JP2020085269A - 冷凍サイクル装置 - Google Patents

冷凍サイクル装置 Download PDF

Info

Publication number
JP2020085269A
JP2020085269A JP2018215751A JP2018215751A JP2020085269A JP 2020085269 A JP2020085269 A JP 2020085269A JP 2018215751 A JP2018215751 A JP 2018215751A JP 2018215751 A JP2018215751 A JP 2018215751A JP 2020085269 A JP2020085269 A JP 2020085269A
Authority
JP
Japan
Prior art keywords
accumulator
refrigerant
liquid
gas
valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018215751A
Other languages
English (en)
Other versions
JP7236606B2 (ja
Inventor
橋本 俊一
Shunichi Hashimoto
俊一 橋本
誠之 飯高
Masayuki Iidaka
誠之 飯高
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Intellectual Property Management Co Ltd
Original Assignee
Panasonic Intellectual Property Management Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Intellectual Property Management Co Ltd filed Critical Panasonic Intellectual Property Management Co Ltd
Priority to JP2018215751A priority Critical patent/JP7236606B2/ja
Publication of JP2020085269A publication Critical patent/JP2020085269A/ja
Application granted granted Critical
Publication of JP7236606B2 publication Critical patent/JP7236606B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

【課題】各機器の回路内の冷媒の過不足を解消することで能力低下を防止すること。【解決手段】気液分離器116とアキュムレータ119の両方を備えた冷凍サイクル装置において、制御装置127は吐出圧力と吐出温度から吐出過熱度を算出するとともに、吐出過熱度は第一基準値以下ではアキュムレータ弁124を閉とし、第二基準値以下ではインジェクション管弁122を閉とし、第一基準値は第二基準値よりも大きくしたことを特徴とする冷凍サイクル装置。【選択図】図1

Description

本発明は気液分離器とアキュムレータの両方を備えた冷凍サイクル装置に関するものである。
従来から、この種の冷凍サイクル装置は気液分離器と圧縮機とをインジェクション管で接続し、さらにインジェクション管にはインジェクション管弁を有している冷凍サイクル装置が提案され、空調用途に用いられている(特許文献1参照)。
図3は特許文献1に記載された従来の冷凍サイクル装置の構成図を示したものである。図3に示すように圧縮機21と室外熱交換器24と室外圧力調整装置25と気液分離器26と室内熱交換器27と室内圧力調整装置28とアキュムレータ29と吸入管30とが環状に接続されている。さらに、インジェクション管31は一端を気液分離器26に接続し、他端を圧縮機21に接続するとともにインジェクション管31はインジェクション管弁32を備えている。またインジェクション管弁32の開閉を制御する制御部35を備え、制御部35は圧縮機21の吐出温度を検出する吐出温度検出手段33と凝縮温度(図3では冷房運転時を図示しているので凝縮温度は室外熱交換器24の温度)を検出する手段である室外熱交換器温度検知器34を有し、制御部35は吐出温度と凝縮温度から吐出過熱度を算出できる構成となっている。
これにより、気液分離器26内の液冷媒がインジェクション管31を通じて圧縮機21へ流入することで、圧縮機21の吸入温度が低下するので吐出温度が低下し吐出過熱度が低下する。吐出過熱度がある基準温度以下になった際、インジェクション管弁32を閉じることによりインジェクション管31からの液冷媒を圧縮機21へ過度に流入させないことで圧縮機の信頼性を向上させている。
特開平11−132575号公報
しかしながら、前記従来の構成では前記インジェクション管弁を閉じたことにより、前記気液分離器内の気液二相状態のガス冷媒は前記圧縮機に吸わせることができないのでガス冷媒が前記気液分離器内に溜まることから液冷媒は前記気液分離器内から放出される。放出された液冷媒は蒸発器(図3では暖房運転時の蒸発器は前記室外熱交換器となる)を通って前記アキュムレータ内に流入する。ここで、前記アキュムレータには液冷媒を排出する手段が備わっていないことから前記アキュムレータ内の上方に設置された前記吸入管の開放端部まで液冷媒が過剰に溜まってしまう。その結果、凝縮器として使用している前記室内熱交換器内の冷媒が不足することになるので暖房能力に必要な目標の高圧まで上げることができず、能力低下が生じるという課題を有していた。
本発明は、前記従来の課題を解決するもので、各機器の回路内の冷媒の過不足を解消することで能力低下を防止する冷凍サイクル装置を提供することを目的とする。
前記従来の課題を解決するために、本発明の冷凍サイクル装置は、前記吐出過熱度は第
一基準値以下では前記アキュムレータ弁を閉とし、第二基準値以下では前記インジェクション管弁を閉とし、前記第一基準値は前記第二基準値よりも大きくしたものである。
これによって、例えば暖房運転時の低外気温の場合、外気温と前記室外熱交換器内を流れる冷媒との温度差が小さいので前記室外熱交換器内を流れる冷媒を全て過熱することができずに液冷媒の一部が前記アキュムレータ内に流入することがある。前記アキュムレータ内に液冷媒の一部が流入しても前記アキュムレータ弁を開けていることから、前記アキュムレータ内の液冷媒は前記液出口管を通じて前記吸入管経由で前記圧縮機へ流入するので前記アキュムレータ内の上方に設置された前記吸入管の開放端部までに液冷媒を過剰に溜まることはない。液冷媒は前記アキュムレータから前記液出口管を通じて前記吸入管経由で前記圧縮機へ流入するので、徐々に吐出過熱度は低下し前記第一基準値以下になることで前記アキュムレータ弁を閉じる。前記アキュムレータ弁を閉じたことで前記圧縮機への液冷媒の流入が止まり、前記アキュムレータ内に液冷媒が徐々に溜まることから吐出過熱度は低下から上昇へと変化する。その後、吐出過熱度が第一基準値以上になった場合、前記アキュムレータ弁を開けて前記アキュムレータ内の液冷媒を前記圧縮機へ流入させて吐出過熱度を低下させる。その結果、前記アキュムレータ内の上方に設置された前記吸入管の開放端部まで液冷媒を過剰に溜めることがないので回路内の各機器において冷媒の過不足を生じさせることはない。
従って、各機器の回路内の冷媒の過不足が解消することとなる。
本発明の冷凍サイクル装置は、各機器の回路内の冷媒の過不足が解消するので能力低下を防止することができる。
本発明の実施の形態1における冷凍サイクル装置の構成図 本発明の実施の形態1における吐出過熱度の挙動と経過時間を示す図 従来の冷凍サイクル装置の構成図
第1の発明は、圧縮機と室外熱交換器と室外圧力調整装置と気液分離器と室内圧力調整装置と室内熱交換器とアキュムレータと吸入管とが環状に接続されている冷凍サイクル装置において、インジェクション管は一端を前記気液分離器に接続し、他端を前記圧縮機に接続するとともに、前記インジェクション管はインジェクション管弁を備え、液出口管は一端を前記アキュムレータに接続し、他端を前記吸入管に接続するとともに、前記液出口管はアキュムレータ弁を備え、前記インジェクション管弁および、前記アキュムレータ弁の開閉を制御する制御部とを備え、前記制御部は前記圧縮機の吐出圧力を検出する手段と、前記圧縮機の吐出温度を検出する手段を有し、前記制御部は前記吐出圧力と前記吐出温度から吐出過熱度を算出するとともに、前記吐出過熱度は第一基準値以下では前記アキュムレータ弁を閉とし、第二基準値以下では前記インジェクション管弁を閉とし、前記第一基準値は前記第二基準値よりも大きくしたものである。
これによって、例えば暖房運転時の低外気温の場合、外気温と前記室外熱交換器内を流れる冷媒との温度差が小さいので前記室外熱交換器内を流れる冷媒を全て過熱することができずに液冷媒の一部が前記アキュムレータ内に流入する。前記アキュムレータ内に液冷媒の一部が流入しても前記アキュムレータ弁を開けていることから、前記アキュムレータ内の液冷媒は前記液出口管を通じて前記吸入管経由で前記圧縮機へ流入するので前記アキュムレータ内の上方に設置された前記吸入管の開放端部までに液冷媒を過剰に溜まることはない。液冷媒は前記アキュムレータから前記液出口管を通じて前記吸入管経由で前記圧
縮機へ流入するので、徐々に吐出過熱度は低下し前記第一基準値以下になることで前記アキュムレータ弁を閉じる。前記アキュムレータ弁を閉じたことで前記圧縮機への液冷媒の流入が止まり、前記アキュムレータ内に液冷媒が徐々に溜まることから吐出過熱度は低下から上昇へと変化する。その後、吐出過熱度が第一基準値以上になった場合、前記アキュムレータ弁を開けて前記アキュムレータ内の液冷媒を前記圧縮機へ流入させて吐出過熱度を低下させる。その結果、前記アキュムレータ内の上方に設置された前記吸入管の開放端部まで液冷媒を過剰に溜めることがないので回路内の各機器において冷媒の過不足を生じさせることはない。
従って、各機器の回路内の冷媒の過不足が解消することとなる。よって、能力低下を防止することができる。
以下、本発明の実施の形態について、図面を参照しながら説明する。なお、本実施の形態によって本発明が限定されるものではない。
(実施の形態1)
図1は、本発明の第1の実施の形態における冷凍サイクル装置の構成図を示したものである。
本発明を実施するための冷凍サイクル装置について説明する。
図1の冷凍サイクル装置の構成は、室外空調ユニット101が1台に対し室内空調ユニット102が1台接続した構成となっている。なお、冷凍サイクル装置の構成に関しては図1に示したものに限定されない。例えば、室外空調ユニット101は2台以上、室内空調ユニット102も2台以上、並列に接続可能である。
室外空調ユニット101において圧縮機111は冷媒を圧縮する機械装置であり、圧縮機111で圧縮された冷媒は吐出管112に吐出される。四方弁113は吐出管112と接続され冷房運転時と暖房運転時の冷媒流れ方向を切り替える弁である。冷房運転時は四方弁113の実線に沿って冷媒が流れ、暖房運転時は四方弁113の破線に沿って冷媒が流れる。室外熱交換器114は周囲の空気と空調用冷媒とが熱交換する熱交換器であり、一般的にはフィン&チューブ型やマイクロチューブ型の熱交換器が利用される。室外圧力調整装置115は冷凍サイクルの圧力や流量を調整する弁である。インジェクション管121は冷凍サイクルから冷媒の一部を圧縮機111にインジェクションする配管であり、インジェクション管弁122はインジェクション管121内を流れる冷媒の流量を開閉する弁である。気液分離器116は液冷媒およびガス冷媒に分離する機能を有するとともに、ガス冷媒と液冷媒を溜めることができる圧力容器であり、室外圧力調整装置115と室内圧力調整装置118との間に接続される。アキュムレータ119は液冷媒を圧縮機111へ流入することを防止する圧力容器である。吸入管120は冷媒をアキュムレータ119から圧縮機111へと流す接続配管であるとともに、アキュムレータ119内の吸入管120の開放端部はアキュムレータ119内の上方に設置している。液出口管123はアキュムレータ119と吸入管120を接続する配管であり、吸入管120と液出口管123とは合流部128で接続され、アキュムレータ119と液出口管123とは接続部129で接続されている。また液出口管123は合流部128よりも鉛直上方に設置され、さらに接続部129は合流部128より鉛直上方に設置している。アキュムレータ弁124は液出口管123内を流れる主に液冷媒の流量を開閉する弁である。圧縮機111から吐出された冷媒の圧力と温度を検出できる吐出圧力検出手段125と吐出温度検出手段126とが吐出管112に取り付けられている。検出された吐出圧力と吐出温度は制御装置127により吐出過熱度を算出できるとともに、吐出過熱度は吐出圧力の代わりに凝縮温度からも算出できるため凝縮温度検出用として室外熱交換器温度検出手段(冷房運転時、図
示せず)もしくは室内熱交換器温度検出手段(暖房運転時、図示せず)を有することもある。制御装置127はインジェクション管弁122およびアキュムレータ弁124を開閉することができる。
室内空調ユニット102において室内熱交換器117は周囲の空気と冷凍サイクルを循環する冷媒とが熱交換する熱交換器であり、一般的にはフィン&チューブ型やマイクロチューブ型の熱交換器が利用される。室内圧力調整装置118は冷凍サイクルの圧力や流量を調整する弁である。
以上のように構成された冷凍サイクル装置について、以下その動作、作用を説明する。暖房運転時は、図1において四方弁113における冷媒の流れが破線に沿うように四方弁113の流路を設定する。したがって、圧縮機111で圧縮された冷媒は吐出圧力の飽和温度よりも高い温度の高温高圧な吐出過熱度を有するガス冷媒となって圧縮機から吐出され、吐出管112および四方弁113を経て室外空調ユニット101から出たのち室内空調ユニット102に入る。室内空調ユニット102に入った冷媒は室内熱交換器117で周囲の空気に熱を放出して凝縮し高圧の過冷却液状態となったのち室内圧力調整装置118で中間圧力まで膨張する。室内圧力調整装置118から出た中間圧の気液二相冷媒は室内空調ユニット102から出たのち室外空調ユニット101に戻る。室外空調ユニット101に戻った気液二相冷媒は気液分離器116に流入する。気液分離器116内に流入した気液二相の冷媒は気液分離手段によりガス冷媒と液冷媒に別けることができる。気液に別けられた冷媒は重力差により気液分離器116内でガス冷媒は上方へ液冷媒は下方に溜められる。気液分離器116に溜められた気液二相冷媒のうち主にガス冷媒はインジェクション管121に流入し残りの主に液冷媒は室外圧力調整装置115に流入する。室外圧力調整装置115に流れた液冷媒は室外圧力調整装置115で減圧されたのち再度気液二相冷媒となる。気液二相冷媒のうち液冷媒は室外熱交換器114で周囲の空気から熱を奪って蒸発し低圧の過熱ガス状態となって四方弁113を経てアキュムレータ119に入る。アキュムレータ119は吸入管120の開放端部をアキュムレータ119内の上方に設置していることから液冷媒を溜める機能を有しているので、アキュムレータ119内の吸入管120の開放端部からガス冷媒だけを圧縮機111へ流入することができる。またインジェクション管弁122を開けているためインジェクション管121に流入したガス冷媒は開状態のインジェクション管弁122を通過したのちインジェクション管121を通って圧縮機111へ流入する。
一方、冷房運転時は、図1において四方弁113における冷媒の流れが実線に沿うように四方弁113の流路を設定する。したがって、圧縮機111で圧縮された冷媒は吐出圧力の飽和温度よりも高い温度の高温高圧な吐出過熱度を有するガス冷媒となって圧縮機から吐出され、吐出管112および四方弁113を経て室外熱交換器114で周囲の空気に熱を放出して凝縮し、高圧の過冷却液状態となって室外熱交換器114から出たのち室外圧力調整装置115で減圧されて中間圧となる。室外圧力調整装置115から出た中間圧の気液二相冷媒は気液分離器116に流入する。気液分離器116内に流入した気液二相の冷媒は気液分離手段によりガス冷媒と液冷媒に別けることができる。気液に別けられた冷媒は重力差により気液分離器116内でガス冷媒は上方へ液冷媒は下方に溜められる。気液分離器116に溜められた気液二相冷媒のうち、主にガス冷媒はインジェクション管121に流入し残りの主に液冷媒は室外空調ユニット101から出たのち室内空調ユニット102に入る。室内空調ユニット102に入った液冷媒は室内圧力調整装置118に流入する。室内圧力調整装置118に流れた液冷媒は室内圧力調整装置118で減圧されたのち再度気液二相冷媒となる。気液二相冷媒のうち液冷媒は室内熱交換器117で周囲の空気から熱を奪って蒸発し低圧の過熱ガス状態となって室内空調ユニット102から出たのち室外空調ユニット101に戻る。室外空調ユニット101に戻ったガス冷媒は四方弁113を経てアキュムレータ119に入る。アキュムレータ119は吸入管120の開放
端部をアキュムレータ119内の上方に設置しているので液冷媒を溜める機能を有しており、アキュムレータ119内の吸入管120の開放端部からガス冷媒だけを圧縮機111に流入することができる。またインジェクション管弁122を開けているためインジェクション管121に流入したガス冷媒は開状態のインジェクション管弁122を通過したのちインジェクション管121を通って圧縮機111へ流入する。
ここで、蒸発器から液冷媒がアキュムレータ119へ流入した場合における動作、作用を下記で説明する。
図1より暖房運転時の低外気温の場合、外気温と室外熱交換器114内を流れる冷媒との温度差が小さいので室外熱交換器114内を流れる冷媒を全て室外熱交換器114で過熱することができずに、液冷媒の一部が四方弁113を経由してアキュムレータ119内に流入する。冷房運転時の場合、室内空調ユニット102の熱負荷が急激に減少した場合、室内圧力調整装置118は急激には追随できないことから室内熱交換器117の一部の液冷媒は過熱されず室外空調ユニット101に戻ってきて四方弁113を経由してアキュムレータ119内に流入する。以上のように、冷暖房運転時の両方においてアキュムレータ119内に液冷媒が流入することがある。アキュムレータ119内に液冷媒が流入した場合、アキュムレータ弁124を開けていることから、アキュムレータ119内の液冷媒は、液出口管123を通じて、吸入管120経由で圧縮機111へ流入する。図2に示すように、液冷媒が圧縮機111へ流入したことにより第一基準値以上だった吐出過熱度が徐々に低下し、第一基準値以下になることでアキュムレータ弁124を閉じる。アキュムレータ弁124を閉じたことで圧縮機111への液冷媒の流入が止まるので、吐出過熱度が低下から上昇へと変化し、アキュムレータ119内に液冷媒が徐々に溜まる。その後、吐出過熱度が第一基準値以上になった場合、アキュムレータ弁124を開けてアキュムレータ119内の液冷媒を圧縮機111へ流入させて吐出過熱度を低下させる。その結果、気液分離器116内の液冷媒はそのままで、アキュムレータ119内の上方に設置された吸入管120の開放端部まで液冷媒を過剰に溜まることはなく、液冷媒を圧縮機111へ過度に流入することもない。また、インジェクション管弁122よりも先にアキュムレータ弁124を閉じるので、気液分離器116内の気液二相状態のガス冷媒は圧縮機111に吸わせ続けられることからガス冷媒が気液分離器116内に溜まらないので気液分離器116内から液冷媒が放出されることがない。気液分離器116内から液冷媒が放出されることがないので気液分離器116内の液冷媒が蒸発器を通って、四方弁113を経由してアキュムレータ119へ過剰に流入することもない。
さらに、液出口管123の水平部の配管内はアキュムレータ119内の液冷媒が多い場合、配管内を液冷媒で満たしながら流れる。アキュムレータ119内の液冷媒が少ない場合、液出口管123内にガス冷媒が混合して液出口管123の水平部の配管内は重力によりガス冷媒は上方に液冷媒は下方に分離する。上方のガス冷媒は密度が小さいため配管内を流れるが液冷媒は密度が大きいため下方に停滞する恐れがある。しかし、液出口管123は合流部128よりも鉛直上方に設置されさらに接続部129は合流部128より鉛直上方に設置されていることから、液出口管123内に液冷媒が停滞する箇所がないので液冷媒は停滞することなく流れる。液出口管123内に液冷媒が停滞する箇所がないので空調の負荷変動などにより冷媒循環量が急激に多くなっても停滞している液冷媒がないので液冷媒が急激に圧縮機へ流入することがない。その結果、一時的ではない吐出温度の検出ができるので持続的な吐出過熱度となり安定した制御となる。
また、凝縮器側(図1では冷房運転時を図示しているので凝縮器は室外熱交換器114となる)の熱負荷が急激に増加し蒸発器側(図1では冷房運転時を図示しているので蒸発器は室内熱交換器117となる)の熱負荷は急激に低下した場合は、凝縮器側の圧力調整装置(図1では冷房運転時を図示しているので圧力調整装置は室外圧力調整装置115と
なる)が開く傾向となり、蒸発器側の圧力調整装置(図1では冷房運転時を図示しているので圧力調整装置は室内圧力調整装置118となる)は閉まる傾向となるので、液冷媒が気液分離器116内に過剰に溜まってしまう。その結果、気液分離器116からインジェクション管121を通じて圧縮機111へ流入する。液冷媒が気液分離器116からインジェクション管121を通じて圧縮機111へ流入した場合、図2に示すように徐々に吐出過熱度が低下する。そして第一基準値以下になったことでアキュムレータ弁124を閉じるが圧縮機111への液冷媒の流入を止めることができないので吐出過熱度は低下し続ける。吐出過熱度は第一基準値より低下し続け第二基準値以下となった場合、インジェクション管弁122を閉じることで圧縮機111への液冷媒の流入を止めることができ吐出過熱度は低下から上昇へと変化する。吐出過熱度が第二基準値以上に上昇したことでインジェクション管弁122を先に開けてインジェクションサイクルを再開させる。さらにはインジェクション管弁122を閉めたことで気液分離器116内の気液二相状態のガス冷媒は圧縮機111に吸わせることができないのでガス冷媒が気液分離器116内に溜まることで液冷媒は気液分離器116内から放出される。放出された液冷媒は蒸発器(図1では冷房運転時を図示しているので蒸発器は室内熱交換器117となる)を通ってアキュムレータ119内に流入するが、吐出過熱度が第一基準値以上でアキュムレータ弁124を開けているのでアキュムレータ119内に流入した液冷媒は放出される。アキュムレータ119内の液冷媒は放出されていることからアキュムレータ119内の上方に設置された吸入管120の開放端部まで液冷媒が過剰に溜まることがない。なお、アキュムレータ弁124とインジェクション管弁122の開閉に関しては、チャタリングを防止するために、同一ではなく、不同とすることもある。
以上、本発明の実施形態によれば、圧縮機111と室外熱交換器114と室外圧力調整装置115と気液分離器116と室内圧力調整装置118と室内熱交換器117とアキュムレータ119と吸入管120とが環状に接続されている冷凍サイクル装置において、インジェクション管121は一端を気液分離器116に接続し、他端を圧縮機111に接続するとともに、インジェクション管121はインジェクション管弁122を備え、液出口管123は一端をアキュムレータ119に接続し、他端を吸入管120に接続するとともに、液出口管123はアキュムレータ弁124を備え、インジェクション管弁122および、アキュムレータ弁124の開閉を制御する制御装置127とを備え、制御装置127は圧縮機111の吐出圧力検出手段125と、圧縮機111の吐出温度検出手段126を有し、制御装置127は吐出圧力と吐出温度から吐出過熱度を算出するとともに、吐出過熱度は第一基準値以下ではアキュムレータ弁124を閉とし、第二基準値以下ではインジェクション管弁122を閉とし、第一基準値は第二基準値よりも大きくしたものである。
これによって、例えば暖房運転時の低外気温の場合、外気温と室外熱交換器114内を流れる冷媒との温度差が小さいので室外熱交換器114内を流れる冷媒を全て過熱することができずに液冷媒の一部がアキュムレータ119内に流入することがある。アキュムレータ119内に液冷媒の一部が流入してもアキュムレータ弁124を開けていることから、アキュムレータ119内の液冷媒は液出口管123を通じて吸入管120経由で圧縮機111へ流入するのでアキュムレータ119内の上方に設置された吸入管120の開放端部までに液冷媒を過剰に溜まることはない。液冷媒はアキュムレータ119から液出口管123を通じて吸入管120経由で圧縮機111へ流入するので、徐々に吐出過熱度は低下し第一基準値以下になることでアキュムレータ弁124を閉じる。アキュムレータ弁124を閉じたことで圧縮機111への液冷媒の流入が止まり、アキュムレータ119内に液冷媒が徐々に溜まることから吐出過熱度は低下から上昇へと変化する。その後、吐出過熱度が第一基準値以上になった場合、アキュムレータ弁124を開けてアキュムレータ119内の液冷媒を圧縮機111へ流入させて吐出過熱度を低下させる。その結果、アキュムレータ119内の上方に設置された吸入管120の開放端部まで液冷媒を過剰に溜めることがないので回路内の各機器において冷媒の過不足を生じさせることはない。
従って、各機器の回路内の冷媒の過不足が解消することとなる。よって、能力低下を防止することができる。
以上のように、本発明にかかる冷凍サイクル装置は、能力低下を防止することが可能となるので、空気調和機、給湯空調複合装置、ショーケース、カーエアコン等の用途にも適用できる。
101 室外空調ユニット
102 室内空調ユニット
111 圧縮機
112 吐出管
113 四方弁
114 室外熱交換器
115 室外圧力調整装置
116 気液分離器
117 室内熱交換器
118 室内圧力調整装置
119 アキュムレータ
120 吸入管
121 インジェクション管
122 インジェクション管弁
123 液出口管
124 アキュムレータ弁
125 吐出圧力検出手段
126 吐出温度検出手段
127 制御装置
128 合流部
129 接続部

Claims (1)

  1. 圧縮機と室外熱交換器と室外圧力調整装置と気液分離器と室内圧力調整装置と室内熱交換器とアキュムレータと吸入管とが環状に接続されている冷凍サイクル装置において、インジェクション管は一端を前記気液分離器に接続し、他端を前記圧縮機に接続するとともに、前記インジェクション管はインジェクション管弁を備え、液出口管は一端を前記アキュムレータに接続し、他端を前記吸入管に接続するとともに、前記液出口管はアキュムレータ弁を備え、前記インジェクション管弁および、前記アキュムレータ弁の開閉を制御する制御部とを備え、前記制御部は前記圧縮機の吐出圧力を検出する手段と、前記圧縮機の吐出温度を検出する手段を有し、前記制御部は前記吐出圧力と前記吐出温度から吐出過熱度を算出するとともに、前記吐出過熱度は第一基準値以下では前記アキュムレータ弁を閉とし、第二基準値以下では前記インジェクション管弁を閉とし、前記第一基準値は前記第二基準値よりも大きくしたことを特徴とする冷凍サイクル装置。
JP2018215751A 2018-11-16 2018-11-16 冷凍サイクル装置 Active JP7236606B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018215751A JP7236606B2 (ja) 2018-11-16 2018-11-16 冷凍サイクル装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018215751A JP7236606B2 (ja) 2018-11-16 2018-11-16 冷凍サイクル装置

Publications (2)

Publication Number Publication Date
JP2020085269A true JP2020085269A (ja) 2020-06-04
JP7236606B2 JP7236606B2 (ja) 2023-03-10

Family

ID=70907333

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018215751A Active JP7236606B2 (ja) 2018-11-16 2018-11-16 冷凍サイクル装置

Country Status (1)

Country Link
JP (1) JP7236606B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022054584A1 (ja) * 2020-09-14 2022-03-17 東芝キヤリア株式会社 空気調和装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0979667A (ja) * 1995-09-19 1997-03-28 Denso Corp ガスインジェクション式冷凍サイクル装置
JPH11132575A (ja) * 1997-10-23 1999-05-21 Daikin Ind Ltd 空気調和機
JP2005098635A (ja) * 2003-09-26 2005-04-14 Zexel Valeo Climate Control Corp 冷凍サイクル
JP2007093194A (ja) * 2006-03-28 2007-04-12 Sanyo Electric Co Ltd 冷凍装置
JP2008249259A (ja) * 2007-03-30 2008-10-16 Mitsubishi Electric Corp 冷凍空気調和装置
JP2015224845A (ja) * 2014-05-29 2015-12-14 パナソニックIpマネジメント株式会社 冷凍サイクル装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0979667A (ja) * 1995-09-19 1997-03-28 Denso Corp ガスインジェクション式冷凍サイクル装置
JPH11132575A (ja) * 1997-10-23 1999-05-21 Daikin Ind Ltd 空気調和機
JP2005098635A (ja) * 2003-09-26 2005-04-14 Zexel Valeo Climate Control Corp 冷凍サイクル
JP2007093194A (ja) * 2006-03-28 2007-04-12 Sanyo Electric Co Ltd 冷凍装置
JP2008249259A (ja) * 2007-03-30 2008-10-16 Mitsubishi Electric Corp 冷凍空気調和装置
JP2015224845A (ja) * 2014-05-29 2015-12-14 パナソニックIpマネジメント株式会社 冷凍サイクル装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022054584A1 (ja) * 2020-09-14 2022-03-17 東芝キヤリア株式会社 空気調和装置
JPWO2022054584A1 (ja) * 2020-09-14 2022-03-17

Also Published As

Publication number Publication date
JP7236606B2 (ja) 2023-03-10

Similar Documents

Publication Publication Date Title
KR101297972B1 (ko) 공기 조화기
EP3205955A1 (en) Air conditioner
JP6494778B2 (ja) 冷凍サイクル装置
US10088206B2 (en) Air-conditioning apparatus
JP6230931B2 (ja) マルチ形空気調和機
EP2869002B1 (en) Air conditioner and method of controlling the same
EP3205954B1 (en) Refrigeration cycle device
CN102419024B (zh) 制冷循环装置和热水采暖装置
EP2787305A1 (en) Refrigerating/air-conditioning device
JP6138711B2 (ja) 空気調和装置
JP2016003848A (ja) 空気調和システムおよびその制御方法
CN108954501B (zh) 空调机
JP4462436B2 (ja) 冷凍装置
JPWO2020241622A1 (ja) 冷凍装置
JP5308205B2 (ja) 空気調和機
JP2016205729A (ja) 冷凍サイクル装置
KR20190041091A (ko) 공기조화기
JP7236606B2 (ja) 冷凍サイクル装置
JP2018204805A (ja) 冷凍ユニット、冷凍システム、および冷媒回路の制御方法
JP2009014268A (ja) 空気調和装置
JP6272364B2 (ja) 冷凍サイクル装置
JP6844667B2 (ja) 熱源ユニット及び冷凍装置
WO2017094172A1 (ja) 空気調和装置
KR102032183B1 (ko) 공기 조화기 및 그 제어방법
JP5574638B2 (ja) 冷凍空調装置

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20190124

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211115

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220831

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220906

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20221020

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20221102

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221223

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230117

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230130

R151 Written notification of patent or utility model registration

Ref document number: 7236606

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151