Films On Cathode Ray Tubes And Lamps (AREA)

Abstract

【課題】複数の半導体レーザ光源を用いて、均一な位置分布及び角度分布の光を供給する露光用光源装置を提供する。【解決手段】露光用光源装置1は、複数の半導体レーザ光源11と、半導体レーザ光源から出射された光線束を、略平行の光線束に変換して出射する、複数のコリメート光学系12と、複数のコリメート光学系から出射された複数の光線束が入射され、それぞれを発散する光線束に変換して出射する拡散光学系13と、拡散光学系から出射された光線束を集光する集光光学系14と、をそれぞれに含んでなる、複数の半導体レーザユニットと、複数の半導体レーザユニットから出射された複数の光線束が集光する位置に入射面16が配置された、インテグレータ光学系15とを備え、拡散光学系は、異なる半導体レーザ光源から出射された光線束の少なくとも一部分が集光光学系の入射面上で重なり合う位置に配置されている。【選択図】図1

Description

本発明は、露光用光源装置に関し、特に半導体レーザ光源から出射された光を用いた露光用光源装置に関する。
従来、プリント基板等の製造工程等に用いられる露光装置には光強度の高い放電ランプが用いられていた。近年では、固体光源技術の進歩に伴い、放電ランプから高効率で長寿命な半導体レーザ光源に置き換える検討が進められている。そこで、半導体レーザ光源によって、放電ランプと同等の強度や分布を持った光が得られる露光用光源装置が市場から期待されている。
単体の半導体レーザ光源では、露光装置の光源としては放射光束が少ない。高い強度の光を得るためには、複数の半導体レーザ光源を配置し、それぞれの半導体レーザ光源から出射された光を集光する方法が考えられる。例えば、特許文献1には、複数の半導体レーザ光源と、それぞれの半導体レーザ光源に対応する光ファイバを備えた、フレキシブルプリント基板用の露光装置が開示されている。
特開2001−272791号公報
複数の半導体レーザ光源から出射される光を集光するには、コリメートレンズや集光レンズを用いて集光する方法が考えられる。しかし、本発明者らは、複数の半導体レーザ光源より出射された光を、これらの集光に用いられる光学系によって集光する露光用光源装置を検討したところ、以下のような課題が存在することを突き止めた。以下、図面を参照しながら説明する。
図7Aは、半導体レーザ光源100とコリメートレンズ101(「コリメーションレンズ」とも称される。)と集光レンズ102及びロッドインテグレータ104で構成された、露光用光源装置を模式的に示した図面である。図7Aは、複数の半導体レーザ光源100から出射される光(レーザ光)の各主光線及び各光線束の進行経路を模式的に図示している。なお、本明細書では、半導体レーザ光源100の中心から光軸140と平行に出射される光線を「主光線」と称し、半導体レーザ光源100から出射される束状に形成された光線群を「光線束」と称する。
図7Aにおいては、ロッドインテグレータ104の入射面105に対して直交する軸を光軸140とする。また、光軸140方向をZ方向とし、入射面105に対する光の入射角をθとする。なお、半導体レーザ光源100から出射される光線束は、図7AのXY平面において楕円形状で出射され、XZ平面視とYZ平面視とでは、光線束の幅が異なるだけであるため、以下、XZ平面視についてのみ説明する。
半導体レーザ光源100から出射された光線束(121a,121b,121c)は、コリメートレンズ101によって略平行な光線束(122a,122b,122c)に変換される。光線束(122a,122b,122c)は互いに平行であり、他の半導体レーザ光源100から出射された光線束とは重なり合うことなく、後段の集光レンズ102に入射する。集光レンズ102に入射した光線束(122a,122b,122c)は、集光レンズ102の焦点位置150に向かって集光する光線束(123a,123b,123c)に変換される。
集光レンズ102の後段には、集光レンズ102によって集光された光線束(123a,123b,123c)の光強度分布を均一化するため、ロッドインテグレータ104が配置される。ロッドインテグレータ104は、入射面105が、集光レンズ102の焦点位置150と合うように配置される。
ここで、半導体レーザ光源100及びコリメートレンズ101を完全に密接して配置できないため、各光線束(122a,122b,122c)の間に隙間が生じ、集光光学系102の入射面103において、光が存在する場所としない場所ができてしまう。又は、光が存在しているとしても、主光線近傍と比較して、隣接する半導体レーザ光源100から出射された光線束と近傍する位置では極めて光強度が低くなり、照度ムラが発生してしまう。
従って、集光レンズ102の出射面に発生した照度ムラが発生した光を、集光レンズ102によって焦点位置150に集光するように変換された光線束(123a,123b,123c)は、一部の角度範囲において光が存在しない、又は主光線近傍と比較して、極めて光強度の低い領域130が生じてしまう。
図7Bは、焦点位置150における、光軸140を中心としたX方向における光強度分布(以下、「位置分布」という。)と、ロッドインテグレータ104の入射面105に対する入射角θごとの光強度分布(以下、「角度分布」という。)を、それぞれ模式的に示すグラフである。
位置分布は、各光線束(123a,123b,123c)が、各主光線(111a,111b,111c)を中心に焦点位置150で重なり合っているため、図7Bに示す位置分布のように、光軸140上、すなわちX座標が0である位置にピークのある強度分布となる。
また、前記領域130の幅をできる限り存在しないように、半導体レーザ光源100及びコリメートレンズ101を密接配置したとしても、各半導体レーザ光源100の中心から出射される光線(主光線)の入射角度の近傍の角度成分を有して入射される光強度と、前記主光線の入射角度から離れた角度成分を有して入射される光強度とには大きな差が生じる。この結果、角度分布については、図7Bに示すように、入射角度に応じて光強度が大きな差異を有してしまう。より詳細には、各光線束(123a,123b,123c)同士の間に、光が存在しない領域130が生じている場合には、角度分布は図7Bに示すように、光の存在する角度範囲内の一部に、光が存在しない離散した強度分布となる。
ロッドインテグレータ104は、位置分布を均一化させる効果はあるが、入射された光を側面で繰り返し全反射させながら、出射面106へと導く構成であるため、光の角度分布は保持されたままである。従って、ロッドインテグレータ104を用いても、光の角度分布については均一化されない。
露光装置は、露光対象物に対して照度ムラが発生しないように、均一に露光できるものが期待されている。そのため、露光装置に用いられる光源装置には、位置分布及び角度分布において均一な光が出力できるものであることが好ましい。
しかし、上述のとおり、複数の半導体レーザ光源100から出射された光を、コリメートレンズ101と集光レンズ102で集光し、ロッドインテグレータ104によって位置分布を均一化するだけでは、角度分布については均一な分布の光が得られず、露光対象物に対して照度ムラが発生してしまうことがわかった。
本発明は、上記の課題に鑑み、複数の半導体レーザ光源を用いて、均一な位置分布及び角度分布の光を供給する露光用光源装置を提供することを目的とする。
本発明に係る露光用光源装置は、
複数の半導体レーザ光源と、
前記半導体レーザ光源から出射された光線束を、略平行の光線束に変換して出射する、複数のコリメート光学系と、
前記複数のコリメート光学系から出射された複数の光線束が入射され、それぞれを発散する光線束に変換して出射する拡散光学系と、
前記拡散光学系から出射された光線束を集光する集光光学系と、をそれぞれに含んでなる、複数の半導体レーザユニットと、
前記複数の半導体レーザユニットから出射された複数の光線束が集光する位置に入射面が配置された、インテグレータ光学系とを備え、
前記拡散光学系は、異なる前記半導体レーザ光源から出射された光線束の少なくとも一部分が前記集光光学系の入射面上で重なり合う位置に配置されていることを特徴とする。
上記露光用光源装置は、複数のコリメート光学系から出射された複数の光線束が入射され、それぞれを発散する光線束に変換して出射する拡散光学系を備える。拡散光学系を通過した光は、進行方向に向かって発散する。
拡散光学系は、異なる前記半導体レーザ光源から出射された光線束の少なくとも一部分が前記集光光学系の入射面上で重なり合う位置に配置されている。つまり、集光光学系の入射面において、半導体レーザ光源から出射された光線束と、異なる半導体レーザ光源から出射された光線束は、前記集光光学系の入射面において一部が重なっている。
集光光学系の入射面において、光線束が重なることで、各光線束の間で光が存在しない領域がなくなる。つまり、光軸に対する角度方向において、光が存在する領域内の一部に光が存在しない範囲がなくなり、角度分布が均一化される。詳細は、以下の図2の説明において説明する。
上記露光用光源装置は、複数の半導体レーザ光源と、複数のコリメート光学系と、拡散光学系と、集光光学系で構成された半導体レーザユニットを構成し、複数の半導体レーザユニットを備える。半導体レーザユニットは、拡散光学系と、集光光学系が異なる前記半導体レーザ光源から出射された光線束の少なくとも一部分が前記集光光学系の入射面上で重なり合う位置に配置されたものである。
上記露光用光源装置は、複数の半導体レーザユニットを備える。複数の半導体レーザユニットを配置することで、集光位置における光強度をさらに高くすることができる。
上記露光用光源装置は、複数の半導体レーザユニットから出射された複数の光線束が集光する位置に入射面が配置された、インテグレータ光学系を備える。インテグレータ光学系は、入射された光の位置分布を均一化させて光出射面から出射する。なお、インテグレータ光学系に入射した光は、インテグレータ光学系の壁面において、全反射を繰り返しながら進行する。従って、インテグレータ光学系によって、光の角度成分を均一化されず、入射面において光が存在しなかった角度範囲には、出射面においても光が存在しない。
半導体レーザ光源から出射された光は、拡散光学系の配置位置の調整によって角度分布が均一化されて半導体レーザユニットから出射される。半導体レーザユニットから角度分布が均一化された光が、インテグレータ光学系に入射し、位置分布が均一化されてインテグレータ光学系から出射される。
上記露光用光源装置において、
前記半導体レーザユニットのそれぞれが備える前記集光光学系は、前記半導体レーザユニットの光軸方向から見たときの平面視において多角形であっても構わない。
集光光学系を多角形で構成することで、隣接した半導体レーザユニットとの間で光線束が存在しない領域を抑えることができ、インテグレータ光学系に入射するひかりの角度分布が、より均一化される。
上記露光用光源装置において、
前記複数の半導体レーザユニットの、それぞれの前記集光光学系の入射面が、非平行に配置されていても構わない。
上記露光用光源装置において、
前記複数の半導体レーザユニットの、それぞれの前記集光光学系は、前記拡散光学系から出射された光線束を集光する第一光学系と、主光線の進行方向を、前記インテグレータ光学系の入射面の方向へ変換する第二光学系とを備え、
それぞれの前記第一光学系の入射面が、平行に配置されていても構わない。
集光光学系は、拡散光学系から出射された光線束を集光する第一光学系と、主光線の進行方向を、インテグレータ光学系の入射面の方向へ変換する第二光学系とを備える。第二光学系によって光線束の進行方向が決まるため、第一光学系より前段は、他の半導体レーザユニットの半導体レーザ光源、コリメート光学系、拡散光学系、第一光学系のそれぞれと平行に配置することができる。
半導体レーザ光源や各光学系が平行に配置すれば、全ての半導体レーザ光源を同一平面上に配置することで、半導体レーザ光源の冷却機構を単一の冷却板で構成することができる。
本発明によれば、複数の半導体レーザ光源を用いて、露光用光源装置に位置分布及び角度分布が均一な光を供給する露光用光源装置を提供できる。
露光用光源装置の第一実施形態の構成例を模式的に示す図面である。 図1の半導体レーザユニットを模式的に示す図面である。 図2Aのインテグレータ光学系の出射面における、X方向の位置分布と、角度分布を、それぞれ模式的に示すグラフである。 露光用光源装置の第二実施形態の構成例を模式的に示す図面である。 半導体レーザユニットのZ方向から見たときの拡散光学系及び集光光学系の平面視が、円形である、複数の半導体レーザユニットの配置構成例を模式的に示す図面である。 半導体レーザユニットのZ方向から見たときの拡散光学系及び集光光学系の平面視が、六角形である、複数の半導体レーザユニットの配置構成例を模式的に示す図面である。 露光装置の構成を模式的に示す図面である。 半導体レーザ光源とコリメートレンズと集光レンズで構成された、露光用光源装置を模式的に示した図面である。 図7Aの集光レンズの焦点位置における、X方向の位置分布と、角度分布を、それぞれ模式的に示すグラフである。
以下、本発明の露光用光源装置につき、図面を参照して説明する。なお、各図における寸法比や個数は、実際の寸法比や個数と必ずしも一致していない。
[第一実施形態]
図1は、露光用光源装置の第一実施形態の構成例を模式的に示す図面である。露光用光源装置1は、複数の半導体レーザユニット10と、インテグレータ光学系15を備える。
図1においては、インテグレータ光学系15の入射面16と直交する軸を光軸17とし、光軸17方向をZ方向とする。また、入射面16に対する光の入射角をθとする。なお、図7Aの説明と同様に、以下についてはXZ平面視についてのみ説明する。
図2Aは、図1の半導体レーザユニット10を模式的に示す図面である。半導体レーザユニット10は、複数の半導体レーザ光源11と、複数のコリメート光学系12と、拡散光学系13と、集光光学系14を備える。
図2Aにおいては、集光レンズ14の入射面20に対して直交する軸を光軸25とし、光軸25方向をZ方向とする。また、光軸25と各光線がなす角度をθとする。
本実施形態の露光用光源装置1において、複数の半導体レーザユニット10は、それぞれの集光光学系14の入射面20が相互に非平行となるように配置されている。より具体的には、それぞれの集光光学系14の入射面20が、インテグレータ光学系15の入射面16を中心とする球面上に配置され、それぞれの半導体レーザユニット10から出射された光が、インテグレータ光学系15の入射面16に向かうように配置されている。
半導体レーザ光源11は、半導体レーザチップをケーシングしたレーザ光源である。半導体レーザ光源11は、光の出射窓の中心を主光線が通過するように、光を出射するレーザ光源である。
図2Aに示すように、コリメート光学系12は、半導体レーザ光源11から出射された光線束(21a,21b,21c)を、略平行の光線束(22a,22b,22c)に変換して出射するコリメートレンズである。各半導体レーザ光源11に対応して複数のコリメート光学系12が配置されている。
拡散光学系13は、コリメート光学系12から出射された複数の光線束(22a,22b,22c)が入射され、それぞれを進行方向に向かって発散する光線束(23a,23b,23c)に変換して出射する拡散板である。例えば、拡散光学系13は、表面に凹凸加工が施された、ポリカーボネイト、アクリルなどの不透明な樹脂等で構成される。本実施形態では、拡散光学系13は一枚の拡散板で全ての光線束(22a,22b,22c)を発散する光線束(23a,23b,23c)に変換するように構成されている。しかし、拡散光学系13はこの態様に限られず、例えば各半導体レーザ光源11から出射された光線束(22a,22b,22c)に対応して配置された複数の拡散板によって構成されていても構わない。
集光光学系14は、拡散光学系13から出射された光線束(23a,23b,23c)を集光する集光レンズである。集光光学系14の前段に拡散光学系13が配置されることで、集光光学系14の入射面20で、異なる前記半導体レーザ光源11から出射された光線束(23a,23b,23c)の一部分が重なり合っている。図2Aにおいては、集光光学系14の入射面20において、光線束23aと光線束23bの一部が重なり合い、光線束23bと光線束23cの一部が重なり合っている。なお、光線束23aと光線束23bとが集光光学系14の入射面20上において重なり合う面積をS1とし、前記入射面上における光線束23aの照射面積をS2とした場合に、S1/S2の値は20%以上70%以下が好ましく30%以上50%以下がより好ましい。他の隣接する光線束同士の重なり合いについても同様である。
集光レンズ14の入射面20において、強度分布が均一化された光を、集光レンズ14によって集光することで、角度分布が均一化された光が得られる。
図1に示す、インテグレータ光学系15は、入射面16が、集光光学系14の焦点の位置になるように配置されている。ただし、本明細書では、「焦点位置に配置する」とは、完全に焦点の位置に一致する場合の他、焦点距離に対して光軸17に平行な方向に±10%の距離だけ移動した位置を含む概念であるものとする。なお、図1における光軸17とは、インテグレータ光学系15の入射面16に対して直交する軸としている。
インテグレータ光学系15は、入射面16から入射された光の位置分布を均一化させて出射する効果を有する。従って、集光光学系14から出射された角度分布が均一化された光線束(24a,24b,24c)は、インテグレータ光学系15の入射面16に入射され、位置分布が均一化されて、インテグレータ光学系15から出射される。以上により、位置分布と角度分布が均一化された光が得られる。
さらに、本実施形態の露光用光源装置1は、図1に示すように、露光装置として必要とされる光強度を得るために、図2Aに示す半導体レーザユニット10を複数備え、それぞれの半導体レーザユニット10からの出射光をインテグレータ光学系15に入射させている。
より具体的には、上述したように、各半導体レーザユニット10に配置された集光光学系14の入射面20が、インテグレータ光学系15の入射面16と光軸17との交点を中心とした球面上に配置されている。これにより、複数の半導体レーザユニット10からの出射光がインテグレータ光学系15に導かれるため、露光装置に必要な光強度が得られる。なお、半導体レーザユニット10から出射された光が、インテグレータ光学系15に入射されるような配置であれば、集光光学系14の入射面20は、厳密な球面上に配置されていなくても構わない。
例えば、上述したように、複数の半導体レーザユニット10のそれぞれが備える集光光学系14の入射面20を相互に非平行となるように配置することで、それぞれの半導体レーザユニット10から出射された光をインテグレータ光学系15の入射面16に導くことができる。
[第二実施形態]
本発明の露光用光源装置の第二実施形態の構成につき、第一実施形態及び第二実施形態と異なる箇所を中心に説明する。
図3は、露光用光源装置の第二実施形態の構成例を模式的に示す図面である。第一実施形態の露光用光源装置1は、複数の半導体レーザユニット10からの出射光をインテグレータ光学系15に導くべく、各半導体レーザユニット10に配置された集光光学系14の入射面20が、インテグレータ光学系15の入射面16と光軸17との交点を中心とした球面上に配置されていた。これに対し、図3に示す本実施形態の露光用光源装置1は、第一実施形態と比較して、各半導体レーザユニット10に配置された集光光学系14の入射面20を、平行に配置すると共に、集光光学系14の構成を異ならせている。
具体的には、各半導体レーザユニット10に配置された集光光学系14の入射面20を、同一平面上に配置し、集光光学系14は、第一光学系14aと第二光学系14bとを備える。第一光学系14aは、拡散光学系13から出射された光線束23aを、集光する光線束24aに変換する光学系(例えば、集光レンズ)である。第二光学系14bは、光線束24aの進行方向を、インテグレータ光学系15の入射面へ向かうように変換する光学系(例えば、プリズム)である。
本実施形態の露光用光源装置1によれば、各半導体レーザユニット10に配置された集光光学系14の入射面20が、同一平面上に配置されるため、集光光学系14の前段に配置される、半導体レーザ光源11、コリメート光学系12及び拡散光学系13も、それぞれ同一平面上に配置することができる。特に、複数の半導体レーザユニット10が備える、それぞれの半導体レーザ光源11を同一平面上に配置することができるため、異なる半導体レーザユニット10に搭載される複数の半導体レーザ光源11に対しても、同一の冷却面を有する冷却機構によって冷却することができる。これにより、冷却機構のサイズダウンが図られるとともに、冷却効率を向上させることができる。
なお、複数の半導体レーザユニット10は、位置分布及び角度分布が均一な光を得るために、XY平面において、X方向及びY方向でそれぞれ対称となるように配置される。
XY平面において、複数の半導体レーザユニット10が、X方向及びY方向でそれぞれ対称となるような配置は、例えば、X方向及びY方向において,複数の半導体レーザユニット10を整列して配置する構成が考えられる。また、他の配置としては、一つの半導体レーザユニット10を中央に配置し、その半導体レーザユニット10を他の半導体レーザユニット10が囲むように同心円状に配置する構成も考えられる。
図4は、半導体レーザユニット10のZ方向から見た拡散光学系13及び集光光学系14の平面視が、円形であるものを、XY平面において複数個整列して配置された構成を模式的に示す図面である。図4に示すように、拡散光学系13及び集光光学系14は、Z方向から見た平面視において円形をしており、X方向及びY方向で半導体レーザユニット10が複数個整列して配置された場合の構成例である。
拡散光学系13及び集光光学系14をZ方向から見た平面視が、円形でなくても構わない。例えば、拡散光学系13及び集光光学系14をZ方向から見た平面視が、正方形であれば、X方向及びY方向において、複数の半導体レーザユニット10が整列して配置された構成で、かつ、隣接する半導体レーザユニット10との間の隙間を小さくすることができ、各半導体レーザユニット10から出射される光線束が存在しない領域を最小限とすることができる。これにより、より均一な角度分布の光を得ることができる。
図5は、半導体レーザユニット10のZ方向から見た拡散光学系13及び集光光学系14の平面視が、六角形である構成を模式的に示す図面である。図4は、拡散光学系13及び集光光学系14は、Z方向から見た平面視において六角形をしており、一つの半導体レーザユニット10が中央に配置され、その半導体レーザユニット10を他の半導体レーザユニット10が囲むように同心円状に配置された構成である。
この場合も、拡散光学系13及び集光光学系14をZ方向から見た平面視が、円形である場合に対して、隣接する半導体レーザユニット10との間の隙間を小さくすることができ、各半導体レーザユニット10から出射される光線束が存在しない領域を最小限とすることができる。
つまり、拡散光学系13及び集光光学系14を光軸方向から見たときの平面視が、多角形で構成されることで、隣接する半導体レーザユニット10との間の隙間を小さくすることができ、各半導体レーザユニット10から出射される光線束が存在しない領域を小さくすることができ、より均一な角度分布の光を得ることができる。
なお、拡散光学系13と集光光学系14は、同じ形状でなくても構わない。従って、それぞれZ方向から見た平面視が、拡散光学系13は円形で、集光光学系14は六角形という構成であっても構わない。
上述したような、位置分布及び角度分布が均一化された光を出射する露光用光源装置1は、以下のように、露光装置の光源として利用することができる。
図6は、露光装置の構成を模式的に示す図面である。図6に示す露光装置30は、上述したいずれかの実施形態の露光用光源装置1を備える。そして、インテグレータ光学系15の後段に、投影光学系31及びマスク32を備え、必要に応じて投影レンズ33を備える。投影光学系31によって投影される位置にマスク32を設置し、マスク32の後段にマスク32のパターン像を焼き付ける対象となる感光性基板34を設置する。
この状態で、半導体レーザユニット10から光が出射されると、インテグレータ光学系15で照度分布が均一化された光として、投影光学系31に照射される。投影光学系31は、この光を、マスク32のパターン像を直接又は投影レンズ33を介して感光性基板34上に投影する。
露光装置30は、上記各実施形態で説明した露光用光源装置1を備えることで、従来よりも光強度分布が均一化された光を用いて露光することができ、露光ムラが抑制される。
[別実施形態]
以下、別実施形態について説明する。
〈1〉 図1では、半導体レーザ光源11がレーザチップをケーシングしてなる光源である場合について図示されている。しかし、複数の半導体レーザ光源11が所定の方向に配置されたレーザアレイで構成されていても構わない。
〈2〉 上述した露光用光源装置1が備える光学配置態様は、あくまで一例であり、本発明は、図示された各構成に限定されない。例えば、ある光学系と別の光学系との間において、光の進行方向を変化させるための反射光学系が適宜介在されていても構わない。さらに、半導体レーザユニット10の配置位置や配置数においても、図示された各構成に限定されない。
1 : 露光用光源装置
10 : 半導体レーザユニット
11 : 半導体レーザ光源
12 : コリメート光学系
13 : 拡散光学系
14 : 集光光学系
14a : 第一光学系
14b : 第二光学系
15 : インテグレータ光学系
16 : インテグレータ光学系入射面
17 : インテグレータ光学系の光軸
20 : 集光光学系入射面
21a,21b,21c : 光線束
22a,22b,22c : 光線束
23a,23b,23c : 光線束
24a,24b,24c : 光線束
25 : 半導体レーザユニットの光軸
30 : 露光装置
31 : 投影光学系
32 : マスク
33 : 投影レンズ
34 : 感光性基板
100 : 半導体レーザ光源
101 : コリメートレンズ
102 : 集光レンズ
103 : 集光レンズ入射面
104 : ロッドインテグレータ
105 : ロッドインテグレータ入射面
106 : ロッドインテグレータ出射面
110a,110b,110c : 主光線
111a,111b,111c : 主光線
121a,121b,121c : 光線束
122a,122b,122c : 光線束
123a,123b,123c : 光線束
130 : 領域
140 : 光軸
150 : 焦点位置
θ : 入射角

Claims (4)

  1. 複数の半導体レーザ光源と、
    前記半導体レーザ光源から出射された光線束を、略平行の光線束に変換して出射する、複数のコリメート光学系と、
    前記複数のコリメート光学系から出射された複数の光線束が入射され、それぞれを発散する光線束に変換して出射する拡散光学系と、
    前記拡散光学系から出射された光線束を集光する集光光学系と、をそれぞれに含んでなる、複数の半導体レーザユニットと、
    前記複数の半導体レーザユニットから出射された複数の光線束が集光する位置に入射面が配置された、インテグレータ光学系とを備え、
    前記拡散光学系は、異なる前記半導体レーザ光源から出射された光線束の少なくとも一部分が前記集光光学系の入射面上で重なり合う位置に配置されていることを特徴とする露光用光源装置。
  2. 前記集光光学系は、前記半導体レーザユニットの光軸方向から見たときの平面視において多角形であることを特徴とする請求項1に記載の露光用光源装置。
  3. 前記複数の半導体レーザユニットの、それぞれの前記集光光学系の入射面が、非平行に配置されていることを特徴とする請求項1又は2に記載の露光用光源装置。
  4. 前記複数の半導体レーザユニットの、それぞれの前記集光光学系は、前記拡散光学系から出射された光線束を集光する第一光学系と、主光線の進行方向を、前記インテグレータ光学系の入射面の方向へ変換する第二光学系とを備え、
    それぞれの前記第一光学系の入射面が、平行に配置されていることを特徴とする請求項1又は2に記載の露光用光源装置。
JP2018228435A 2018-12-05 2018-12-05 露光用光源装置 Active JP7068659B2 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2018228435A JP7068659B2 (ja) 2018-12-05 2018-12-05 露光用光源装置
TW108139627A TWI780373B (zh) 2018-12-05 2019-11-01 曝光用光源裝置
PCT/JP2019/044321 WO2020116099A1 (ja) 2018-12-05 2019-11-12 露光用光源装置
CN201980073618.1A CN112969969B (zh) 2018-12-05 2019-11-12 曝光用光源装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018228435A JP7068659B2 (ja) 2018-12-05 2018-12-05 露光用光源装置

Publications (2)

Publication Number Publication Date
JP2020091398A true JP2020091398A (ja) 2020-06-11
JP7068659B2 JP7068659B2 (ja) 2022-05-17

Family

ID=70974567

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018228435A Active JP7068659B2 (ja) 2018-12-05 2018-12-05 露光用光源装置

Country Status (4)

Country Link
JP (1) JP7068659B2 (ja)
CN (1) CN112969969B (ja)
TW (1) TWI780373B (ja)
WO (1) WO2020116099A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013061858A1 (ja) * 2011-10-24 2013-05-02 株式会社ニコン 照明光学系、露光装置、およびデバイス製造方法
JP2015060084A (ja) * 2013-09-19 2015-03-30 ウシオ電機株式会社 導光体及びレーザ光源装置
JP2017161603A (ja) * 2016-03-07 2017-09-14 ウシオ電機株式会社 光源装置及びこれを備えた露光装置
JP2018004868A (ja) * 2016-06-30 2018-01-11 セイコーエプソン株式会社 照明装置およびプロジェクター
WO2018037548A1 (ja) * 2016-08-26 2018-03-01 株式会社島津製作所 発光装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5630004A (en) * 1994-09-09 1997-05-13 Deacon Research Controllable beam director using poled structure
JP2004138603A (ja) * 2002-09-24 2004-05-13 Topcon Corp レーザ光源装置及びこれを用いた表面検査装置
US9599510B2 (en) * 2014-06-04 2017-03-21 Cymer, Llc Estimation of spectral feature of pulsed light beam

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013061858A1 (ja) * 2011-10-24 2013-05-02 株式会社ニコン 照明光学系、露光装置、およびデバイス製造方法
JP2015060084A (ja) * 2013-09-19 2015-03-30 ウシオ電機株式会社 導光体及びレーザ光源装置
JP2017161603A (ja) * 2016-03-07 2017-09-14 ウシオ電機株式会社 光源装置及びこれを備えた露光装置
JP2018004868A (ja) * 2016-06-30 2018-01-11 セイコーエプソン株式会社 照明装置およびプロジェクター
WO2018037548A1 (ja) * 2016-08-26 2018-03-01 株式会社島津製作所 発光装置

Also Published As

Publication number Publication date
CN112969969A (zh) 2021-06-15
CN112969969B (zh) 2021-11-09
JP7068659B2 (ja) 2022-05-17
TW202036171A (zh) 2020-10-01
TWI780373B (zh) 2022-10-11
WO2020116099A1 (ja) 2020-06-11

Similar Documents

Publication Publication Date Title
JP4059623B2 (ja) 照明装置、及び均一照明装置
JP6238140B2 (ja) 投影露光装置のための照明光学ユニット
KR102277452B1 (ko) 조명 광학계, 노광 방법 및 디바이스 제조 방법
WO2011048877A1 (ja) レーザ露光装置
TW201115279A (en) Laser exposure apparatus
KR101423817B1 (ko) 조명 광학 시스템, 노광 장치 및 디바이스 제조 방법
WO2020116099A1 (ja) 露光用光源装置
CN107728433B (zh) 曝光照明装置
JP6172540B2 (ja) 光源装置
JP2007080953A (ja) 照明装置及び露光装置
JP6471900B2 (ja) 光源装置、露光装置
WO2020116081A1 (ja) 露光用光源装置
WO2020116086A1 (ja) 露光用光源装置
WO2017138523A1 (ja) 光源装置
JP6128348B2 (ja) 光源装置、露光装置
CN215067713U (zh) 光刻设备的照明系统和光刻设备
WO2023281850A1 (ja) 照明光学系および露光装置
JP2005340319A (ja) 光源装置、照明装置、露光装置、露光方法および調整方法
JPH0568846B2 (ja)
JP2000164487A (ja) 照明光学装置及び露光装置
KR20140053160A (ko) 조명 장치
JP2013008788A (ja) 偏光変換ユニット、照明光学系、露光装置、およびデバイス製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210922

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220401

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220414

R151 Written notification of patent or utility model registration

Ref document number: 7068659

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151