JP2020079907A - プロセスカートリッジ及び画像形成装置 - Google Patents

プロセスカートリッジ及び画像形成装置 Download PDF

Info

Publication number
JP2020079907A
JP2020079907A JP2018213893A JP2018213893A JP2020079907A JP 2020079907 A JP2020079907 A JP 2020079907A JP 2018213893 A JP2018213893 A JP 2018213893A JP 2018213893 A JP2018213893 A JP 2018213893A JP 2020079907 A JP2020079907 A JP 2020079907A
Authority
JP
Japan
Prior art keywords
toner
image carrier
toner particles
image
process cartridge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018213893A
Other languages
English (en)
Other versions
JP7250487B2 (ja
Inventor
伸一 縣
Shinichi Agata
伸一 縣
慎一 萩原
Shinichi Hagiwara
慎一 萩原
良浩 三井
Yoshihiro Mitsui
良浩 三井
洸輔 井加田
Kosuke Ikada
洸輔 井加田
健太郎 山脇
Kentaro Yamawaki
健太郎 山脇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2018213893A priority Critical patent/JP7250487B2/ja
Priority to EP19208116.4A priority patent/EP3657261B1/en
Priority to US16/679,524 priority patent/US11003106B2/en
Publication of JP2020079907A publication Critical patent/JP2020079907A/ja
Application granted granted Critical
Publication of JP7250487B2 publication Critical patent/JP7250487B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G15/00Apparatus for electrographic processes using a charge pattern
    • G03G15/02Apparatus for electrographic processes using a charge pattern for laying down a uniform charge, e.g. for sensitising; Corona discharge devices
    • G03G15/0208Apparatus for electrographic processes using a charge pattern for laying down a uniform charge, e.g. for sensitising; Corona discharge devices by contact, friction or induction, e.g. liquid charging apparatus
    • G03G15/0216Apparatus for electrographic processes using a charge pattern for laying down a uniform charge, e.g. for sensitising; Corona discharge devices by contact, friction or induction, e.g. liquid charging apparatus by bringing a charging member into contact with the member to be charged, e.g. roller, brush chargers
    • G03G15/0233Structure, details of the charging member, e.g. chemical composition, surface properties
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G21/00Arrangements not provided for by groups G03G13/00 - G03G19/00, e.g. cleaning, elimination of residual charge
    • G03G21/16Mechanical means for facilitating the maintenance of the apparatus, e.g. modular arrangements
    • G03G21/18Mechanical means for facilitating the maintenance of the apparatus, e.g. modular arrangements using a processing cartridge, whereby the process cartridge comprises at least two image processing means in a single unit
    • G03G21/1839Means for handling the process cartridge in the apparatus body
    • G03G21/1842Means for handling the process cartridge in the apparatus body for guiding and mounting the process cartridge, positioning, alignment, locks
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G9/00Developers
    • G03G9/08Developers with toner particles
    • G03G9/0821Developers with toner particles characterised by physical parameters
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G9/00Developers
    • G03G9/08Developers with toner particles
    • G03G9/0825Developers with toner particles characterised by their structure; characterised by non-homogenuous distribution of components
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G9/00Developers
    • G03G9/08Developers with toner particles
    • G03G9/087Binders for toner particles
    • G03G9/08742Binders for toner particles comprising macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • G03G9/08773Polymers having silicon in the main chain, with or without sulfur, oxygen, nitrogen or carbon only
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G9/00Developers
    • G03G9/08Developers with toner particles
    • G03G9/097Plasticisers; Charge controlling agents
    • G03G9/09708Inorganic compounds
    • G03G9/09725Silicon-oxides; Silicates
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G21/00Arrangements not provided for by groups G03G13/00 - G03G19/00, e.g. cleaning, elimination of residual charge
    • G03G21/0005Arrangements not provided for by groups G03G13/00 - G03G19/00, e.g. cleaning, elimination of residual charge for removing solid developer or debris from the electrographic recording medium
    • G03G21/0011Arrangements not provided for by groups G03G13/00 - G03G19/00, e.g. cleaning, elimination of residual charge for removing solid developer or debris from the electrographic recording medium using a blade; Details of cleaning blades, e.g. blade shape, layer forming
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G2221/00Processes not provided for by group G03G2215/00, e.g. cleaning or residual charge elimination
    • G03G2221/16Mechanical means for facilitating the maintenance of the apparatus, e.g. modular arrangements and complete machine concepts
    • G03G2221/18Cartridge systems
    • G03G2221/183Process cartridge

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Plasma & Fusion (AREA)
  • Inorganic Chemistry (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Developing Agents For Electrophotography (AREA)
  • Electrophotography Configuration And Component (AREA)
  • Cleaning In Electrography (AREA)
  • Electrostatic Charge, Transfer And Separation In Electrography (AREA)

Abstract

【課題】像担持体の駆動トルクを低減しつつ、帯電部材汚染の発生を抑制するプロセスカートリッジ及び画像形成装置を提供すること。【解決手段】像担持体1に接触し、像担持体1を帯電する帯電部材2は、導電性支持体と、像担持体1と接触する弾性層とを有し、弾性層は、マトリックスと、導電性を有するドメインとを含んでなる半導電性ゴム組成物を含有し、半導電性ゴム組成物はドメインが島相を形成し、マトリックスが海相を形成する海島構造を有し、マトリックスはドメインより高い体積抵抗率を有し、現像剤はトナー粒子を有するトナーを含有し、トナー粒子は有機ケイ素重合体を含有する表層を有し、有機ケイ素重合体は、R−SiO3/2で表される構造(Rは炭素数が1以上6以下の炭化水素基)を有し、トナー粒子の表面における有機ケイ素重合体の固着率が90%以上であることを特徴とするプロセスカートリッジ。【選択図】図2

Description

本発明は、電子写真画像形成装置に関するものである。ここで、電子写真画像形成装置(以下、単に「画像形成装置」ともいう)とは、電子写真画像形成方式を用いて記録材(記録媒体)に画像を形成するものである。画像形成装置の例としては、複写機、プリンタ(レーザービームプリンタ、LEDプリンタ等)、ファクシミリ装置、ワードプロセッサ、及び、これらの複合機(マルチファンクションプリンタ)などが含まれる。
電子写真方式の画像形成装置においては、電子写真感光体(以下、感光体ドラムまたはドラムという)の表面を一次帯電器によって一様に帯電し、帯電された感光体ドラム表面を露光装置によって露光して静電潜像を形成する。そして、この静電潜像を現像装置で現像して現像剤像(以下、トナー像という)を形成し、このトナー像を転写装置によってシート等の記録材に転写する。その後、定着装置によりトナー像を記録材上に固着画像として定着して出力する。感光体ドラムは、トナー像転写後に表面に残留したトナーをクリーニング装置によってクリーニングされ、次の画像形成動作に備える。
これら現像装置、感光体ドラム、クリーニング装置は画像形成装置に着脱可能なプロセスカートリッジとして一体に構成されることがある。
クリーニング装置としては、構成の単純さ及びトナーの除去能力の観点から、弾性体で構成されたクリーニングブレードを感光体ドラムの回転方向に対して、カウンター方向で当接させるカウンター方式のブレードクリーニングが広く用いられている。カウンター方式のブレードクリーニングでは、クリーニングブレードが感光体ドラムに対して強く当接され摺擦される。このため、感光体ドラムの駆動トルクがプロセスカートリッジ駆動トルクの多くを占める。
プロセスカートリッジが搭載される画像形成装置の駆動トルクの低減による消費電力の低減や画像形成装置および装置の小型化に向け、ブレードクリーニングにおけるトルクを低減したものとして以下のものがある。
特許文献1のように、トナーに球形シリカと非球形シリカを外添し、かつ、脂肪酸金属塩などの潤滑剤を感光体ドラムに塗布したものがある。ここでは、低温低湿環境では潤滑剤の効果により低トルクを達成している。また、高温高湿環境では潤滑剤に放電生成物が付着し却って高トルクとなるため、球形シリカ外添剤をクリーニングブレードと感光体ドラムの間(以下、接触部)に介在させることによりトルクを低減している。
特許文献2においては、トナーに含まれる外添剤の遊離率が1%以上になっており、外添剤をクリーニング部材に供給させて、文献1と同様に接触部に介在させてトルクを下げている。
また、近年では帯電装置として接触帯電方式が多数の画像形成装置に搭載され、帯電装置の主流になっている。この接触帯電方式のほとんどは、接触帯電部材として導電性ローラを用い、この導電性ローラを感光体ドラムに接触させて電圧を印加するローラ帯電が用いられている。
導電性ローラは、弾性層に体積固有抵抗率で1×10Ω・cm〜1×10Ω・cm程度の導電性を付与するために、カーボンブラック等の導電粒子を配合した電子導電系の導電性ゴム組成物を用いて弾性層を形成することが知られている。しかしながら、このようにして形成された弾性層は、その電気抵抗が導電粒子の分散状態に強く依存し、ローラ内での抵抗ムラが大きいという課題を有している。また、導電粒子間の電荷は印加電圧によって電場効果による伝わり易さが変化する。そのため、電気抵抗値の電圧依存性が大き
い。
また、イオン導電性の材料においては、周囲の温度および湿度等によってイオンの移動速度が変化する。よって、電気抵抗値の環境依存性が大きい。このように電子導電系、イオン導電系のいずれも、帯電性能の安定性に課題を有している。
このような課題に対して、特許文献3では、電気抵抗値の設定が容易で、電圧依存性や環境変動が小さい半導電性ゴム組成物として次のような半導電性ゴム組成物およびそれを用いた帯電部材が提案されている。すなわち、イオン導電性ゴム材料からなるマトリックスと、電子導電性ゴム材料からなるドメインとを含んでなるマトリックス・ドメイン構造(海島構造)を有する半導電性ゴム組成物である。帯電部材の弾性層の表面(周面)が、イオン導電性ゴム材料からなる面上に複数の電子導電性ゴム材料部が散在するように構成されたものである。この種の単層で構成された海島構造の帯電部材は、抵抗が高いマトリックス部に選択的に外添剤等の汚れが付着しやすいものの、画像への影響が少ないといった特徴がある。
特開2015−22078号公報 特開2003−280255号公報 特開2002−003651号公報
しかしながら、上記先行技術には以下のような問題があった。特許文献1、2においては、接触部に外添剤を介在させることで低トルク化を実現している。このため、クリーニングブレードの下流側に外添剤が徐々に排出されることを意味しており、長期の使用においては、帯電部材の汚染により画像上にスジ状の濃度変化が発生したり、ムラが生じたりするといった問題が発生する可能性がある。
また、特許文献3の単層で構成された海島構造の帯電部材においては、抵抗が高いマトリックス部に選択的に外添剤等の汚れが付着する傾向がある。そのため、低トルク化のためにクリーニングブレードの当接圧(侵入量)を下げていくと、抵抗が高いマトリックス部に多量の外添剤等の汚れが付着し、長期の使用においては、帯電部材の汚染により画像上にスジ状の濃度変化が発生したり、ムラが生じたりするといった問題が発生する可能性がある。
さらには、外添剤等の汚れ付着により、感光体ドラムの周面上に略周方向に延びる溝がドラム傷として形成されるといった問題が発生する可能性もある。
本発明の目的は、像担持体の駆動トルクを低減しつつ、帯電部材汚染の発生を抑制するプロセスカートリッジ及び画像形成装置を提供することである。
さらには、像担持体の傷を抑制するプロセスカートリッジ及び画像形成装置を提供することである。
上記目的を達成するため、本発明におけるプロセスカートリッジは、
画像形成装置に用いられるプロセスカートリッジであって、
静電潜像が現像剤により現像されて形成される現像剤像を担持する像担持体と、
前記像担持体に接触し、前記静電潜像の形成のために前記像担持体を帯電する帯電部材と、
前記像担持体の表面に当接して前記表面をクリーニングするクリーニング部材と、
を備え、
前記帯電部材は、導電性支持体と、前記像担持体と接触する弾性層と、を有し、
前記弾性層は、マトリックスと、導電性を有するドメインとを含んでなる半導電性ゴム組成物を含有し、
前記半導電性ゴム組成物は、前記ドメインが島相を形成し、前記マトリックスが海相を形成する海島構造を有し、
前記マトリックスは前記ドメインより高い体積抵抗率を有し、
前記現像剤は、トナー粒子を有するトナーを含有し、
前記トナー粒子は、有機ケイ素重合体を含有する表層を有し、
前記有機ケイ素重合体は、下記式(1)で表される構造を有し、
前記トナー粒子の表面における前記有機ケイ素重合体の固着率が90%以上であることを特徴とする。
R−SiO3/2 式(1)
(前記Rは、炭素数が1以上、6以下の炭化水素基を示す。)
上記目的を達成するため、本発明におけるプロセスカートリッジは、
画像形成装置に用いられるプロセスカートリッジであって、
像担持体と、
前記像担持体に接触し、前記像担持体を帯電する帯電部材と、
帯電された前記像担持体に形成された潜像を現像するために前記像担持体へ現像剤を供給する現像手段と、
前記像担持体の表面に当接して前記表面をクリーニングするクリーニング部材と、
を備え、
前記帯電部材は、導電性支持体と、前記像担持体と接触する弾性層と、を有し、
前記弾性層は、マトリックスと、導電性を有するドメインとを含んでなる半導電性ゴム組成物を含有し、
前記半導電性ゴム組成物は、前記ドメインが島相を形成し、前記マトリックスが海相を形成する海島構造を有し、
前記マトリックスは前記ドメインより高い体積抵抗率を有し、
前記現像剤は、トナー粒子を有するトナーを含有し、
前記トナー粒子は、有機ケイ素重合体を含有する表層を有し、
前記有機ケイ素重合体は、下記式(1)で表される構造を有し、
前記トナー粒子の表面における前記有機ケイ素重合体の固着率が90%以上であることを特徴とする。
R−SiO3/2 式(1)
(前記Rは、炭素数が1以上、6以下の炭化水素基を示す。)
上記目的を達成するため、本発明における画像形成装置は、
装置本体と、
前記装置本体に対して着脱可能な、本発明のプロセスカートリッジと、
を備えたことを特徴とする。
本発明によれば、像担持体の駆動トルクを低減しつつ、帯電部材汚染の発生を抑制することができる。また、像担持体の傷を抑制することができる。
本発明の実施形態に係る画像形成装置の概略断面図 本発明の実施形態に係るプロセスカートリッジの概略断面図 本発明の実施形態におけるクリーニングブレードの概要説明図 クリーニングブレードの感光体ドラムに対する当接状態の定義の説明図 本発明の実施形態における帯電ローラ表面の海島構造の説明図 本発明の実施形態におけるクリーニングブレード接触部におけるトナーの介在状態のメカニズムの説明図 電気抵抗値を測定する装置を説明するための概略図
本発明において、数値範囲を表す「○○以上××以下」や「○○〜××」の記載は、特に断りのない限り、端点である下限及び上限を含む数値範囲を意味する。
以下、図面を参照して、本発明の実施形態又は実施例を例示的に詳しく説明する。ただし、該実施形態又は実施例に記載されている構成部品の寸法、材質、形状、その相対位置等は、発明が適用される装置の構成や各種条件により適宜変更されるから、特に特定的な記載が無い限りは、発明の範囲をそれらのみに限定する趣旨のものではない。
なお、以下特に明記しない限り、「部」は「質量部」を意味しており、試薬等は特に指定のないものは市販の高純度品を用いた。
[実施形態1]
(画像形成装置)
図1を参照して、電子写真画像形成装置の一実施の形態の全体構成について説明する。図1は、本発明の実施形態に係る画像形成装置100の模式的断面図である。本発明が適用可能な画像形成装置としては、電子写真方式を利用した複写機、プリンタなどが挙げられ、ここでは、本実施形態の画像形成装置100として、タンデム方式、中間転写方式を採用したフルカラーレーザービームプリンタに本発明を適用した場合について説明する。
画像形成装置100は、画像情報に従って、記録材(例えば、記録用紙、プラスチックシート、布など)にフルカラー画像を形成することができる。画像情報は、画像形成装置本体に接続された画像読み取り装置、或いは画像形成装置本体に通信可能に接続されたパーソナルコンピュータ等のホスト機器から、画像形成装置本体に入力される。
画像形成装置100は、複数の画像形成部としてのプロセスカートリッジ7が、それぞれイエロー(Y)、マゼンタ(M)、シアン(C)、ブラック(K)の各色の画像を形成するための第1〜第4の画像形成部SY、SM、SC、SKを有する。本実施形態では、画像形成部SY、SM、SC、SKは、鉛直方向と交差する方向に一列に配置されている。
尚、本実施形態では、第1〜第4の画像形成部SY、SM、SC、SKの構成及び動作は、形成する画像の色が異なることを除いて実質的に同じである。従って、以下、特に区別を要しない場合は、いずれかの色用に設けられた要素であることを表すために符号に与えた添え字Y、M、C、Kは省略して、総括的に説明する。
プロセスカートリッジ7は、画像形成装置本体に設けられた装着ガイド、位置決め部材などの装着手段を介して、画像形成装置100に着脱可能となっている。本実施形態では、各色用のプロセスカートリッジ7は全て同一形状を有しており、各色用のプロセスカートリッジ7内には、それぞれイエロー(Y)、マゼンタ(M)、シアン(C)、ブラック(K)の各色のトナー(現像剤)が収容されている。本実施形態では、プロセスカートリッジが装置本体に着脱可能な構成について説明するが、現像装置3が単独で画像形成装置本体に着脱可能な構成としても良い。
静電像(静電潜像)を担持する像担持体としての感光体ドラム1は、図示しない駆動手段(駆動源)により回転駆動される。画像形成装置100にはスキャナユニット(露光装置)30が配置されている。スキャナユニット30は、画像情報に基づきレーザーを照射して感光体ドラム1上に静電像(静電像)を形成する露光手段である。また、画像形成装置100には、4個の感光体ドラム1に対向して、感光体ドラム1上のトナー像を記録材12に転写するための中間転写体としての中間転写ベルト31が配置されている。
中間転写体としての無端状のベルトで形成された中間転写ベルト31は、全ての感光体ドラム1に当接し、図示矢印B方向(反時計方向)に循環移動(回転)する。
中間転写ベルト31の内周面側には、各感光体ドラム1に対向するように、一次転写手段としての、4個の一次転写ローラ32が並設されている。そして、一次転写ローラ32に、図示しない一次転写バイアス印加手段としての一次転写バイアス電源(高圧電源)から、トナーの正規の帯電極性とは逆極性の電圧が印加される。これによって、感光体ドラム1上のトナー像が中間転写ベルト31上に転写(一次転写)される。
また、中間転写ベルト31の外周面側において二次転写手段としての二次転写ローラ33が配置されている。そして、二次転写ローラ33に、図示しない二次転写バイアス印加手段としての二次転写バイアス電源(高圧電源)から、トナーの正規の帯電極性とは逆極性の電圧が印加される。これによって、中間転写ベルト31上のトナー像が記録材12に転写(二次転写)される。例えば、フルカラー画像の形成時には、上述のプロセスが、画像形成部SY、SM、SC、SKにおいて順次に行われ、中間転写ベルト31上に各色のトナー像が順次に重ね合わせて一次転写される。その後、中間転写ベルト31の移動と同期が取られて記録材12が二次転写部へと搬送される。そして、記録材12を介して中間転写ベルト31に当接している二次転写ローラ33の作用によって、中間転写ベルト31上の4色トナー像は、一括して記録材12上に二次転写される。
トナー像が転写された記録材12は、定着手段としての定着装置34に搬送される。定着装置34において記録材12に熱および圧力を加えられることで、記録材12にトナー像が定着される。
(プロセスカートリッジ)
本実施形態の画像形成装置に装着されるプロセスカートリッジ7の全体構成について説明する。
図2は、感光体ドラム1の長手方向(回転軸線方向)に沿って見た本実施形態のプロセスカートリッジ7の断面(主断面)図である。尚、本実施形態では、収容している現像剤の種類(色)を除いて、各色用のプロセスカートリッジ7の構成および動作は実質的に同一である。本実施形態における各動作は不図示のCPUの制御部(制御手段)により制御される。
なお、図2のプロセスカートリッジ7の姿勢は、画像形成装置本体に装着された状態(使用時)での姿勢であり、本明細書においてプロセスカートリッジの各部材の位置関係や方向等について記載する場合はこの姿勢における位置関係や方向等を示している。すなわち、図2における紙面の上下方向が重力方向(鉛直方向)に対応し、紙面の左右方向が水平方向に対応する。なお、この配置構成の設定は、画像形成装置が、通常の設置状態として、水平面に設置されることを前提とした設定である。
プロセスカートリッジ7は、現像手段としての現像ローラ4等を備えた現像ユニット3と、感光体ドラム1等を備えた感光体ユニット13とを有する。
現像ユニット3は、現像ローラ4と、トナー供給ローラ5と、トナー搬送部材22と、それらを回転可能に支持する現像枠体18と、を備える。現像枠体18は、現像ローラ4とトナー供給ローラ5が配置された現像室18aと、トナー10を収容する現像剤収容室18bと、を備える。現像室18aと現像剤収容室18bは、開口部18cを介して連通している。現像剤収容室18bは現像室18aの下方に配置されている。この現像剤収容室18の内部には、現像剤としてのトナー10が収容されている。本実施形態において、このトナー10の正規帯電極性は負極性である。ここで、正規帯電極性とは、静電像を現像するための帯電極性である。本実施形態では負極性の静電像を反転現像するので、トナ
ーの正規帯電極性は負極性である。ただし、本発明は、負帯電性トナーに限定されるものではない。
また、現像剤収容室18bには、このトナー10を現像室18aに搬送するためのトナー搬送部材22が設けられており、図中矢印Gの方向へ回転することによってトナー10を現像室18aへと搬送している。
現像室18aには、感光体ドラム1と接触して図示矢印D方向に回転する現像剤担持体としての現像ローラ4が設けられている。本実施形態では、現像ローラ4と感光体ドラム1とは、対向部においてそれぞれの表面が互いに同方向に移動するように、すなわち、回転方向が互いに逆になるように、それぞれ回転する。また、現像ローラ4には、第一電圧印加手段としての不図示の第一電源(高圧電源)から、感光体ドラム1上の静電像をトナー像として現像、可視化するのに十分な電圧が印加される。
また、現像室18aの内部には、トナー収容室18bから搬送されたトナー10を現像ローラ4に供給する現像剤供給部材としてのトナー供給ローラ(以下、単に「供給ローラ」という。)5が配置されている。また、供給ローラ5によって供給された現像ローラ4上のトナーのコート量規制及び電荷付与を行う現像剤量規制部材(以下、単に「規制部材」という。)6が配置されている。
供給ローラ5は、導電性芯金と、表面に発泡層とを有する弾性スポンジローラであり、現像ローラ4との間に接触部を形成して配設されており、図示矢印Eの方向に回転する。ただし、供給ローラの回転方向はEと逆方向であってもよい。
また、供給ローラ5には、第二電圧印加手段としての不図示の第二電源(高圧電源)から電圧が印加される。
供給ローラ5によって現像ローラ4に供給されたトナー10は、現像ローラ4の矢印D方向への回転によって、規制部材6と現像ローラ4との当接部へ侵入する。トナー10は現像ローラ4と規制部材6との間での摺擦で摩擦帯電され、電荷を付与されると同時にその層厚が規制される。規制された現像ローラ4上のトナー10は、現像ローラ4の回転により、感光体ドラム1との対向部に搬送され、感光体ドラム1上の静電像をトナー像として現像、可視化する。
一方、感光体ユニット13は、感光体ドラム1等の感光体ユニット13における各種構成を支持する枠体としてのクリーニング枠体9を有する。クリーニング枠体9には、図示しない軸受を介して感光体ドラム1が回転可能に取り付けられている。感光体ドラム1は、有機感光体ドラムであり外径24mmである。ドラム駆動手段としての不図示の駆動モータPの駆動力を受けることによって、図示矢印A方向に回転駆動される。
また、感光体ユニット13には、感光体ドラム1の周面上に接触するように、帯電ローラ2、クリーニング部材としてのクリーニングブレード8が配置されている。帯電ローラ2は付勢手段としての不図示のばねによって感光体ドラム1に向かう方向に付勢されており、感光体ドラム1の回転に従い従動回転する。
クリーニングブレード8は感光体ドラム1の回転によって、感光体ドラム1の表面速度と等しい相対速度で感光体ドラム1を摺擦し、転写工程で残留したトナー10をかきとり、帯電部材としての帯電ローラ2の残留トナーや外添剤等による汚染を防止する。また、帯電工程で感光体ドラム1の表面に付着する放電生成物を除去し、感光体ドラム1の摩擦の増大などを防止している。
クリーニングブレード8によってかきとられたトナーは回収室9aに収納される。トナ
ー回収室9aを介して画像形成装置に設けられたトナー回収容器に収容する構成としてもよい。
以下、本発明にかかるトナーとクリーングブレードの詳細を記述する。
(トナー)
現像剤は、トナー粒子を有するトナーを含有し、該トナー粒子は、有機ケイ素重合体を含有する表層を有し、該有機ケイ素重合体は、下記式(1)で表される構造を有する。
また、該トナー粒子の表面における前記有機ケイ素重合体の固着率が90%以上である。
R−SiO3/2 式(1)
(前記Rは、炭素数が1以上、6以下の炭化水素基を示す。)
該トナー粒子の表面における有機ケイ素重合体の固着率は、90%以上100%以下であることが好ましい。より好ましくは、95%以上100%以下である。トナー粒子の表面における有機ケイ素重合体の固着率の測定方法は後述する。
有機ケイ素重合体の固着率が90%未満の場合、多数枚を出力したときにトナー粒子から剥がれた有機ケイ素重合体が帯電部材の導電性が小さい部分に付着、滞留し、画像欠陥が生じる。
該固着率を得るためは、式(1)で表される構造を有する有機ケイ素重合体を含有する表層をトナー粒子に形成するとよい。
また、有機ケイ素重合体の固着率は、有機ケイ素重合体形成に用いる有機ケイ素化合物の種類及び量、有機ケイ素重合体形成時のトナー粒子の製造方法、反応温度、反応時間、反応溶媒及びpHによって制御することができる。
また、該トナーは、最大荷重2×10−4Nの条件で測定したときのマルテンス硬度が200MPa以上1100MPa以下であることが好ましく、500MPa以上1100MPa以下であることがより好ましい。
該マルテンス硬度が上記範囲である場合、トナー粒子は変形しにくく、クリーニング部材と像担持体の間に挟まれたときにスペーサとして作用し、接触面積が減らされ像担持体の駆動トルクをより低減させることができる。また、クリーニング部材と像担持体の間に挟まれた場合に、像担持体を傷つけることもない。
<トナーのマルテンス硬度の測定方法>
硬度とは、物体の表面又は表面近傍の機械的性質の一つであり、異物によって変形や傷を与えられようとするときの、物体の変形しにくさ、物体の傷つきにくさであり、様々な測定方法や定義が存在する。例えば測定方法は測定領域の広さによって使い分けられ、測定領域が10μm以上の場合にはビッカース法、10μm以下の場合にはナノインデンテーション法、1μm以下の場合にはAFMなどと使い分けられることが多い。定義としては、例えば押し込み硬さとしてはブリネル硬度やビッカース硬度、引っ掻き硬さとしてはマルテンス硬度、反発硬さとしてはショア硬度などが使い分けられている。
トナーの測定においては、一般的な粒径は3μm以上10μm以下であるから、ナノインデンテーション法が好ましく用いられる測定方法である。発明者らの検討によると硬度の規定として、引っ掻き硬さを表すマルテンス硬度が適当であった。これは、トナーが現像機内で金属や外添剤などの硬い物質に引っ掻かれることに対する強さを表し得るのが引っ掻き硬さであるためと考えている。
ナノインデンテーション法にてトナーのマルテンス硬度を測定する方法は市販のISO14577−1に準拠した装置にて、ISO14577−1に規定された押込み試験の手順に従って、得られた荷重−変位曲線から算出することができる。本発明においては、前記ISO規格に準拠した装置として、超微小押し込み硬さ試験機「ENT−1100b」
(株式会社エリオニクス製)を用いた。測定方法は、装置に付属の「ENT1100操作マニュアル」に記載されているが、具体的な測定方法は以下の通りである。
測定環境は、付属の温度調節装置にてシールドケース内を30.0℃に保った。雰囲気温度を一定に保つことは熱膨張やドリフトなどによる測定データのバラつき低減に有効である。設定温度は、トナーが摩擦される現像機近辺の温度を想定した30.0℃の条件とした。試料台は装置に付属の標準試料台を用い、トナーを塗布した後にトナーが分散するように微弱なエアーを吹き付け、その試料台を装置にセットして1時間以上保持してから測定を行った。
圧子には装置に付属の先端が20μm四方の平面である平圧子(チタン製圧子、先端はダイヤモンド製)を用いて測定した。トナーの様に小径かつ球形の物体、外添剤が付着している物体、表面に凹凸が存在する物体においては、尖った圧子を用いると測定精度に大きな影響を与えるため平圧子を用いる。試験の最大荷重は2.0×10−4Nに設定して行う。この試験荷重に設定することで、現像部においてトナー1粒が受けるストレスに相当する条件で、トナーの表層を破壊せずに硬度を測定することが可能である。本発明においては、耐摩擦性の観点から表層を破壊せずに維持したまま硬さを測る。
測定対象の粒子としては、装置付属の顕微鏡による測定用画面(視野サイズ:横幅160μm、縦幅120μm)にトナーが単独で存在しているものを選択する。ただし、変位量の誤差を極力無くすため、粒子径(D)が個数平均粒径(D1)の±0.5μmの範囲にあるもの(D1−0.5μm≦D≦D1+0.5μm)を選択する。なお、測定対象粒子の粒径測定は装置付属のソフトを用いてトナーの長径と短径を測定し、[(長径+短径)/2]をもって粒子径D(μm)とした。また、個数平均粒径は「コールター・カウンター Multisizer 3(ベックマン・コールター株式会社製)により後述する方法にて測定する。
<トナー(粒子)の粒径の測定>
細孔電気抵抗法による精密粒度分布測定装置(商品名:コールター・カウンター Multisizer 3)と、専用ソフト(商品名:ベックマン・コールター Multisizer 3 Version3.51、ベックマン・コールター社製)を用いた。アパーチャー径は100μmを用い、実効測定チャンネル数2万5千チャンネルで測定し、測定データの解析を行い、算出した。測定用の電解水溶液は、特級塩化ナトリウムをイオン交換水に溶解して濃度が約1質量%となるようにしたもの、ベックマン・コールター社製のISOTON II(商品名)を使用した。なお、測定、解析を行う前に、以下のように前記専用ソフトの設定を行った。
前記専用ソフトの「標準測定方法(SOM)を変更画面」において、コントロールモードの総カウント数を50000粒子に設定し、測定回数を1回、Kd値は(標準粒子10.0μm、ベックマン・コールター社製)を用いて得られた値を設定した。閾値/ノイズレベルの測定ボタンを押すことで、閾値とノイズレベルを自動設定した。また、カレントを1600μAに、ゲインを2に、電解液をISOTON II(商品名)に設定し、測定後のアパーチャーチューブのフラッシュにチェックを入れた。
専用ソフトの「パルスから粒径への変換設定画面」において、ビン間隔を対数粒径に、粒径ビンを256粒径ビンに、粒径範囲を2μm以上60μm以下に設定した。
具体的な測定法は以下の通りである。
(1)Multisizer 3専用のガラス製250mL丸底ビーカーに前記電解水溶液約200mLを入れ、サンプルスタンドにセットし、スターラーロッドの撹拌を反時計回りで24回転/秒にて行った。そして、解析ソフトの「アパーチャーチューブのフラッシュ」機能により、アパーチャーチューブ内の汚れと気泡を除去しておいた。
(2)ガラス製の100mL平底ビーカーに前記電解水溶液約30mLを入れた。ここに
コンタミノンN(商品名)(精密測定器洗浄用中性洗剤の10質量%水溶液、和光純薬工業(株)製)をイオン交換水で3質量倍に希釈した希釈液を約0.3mL加えた。
(3)発振周波数50kHzの発振器2個を、位相を180度ずらした状態で内蔵し、電気的出力120Wの超音波分散器(商品名:Ultrasonic Dispersion System Tetora150、日科機バイオス(株)製)の水槽内にイオン交換水所定量とコンタミノンN(商品名)を約2mL添加した。
(4)前記(2)のビーカーを前記超音波分散器のビーカー固定穴にセットし、超音波分散器を作動させた。そして、ビーカー内の電解水溶液の液面の共振状態が最大となるようにビーカーの高さ位置を調整した。
(5)前記(4)のビーカー内の電解水溶液に超音波を照射した状態で、トナー(粒子)約10mgを少量ずつ前記電解水溶液に添加し、分散させた。そして、さらに60秒間超音波分散処理を継続した。なお、超音波分散にあたっては、水槽の水温が10℃以上40℃以下となる様に適宜調節した。
(6)サンプルスタンド内に設置した前記(1)の丸底ビーカーに、ピペットを用いてトナー(粒子)を分散した前記(5)の電解水溶液を滴下し、測定濃度が約5%となるように調整した。そして、測定粒子数が50000個になるまで測定を行った。
(7)測定データを装置付属の前記専用ソフトにて解析を行い、重量平均粒径(D4)を算出した。なお、専用ソフトでグラフ/体積%と設定したときの、分析/体積統計値(算術平均)画面の「平均径」が重量平均粒径(D4)である。専用ソフトでグラフ/個数%と設定したときの、「分析/個数統計値(算術平均)」画面の「平均径」が個数平均粒径(D1)である。
測定に際しては、粒子径D(μm)が上記条件を満たす任意のトナー100粒を選んで測定を行う。測定の際に入力する条件は以下の通りである。
試験モード :負荷−除荷試験
試験荷重 :2.0×10−4
分割数:1000step
ステップインターバル:10msec
解析メニュー「データ解析(ISO)」を選択して測定を行うと、測定後に装置付属ソフトでマルテンス硬度が解析され、出力される。トナー100粒について上記測定を行って、その相加平均値を本発明におけるマルテンス硬度とした。
なお、最大荷重2.0×10−4Nの条件で測定する時のマルテンス硬度を200MPa以上1100MPa以下に調整するための手段は特に限定されない。ただし、当該硬度は一般的なトナーに用いられている有機樹脂の硬さに比べて大幅に硬いため、硬度を上げるために通常行われている手段では達成が困難である。例えば、ガラス転移温度の高い樹脂設計にする手段、樹脂分子量を上げる手段、熱硬化する手段、表層にフィラーを添加する手段などでは達成が難しい。
一般的なトナーに用いられている有機樹脂のマルテンス硬度は、最大荷重2.0×10−4Nの条件で測定すると50MPa以上80MPa以下程度である。さらに樹脂設計や分子量を上げるなどして硬度を上げた場合でも120MPa以下程度である。さらに、磁性体やシリカといったフィラーを表層近傍に充填して熱硬化させた場合でも180MPa以下程度であり、本発明のトナーは一般的なトナーに比べて大幅に硬い。
<硬度の制御方法>
上記特定の硬度範囲に調整するための1つの手段として、例えば、適切な硬度を持つ無機物などの物質でトナーの表層を形成させ、更にその化学構造やマクロ構造を適切な硬度を持つ様に制御する方法が挙げられる。
具体的な例示として、上記特定の硬度を持ち得る物質としては有機ケイ素重合体が挙げられ、材料の選択として有機ケイ素重合体のケイ素原子に直接結合している炭素原子の数や炭素鎖長などによって硬度を調整することが可能である。
トナー粒子が、有機ケイ素重合体を含有する表層を有し、該有機ケイ素重合体のケイ素原子に直接結合している炭素原子が、ケイ素原子1個当たり、平均1個以上3個以下(好ましくは1個以上2個以下、より好ましくは1個)であると、上記特定の硬度に調整しやすいため好ましい。
化学構造によりマルテンス硬度を調整する手段としては表層物質の架橋や重合度などの化学構造の調整などにより可能である。マクロ構造によりマルテンス硬度を調整する手段としては、表層の凸凹形状や凸間を繋ぐネットワーク構造の調整などにより可能である。これらの調整は有機ケイ素重合体を表層として用いる場合には、有機ケイ素重合体を前処理する際のpH、濃度、温度、時間などで調整可能である。また、トナーのコア粒子に有機ケイ素重合体を表層付けするタイミングや形態、濃度、反応温度などによって調整可能である。
本実施形態において特に好ましいのは以下の方法である。まず、トナー粒子のコア粒子を製造して水系媒体に分散し、コア粒子分散液を得る。この時の濃度はコア粒子分散液総量に対し、コア粒子の固形分が10質量%以上40質量%以下となる濃度で分散することが好ましい。そして、該コア粒子分散液の温度は35℃以上に調整しておくことが好ましい。また、該コア粒子分散液のpHは有機ケイ素化合物の縮合が進みにくいpHに調整することが好ましい。有機ケイ素重合体の縮合が進みにくいpHは物質によって異なるため、最も反応が進みにくいpHを中心として、±0.5以内が好ましい。
一方、有機ケイ素化合物は加水分解処理を行ったものを用いることが好ましい。例えば、有機ケイ素化合物の前処理として別容器で加水分解しておく。加水分解の仕込み濃度は有機ケイ素化合物の量を100質量部とした場合、イオン交換水やRO水などイオン分を除去した水40質量部以上500質量部以下が好ましく、より好ましくは水100質量部以上400質量部以下である。加水分解の条件としては、好ましくはpHが2〜7、温度が15℃〜80℃、時間が30分〜600分である。
得られた加水分解液とコア粒子分散液とを混合して縮合に適したpH(好ましくは6〜12、又は1〜3、より好ましくは8〜12)に調整することで、有機ケイ素化合物を縮合させながらトナー粒子のコア粒子表面に表層付けすることができる。縮合と表層付けは35℃以上で60分間以上取ることが好ましい。また、縮合に適したpHに調整する前に35℃以上で保持する時間を調整することで表面のマクロ構造を調整可能であるが、特定のマルテンス硬度を得やすくするため、3分以上120分以下が好ましい。
以上のような手段によって反応残基を減らすことができ、表層に凹凸を形成させることができ、更に凸間にネットワーク構造を形成させることができるため、上記特定のマルテンス硬度のトナーを得られやすい。
<有機ケイ素重合体を含有する表層について>
上述のように、トナー粒子は、有機ケイ素重合体を含有する表層を有し、該有機ケイ素重合体は、下記式(1)で表される構造を有する。
R−SiO3/2 式(1)
(該Rは、炭素数が1以上、6以下の炭化水素基を示す。)
式(1)の構造を有する有機ケイ素重合体において、Si原子の4個の原子価のうち1
個はRと、残り3個はO原子と結合している。O原子は、原子価2個がいずれもSiと結合している状態、つまり、シロキサン結合(Si−O−Si)を構成する。有機ケイ素重合体としてのSi原子とO原子を考えると、Si原子2個でO原子3個を有することになるため、−SiO3/2と表現される。この有機ケイ素重合体の−SiO3/2構造は、多数のシロキサン結合で構成されるシリカ(SiO)と類似の性質を有することが考えられる。従って、従来の有機樹脂により表層形成されたトナーに比べて無機物に近い構造のため、マルテンス硬度を高くすることが可能であると考えられる
式(1)で表される構造において、Rは、炭素数が1以上、6以下の炭化水素基であることが好ましい。これにより帯電量が安定しやすい。特に環境安定性に優れている、炭素数が1以上、5以下の脂肪族炭化水素基、又はフェニル基が好ましい。
また、上記Rは、炭素数が1以上、3以下の炭化水素基であることが、帯電性のさらなる向上のためにより好ましい。帯電性が良好であると、転写性が良く転写残トナーが少ないためドラム、帯電部材及び転写部材の汚染が良化する。
炭素数が1以上、3以下の炭化水素基としては、メチル基、エチル基、プロピル基、又はビニル基が好ましく例示できる。環境安定性と保存安定性の観点から、より好ましくは、Rはメチル基である。
有機ケイ素重合体の製造例としては、ゾルゲル法が好ましい。ゾルゲル法は、液体原料を出発原料に用いて加水分解及び縮合重合させ、ゾル状態を経てゲル化する方法であり、ガラス、セラミックス、有機−無機ハイブリット、ナノコンポジットを合成する方法に用いられる。この製造方法を用いれば、表層、繊維、バルク体、微粒子などの種々の形状の機能性材料を液相から低温で作製することができる。
トナー粒子の表層に存在する有機ケイ素重合体は、具体的には、アルコキシシランに代表されるケイ素化合物の加水分解及び縮重合によって生成されることが好ましい。
この有機ケイ素重合体を含有する表層をトナー粒子に設けることによって、環境安定性が向上し、かつ、長期使用時におけるトナーの性能低下が生じにくく、保存安定性に優れたトナーを得ることができる。
さらに、ゾルゲル法は、液体から出発し、その液体をゲル化することによって材料を形成しているため、様々な微細構造及び形状をつくることができる。特に、トナー粒子が水系媒体中で製造される場合には、有機ケイ素化合物のシラノール基のような親水基による親水性によってトナー粒子の表面に析出させやすくなる。上記微細構造及び形状は反応温度、反応時間、反応溶媒、pHや有機金属化合物の種類及び量などによって調整することができる。
トナー粒子の表層の有機ケイ素重合体は、下記式(Z)で表される構造を有する有機ケイ素化合物の縮重合物であることが好ましい。

(式(Z)中、Rは、炭素数1以上6以下の炭化水素基を表し、R、R及びRは、それぞれ独立して、ハロゲン原子、ヒドロキシ基、アセトキシ基、又は、アルコキシ基
を表す。)
1の炭化水素基(好ましくはアルキル基)により疎水性を向上することができ、環境
安定性に優れたトナー粒子を得ることができる。また、炭化水素基として芳香族炭化水素基であるアリール基、例えばフェニル基を用いることもできる。R1の疎水性が大きい場
合、様々な環境において帯電量変動が大きくなる傾向を示すことから、環境安定性を鑑みてR1は炭素数1以上3以下の炭化水素基であることが好ましく、メチル基であることが
より好ましい。
、R及びRは、それぞれ独立して、ハロゲン原子、ヒドロキシ基、アセトキシ基、又は、アルコキシ基である(以下、反応基ともいう)。これらの反応基が加水分解、付加重合及び縮重合させて架橋構造を形成し、耐部材汚染及び現像耐久性に優れたトナーを得ることができる。加水分解性が室温で穏やかであり、トナー粒子の表面への析出性と被覆性の観点から、炭素数が1以上、3以下のアルコキシ基であることが好ましく、メトキシ基やエトキシ基であることがより好ましい。また、R、R及びRの加水分解、付加重合及び縮合重合は、反応温度、反応時間、反応溶媒及びpHによって制御することができる。
本実施形態に用いられる有機ケイ素重合体を得るには、上記に示す式(Z)中のRを除く一分子中に3つの反応基(R、R及びR)を有する有機ケイ素化合物(以下、三官能性シランともいう)を1種又は複数種を組み合わせて用いるとよい。
さらに、トナー粒子中の有機ケイ素重合体の含有量は0.5質量%以上10.5質量%以下であることが好ましい。
有機ケイ素重合体の含有量が0.5質量%以上であることで、表層の表面自由エネルギーを更に小さくすることができ、流動性が向上し、部材汚染やカブリの発生を抑制することができる。10.5質量%以下であることで、チャージアップを発生し難くすることができる。有機ケイ素重合体の含有量は有機ケイ素重合体形成に用いる有機ケイ素化合物の種類及び量、有機ケイ素重合体形成時のトナー粒子の製造方法、反応温度、反応時間、反応溶媒及びpHによって制御することができる。
有機ケイ素重合体を含有する表層とトナーコア粒子は、隙間なく接していることが好ましい。これにより、トナー粒子の表層よりも内部の樹脂成分や離型剤等によるブリードの発生が抑えられ、保存安定性、環境安定性及び現像耐久性に優れたトナーを得ることができる。表層には上記の有機ケイ素重合体の他に、スチレン−アクリル系共重合体樹脂、ポリエステル樹脂、ウレタン樹脂などの樹脂や各種添加剤などを含有させてもよい。
(NMR測定用のトナー粒子のTHF不溶分の調製法)
トナー粒子のテトラヒドロフラン(THF)不溶分は、以下のように調製した。
トナー粒子10.0gを秤量し、円筒濾紙(東洋濾紙製No.86R)に入れてソックスレー抽出器にかける。溶媒としてTHF200mLを用いて20時間抽出し、円筒濾紙中の濾物を40℃で数時間真空乾燥を行って得られたものをNMR測定用のトナー粒子のTHF不溶分とした。
なお、外添剤などでトナー粒子の表面が処理されている場合は、下記方法によって外添剤を除去し、トナー粒子を得る。
イオン交換水100mLにスクロース(キシダ化学製)160gを加え、湯せんをしながら溶解させ、ショ糖濃厚液を調製する。遠心分離用チューブ(容量50mL)に該ショ糖濃厚液を31gと、コンタミノンN(非イオン界面活性剤、陰イオン界面活性剤、有機ビルダーからなるpH7の精密測定器洗浄用中性洗剤の10質量%水溶液、和光純薬工業社製)を6mL入れ分散液を作製する。この分散液にトナー1.0gを添加し、スパチュラなどでトナーのかたまりをほぐす。
遠心分離用チューブをシェイカーにて350spm(strokes per min)、20分間振とうする。振とう後、溶液をスイングローター用ガラスチューブ(容量50mL)に入れ替えて、遠心分離機(H−9R株式会社コクサン製)にて3500rpm、30分間の条件で分離する。この操作により、トナー粒子と外れた外添剤が分離する。トナーと水溶液が十分に分離されていることを目視で確認し、最上層に分離したトナーをスパチュラ等で採取する。採取したトナーを減圧濾過器で濾過した後、乾燥機で1時間以上乾燥し、トナー粒子を得る。この操作を複数回実施して、必要量を確保する。
《式(1)で示される構造の確認方法》
トナー粒子に含有される有機ケイ素重合体における、式(1)で示される構造の確認には以下の方法を用いる。
式(1)のRで表される炭化水素基は、13C−NMRにより確認した。
13C−NMR(固体)の測定条件≫
装置:JEOLRESONANCE製JNM−ECX500II
試料管:3.2mmφ
試料:NMR測定用のトナー粒子のテトラヒドロフラン不溶分150mg
測定温度:室温
パルスモード:CP/MAS
測定核周波数:123.25MHz(13C)
基準物質:アダマンタン(外部標準:29.5ppm)
試料回転数:20kHz
コンタクト時間:2ms
遅延時間:2s
積算回数:1024回
当該方法にて、ケイ素原子に結合しているメチル基(Si−CH)、エチル基(Si−C)、プロピル基(Si−C)、ブチル基(Si−C)、ペンチル基(Si−C11)、ヘキシル基(Si−C13)またはフェニル基(Si−C−)などに起因するシグナルの有無により、式(1)のRで表される炭化水素基を確認した。
≪トナー粒子に含有される有機ケイ素重合体における、式(1)の構造に帰属されるピーク面積の割合の算出方法≫
トナー粒子のTHF不溶分の29Si−NMR(固体)測定を、以下の測定条件で行う。
29Si−NMR(固体)の測定条件≫
装置:JEOLRESONANCE製JNM−ECX500II
試料管:3.2mmφ
試料:NMR測定用のトナー粒子のテトラヒドロフラン不溶分150mg
測定温度:室温
パルスモード:CP/MAS
測定核周波数:97.38MHz(29Si)
基準物質:DSS(外部標準:1.534ppm)
試料回転数:10kHz
コンタクト時間:10ms
遅延時間:2s
積算回数:2000〜8000回
上記測定後に、トナー粒子のテトラヒドロフラン不溶分の、置換基及び結合基の異なる
複数のシラン成分をカーブフィティングにて下記X1構造、X2構造、X3構造、及びX4構造にピーク分離して、それぞれピーク面積を算出する。
X1構造:(Ri)(Rj)(Rk)SiO1/2 (2)
X2構造:(Rg)(Rh)Si(O1/2 (3)
X3構造:RmSi(O1/2 (4)
X4構造:Si(O1/2 (5)



(式(2)、(3)及び(4)中のRi、Rj、Rk、Rg、Rh、Rmはケイ素に結合している、炭素数1〜6の炭化水素基などの有機基、ハロゲン原子、ヒドロキシ基、アセトキシ基又はアルコキシ基を示す。)
なお、上記式(1)で示される構造をさらに詳細に確認する必要がある場合、上記13C−NMR及び29Si−NMRの測定結果と共にH−NMRの測定結果によって同定してもよい。
<トナー粒子の製造方法>
トナー粒子の製造方法は公知の手段を用いることができ、混練粉砕法や湿式製造法を用いることができる。粒子径の均一化や形状制御性の観点からは湿式製造法を好ましく用い
ることができる。さらに、湿式製造法には懸濁重合法、溶解懸濁法、乳化重合凝集法、乳化凝集法などを挙げることができる。
ここでは懸濁重合法について説明する。懸濁重合法においてはまず、結着樹脂を生成するための重合性単量体、並びに、必要に応じて着色剤及びその他の添加剤を、ボールミル、超音波分散機のような分散機を用いてこれらを均一に溶解又は分散させた重合性単量体組成物を調製する(重合性単量体組成物の調製工程)。このとき、必要に応じて多官能性単量体や連鎖移動剤、また、離型剤としてのワックスや荷電制御剤、可塑剤などを適宜加えることができる。
次に、上記重合性単量体組成物を予め用意しておいた水系媒体中に投入し、高せん断力を有する撹拌機や分散機により、重合性単量体組成物からなる液滴を所望のトナー粒子のサイズに形成する(造粒工程)。
造粒工程における水系媒体は分散安定剤を含有していることが、トナー粒子の粒径制御、粒度分布のシャープ化、製造過程におけるトナー粒子の合一を抑制するために好ましい。分散安定剤としては、一般的に立体障害による反発力を発現させる高分子と、静電気的な反発力で分散安定化を図る難水溶性無機化合物とに大別される。難水溶性無機化合物の微粒子は、酸やアルカリにより溶解するため、重合後に酸やアルカリで洗浄することにより溶解させて容易に除去することができるため、好適に用いられる。
造粒工程の後、あるいは造粒工程を行いながら、好ましくは50℃以上90℃以下の温度に設定して、重合性単量体組成物に含まれる重合性単量体の重合を行い、トナー粒子分散液を得る(重合工程)。
重合工程では容器内の温度分布が均一になる様に攪拌操作を行うことが好ましい。重合開始剤を添加する場合、任意のタイミングと所要時間で行うことができる。また、所望の分子量分布を得る目的で重合反応後半に昇温してもよく、さらに、未反応の重合性単量体、副生成物などを系外に除去するために反応後半、または反応終了後に、一部水系媒体を蒸留操作により留去してもよい。蒸留操作は常圧又は減圧下で行うことができる。
高精細かつ高解像の画像を得るという観点から、トナーの重量平均粒径は、3.0μm以上10.0μm以下であることが好ましい。トナーの重量平均粒径は細孔電気抵抗法により測定することができる。上述のように「コールター・カウンター Multisizer 3」(ベックマン・コールター(株)製)用いて測定することができる。こうして得られたトナー粒子分散液は、トナー粒子と水系媒体を固液分離する濾過工程へと送られる。
得られたトナー粒子分散液からトナー粒子を得るための固液分離は、一般的な濾過方法で行うことができ、その後トナー粒子表面から除去しきれなかった異物を除去するため、リスラリーや洗浄水のかけ洗いなどによって更に洗浄を行うことが好ましい。十分な洗浄が行なわれた後に、再び固液分離してトナーケーキを得る。その後、公知の乾燥手段により乾燥され、必要であれば分級により所定外の粒径を有する粒子群を分離してトナー粒子を得る。このとき分離された所定外の粒径を有する粒子群は最終的な収率を向上させるために再利用してもよい。
有機ケイ素重合体を有する表層を形成する場合は、水系媒体中でトナー粒子を形成する場合には水系媒体中で重合工程などを行いながら前述のように有機ケイ素化合物の加水分解液を添加して該表層を形成させることができる。重合後のトナー粒子の分散液をコア粒子分散液として用いて、有機ケイ素化合物の加水分解液を添加し、該表層を形成させてもよい。また、混練粉砕法など水系媒体以外の場合には得られたトナー粒子を水系媒体に分散してコア粒子分散液として用いて、前述のように有機ケイ素化合物の加水分解液を添加し、該表層を形成させることができる。
<トナー粒子中の有機ケイ素重合体の含有量の測定>
有機ケイ素重合体の含有量の測定は、波長分散型蛍光X線分析装置「Axios」(PANalytical社製)と、測定条件設定及び測定データ解析をするための付属の専用ソフト「SuperQ ver.4.0F」(PANalytical社製)を用いる。なお、X線管球のアノードとしてはRhを用い、測定雰囲気は真空、測定径(コリメーターマスク径)は27mm、測定時間10秒とする。また、軽元素を測定する場合にはプロポーショナルカウンタ(PC)、重元素を測定する場合にはシンチレーションカウンタ(SC)で検出する。
測定サンプルとしては、専用のプレス用アルミリングの中にトナー粒子4gを入れて平らにならし、錠剤成型圧縮機「BRE−32」(前川試験機製作所社製)を用いて、20MPaで、60秒間加圧し、厚さ2mm、直径39mmに成型したペレットを用いる。
有機ケイ素重合体を含まないトナー粒子100質量部に対して、シリカ(SiO)微粉末を0.5質量部となるように添加し、コーヒーミルを用いて充分混合する。同様にして、シリカ微粉末を5.0質量部、10.0質量部となるようにトナー粒子とそれぞれ混合し、これらを検量線用の試料とする。
それぞれの試料について、錠剤成型圧縮機を用いて上記のようにして検量線用の試料のペレットを作製し、PETを分光結晶に用いた際に回折角(2θ)=109.08°に観測されるSi−Kα線の計数率(単位:cps)を測定する。この際、X線発生装置の加速電圧、電流値はそれぞれ、24kV、100mAとした。得られたX線の計数率を縦軸に、各検量線用試料中のSiO添加量を横軸として、一次関数の検量線を得る。
次に、分析対象のトナー粒子を、錠剤成型圧縮機を用いて上記のようにしてペレットとし、そのSi−Kα線の計数率を測定する。そして、上記の検量線からトナー粒子中の有機ケイ素重合体含有量を求める。
<トナー粒子の表面における有機ケイ素重合体の固着率の測定方法>
イオン交換水100mLにスクロース(キシダ化学製)160gを加え、湯せんをしながら溶解させ、ショ糖濃厚液を調製する。遠心分離用チューブ(容量50mL)に上記ショ糖濃厚液を31gと、コンタミノンN(非イオン界面活性剤、陰イオン界面活性剤、有機ビルダーからなるpH7の精密測定器洗浄用中性洗剤の10質量%水溶液、和光純薬工業社製)を6mL入れ分散液を作製する。この分散液にトナー1.0gを添加し、スパチュラなどでトナーのかたまりをほぐす。
遠心分離用チューブをシェイカーにて350spm(strokes per min)、20分間振とうする。振とう後、溶液をスイングローター用ガラスチューブ(容量50mL)に入れ替えて、遠心分離機(H−9R 株式会社コクサン製)にて3500rpm、30分間の条件で分離する。トナー粒子と水溶液が十分に分離されていることを目視で確認し、最上層に分離したトナー粒子をスパチュラ等で採取する。採取したトナー粒子を含む水溶液を減圧濾過器で濾過した後、乾燥機で1時間以上乾燥する。乾燥品をスパチュラで解砕し、蛍光X線でケイ素の量を測定する。洗浄後のトナー粒子と洗浄前のトナー粒子の測定対象のケイ素量比から固着率(%)を計算する。
各元素の蛍光X線の測定は、JIS K 0119−1969に準ずるが、具体的には以下の通りである。
測定装置としては、波長分散型蛍光X線分析装置「Axios」(PANalytical社製)と、測定条件設定及び測定データ解析をするための付属の専用ソフト「SuperQ ver.4.0F」(PANalytical社製)を用いる。なお、X線管球
のアノードとしてはRhを用い、測定雰囲気は真空、測定径(コリメーターマスク径)は10mm、測定時間10秒とする。また、軽元素を測定する場合にはプロポーショナルカウンタ(PC)、重元素を測定する場合にはシンチレーションカウンタ(SC)で検出する。
測定サンプルとしては、専用のプレス用アルミリング直径10mmの中に水洗後のトナー粒子と初期のトナー粒子を約1g入れて平らにならし、錠剤成型圧縮機「BRE−32」(前川試験機製作所社製)を用いて、20MPaで60秒間加圧し、厚さ約2mmに成型したペレットを用いる。
上記条件で測定を行い、得られたX線のピーク位置をもとに元素を同定し、単位時間あたりのX線光子の数である計数率(単位:cps)からその濃度を算出する。
トナー粒子中の定量方法としては、例えばケイ素量はトナー粒子100質量部に対して、例えば、シリカ(SiO)微粉末を0.5質量部となるように添加し、コーヒーミルを用いて充分混合する。同様にして、シリカ微粉末を2.0質量部、5.0質量部となるようにトナー粒子とそれぞれ混合し、これらを検量線用の試料とする。
それぞれの試料について、錠剤成型圧縮機を用いて上記のようにして検量線用の試料のペレットを作製し、PETを分光結晶に用いた際に回折角(2θ)=109.08°に観測されるSi−Kα線の計数率(単位:cps)を測定する。この際、X線発生装置の加速電圧、電流値はそれぞれ、24kV、100mAとする。得られたX線の計数率を縦軸に、各検量線用試料中のSiO添加量を横軸として、一次関数の検量線を得る。
次に、分析対象のトナー粒子を、錠剤成型圧縮機を用いて上記のようにしてペレットとし、そのSi−Kα線の計数率を測定する。そして、上記の検量線からトナー粒子中の有機ケイ素重合体の含有量を求める。上記方法により算出した洗浄前のトナー粒子のケイ素量に対する、洗浄後のトナー粒子のケイ素量の比率を求め固着率(%)とする。
〔外添剤〕
トナー粒子は、外添剤を外添せずにトナーとすることもできるが、流動性、帯電性、クリーニング性などを改良するために、いわゆる外添剤である流動化剤、クリーニング助剤などを添加してトナーとしてもよい。
外添剤としては、例えば、アルミナ微粒子、酸化チタン微粒子などよりなる無機酸化物微粒子や、ステアリン酸アルミニウム微粒子、ステアリン酸亜鉛微粒子などの無機ステアリン酸化合物微粒子、あるいは、チタン酸ストロンチウム、チタン酸亜鉛などの無機チタン酸化合物微粒子などが挙げられる。これらは1種単独で、又は2種以上を組み合わせて用いることができる。
これら無機微粒子はシランカップリング剤やチタンカップリング剤、高級脂肪酸、シリコーンオイルなどによって、耐熱保管性の向上、環境安定性の向上のために、表面処理が行われていることが好ましい。外添剤のBET比表面積は、10m/g以上450m/g以下であることが好ましい。
BET比表面積は、BET法(好ましくはBET多点法)に従って、動的定圧法による低温ガス吸着法により求めることができる。例えば、比表面積測定装置(商品名:ジェミニ2375 Ver.5.0、(株)島津製作所製)を用いて、試料表面に窒素ガスを吸着させ、BET多点法を用いて測定することにより、BET比表面積(m2/g)を算出
することができる。
これらの種々の外添剤の添加量は、その合計が、トナー粒子100質量部に対して、好ましくは0.05質量部以上5質量部以下であり、より好ましくは0.1質量部以上3質量部以下である。また、外添剤としては種々のものを組み合わせて使用してもよい。
トナーは、トナー粒子の表面にポジ帯電粒子を有していてもよい。ポジ帯電粒子の個数平均粒子径は、0.10μm以上1.00μm以下が好ましい。より好ましくは0.20
μm以上0.80μm以下である。
この様なポジ帯電粒子を有すると、耐久使用を通して転写効率が良好であることが明らかとなった。当該粒径のポジ帯電粒子であることで、トナー粒子表面で転がり可能であり、感光ドラム1と転写ベルト31の間で摩擦されてトナーの負帯電が促進され、結果的に転写バイアス印加によるポジ化を抑制しているためと考えられる。本発明のトナーは表面が硬いことが特徴であり、ポジ帯電粒子がトナー粒子表面に固着又は埋没しにくいため、転写効率を高く維持できる。
なお、本実施形態におけるポジ帯電粒子とは日本画像学会から提供される標準キャリア(アニオン性:N−01)と混合撹拌して摩擦帯電させた時に正帯電する粒子である。
外添剤の個数平均粒子径の測定は、走査型電子顕微鏡「S−4800」(日立製作所製)を用いて行う。外添剤が外添されたトナーを観察して、最大20万倍に拡大した視野において、ランダムに100個の外添剤の一次粒子の長径を測定してその個数平均粒子径を求める。観察倍率は、外添剤の大きさによって適宜調整する。
トナー粒子の表面に、ポジ帯電粒子を存在させる手段としては種々の方法が考えられ、いかなる方法でもよいが、外添により付与する方法が好ましい。トナーのマルテンス硬度が本発明の範囲であれば、ポジ帯電粒子を均一にトナー粒子表面に存在させやすい。ポジ帯電粒子のトナー粒子に対する固着率は、5%以上75%以下であることが好ましく、5%以上50%以下であることがより好ましい。固着率がこの範囲であれば、トナー粒子及びポジ帯電粒子の摩擦帯電を促進する事によって、転写効率を高く維持することが可能となる。固着率の測定方法は後述する。
ポジ帯電粒子の種類としては、ハイドロタルサイト、酸化チタン、及びメラミン樹脂等が好ましい。この中でも特にハイドロタルサイトが好ましい。
<ポジ帯電粒子の固着率の測定方法>
有機ケイ素重合体の固着率の測定方法において、測定対象の元素をポジ帯電粒子に含まれる元素とする。例えば、ハイドロタルサイトの場合にはマグネシウムとアルミニウムを測定対象とする。それ以外は同様の方法にてポジ帯電粒子の固着率を測定する。
(クリーニングブレード)
<クリーニングブレードの構成>
図3は、感光体ドラム1の長手方向(回転軸線方向)に垂直な断面を長手方向に沿って見た本実施形態のクリーニングブレード8の模式的断面図である。
図3に示すように、本実施形態のクリーニングブレード8は、弾性部材8aと、弾性部材8aを支持する支持部材8bとから構成されている。弾性部材8aは、被クリーニング部材としての感光体ドラム1に当接される角部であるエッジEDを形成する第一の面M1および第二の面M2と、第三の面M3と、を有する。弾性部材8aにおいて感光体ドラム1の回転方向上流側に位置する面を第一の面M1、下流側の面を第2の面M2、第一の面M1の上流を第三の面M3とする。
すなわち、第一の面M1は、弾性部材8aの先端面であって、弾性部材8aにおいてエッジEDよりも、感光体ドラム1の回転方向における上流側に位置し、感光体ドラム1の周面と対向する面である。第一の面M1は、弾性部材8aの感光体ドラム1に対する当接状態によっては、エッジEDと隣接する側の領域が感光体ドラム1の周面と摺動接触する場合がある。
第二の面M2は、エッジEDを挟んで弾性部材8aの先端面に連なる側面であって、弾性部材8aにおいてエッジEDよりも、感光体ドラム1の回転方向における下流側に位置し、感光体ドラム1の周面と対向する面である。第二の面M2は、弾性部材8aの感光体ドラム1に対する当接状態によっては、弾性部材8aのたわみにより、エッジEDと隣接する側の領域が感光体ドラム1の周面と摺動接触する(図4(c)参照)。
第三の面M3は、第二の面M2とは反対側において弾性部材8aの先端面、すなわち第一の面M1に連なる側面である。
支持部材8bは、金属板金などからなる板状の支持部材であり、クリーニング枠体9に固定されている。支持部材8bは、一端がクリーニング枠体9に固定され、自由端である他端に弾性部材8aが固定され、クリーニングブレード8を構成している。支持部材8bは、L字に折り曲げられた一方の板部がクリーニング枠体9にビス等の締結具によって固定されており、他方の板部が一方の板部に対して略直交する方向に延びており、その先端に弾性部材8aが固定されている(図2参照)。支持部材8b(他方の板部)と弾性部材8aは、支持部材8bの固定端(一方の板部)から略同じ方向に一体的に延びている。その延びる方向は、感光体ドラム1周面において弾性部材8aの先端(他端)が当接する部分における、感光体ドラム1の回転方向に対して対向する方向(逆方向)となる。支持部材8b及び弾性部材8aが延びる方向は、下方から上方に向かう方向である。感光体ドラム1の回転方向は、感光体ドラム1周面において弾性部材8aの先端(他端)が当接する部分が上方から下方に向かう方向に移動する方向になる。
なお、図2のプロセスカートリッジ7の姿勢は、画像形成装置本体に装着された状態(使用時)での姿勢であり、本明細書においてプロセスカートリッジの各部材の位置関係や方向等について記載する場合はこの姿勢における位置関係や方向等を示している。すなわち、図2における紙面の上下方向が鉛直方向に対応し、紙面の左右方向が水平方向に対応する。なお、この配置構成の設定は、画像形成装置が、通常の設置状態として、水平面に設置されることを前提とした設定である。
本実施形態のクリーニングブレード8において、弾性部材8aの「自由端」とは、支持部材8bによって支持されている端部と反対側の弾性部材8aの端部である。また、弾性部材8aの「自由端部分」とは、自由端及びその近傍である。「エッジ」とは、被クリーニング部材(感光体ドラム1)に当接されるクリーニングブレード8の当接部であって、互いに交差する方向に沿ってそれぞれ延びる第一の面M1および第二の面M2の接続部に形成される稜線部である。
本実施形態のクリーニングブレード8は、金型内に支持部材8bを配置した後、ポリウレタンエラストマー等の原料組成物を上記金型内に注入し、加熱して反応硬化させ脱型することによって得ることができる。脱型した後、必要に応じて弾性部材8aの自由端の先端部及び弾性部材8aの長手方向の両端部を切断等することができる。
自由端部分(少なくとも感光体ドラム1と当接する部分において)のダイナミック硬度DHsは、0.07(mN/μm)≦DHs≦1.1(mN/μm)が好ましく、自由端部分の硬化工程を設けることで実現することができる。ダイナミック硬度DHsは、1.1より大きいと、表面の硬度が大き過ぎるため、エッジ欠けが発生する場合がある。また、ダイナミック硬度DHsが0.07未満では、表面近傍の内部の硬度が大きくても、当接幅が広くなりすぎてピーク圧が下がり、クリーニング性能が低下する場合がある。弾性部材8aの先端部に硬化領域を形成する工程は、その切断前であっても切断後でもよい。これにより弾性部材8aと支持部材8bとが一体化されたクリーニングブレード8を得ることができる。
〔支持部材8b〕
本実施形態のクリーニングブレード8の支持部材8bを構成する材料は特に限定されず、例えば以下の材料を挙げることができる。鋼板、ステンレス鋼板、亜鉛めっき鋼板、クロムフリー鋼板の如き金属材料、6−ナイロン、6,6−ナイロンの如き樹脂材料等。また、支持部材8bの構造も特に限定されない。クリーニングブレード8の弾性部材8aは、その一端が支持部材8bによって支持されている。
〔弾性部材8a〕
本実施形態のクリーニングブレード8の弾性部材8aを構成する材料としては、例えば以下の材料が挙げられる。ポリウレタンエラストマー、エチレン−プロピレン−ジエン共重合ゴム(EPDM)、アクリロニトリル−ブタジエンゴム(NBR)、クロロプレンゴム(CR)、天然ゴム(NR)、イソプレンゴム(IR)、スチレン−ブタジエンゴム(SBR)、フッ素ゴム、シリコーンゴム、エピクロロヒドリンゴム、NBRの水素化物、多硫化ゴム等。ポリウレタンエラストマーとしては、機械的特性が優れることから、ポリエステルウレタンエラストマーが好ましい。ポリウレタンエラストマーは、主にポリイソシアネート、ポリオール、鎖延長剤、触媒、その他添加剤等の原料から得られる材料である。
〔硬化領域の形成部位〕
弾性部材8aの先端部における硬化領域の形成部位は、被クリーニング部材(感光体ドラム1)に当接される第一の面M1と第二の面M2の少なくとも一方の表面である。また、該表面近傍の内部を硬化したものも用いることができる。
硬化領域は更に、弾性部材8aの先端部の他の面、即ち、第二の面M2とは反対側の面である第3の面M3、及び弾性部材8aの長手方向の両端面において形成されていてもよい。この場合、弾性部材8aの両端面部の剛性を向上させることができる。
〔弾性部材8aの形状〕
本実施形態の弾性部材8aにおいて、第一の面M1と第二の面M2とによって形成されるエッジの角度は、特に限定されないが、通常、85度以上95度以下程度である。
本実施形態の弾性部材8aにおける国際ゴム硬さ(IRHD)は、60度以上であることが好ましく、65度以上であることがより好ましい。
<クリーニングブレードの製造方法>
〔硬化領域の形成方法〕
先端部分に硬化領域を形成する方法は、硬化領域形成用の材料を塗布して硬化させることによって行うことができる。この硬化領域形成用の材料は必要に応じて希釈溶剤で希釈して使用され、ディッピング、スプレー、ディスペンサ、刷毛塗り、ローラ塗布等、公知の手段で塗布することができる。硬化領域形成用の材料としてはイソシアネート化合物等を用いることができる。また、表面よりも内部に高硬度領域を存在させるためには、硬化領域形成用の材料(イソシアネート化合物等)を十分に弾性部材8aの中に含浸する必要がある。硬化領域形成用の材料を高濃度かつ低粘度にすることで含浸は促進されるため、硬化領域形成用材料を希釈等せずに加熱することが効果的である。材料温度は60℃以上が好ましい。
以下、硬化領域形成用の材料としてイソシアネート化合物を用いた例によって、硬化領域の形成方法の一例を説明する。硬化領域形成用の材料を塗布した弾性部材8aを「前駆体」と称す場合がある。
〔硬化領域形成用の材料〕
硬化領域を形成するための材料は、弾性部材8aを硬化することが可能なもの、または、弾性部材8aの表面上に硬化領域を形成することが可能なものであれば特に限定されず
、例えばイソシアネート化合物やアクリル樹脂等が挙げられる。硬化領域を形成する材料は、溶剤等で希釈して用いてもよい。希釈に用いる溶剤としては、使用する材料を溶解するものであれば特に限定されず、例えば、トルエン、キシレン、酢酸ブチル、メチルイソブチルケトン、メチルエチルケトン等が挙げられる。
弾性部材8aの構成材料がポリエステルウレタンエラストマーである場合、硬化領域を形成する材料としては、弾性部材8aとの相溶性や弾性部材8aへの含浸性を考慮すると、ポリエステルウレタンエラストマーの構成材料であるイソシアネート化合物を用いることがより好ましい。弾性部材8aに接触させるイソシアネート化合物としては、分子中に1個以上のイソシアネート基を有するものを使用することができる。分子中に1個のイソシアネート基を有するイソシアネート化合物としては、オクタデシルイソシアネート(ODI)等の脂肪族モノイソシアネート、フェニルイソシアネート(PHI)等の芳香族モノイソシアネートなどを使用することができる。分子中に2個のイソシアネート基を有するイソシアネート化合物としては、通常、ポリウレタン樹脂の製造に用いられるものが使用でき、具体的には、以下のものを挙げることができる。2,4−トリレンジイソシアネート(2,4−TDI)、2,6−トリレンジイソシアネート(2,6−TDI)、4,4’−ジフェニルメタンジイソシアネート(MDI)、m−フェニレンジイソシアネート(MPDI)、テトラメチレンジイソシアネート(TMDI)、ヘキサメチレンジイソシアネート(HDI)、イソホロンジイソシアネート(IPDI)等。また、分子中に3個以上のイソシアネート基を有するイソシアネート化合物として、例えば、4,4’,4”−トリフェニルメタントリイソシアネート、2,4,4’−ビフェニルトリイソシアネート、2,4,4’−ジフェニルメタントリイソシアネート等が使用できる。また、2個以上のイソシアネート基を有するイソシアネート化合物は、その変性誘導体や多量体等も使用可能である。中でも、硬化領域の硬度を効率的に上げるためには、結晶性の高い、つまり構造が対称性をもっているMDIが好ましく、さらに、変性体を含んだMDIは常温で液体であるため、作業性の面からより好ましい。
上述した硬化領域は、弾性部材8aの被クリーニング部材(感光体ドラム1)に当接されるエッジEDを形成する第一の面M1と第二の面M2の両面に形成されていることが更に好ましい。クリーニング時には感光体ドラム1に第一の面M1と第二の面M2の両面が接する場合があるためである。
<クリーニングブレード8の硬度の測定方法>
本実施形態において硬化領域の硬度は、以下の方法により測定することができる。測定機としては、島津製作所製「島津ダイナミック超微小硬度計 DUH−W211S」を用いることができる。圧子としては、115°三角すい圧子を用い、以下の計算式よりダイナミック硬度を求めることができる。
ダイナミック硬度:DHs=α×P/D2
式中、αは、圧子形状による定数を、Pは、試験力(mN)を、また、Dは圧子のサンプルへの侵入量(押し込み深さ)(μm)を表す。
尚、測定条件は以下の通りである。
α:3.8584、
P:1.0mN、
負荷速度:0.03mN/sec、
保持時間:5秒、
測定環境:温度23℃、相対湿度55%、
測定サンプルのエージング:温度23℃、相対湿度55%の環境下で6時間以上放置。
(測定サンプルの調整方法)
測定サンプルの調製方法は以下の通りである。測定サンプルは、画像形成領域内における長手方向を3等分した3箇所のそれぞれの中間点(3個所)から、長手方向に4mm(中間点から両方向に2mm)、短手方向はエッジEDから2mmの寸法で切り出す。
測定サンプルの硬化領域の硬化表面(第一の面M1)に圧子が垂直に当たるようにサンプルを配置し、長手方向は端部から2mmの位置、短手方向もしくは厚み方向はエッジEDから100μmの位置のダイナミック硬度を測定する。これは当接時に第一の面M1が主に当接し、トナーを保持する主な役割を担っているためである。
この測定を3個の測定サンプルについて行い、その平均値をクリーニングブレード8の表面のダイナミック硬度DHsとする。
<クリーニングブレード8の製造方法>
(クリーニングブレード前駆体の製造)
本実施形態におけるクリーニングブレード8の製造方法は、公知の方法の中から適したものを選択すればよく、特に限定されない。また、弾性部材8aの製造方法は、金型成形法や遠心成形法等の公知の方法の中から適したものを選択すればよい。
例えば、金属成形の場合は、弾性部材8aを形成するためのキャビティを備えたクリーニングブレード用金型内に、弾性部材8aとの接触部分に接着剤を塗布した支持部材8bを配置する。一方、ポリイソシアネートとポリオールを部分的に重合したプレポリマーならびにポリオール、鎖延長剤、触媒、その他添加剤を含む硬化剤を注型機内に投入し、ミキシングチャンバー内で、一定比率にて混合、攪拌し、ポリウレタンエラストマー等の原料組成物を得る。この原料組成物を上記金型内に注入して支持部材8bの接着剤塗布面上に硬化成型物(弾性部材8a)を形成し、反応硬化後に脱型する。必要に応じて、弾性部材8aを所定の寸法や、弾性部材8aの当接部のエッジ寸法精度を確保するために適宜切断して、支持部材8bと弾性部材8aが一体的に成形されたクリーニングブレード前駆体を製造することができる。
また、弾性部材8aを遠心成形機により製造する場合は、ポリイソシアネートとポリオールを部分的に重合したプレポリマーならびにポリオール、鎖延長剤、触媒、その他添加剤を含む硬化剤を混合、攪拌して得たポリウレタンエラストマー等の原料組成物を、回転するドラム内に投入し、ポリウレタンエラストマーシートを得る。このポリウレタンエラストマーシートを、所定の寸法や、弾性部材8aの当接部のエッジ寸法精度を確保するために切断する。このようにして得られたポリウレタンエラストマーシート(弾性部材8a)を、接着剤を塗布した支持部材8bに貼り付けて、クリーニングブレード前駆体を製造することができる。
(硬化領域の形成)
硬化領域の形成は既に説明した方法によって行うことができる。即ち、先ず、クリーニングブレード前駆体の弾性部材8aの先端部の第一の面M1及び第二の面M2等に硬化領域形成用の材料を塗布する。次いで、弾性部材8aの先端部を、例えば温度80℃以上で3分間以上、加熱処理する。これにより、弾性部材8aの先端部の表面及び内部に硬化領域を形成することができる。
被クリーニング部材(感光体ドラム1)に当接するためのエッジをクリーニングブレード8に形成するために弾性部材8aを切断することが必要な場合、硬化領域の形成はその切断前でも切断後であっても構わない。なお、遠心成形の場合は支持部材8bに接合される前に硬化領域を形成することもできる。以上のようにして、クリーニングブレード8を得ることができる。
以下、製造したクリーニングブレードの例を示す。
[クリーニングブレード]
この製造例においては、図3に示す一体成型タイプのクリーニングブレードを製造して評価した。
1.支持部材8b
厚さ1.6mmの亜鉛めっき鋼板を用意し、これを加工して、断面がL字形状の支持部材8bを得た。なお、この支持部材8bの弾性部材8aが接触する箇所に、ポリウレタン樹脂接着用の接着剤(商品名;ケムロック219、ロード・コーポレーション社製)を塗布した。
2.弾性部材8a用原料の調製
表1中の成分1の欄に示す種類と量の材料を80℃で3時間、攪拌しながら反応させてイソシアネートのモル濃度が8.50%のプレポリマーを得た。このプレポリマー1000gに、表1中の成分2の欄に示す種類と量の材料からなる硬化剤212.9gを混合して、イソシアネート基に対する水酸基のモル比(α値)0.60のポリウレタンエラストマー組成物を調製し、これを弾性部材8a用原料とした。
3.支持部材8bと弾性部材8aの一体成型
上記支持部材8bの接着剤塗布箇所をキャビティ内に突出する様に配置したクリーニングブレード用成形金型内に、前記ポリウレタンエラストマー組成物を注入し、130℃で2分間硬化させた後に脱型して、弾性部材8aと支持部材8bとの一体成型体を得た。
この一体成型体を、硬化領域形成前に適宜切断して、エッジの角度90度、弾性部材8aの短手方向、厚み方向および長手方向の距離をそれぞれ7.5mm、1.6mm、237mmとした。
4.硬化領域の形成
硬化領域形成用材料として変性MDI(商品名;ミリオネートMTL、東ソー社製)を準備した。この硬化領域形成用材料を90℃に加熱し、この材料中に、支持部材8bに対向する側の表面(図3の弾性部材8aにおいて支持部材8bが接続される側面及び支持部材8bとの接触面)を除く他の5表面が浸漬するように前記一体成型体の弾性部材8aを30秒間浸漬して、各表面上に前記材料を塗工した。その後、溶剤として酢酸ブチルを浸したスポンジにて、弾性部材8aの表面上の硬化領域形成用材料を拭きとった。
このようにして、弾性部材8aの5つの表面(第一の面M1、第二の面M2、第三の面M3、長手方向の両端面)及びそれら表面下の内部に硬化領域が形成されたクリーニングブレード8を得た。なお、弾性部材8aの成型から24時間経過後に硬化領域の形成を行
った。なお、作成したクリーニングブレード8のダイナミック硬度DHsは0.3(mN/μm)であった。
(クリーニングブレードと感光体ドラムの位置関係)
上記特徴を有し、先端が微小に変形するクリーニングブレード8において、マルテンス硬度200MPa以上1100MPa以下のトナーをクリーニングするために必要な力を発生させるには、設定角18°以上26°以下、侵入量0.6mm以上1.4mm以下が好適である。
なお、図4に示すような感光体ドラム1の軸に垂直な断面上において、クリーニングブレード8の設定角、侵入量は以下のように規定される。
(1)設定角
クリーニングブレード8をその弾性部材8aのエッジが丁度仮想点Fで感光体ドラム1と接するように配置した時の感光体ドラム1の接線とクリーニングブレード8のエッジを挟む感光体ドラム回転方向下流側の平面(第二の面)のなす角度θ(図4(a))
(2)侵入量
前記仮想点Fから前記接線と90°方向にクリーニングブレード8を感光体ドラム1と当接する方向に侵入(移動)させたときの侵入量(移動量)δ(図4(b))。
感光体ドラム1がいない状態でクリーニングブレード8のエッジが上記(1)(2)の位置に配置されるようにクリーニングブレード8を固定する。固定し、感光体ドラム1と接したとき、実際のクリーニングブレード8は図4(c)のような形に変形する。
<帯電ローラ>
図5を用いて、本実施形態における帯電ローラ2の弾性層の構成について説明する。図5(a)は、本実施形態における帯電ローラ2の模式的断面図であり、図5(b)は、本実施形態における帯電ローラ2の弾性層の外周面の構成を説明する模式図である。
図5(a)に示すように、本実施形態の帯電ローラ2は、導電性支持体としての金属製の芯金221と、その外周に設けられた弾性層としての弾性体層222と、を有している。なお、弾性体層222の外側に表面層を別途配置した複層構成であってもよい。
図5(b)に示すように、弾性体層222の外周面は、マトリックス211からなる面上(海)にドメイン212からなる部分(島)が散在するような周面構造(模様)に構成されている(海島構造)。ドメイン212とマトリックス211はそれぞれ種類の異なるゴム材料で形成されている。
(弾性層)
本実施形態の弾性体層222は2種類以上のゴムから形成される半導電性ゴム組成物であることを特徴とする。なお、該弾性体層222は、原料ゴムAより主になる導電性のドメイン212と、原料ゴムBより主になる、該ドメイン212よりも高い体積抵抗率を有するマトリックス211からなる。該ドメイン212は海島構造の島相、該マトリックス211は海相を形成する。
(ドメイン)
本実施形態におけるドメイン212は、導電性を有し、原料ゴムAに導電剤が配合されたものが好ましい。
導電剤としては、カーボンブラック、グラファイト、及び酸化錫等の導電性を有する酸化物、銅、銀等の金属、酸化物や金属を粒子表面に被覆して導電性を付与した導電性粒子、第四級アンモニウム塩等のイオン交換性能を有するイオン導電剤を用いてもかまわない。イオン導電剤としては、過塩素酸リチウム、過塩素酸ナトリウム、過塩素酸カルシウム
等の無機イオン物質;ラウリルトリメチルアンモニウムクロライド、ステアリルトリメチルアンモニウムクロライド、オクタデシルトリメチルアンモニウムクロライド、ドデシルトリメチルアンモニウムクロライド、ヘキサデシルトリメチルアンモニウムクロライド、トリオクチルプロピルアンモニウムブロミド、変性脂肪族ジメチルエチルアンモニウムエトサルフェート等の陽イオン性界面活性剤;ラウリルベタイン、ステアリルべタイン、ジメチルアルキルラウリルベタイン等の両性イオン界面活性剤;過塩素酸テトラエチルアンモニウム、過塩素酸テトラブチルアンモニウム、過塩素酸トリメチルオクタデシルアンモニウム等の第四級アンモニウム塩;トリフルオロメタンスルホン酸リチウム等の有機酸リチウム塩を例示することができる。これらは、一種単独で、又は二種以上を併用してもよい。
導電剤の配合量は、原料ゴムAの100質量部に対して、一般に、1質量部以上200質量部以下にするとよい。
本実施形態の導電剤としては、使用環境、長期使用を通して、画像上にスジ状の濃度変化を発生させないために、電気抵抗値を低減させるものが好ましい。例えば、ドメインは、電子導電性の導電剤を含有することが好ましい。具体的には、ドメインは、カーボンブラック、グラファイト、及び酸化錫等の導電性を有する酸化物、銅、銀等の金属、酸化物や金属を粒子表面に被覆して導電性を付与した導電性粒子を含むことが好ましい。より好ましくは、カーボンブラックを含有することである。
原料ゴムAとしては、特に限定されるものではなく、電子写真用導電性部材の分野において公知のゴムを用いることができる。具体的には、天然ゴム、イソプレンゴム、ブタジエンゴム、スチレン−ブタジエン、ブチルゴム、エチレン−プロピレンゴム、エチレン−プロピレン−ジエン3元共重合体ゴム、シリコーンゴム等を挙げることができる。
(マトリックス)
本実施形態におけるマトリックス211は、ドメイン212よりも高い体積抵抗率を有する。
マトリックス211を形成する原料ゴムBとしては、特に限定されるものではなく、電子写真用導電性部材の分野において公知のゴムを用いることができる。具体的には、エピクロルヒドリンホモポリマー、エピクロルヒドリン−エチレンオキサイド共重合体、エピクロルヒドリン−エチレンオキサイド−アリルグリシジルエーテル3元共重合体、アクリロニトリル−ブタジエン共重合体、アクリロニトリル−ブタジエン共重合体の水素添加物、シリコーンゴム、アクリルゴム及びウレタンゴム等のゴムの単独、又は、これらのゴムの2種以上のブレンド物を挙げることができる。なお、帯電ローラ2の汚れ不良量を低減させるためには、第二の原料ゴムBに関しては、ドメイン212を形成する原料ゴムAよりも低い体積抵抗率を有することが好ましい。
原料ゴムBは極性ゴムであり、原料ゴムAは原料ゴムBと非相溶であり、原料ゴムAのSp値は原料ゴムBのSp値のより小さいことが好ましい。
一般に、2種類以上のゴムをブレンドする場合、混合条件等にもよるが、それぞれのゴムのSP値の差が大きいほど、非相溶性が強まり、海島構造が安定して形成される。
(体積抵抗率の測定)
ドメイン212とマトリックス211の体積抵抗率の測定は、原子間力顕微鏡(AFM)を用いて、導電性モードによって測定した測定値(体積抵抗率)を採用することができる。弾性層に対してマニュピレーターを用いて切り出し、切片の片面に金属蒸着を施す。金属蒸着を施した面に直流電源を接続し、電圧を印加し、切り出し切片のもう一方の面にはカンチレバーの自由端を接触させ、AFM本体を通して電流像を得る。ドメイン212、マトリックス211のそれぞれに無作為に10箇所の電流値を測定し、低電流値の上位10箇所の平均電流値を、平均膜厚とカンチレバーの接触面積から体積抵抗率を算出でき
る。また、AFMにより得られた電流像を観察することにより、ドメイン212とマトリックス211との体積抵抗率の関係を容易に評価できる。
(海島構造の形成)
一般に、非相溶系のゴムブレンドの場合、その海島構造は各々のゴム粘度や混練条件にもよるが、組成比が大きなゴムが海相になる傾向がある。従って、本実施形態のマトリックス211を形成する原料ゴムBの比率を大きくすることにより、ドメイン212を島相、マトリックス211を海相として形成させることが可能となる。
具体的には、原料ゴムB及びAのブレンド比、即ち、原料ゴムB/原料ゴムA(質量比)は95/5から40/60の範囲が好ましい。
更に、ドメイン212(島相)とマトリックス211(海相)とのブレンド比率を変化させ、ドメイン212(島相)の存在比率を変化させることにより、弾性層の体積抵抗率を変化させることができる。このため、得られる帯電ローラ2の体積抵抗率を容易に所望の値とすることができる。
(製造方法)
弾性体層222の形成方法としては、上記の導電性弾性体の原料を密閉型ミキサーで混合して、例えば、押し出し成形、射出成形、又は、圧縮成形の如き公知の方法により形成するのが好ましい。また、弾性層は、導電性の基体の上に直接導電性弾性体を成形して作製してもよいし、予めチューブ形状に成形した導電性弾性体を導電性の基体上に被覆形成させてもよい。なお、弾性層の作製後に表面を研磨して形状を整えてもよい。
(帯電ローラの電気抵抗値)
図7には、帯電ローラ2の電気抵抗測定装置の概略図を示した。帯電ローラ2は芯金221の両端部を不図示の押圧手段で円柱状のアルミドラム241に圧接され、アルミドラム241の回転駆動に伴い従動回転する。この状態で、帯電ローラ2の芯金部分221に直流電圧を、外部電源242を用いて印加し、アルミドラム241に直列に接続した基準抵抗243にかかる電圧から、帯電ローラ2の電気抵抗値を測定できる。
本実施形態における帯電ローラの電気抵抗値の目安としては、25℃、50%RH環境下で電圧200V印加時に、1×10Ω以上1×1014Ω以下であることが好ましい。なかでも、本実施形態における帯電ローラ2の電気抵抗値は、1×10Ω以上1×10Ω以下にすることがより好ましい。
本実施形態における帯電ローラ2の電気抵抗値を1×10Ω以上にした場合、下流放電量の増加が顕著となる。その結果、帯電ローラ2通過後のトナーに対し、下流放電を利用することでトナーのネガ帯電が可能となる。また、本実施形態の帯電ローラ2の電気抵抗値を1×10Ω以下にすることで、電気抵抗の不足による画像弊害の発生をより抑制できる。
また、弾性体層222の電気的特性の均一性は、帯電ローラ2を1回転させ、その間の電気抵抗値の最大値および最小値を測定し、最大値/最小値より計算される周ムラを指標とすることができる。周ムラは1.5以下が好ましい。
また、帯電ローラ2は、面移動駆動される感光体ドラム1に従動駆動させてもよいし、感光体ドラム1の面移動方向に順方向または逆方向に所定の周速度をもって積極的に回転駆動させる、すなわち、モータ等の動力源から駆動力を受けて回転するようにしてもよい。
(実施例)
以下、本発明の実施例及び比較例に使用した帯電ローラとトナーについて記述する。
なお、以下の説明において帯電ローラに付した番号2−1、2−2やトナーに付した番号1〜6は、それぞれその種類を区別するためのものであり、図や図を参照しての他の説明において付している符号「2」や「10」とは異なるものである。
<帯電ローラ2−1>
図5(b)に示すように、帯電ローラ2−1の弾性体層222は、島部を形成するドメイン212と、海部を形成するマトリックス211とから形成される。
<帯電ローラの製造方法>
以下、本発明を製造例及び実施例により更に具体的に説明するが、これらは本発明をなんら限定するものではない。なお、以下の配合における部数は全て質量部を示す。
原料ゴムAとして、エチレン−プロピレン−ジエン3元共重合体(EPT4045 三井石油化学社製)100部、導電性粒子としてケッチェンブラック(ケッチェンブラックEC600JD ケッチェンブラックインターナショナル社製)10部、加工助剤としてステアリン酸1部、酸化亜鉛3部を加圧ニーダーで混練し、マスターバッチ1を得た。
次に、原料ゴムBとして、アクリロニトリル−ブタジエン共重合体(Nipol DN219 日本ゼオン社製)75部、加工助剤として、ステアリン酸1部、酸化亜鉛3部、マスターバッチ1を25部、加硫剤として、硫黄0.5部、加硫助剤としてテトラメチルチウラムジスルフィド(ノクセラーTT 大内新興化学工業社製)1.5部、N−シクロヘキシル−2−ベンゾチアゾリルスルフェンアミド(ノクセラーCZ 大内新興化学工業社製)2.0部をオープンロールにて混合し、未加硫ゴム組成物を得た。
次に、快削鋼の表面に無電解ニッケルメッキ処理を施した全長252mm、外径6mmの丸棒を用意した。前記丸棒の両端部11mmずつを除く230mmの範囲に全周にわたって、接着剤を塗布した。接着剤は、導電性のホットメルトタイプのものを使用した。また、塗布にはロールコータ―を用いた。本実施例において、前記接着剤を塗布した丸棒を導電性の軸芯体(芯金221)として使用した。
次に、導電性の軸芯体の供給機構、未加硫ゴムローラの排出機構を有するクロスヘッド押出機を用意し、クロスヘッドには内径10.5mmのダイスを取付け、押出機とクロスヘッドを80℃に、導電性の軸芯体の搬送速度を60mm/secに調整した。この条件で、押出機より未加硫ゴム組成物を供給して、クロスヘッド内にて導電性の軸芯体(芯金221)に未加硫ゴム組成物を弾性層(弾性体層222)として被覆し、未加硫ゴムローラを得た。次に、170℃の熱風加硫炉中に前記未加硫ゴムローラを投入し、60分間加熱することで未研磨導電性弾性ローラを得た。その後、弾性層の端部を切除、除去した。最後に、弾性層の表面を回転砥石で研磨した。これによって、中央部から両端部側へ各90mmの位置における各直径が8.4mm、中央部直径が8.5mmの帯電ローラ2−1を得た。
以上の様にして得られた帯電ローラ2−1の弾性体層222から約0.1μm厚の超薄切片を作製し、ポリマーの分散状態と導電性粒子の分散状態を透過電子顕微鏡(TEM)にて観察した。この結果、帯電ローラ2−1の弾性体層222は、島部を形成するドメイン212と、海部を形成するマトリックス211とから形成されていることが確認された。また、原子間力顕微鏡(AFM)を用いて、ドメイン212とマトリックス211の体積抵抗率を測定し、マトリックス211がドメイン212より高い体積抵抗率を有することを確認した。
次に、帯電ローラ2−1の電気的特性を測定した。その結果、低温低湿環境下(15℃、10%RH、以下L/Lという)での電気抵抗値は25V印加で1.8×10Ω、100V印加で9.0×10Ω、周ムラは1.3倍であった。
<帯電ローラ2−2>
アクリロニトリル−ブタジエン共重合体(Nipol DN219 日本ゼオン社製)100部、導電性粒子としてカーボンブラック(トーカブラック♯7360SB 東海カーボン社製)35部、加工助剤として、ステアリン酸1部及び酸化亜鉛3部、加硫剤として、硫黄0.5部、加硫助剤としてテトラメチルチウラムジスルフィド(ノクセラーTT
大内新興化学工業社製)1.5部、N−シクロヘキシル−2−ベンゾチアゾリルスルフェンアミド(ノクセラーCZ 大内新興化学工業社製)2.0部をオープンロールにて混合し、未加硫ゴム組成物を得た。以下、帯電ローラ2−1と同様にして帯電ローラ2−2を得た。
次に、帯電ローラ2−2の電気的特性を測定した。その結果、L/Lでの電気抵抗値は25V印加で9.3×10Ω、100V印加で3.2×10Ω、周ムラは2.1倍であった。
以下、製造したトナー1〜6を示す。
[トナー1]
(水系媒体1の調製工程)
反応容器中のイオン交換水1000.0部に、リン酸ナトリウム(ラサ工業社製・12水和物)14.0部を投入し、窒素パージしながら65℃で1.0時間保温した。
T.K.ホモミクサー(特殊機化工業株式会社製)を用いて、12000rpmにて攪拌しながら、イオン交換水10.0部に9.2部の塩化カルシウム(2水和物)を溶解した塩化カルシウム水溶液を一括投入し、分散安定剤を含む水系媒体を調製した。さらに、水系媒体に10質量%塩酸を投入し、pHを5.0に調整し、水系媒体1を得た。
(表層用有機ケイ素化合物の加水分解工程)
撹拌機、温度計を備えた反応容器に、イオン交換水60.0部を秤量し、10質量%の塩酸を用いてpHを3.0に調整した。これを撹拌しながら加熱し、温度を70℃にした。その後、表層用有機ケイ素化合物であるメチルトリエトキシシラン40.0部を添加して2時間以上撹拌して加水分解を行った。加水分解の終点は目視にて油水が分離せず1層になったことで確認を行い、冷却して表層用有機ケイ素化合物の加水分解液を得た。
(重合性単量体組成物の調製工程)
・スチレン :60.0部
・C.I.ピグメントブルー15:3 : 6.5部
前記材料をアトライタ(三井三池化工機株式会社製)に投入し、さらに直径1.7mmのジルコニア粒子を用いて、220rpmで5.0時間分散させて、顔料分散液を調製した。前記顔料分散液に下記材料を加えた。
・スチレン :20.0部
・n−ブチルアクリレート :20.0部
・架橋剤(ジビニルベンゼン) : 0.3部
・飽和ポリエステル樹脂 : 5.0部
(プロピレンオキサイド変性ビスフェノールA(2モル付加物)とテレフタル酸との重縮合物(モル比10:12)、ガラス転移温度Tg=68℃、重量平均分子量Mw=10000、分子量分布Mw/Mn=5.12)
・フィッシャートロプシュワックス(融点78℃) : 7.0部
上記材料を加えた前記顔料分散液を65℃に保温し、T.K.ホモミクサー(特殊機化工業株式会社製)を用いて、500rpmにて均一に溶解、分散し、重合性単量体組成物を調製した。
(造粒工程)
水系媒体1の温度を70℃、T.K.ホモミクサーの回転数を12000rpmに保ちながら、水系媒体1中に重合性単量体組成物を投入し、重合開始剤であるt−ブチルパーオキシピバレート9.0部を添加した。そのまま該撹拌装置にて12000rpmを維持しつつ10分間造粒した。
(重合工程)
造粒工程の後、攪拌機をプロペラ撹拌羽根に換え150rpmで攪拌しながら70℃を保持して5.0時間重合を行い、85℃に昇温して2.0時間加熱することで重合反応を行ってコア粒子を得た。スラリーの温度を55℃に冷却してpHを測定したところ、pH=5.0だった。55℃で撹拌を継続したまま、表層用有機ケイ素化合物の加水分解液を20.0部添加してトナー粒子の表層形成を開始した。そのまま30分保持した後に、水酸化ナトリウム水溶液を用いてスラリーを縮合完結用にpH=9.0に調整して更に300分保持し、表層を形成させた。
(洗浄、乾燥工程)
重合工程終了後、トナー粒子のスラリーを冷却し、トナー粒子のスラリーに塩酸を加えpH=1.5以下に調整して1時間撹拌放置してから加圧ろ過器で固液分離し、トナーケーキを得た。これをイオン交換水でリスラリーして再び分散液とした後に、前述のろ過器で固液分離した。リスラリーと固液分離とを、ろ液の電気伝導度が5.0μS/cm以下となるまで繰り返した後に、最終的に固液分離してトナーケーキを得た。
得られたトナーケーキは気流乾燥機フラッシュジェットドライヤー(セイシン企業製)にて乾燥を行い、更にコアンダ効果を利用した多分割分級機を用いて微粗粉をカットしてトナー粒子1を得た。乾燥の条件は吹き込み温度90℃、乾燥機出口温度40℃、トナーケーキの供給速度はトナーケーキの含水率に応じて出口温度が40℃から外れない速度に調整した。
トナー粒子1の断面TEM観察においてケイ素マッピングを行い、表層にケイ素原子が存在することを確認した。以降のトナー製造例においても、有機ケイ素重合体を含有する表層は同様のケイ素マッピングで表層にケイ素原子が存在することを確認した。本製造例においては、得られたトナー粒子1を外添せずにそのままトナー1として用いた。
トナー1について行った評価について、その方法を以下に述べる。
<マルテンス硬度の測定>
「トナーのマルテンス硬度の測定方法」で述べた方法により測定を行った。
<固着率の測定方法>
「トナー粒子の表面における有機ケイ素重合体の固着率の測定方法」にて述べた方法により測定を行った。
[トナー2、トナー3]
(重合工程)における加水分解液を添加する時の条件、及び添加後の保持時間を表2のように変えた以外は、トナー1と同様の方法でトナーを作製した。なお、スラリーのpH調整は塩酸及び水酸化ナトリウム水溶液で行った。得られたトナー2、トナー3の測定結果を表2に示す。
[トナー4]
トナー1に対して、表3のように外添を行い、トナー4を作製した。外添の方法は、トナー粒子100部に対し、表3に記載の部数の外添剤をSUPERMIXER PICC
OLO SMP−2(株式会社カワタ製)に投入して、3000rpmで10分間混合を行った。得られたトナーの測定結果を表2に示す。
[トナー5]
(重合工程)における加水分解液を添加する時の条件、及び添加後の保持時間を表2のように変えた以外は、トナー1と同様の方法でトナー5を作製した。得られたトナーの評価結果を表2に示す。
[トナー6]
(表層用有機ケイ素化合物の加水分解工程)は行わなかった。代わりに、表層用有機ケイ素化合物のメチルトリエトキシシラン30部をモノマーのまま(重合性単量体組成物の調製工程)で添加した。
(重合工程)では70℃に冷却してpH測定を行った後、加水分解液の添加を行わなかった。70℃で撹拌を継続したまま、水酸化ナトリウム水溶液を用いてスラリーを縮合完結用にpH=9.0に調整して更に300分保持して表層を形成させた。
得られたトナー6の評価結果を表2に示す。

表中、DHT−4A(登録商標)は協和化学工業(株)製である。
実施例1〜5、比較例1〜5として表4に示すようなトナー1〜6と、帯電ローラ2−1及び2−2と、クリーニングブレードの侵入量0.6mmと1.0mmの組み合わせを準備した。
(実験)
(トルク)
プロセスカートリッジ7の現像剤収容室18bにトナー100gを充填した。同じく、感光体ユニット13に実施例1〜5、比較例1〜5のクリーニングブレードを取り付け、設定角θを22°に設定した。
室温15℃、相対湿度10%Rh環境で、現像ローラ当接状態において、感光体表面速度296mm/s、現像ローラの表面速度425mm/sで回転させながら、帯電ローラに−1kV、現像ローラを接地、供給ローラと規制部材に−100Vを印加した。
回転開始から30秒経過後から2秒間の感光体駆動トルクを測定した。評価は以下のように行った。
A:低トルク性良好 0.07N・m以下
B:低トルク効果あり 0.07N・mを超え0.12N・m以下
C:低トルク効果が極軽微 0.12N・mを超える
評価A、Bであったものを低トルク化の効果ありとした。結果を表4「トルク」の列に示す。
(帯電部材汚染)
画像形成装置100により、室温15℃、相対湿度10%Rh環境で、印字率1%の30,000枚の画像形成を行った。画像形成2枚ごとに間欠時間3秒を設けた。
感光体表面速度296mm/s、現像ローラ表面速度425mm/sとし、感光体表面電位−500V、現像ローラの印加電圧−350V、供給ローラの電圧−450V、規制部材の電圧−450Vとした。
30,000枚の画像形成後の帯電ローラの汚れ具合を評価した。評価は以下のように行った。
A:目視で汚れなく、画像への影響なし
B:目視で汚れあるが、画像への影響なし
C:目視で汚れており、画像への影響もある
画像への影響とは、ハーフトーン画像の記録材搬送方向に帯電ローラの汚染に起因するスジの発生があるものを影響ありとしている。
結果を表4「帯電部材汚染」の列に示す。画像への影響がないA、Bを発明の効果ありとした。
実施例1〜5においてはトルクが0.12N・m以下となっており、低トルク化できることが分かった。
また、トナー粒子の表面における有機ケイ素重合体の固着率を90%以上にすることで、図6(a)に示すように、クリーニングブレード8と像担持体である感光体ドラム1の接触部でトナー粒子から剥がれた有機ケイ素重合体が少ない状態となる。
一方、トナーのマルテンス硬度が200MPa以上1100MPa以下の、変形しにくいトナー粒子(T)がクリーニングブレード8と感光体ドラム1の間に挟まれたときにスペーサとして作用し、接触面積が減らされ、トルクをより低減することができる。
この状態で本実施例のクリーニングブレード(ダイナミック硬度DHs=0.3mN/μm)の侵入量を1.0mmとすることでトナー粒子に十分な力を加えることができ、すり抜けが起こらず、帯電部材の汚れを抑制できた。更に、クリーニングブレードの当接圧を低くした場合(侵入量0.6mm)、多少すり抜けが起きるものの海島構造の帯電ロ
ーラのため、多少の汚れが付着しても画像への影響がなかった。
この理由について説明する。海島構造を有する帯電ローラの場合、体積抵抗率が高い海相よりも体積抵抗率が低い島相の表面電位が高い(マイナス側)。トナー粒子から剥がれた有機ケイ素重合体の極性は負極性であるため、電気的に表面電位が低い海相に汚れが付着しやすかった。しかし、海相は体積抵抗率が高く放電しにくいため、画像に影響を与えにくい。
一方、島相も感光体ドラム1と当接した際に一時的に汚れが付着する場合がある。しかし、帯電ローラはクラウン形状をしているため感光体ドラム1との周速差により、再帯電することで感光体ドラムに戻すことができた。以上の理由から、海相に多少の汚れが付着しても画像への影響がなかった。
比較例1では、有機ケイ素重合体の固着率が低いため、有機ケイ素重合体によってクリーニングブレードとトナーと感光体ドラムで形成されるすき間が埋められてしまい、接触面積が増して実施例1よりもトルクが少し高くなった。また、クリーニングブレードの当接圧(侵入量)が低く固着率も低いため、多数枚を出力したときにトナー粒子から剥がれた有機ケイ素重合体表層粒子が帯電部材の体積抵抗率の高い部分に付着、滞留し、感光体ドラムを傷つけ、トナーすり抜けが発生した。
比較例2では、トナーのマルテンス硬度が低く、また有機ケイ素の固着率が低いため、実施例1よりもトルクが少し高くなった。
トナーのマルテンス硬度が200MPa以下であるとトナーは図6(b)に示すように接触部で扁平に変形し、トナーを介した帯電ローラの弾性体層と感光体ドラムの接触面積が増えトルクが増大する。また、図6(c)に示すように、クリーニング部やその他の場所でトナー粒子から剥がれた有機ケイ素重合体によってクリーニングブレードとトナーと感光体ドラムで形成されるすき間が埋められてしまい(図6中Mで表記)、接触面積が増してトルクが高くなってしまったと考えられる。
比較例3では比較例2よりもクリーニングブレードの当接圧(侵入量)が高いため、ドラム傷起因の画像不良は発生しなかったものの、トルクが高くなった。
比較例4、5ではクリーニングブレードの当接圧が低いためトルクは良好だった。海島構造を有する帯電ローラでは体積抵抗率の高い部分に選択的に汚れが付着する。一方、比較例4、5では、海島構造を有しない帯電ローラ2−2を使用したため、トナー粒子から剥がれた有機ケイ素重合体が帯電に寄与する帯電部材全域に付着し、帯電部材の汚れが発生した。
以上述べたように、本発明によれば、海島構造を有する帯電部材表面の特徴を活かしつつ、感光体ドラムとクリーニングブレードの接触面積を小さく保つことができ、かつ、接触部のトナーに十分な保持圧力を加えることができる。これにより、感光体の駆動トルクを低減しつつ、帯電部材汚染の発生を抑制しうるプロセスカートリッジ提供することができる。
1:感光体ドラム、2:帯電ローラ、30:スキャナユニット、3:現像ユニット、31:中間転写ベルト、8:クリーニング部材、7:プロセスカートリッジ、32:一次転写ローラ、33:二次転写ローラ、34:定着装置、35:中間転写ベルトクリーニング装置、12:記録材、13:感光体ユニット、9:クリーニング枠体、4:現像ローラ、18a:現像室、18b:トナー収容室、5:トナー供給ローラ、6:現像ブレード、22:攪拌搬送部材、10:トナー、100:画像形成装置、211:マトリックス、212
:ドメイン、221:芯金、222:弾性層、241:アルミドラム、242:外部電源、243:基準抵抗

Claims (7)

  1. 画像形成装置に用いられるプロセスカートリッジであって、
    静電潜像が現像剤により現像されて形成される現像剤像を担持する像担持体と、
    前記像担持体に接触し、前記静電潜像の形成のために前記像担持体を帯電する帯電部材と、
    前記像担持体の表面に当接して前記表面をクリーニングするクリーニング部材と、
    を備え、
    前記帯電部材は、導電性支持体と、前記像担持体と接触する弾性層と、を有し、
    前記弾性層は、マトリックスと、導電性を有するドメインとを含んでなる半導電性ゴム組成物を含有し、
    前記半導電性ゴム組成物は、前記ドメインが島相を形成し、前記マトリックスが海相を形成する海島構造を有し、
    前記マトリックスは前記ドメインより高い体積抵抗率を有し、
    前記現像剤は、トナー粒子を有するトナーを含有し、
    前記トナー粒子は、有機ケイ素重合体を含有する表層を有し、
    前記有機ケイ素重合体は、下記式(1)で表される構造を有し、
    前記トナー粒子の表面における前記有機ケイ素重合体の固着率が90%以上であることを特徴とするプロセスカートリッジ。
    R−SiO3/2 式(1)
    (前記Rは、炭素数が1以上、6以下の炭化水素基を示す。)
  2. 画像形成装置に用いられるプロセスカートリッジであって、
    像担持体と、
    前記像担持体に接触し、前記像担持体を帯電する帯電部材と、
    帯電された前記像担持体に形成された潜像を現像するために前記像担持体へ現像剤を供給する現像手段と、
    前記像担持体の表面に当接して前記表面をクリーニングするクリーニング部材と、
    を備え、
    前記帯電部材は、導電性支持体と、前記像担持体と接触する弾性層と、を有し、
    前記弾性層は、マトリックスと、導電性を有するドメインとを含んでなる半導電性ゴム組成物を含有し、
    前記半導電性ゴム組成物は、前記ドメインが島相を形成し、前記マトリックスが海相を形成する海島構造を有し、
    前記マトリックスは前記ドメインより高い体積抵抗率を有し、
    前記現像剤は、トナー粒子を有するトナーを含有し、
    前記トナー粒子は、有機ケイ素重合体を含有する表層を有し、
    前記有機ケイ素重合体は、下記式(1)で表される構造を有し、
    前記トナー粒子の表面における前記有機ケイ素重合体の固着率が90%以上であることを特徴とするプロセスカートリッジ。
    R−SiO3/2 式(1)
    (前記Rは、炭素数が1以上、6以下の炭化水素基を示す。)
  3. 前記トナーは、最大荷重2.0×10−4Nの条件で測定したときのマルテンス硬度が、200MPa以上1100MPa以下である、請求項1又は2に記載のプロセスカートリッジ。
  4. 前記有機ケイ素重合体のケイ素原子に直接結合している炭素原子が、ケイ素原子1個当たり、平均1個以上3個以下である、請求項1〜3のいずれか1項に記載のプロセスカートリッジ。
  5. 前記ドメインが導電性粒子を含む、請求項1〜4のいずれか1項に記載のプロセスカートリッジ。
  6. 前記弾性層は、前記像担持体と接触する周面が、前記マトリックスからなる面上に前記ドメインからなる部分が散在するように構成されている、請求項1〜5のいずれか1項に記載のプロセスカートリッジ。
  7. 装置本体と、
    前記装置本体に対して着脱可能な、請求項1〜6のいずれか1項に記載のプロセスカートリッジと、
    を備えたことを特徴とする画像形成装置。
JP2018213893A 2018-11-14 2018-11-14 プロセスカートリッジ及び画像形成装置 Active JP7250487B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2018213893A JP7250487B2 (ja) 2018-11-14 2018-11-14 プロセスカートリッジ及び画像形成装置
EP19208116.4A EP3657261B1 (en) 2018-11-14 2019-11-08 Process cartridge and image forming apparatus
US16/679,524 US11003106B2 (en) 2018-11-14 2019-11-11 Process cartridge and image forming apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018213893A JP7250487B2 (ja) 2018-11-14 2018-11-14 プロセスカートリッジ及び画像形成装置

Publications (2)

Publication Number Publication Date
JP2020079907A true JP2020079907A (ja) 2020-05-28
JP7250487B2 JP7250487B2 (ja) 2023-04-03

Family

ID=68501505

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018213893A Active JP7250487B2 (ja) 2018-11-14 2018-11-14 プロセスカートリッジ及び画像形成装置

Country Status (3)

Country Link
US (1) US11003106B2 (ja)
EP (1) EP3657261B1 (ja)
JP (1) JP7250487B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7512164B2 (ja) 2019-10-18 2024-07-08 キヤノン株式会社 電子写真装置、プロセスカートリッジ、及びカートリッジセット

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10955792B2 (en) * 2018-11-14 2021-03-23 Canon Kabushiki Kaisha Process cartridge including photosensitive member having multiple grooves and image forming apparatus including the process cartridge
JP7297425B2 (ja) * 2018-11-14 2023-06-26 キヤノン株式会社 現像装置、プロセスカートリッジ及び画像形成装置
US11112719B2 (en) * 2019-10-18 2021-09-07 Canon Kabushiki Kaisha Process cartridge and electrophotographic apparatus capable of suppressing lateral running while maintaining satisfactory potential function
JP7527908B2 (ja) * 2020-09-11 2024-08-05 キヤノン株式会社 現像装置、プロセスカートリッジおよび画像形成装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010077183A (ja) * 2008-09-24 2010-04-08 Ricoh Co Ltd 樹脂粒子、トナー並びにこれを用いた画像形成方法及びプロセスカートリッジ
JP2012163954A (ja) * 2011-01-21 2012-08-30 Canon Inc 導電性ゴム弾性体、帯電部材および電子写真装置
JP2016021041A (ja) * 2013-10-09 2016-02-04 キヤノン株式会社 トナー
JP2017016129A (ja) * 2015-06-29 2017-01-19 キヤノン株式会社 磁性トナー、画像形成装置および画像形成方法
JP2017072833A (ja) * 2015-10-08 2017-04-13 キヤノン株式会社 電子写真用の導電性部材、その製造方法、プロセスカートリッジ及び電子写真装置
JP2017138462A (ja) * 2016-02-03 2017-08-10 キヤノン株式会社 トナー
JP2017207746A (ja) * 2016-05-12 2017-11-24 キヤノン株式会社 トナー

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3639773B2 (ja) 2000-06-19 2005-04-20 キヤノン株式会社 半導電性ゴム組成物、帯電部材、電子写真装置、プロセスカートリッジ
JP2003280255A (ja) 2002-03-25 2003-10-02 Seiko Epson Corp 画像形成装置
JP6107497B2 (ja) 2013-07-17 2017-04-05 富士ゼロックス株式会社 画像形成装置、及びプロセスカートリッジ
JP6165017B2 (ja) * 2013-10-09 2017-07-19 キヤノン株式会社 トナー
US10503090B2 (en) * 2017-05-15 2019-12-10 Canon Kabushiki Kaisha Toner

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010077183A (ja) * 2008-09-24 2010-04-08 Ricoh Co Ltd 樹脂粒子、トナー並びにこれを用いた画像形成方法及びプロセスカートリッジ
JP2012163954A (ja) * 2011-01-21 2012-08-30 Canon Inc 導電性ゴム弾性体、帯電部材および電子写真装置
JP2016021041A (ja) * 2013-10-09 2016-02-04 キヤノン株式会社 トナー
JP2017016129A (ja) * 2015-06-29 2017-01-19 キヤノン株式会社 磁性トナー、画像形成装置および画像形成方法
JP2017072833A (ja) * 2015-10-08 2017-04-13 キヤノン株式会社 電子写真用の導電性部材、その製造方法、プロセスカートリッジ及び電子写真装置
JP2017138462A (ja) * 2016-02-03 2017-08-10 キヤノン株式会社 トナー
JP2017207746A (ja) * 2016-05-12 2017-11-24 キヤノン株式会社 トナー

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7512164B2 (ja) 2019-10-18 2024-07-08 キヤノン株式会社 電子写真装置、プロセスカートリッジ、及びカートリッジセット

Also Published As

Publication number Publication date
EP3657261B1 (en) 2022-08-24
US20200150553A1 (en) 2020-05-14
JP7250487B2 (ja) 2023-04-03
US11003106B2 (en) 2021-05-11
EP3657261A1 (en) 2020-05-27

Similar Documents

Publication Publication Date Title
JP7250487B2 (ja) プロセスカートリッジ及び画像形成装置
JP5473540B2 (ja) 帯電部材、プロセスカートリッジ及び電子写真装置
EP3660589B1 (en) Process cartridge and image forming apparatus
JP4942232B2 (ja) 導電部材、プロセスカートリッジおよび電子写真画像形成装置
JP7434624B2 (ja) カートリッジ
CN114556230B (zh) 电子照相用导电性构件、处理盒和电子照相图像形成装置
CN104871092B (zh) 电子照相用构件、处理盒和电子照相设备
JP2008276023A (ja) 帯電部材、プロセスカートリッジ及び電子写真画像形成装置
US10852662B2 (en) Developing device, process cartridge and image forming apparatus
WO2022230638A1 (ja) 電子写真用部材とその製造方法、プロセスカートリッジ及び電子写真画像形成装置
CN101276161B (zh) 图像承载体和成像设备
CN109932880B (zh) 盒和成像装置
JP5173247B2 (ja) 帯電部材、プロセスカートリッジ及び電子写真装置
US10877395B2 (en) Developing device, process cartridge and image forming apparatus
JP2008089656A (ja) 現像カートリッジ
JP7210236B2 (ja) 現像装置、画像形成装置、及びプロセスカートリッジ
JP2020086195A (ja) プロセスカートリッジおよび画像形成装置
JP7346162B2 (ja) 現像装置、プロセスカートリッジ及び画像形成装置
JP4979460B2 (ja) 現像ローラ、それを用いた電子写真プロセスカートリッジ及び画像形成装置
JP2020079903A (ja) 現像装置、プロセスカートリッジ及び画像形成装置
JP2024017062A (ja) クリーニングブレード、クリーニング装置、プロセスカートリッジ、及び画像形成装置
JP2008015075A (ja) 現像ローラ
JP2002229326A (ja) 現像ローラ

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211105

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220929

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221004

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230221

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230322

R151 Written notification of patent or utility model registration

Ref document number: 7250487

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151