JP2020065037A - 発光素子および発光装置 - Google Patents

発光素子および発光装置 Download PDF

Info

Publication number
JP2020065037A
JP2020065037A JP2019011449A JP2019011449A JP2020065037A JP 2020065037 A JP2020065037 A JP 2020065037A JP 2019011449 A JP2019011449 A JP 2019011449A JP 2019011449 A JP2019011449 A JP 2019011449A JP 2020065037 A JP2020065037 A JP 2020065037A
Authority
JP
Japan
Prior art keywords
external electrode
electrode
light emitting
short side
semiconductor layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019011449A
Other languages
English (en)
Other versions
JP6635206B1 (ja
Inventor
晃啓 中村
Akihiro Nakamura
晃啓 中村
恵滋 榎村
Keiji Enomura
恵滋 榎村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nichia Chemical Industries Ltd
Original Assignee
Nichia Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nichia Chemical Industries Ltd filed Critical Nichia Chemical Industries Ltd
Priority to EP19157196.7A priority Critical patent/EP3528296B1/en
Priority to CN201910116248.7A priority patent/CN110165033A/zh
Priority to TW108105063A priority patent/TWI788522B/zh
Priority to KR1020190018218A priority patent/KR102581957B1/ko
Priority to US16/277,243 priority patent/US10644203B2/en
Application granted granted Critical
Publication of JP6635206B1 publication Critical patent/JP6635206B1/ja
Priority to US16/835,725 priority patent/US10923632B2/en
Publication of JP2020065037A publication Critical patent/JP2020065037A/ja
Priority to US17/129,069 priority patent/US11393954B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Led Device Packages (AREA)
  • Led Devices (AREA)

Abstract

【課題】信頼性の向上された発光素子を提供する。【解決手段】発光素子は、第1領域R1および第2領域R2を有する第1半導体層120n、および第2領域の上方の第2半導体層120pを含む半導体構造112Aであって、第1領域は、それぞれが外周部Ppから第2領域に延出した延出部Epを含む、半導体構造と、各延出部に位置する第1貫通孔141および第2領域に位置する第2貫通孔142を有する第1絶縁層140と、第3貫通孔163および第4貫通孔164を有する第2絶縁層160と、第1貫通孔および第3貫通孔を介して第1半導体層に接続された第1外部電極170Anと、第2貫通孔および第4貫通孔を介して第2半導体層に接続された第2外部電極170Apとを備え、各延出部は、第1半導体層の上面のうち第1外部電極の角部と重なる位置以外の箇所および第2外部電極の角部と重なる位置以外の箇所に配置されている。【選択図】図3

Description

本開示は、発光素子および発光装置に関する。
光の取り出される発光面が長方形状の発光装置が知られている。このような発光装置は、例えば、上面視において長方形状の外形を有する発光素子を含み、典型的には、全体として直方体形状の外観を有する。直方体形状の外観を有する発光装置は、例えば、導光板と組み合わされて液晶表示装置のバックライトユニットに用いられる。下記の特許文献1は、長方形状のサファイア基板上にn型半導体層およびp型半導体層が積層された構造を有するIII族窒化物半導体発光素子を開示している。
特開2016−143682号公報
本開示は、信頼性の向上された発光素子を提供する。
本開示の実施形態による発光素子は、第1領域および前記第1領域の内側に位置する第2領域を有する第1導電型の第1半導体層、前記第2領域上に位置する活性層、ならびに、前記活性層上に位置する第2導電型の第2半導体層を含む半導体構造であって、前記第1領域は、上面視において前記第2領域の外周に位置する外周部と、それぞれが前記外周部から前記第2領域に延出した複数の延出部とを含む、半導体構造と、前記第2半導体層の上面を覆う光反射性電極と、前記半導体構造および前記光反射性電極を覆い、前記第1領域の各延出部に位置する第1貫通孔および前記第2領域に位置する第2貫通孔を有する第1絶縁層と、前記第1絶縁層上に位置し、前記第1貫通孔を介して前記第1半導体層に電気的に接続された第1内部電極と、前記第1絶縁層上に位置し、前記第2貫通孔を介して前記光反射性電極に電気的に接続された第2内部電極と、前記第1内部電極および前記第2内部電極を覆い、前記第1内部電極および前記第2内部電極を互いに電気的に絶縁する第2絶縁層であって、前記第1内部電極上に位置する第3貫通孔および前記第2内部電極上に位置する第4貫通孔を有する第2絶縁層と、前記第3貫通孔を介して前記第1内部電極に電気的に接続された複数の角部を有する第1外部電極と、前記第4貫通孔を介して前記第2内部電極に電気的に接続された複数の角部を有する第2外部電極とを備え、前記第1領域の前記複数の延出部のそれぞれは、上面視において前記第1半導体層の上面のうち前記第1外部電極の前記複数の角部と重なる位置以外の箇所および前記第2外部電極の前記複数の角部と重なる位置以外の箇所に配置されている。
本開示の実施形態によれば、信頼性の向上された発光素子が提供される。
本開示のある実施形態による発光装置の外観の一例を示す斜視図である。 図1のII−II断面を示す模式的な断面図である。 本開示の実施形態による発光素子を下面側から見た模式的な透視図である。 図3のIV−IV断面を示す模式的な断面図である。 図3のV−V断面を示す模式的な断面図である。 p型半導体層120pおよびn型半導体層120nの配置関係を説明するための模式的な平面図である。 光反射性電極130上に第1絶縁層140を形成した状態を示す模式的な平面図である。 第1絶縁層140上に第1内部電極150nおよび第2内部電極150pを形成した状態を示す模式的な平面図である。 第1内部電極150nおよび第2内部電極150p上にさらに第2絶縁層160を形成した状態を示す模式的な平面図である。 発光素子100Aのうちの半導体構造112Aと、第1外部電極170Anおよび第2外部電極170Apとを取り出して模式的に示す平面図である。 本開示のある実施形態による発光装置の外観の他の一例を示す斜視図である。 図11のXII−XII断面を示す模式的な断面図である。 外部電極の角部と重なる位置に、複数の延出部と、絶縁層に設けられた複数の貫通孔とが配置された発光素子を比較例として示す模式的な透視図である。 図13のXIV−XIV断面を示す模式的な断面図である。 第1外部電極170Anおよび第2外部電極170Apの形状と複数の延出部Epの配置との間の関係の一例を説明するための図である。 本開示の実施形態による発光素子の他の一例を示す模式的な透視図である。 図16に示す発光素子100B中の半導体構造と、第1外部電極170Bnおよび第2外部電極170Bpとを取り出して示す模式的な平面図である。 本開示の実施形態による発光素子のさらに他の一例を示す模式的な透視図である。 参考例1のサンプルに関する、せん断応力の絶対値の計算結果を示す図である。 参考例2のサンプルに関する、せん断応力の絶対値の計算結果を示す図である。 参考例3のサンプルに関する、せん断応力の絶対値の計算結果を示す図である。 参考例4のサンプルに関する、せん断応力の絶対値の計算結果を示す図である。
以下、図面を参照しながら、本開示の実施形態を詳細に説明する。以下の実施形態は、例示であり、本開示による発光装置は、以下の実施形態に限られない。例えば、以下の実施形態で示される数値、形状、材料、ステップ、そのステップの順序などは、あくまでも一例であり、技術的に矛盾が生じない限りにおいて種々の改変が可能である。
図面が示す構成要素の寸法、形状等は、わかり易さのために誇張されている場合があり、実際の発光装置における寸法、形状および構成要素間の大小関係を反映していない場合がある。また、図面が過度に複雑になることを避けるために、一部の要素の図示を省略することがある。
以下の説明において、実質的に同じ機能を有する構成要素は共通の参照符号で示し、説明を省略することがある。以下の説明では、特定の方向または位置を示す用語(例えば、「上」、「下」、「右」、「左」およびそれらの用語を含む別の用語)を用いる場合がある。しかしながら、それらの用語は、参照した図面における相対的な方向または位置をわかり易さのために用いているに過ぎない。参照した図面における「上」、「下」等の用語による相対的な方向または位置の関係が同一であれば、本開示以外の図面、実際の製品、製造装置等において、参照した図面と同一の配置でなくてもよい。本開示において「平行」とは、特に他の言及がない限り、2つの直線、辺、面等が0°から±5°程度の範囲にある場合を含む。また、本開示において「垂直」または「直交」とは、特に他の言及がない限り、2つの直線、辺、面等が90°から±5°程度の範囲にある場合を含む。
(発光素子および発光装置の実施形態)
図1は、本開示のある実施形態による発光装置の外観の一例を示し、図2は、図1のII−II断面を模式的に示す。参考のために、図1および図2には、互いに直交するX軸、Y軸およびZ軸が示されている。本開示の他の図面においても、X軸、Y軸およびZ軸を示すことがある。
図1および図2に示す発光装置300は、概略的には、透光性の第1基板および第1基板上の半導体構造を含む発光素子100と、発光素子100を支持する第2基板としての支持体200とを有する。図1に例示する構成において、発光素子100は、光反射性部材190に覆われている。発光素子100からの光は、発光素子100の前面に配置された透光部材182を介して概ね図のZ方向に出射される。
図1および図2に示すように、支持体200は、絶縁性の基台230と、基台230上の第1配線210および第2配線220とを含む。また、図2に示すように、発光素子100は、概略的には、上述の第1基板および半導体構造をその一部に含む発光構造110と、発光構造110に電流を供給するための第1外部電極170Anおよび第2外部電極170Apとを有する。図2に模式的に示すように、支持体200の第1配線210および第2配線220は、基台230の上面230aから下面230bを覆うように設けられている。第1配線210は、発光素子100の第1外部電極170Anに接続され、第2配線220は、第2外部電極170Apに接続されている。第1配線210および第2配線220は、それぞれ、第1外部電極170Anおよび第2外部電極170Apを介して、発光素子100の発光構造110に電気的および物理的に接続される。発光構造110の詳細は、後述する。
図2に例示する構成において、発光装置300は、発光素子100の上方に波長変換部材180および透光部材182を有する。波長変換部材180は、例えば、シリコーン樹脂中にYAG系蛍光体等の粒子が分散された板状の部材であり、透光部材182は、例えば、主にシリコーン樹脂から形成された板状の部材である。波長変換部材180と発光素子100との間には、導光部材174が配置されている。導光部材174は、例えばシリコーン樹脂から形成された透光性の部材である。図示するように、導光部材174の一部は、発光構造110の側面110cを覆う。上述の光反射性部材190は、支持体200上の構造を取り囲み、図2に模式的に示すように、光反射性部材190からは透光部材182の上面182aが露出されている。透光部材182の上面182aは、発光装置300の上面300aの一部を形成している。光反射性部材190は、例えば、シリコーン樹脂を含む樹脂材料を母材とし、光散乱性のフィラーが分散された部材である。
以下、図面を参照しながら、発光素子100の詳細を説明する。図3は、本開示の実施形態による発光素子を下面側から見た模式的な透視図であり、図4および図5は、それぞれ、図3のIV−IV断面およびV−V断面を模式的に示す。
図3〜図5に示す発光素子100Aは、図1および図2を参照して説明した発光素子100の一例である。図3〜図5に例示する構成において、発光素子100Aは、上面視において、X方向と比較してY方向に長い長方形状を有する。発光素子100AのX方向における長さは、例えば100μm〜300μm程度である。また、発光素子100AのY方向における長さは、例えば700μm〜1400μm程度、好ましくは900μm〜1200μm程度である。
図4および図5に示すように、発光素子100Aの発光構造110Aは、透光性の第1基板111と、第1基板111に支持された半導体構造112Aとを含む。第1基板111の典型例は、サファイア基板であり、半導体構造112Aは、典型的には、紫外〜可視域の発光が可能な窒化物半導体(InxAlyGa1-x-yN、0≦x、0≦y、x+y≦1)を含む。
半導体構造112Aは、第1導電型を有する第1半導体層としてのn型半導体層120n、第2導電型を有する第2半導体層としてのp型半導体層120p、および、n型半導体層120nとp型半導体層120pとの間に位置する活性層120aを含む。発光素子100Aの発光構造110Aは、半導体構造112Aに加えて、複数の絶縁層と、複数の電極とを含む。図4および図5に示すように、発光構造110Aは、第1絶縁層140、第2絶縁層160、p型半導体層120pと第1絶縁層140との間に位置する光反射性電極130、第1内部電極150n、および、第2内部電極150pを含む。
半導体構造112Aのうち、n型半導体層120nは、第1基板111上に位置し、第1基板111の上面111aの概ね全面を覆う。n型半導体層120nは、図3に示すように、第1領域R1と、第1領域R1の内側に位置する第2領域R2とを有している。換言すれば、n型半導体層120nの上面は、第1領域R1と、第1領域R1の内側に位置する第2領域R2とを含んでいる。活性層120aは、n型半導体層120nの第2領域R2上に選択的に形成されている。活性層120a上に位置するp型半導体層120pも、第2領域R2の概ね直上に位置する。換言すれば、n型半導体層120nのうち第1領域R1に位置する部分は、活性層120aおよびp型半導体層120pに覆われておらず、これらの層から露出されている。
図6は、p型半導体層120pおよびn型半導体層120nの配置関係を示す。図6は、発光構造110Aのうち、n型半導体層120n、活性層120aおよびp型半導体層120pを取り出して示す図に相当する。上述したように、活性層120aおよびp型半導体層120pは、n型半導体層120nのうち第2領域R2を覆う。活性層120aは、図6において明示的に示されていないが、p型半導体層120pとほぼ同様の領域を占めると考えてよい。
図6に示すように、n型半導体層120nの第1領域R1は、上面視において第2領域R2の外側に位置する外周部Ppと、複数の延出部Epとを含む。図6では、わかり易さのために、網掛けにより、第1領域R1のうち延出部Epに相当する部分を示している。図示するように、複数の延出部Epのそれぞれは、第1領域R1のうち、外周部Ppから第2領域R2に延出する部分であり、別の観点からは、第2領域R2が上面視において複数の凹部を有し、第1領域R1の、これらの凹部に対応する位置に延出部Epが形成されているということができる。また、活性層120aおよびp型半導体層120pが、上面視において第1領域R1の各延出部Epに対応する位置に複数の凹部を有しているということもできる。
この例では、n型半導体層120nは、上面視において、互いに対向する第1長辺LS1および第2長辺LS2を含む長方形状の外形を有し、第1長辺LS1よりも第2長辺LS2の近くに4つの延出部Ep1〜Ep4が設けられている。なお、ここでは、第1長辺LS1および第2長辺LS2は、Y方向に平行である。
半導体構造112Aは、公知の半導体プロセスの適用によって得ることができる。例えば、n型半導体層120n、活性層120aおよびp型半導体層120pは、有機金属気相成長法(MOCVD、MOVPEとも呼ばれる。)、ハイドライド気相成長法(HVPE)等によって第1基板111の上面111a上に窒化物半導体の層を形成後、活性層およびp型半導体層のうち第1領域R1上に位置する部分をフォトリソグラフィ法およびエッチング法によって除去することにより、形成できる。
図4および図5を参照する。光反射性電極130は、p型半導体層120pの上面120paを覆い、p型半導体層120pに電気的に接続されている。光反射性電極130は、p型半導体層120pのより広い領域に電流を流す機能を有する。また、p型半導体層120pの上面120paのほぼ全体を覆うように光反射性電極130を設けることにより、図4および図5において発光素子100Aの上面側、換言すれば、第1基板111とは反対側に向かって進行する光を光反射性電極130で発光素子100Aの第1基板111側に向けて反射させることができ、光の取出し効率向上の効果が得られる。光反射性電極130としては、例えば、AgもしくはAl、または、これらのうちの少なくとも一種を含む合金の膜を用いることができる。光反射性電極130は、例えばスパッタリング法によって金属膜または合金膜を形成した後、エッチング法により不要な部分を除去することによって形成できる。
光反射性電極130上には、第1絶縁層140が設けられる。第1絶縁層140の材料の例は、Si、Ti、Zr、Nb、Ta、Al、Hfからなる群より選択された少なくとも一種を含有する酸化物または窒化物である。第1絶縁層140は、典型的には、SiOから形成された絶縁層であり、半導体構造112Aおよび光反射性電極130を覆う。なお、光反射性電極130と第1絶縁層140との間に、光反射性電極130の材料のマイグレーションを抑制するバリア層としてのSiN層が配置されることもあり得る。
図7は、光反射性電極130上に第1絶縁層140を形成した状態を模式的に示す。図7中、ハッチングが付された部分が、第1絶縁層140の材料が設けられた部分である。図7に模式的に示すように、第1絶縁層140は、n型半導体層120nの第1領域R1の延出部Ep1〜Ep4のそれぞれに対応する位置に設けられた第1貫通孔141と、n型半導体層120nの第2領域R2の上方に設けられた第2貫通孔142とを有する。ここでは、n型半導体層120nの長方形状の外形の第2長辺LS2に沿って4つの第1貫通孔141が設けられている。長方形状の外形の一方の長辺(この例では第2長辺LS2)に沿って延出部Epを配置することにより、輝度むらを目立ちにくくし得る。
4つの第1貫通孔141の位置において、第1絶縁層140から延出部Ep1〜Ep4が露出されている。また、第2貫通孔142の位置において、第1絶縁層140から光反射性電極130の表面が露出されている。第1貫通孔141の形状は、例えば、X方向よりもY方向の方が開口径が大きい形状とすることができる。このような形状とすることにより、本実施形態のようにn型半導体層120nが長尺状の外形を有している場合であっても、n型半導体層120nの上面のうち後述の第1内部電極150nに接続される部分の面積を比較的大きくでき、かつ、第1貫通孔141を設けることによる活性層120aの面積の低減を抑制することができる。言うまでもないが、図7に示す第2貫通孔142の形状および数は、あくまでも例示である。第1貫通孔141の各々の形状も、図示する形状に限定されない。
図4に示すように、第1絶縁層140上には、第1内部電極150nおよび第2内部電極150pが設けられる。第1内部電極150nおよび第2内部電極150pの材料の例は、AgもしくはAl、または、これらのうちの少なくとも一種を含む合金を用いることができる。特に、AlおよびAl合金は、高い反射率が得られ、Agに比べてマイグレーションが生じにくいので第1内部電極150nおよび第2内部電極150pの材料として有利に用い得る。
図8は、第1絶縁層140上に第1内部電極150nおよび第2内部電極150pを形成した状態を模式的に示す。第1内部電極150nは、第1貫通孔141を介して、延出部Ep1〜Ep4の位置でn型半導体層120nに電気的に接続される。第2内部電極150pは、第2貫通孔142を介して光反射性電極130に電気的に接続される。すなわち、第2内部電極150pは、p型半導体層120pとの電気的接続を有する。
再び図4を参照する。第1内部電極150nおよび第2内部電極150p上には、これらの電極を覆う第2絶縁層160が設けられる。第2絶縁層160は、第1絶縁層140と同様に例えばSiO等の無機材料から形成され、第1内部電極150nおよび第2内部電極150pを互いに電気的に分離する。
図9は、第1内部電極150nおよび第2内部電極150p上にさらに第2絶縁層160を形成した状態を示す。第2絶縁層160は、上面視において第1内部電極150nに重なる位置に第3貫通孔163を有し、また、第2内部電極150pに重なる位置に第4貫通孔164を有する。図9に模式的に示すように、第3貫通孔163の位置においては第1内部電極150nの表面が、第4貫通孔164の位置においては第2内部電極150pの表面がそれぞれ第2絶縁層160から露出される。第3貫通孔163および第4貫通孔164の各々についての形状および数が図9の例に限定されないことは言うまでもない。
例えば図4に示すように、上述の第1外部電極170Anおよび第2外部電極170Apは、第2絶縁層160上に位置する。図3および図4からわかるように、第1外部電極170Anは、第2絶縁層160の第3貫通孔163を介して第1内部電極150nに電気的に接続されている。つまり、第1外部電極170Anは、n型半導体層120nの延出部Ep1〜Ep4の位置でn型半導体層120nに接続された第1内部電極150nを介してn型半導体層120nに電気的に接続される。他方、第2外部電極170Apは、第2絶縁層160の第4貫通孔164を介して第2内部電極150pに電気的に接続されることにより、第2内部電極150pおよび光反射性電極130を介してp型半導体層120pに電気的に接続される。
図10は、発光素子100Aのうちの半導体構造112Aと、第1外部電極170Anおよび第2外部電極170Apとを取り出して示す。なお、図10には、点線により、第1絶縁層140の第1貫通孔141の位置もあわせて示している。
第1外部電極170Anおよび第2外部電極170Apの外形は、典型的には、上面視において複数の角部を有する。図10に示すように、ここでは、第1外部電極170Anおよび第2外部電極170Apの上面視における形状は、4つの角部を含む矩形状である。図10に例示する構成において、第1外部電極170Anの上面視における形状は、概ね長方形状であり、4つの角部CA1〜CA4を含む。同様に、この例では、第2外部電極170Apの上面視における形状も、概ね長方形状であり、4つの角部CA5〜CA8を含む。
第1外部電極170Anおよび第2外部電極170Apの材料の例は、Ti、Pt、Rh、Au、Ni、Ta、Zrなどである。第1外部電極170Anおよび第2外部電極170Apは、単層構造としてもよいし、複数の層が積層された積層構造としてもよい。第1外部電極170Anおよび第2外部電極170Apは、例えば、Ti層、Pt層、Au層がこの順に積層された積層構造を有する金属層であってもよい。
図10に模式的に示すように、本開示の実施形態では、n型半導体層120nの第1領域R1に設けられる複数の延出部Epのそれぞれは、上面視において、n型半導体層120nの上面のうち、第1外部電極170Anの複数の角部と重なる位置には配置されておらず、また、n型半導体層120nの上面のうち、第2外部電極170Apの複数の角部と重なる位置にも配置されていない。図10に示す例では、n型半導体層120nの長方形状の外形の第2長辺LS2に沿って並ぶ4つの延出部Ep1〜Ep4のそれぞれは、第1外部電極170Anの角部CA1〜CA4のいずれかと重なる位置以外の箇所および第2外部電極170Apの角部CA5〜CA8のいずれかと重なる位置以外の箇所に位置している。
また、ここでは、第1外部電極170Anおよび第2外部電極170Apは、上面視において第1領域R1の各延出部Epに対応する位置に凹部を有する。図示する例において、第1外部電極170Anの上面視における外形は、延出部Ep1に対応する位置に、第1凹部としての凹部CV1を有し、延出部Ep2に対応する位置に、第2凹部としての凹部CV2を有している。同様に、第2外部電極170Apの上面視における外形は、延出部Ep3に対応する位置に、第3凹部としての凹部CV3を有し、延出部Ep4に対応する位置に、第4凹部としての凹部CV4を有する。つまり、この例では、第1外部電極170Anおよび第2外部電極170Apは、上面視において、n型半導体層120nの第1領域R1に配置された複数の延出部Epに重ならない形状を有している。第1外部電極170Anおよび第2外部電極170Apの上面視における外形として、延出部Epに対応する位置に凹部を有する形状を採用することにより、半導体構造112Aのうちp型半導体層120pが選択的に除去されn型半導体層120nが露出した領域付近に熱応力が集中して絶縁層または電極の剥離が生じるおそれを低減し得る。
発光素子100Aは、第1外部電極170Anおよび第2外部電極170Apを共晶接合によってそれぞれ第1配線210および第2配線220に電気的および物理的に接続することにより、支持体200に実装され得る。支持体200の基台230は、例えばBTレジンから形成され、支持体200上の第1配線210および第2配線220は、典型的には、Cu配線である。
図11は、本開示のある実施形態による発光装置の外観の他の一例を示す。図11に示す300Aは、概略的には、発光素子100と、透光部材182と、光反射性部材190Aとを有する。図示するように、光反射性部材190Aは、図1に示す発光装置300における光反射性部材190と同様に、X方向よりもY方向に長い概ね直方体形状を有する。
図1を参照しながら説明した発光装置300と比較して、図11に示す発光装置300Aは、発光素子100を支持する支持体200を有しない。ただし、発光装置300Aは、上面300aとは反対側に位置する、光反射性部材190Aの下面190b上に配置された第1配線210Aおよび第2配線220Aの組を有する。
図12は、図11のXII−XII断面、換言すれば、上述の図2に対応する断面を模式的に示す。図12に示すように、第1配線210Aは、発光素子100の第1外部電極170Anに接続され、第2配線220Aは、第2外部電極170Apに接続されている。この例のように、発光素子の第1外部電極に接続された第1配線と、第2外部電極に接続された第2配線とを、発光装置の上面300aの反対側に位置する下面上に設けてもよい。本開示の実施形態において第1配線および第2配線を支持する基台230は、必須ではない。
(リーク発生の抑制)
後に実施例を参照しながら説明するように、本発明者らの検討によると、発光素子をプリント基板等の支持体に電気的および物理的に接続するための外部電極が上面視において角部を含む外形を有すると、外部電極をプリント基板等の配線に共晶接合した際、外部電極の角部の位置に熱応力が集中しやすい。ここで、n型半導体層と、n型半導体層の上方かつ発光構造の内部に位置する電極とを互いに電気的に接続するための構造、例えば絶縁層に設けた貫通孔が、上面視において外部電極の角部と重なる位置に重なっていると、熱応力に起因して絶縁層にクラックが生じ、外部電極と、発光構造の内部に位置する電極との間にリークが生じる可能性がある。特に、共晶接合に用いる接合部材の材料としてAuSnを用いた場合、AgSnまたはCuSn等を用いる場合と比較してより強固な接合の形成が可能になる反面、AuSnがより高い融点を有するので外部電極に生じる熱応力が大きくなりやすい。また、発光素子が接続されるプリント基板上の配線が、金属のなかで比較的高い熱伝導率と熱膨張係数とを有するCuから形成された配線であると、放熱性を確保しやすい反面、発光素子との熱膨張係数差からより大きな熱応力を外部電極に生じさせやすい。
本発明者らは、外部電極の角部を避けた位置に貫通孔を設けることにより、熱応力に起因したリークの発生を抑制でき、発光素子の信頼性を向上させ得ることを見出した。以下、図面を参照しながらこの点を説明する。
図13は、外部電極の角部と重なる位置に、複数の延出部と、絶縁層に設けられた複数の貫通孔とが配置された発光素子を比較例として示す。図13に示す発光素子500と、図3等に示す発光素子100Aとの間の主な相違点は、発光素子500が、第1外部電極170Anおよび第2外部電極170Apに代えて、それぞれ、第1外部電極570nおよび第2外部電極570pを有する点である。
図13は、図3と同様、発光素子500を下面側から見た模式的な透視図であり、わかり易さのために、第1外部電極570nおよび第2外部電極570pに網掛けを付してある。図13に示すように、この比較例において、第1外部電極570nの外形は、概ね長方形状を有し、長方形状の外形の4つの角部のうち紙面において左下に位置する角部に凹部CV5を有する。この凹部CV5は、上面視において延出部Ep2と重なる位置にある。同様に、第2外部電極570pの外形も、概ね長方形状を有し、長方形状の外形の4つの角部のうち紙面において右下に位置する角部に凹部CV6を有している。凹部CV6は、上面視において延出部Ep3と重なる位置にある。
図14は、図13のXIV−XIV断面を模式的に示す。なお、図13のIV−IV線の位置での断面は、図4に示す断面とほぼ同様であり得る。そのため、ここでは、図13のIV−IV断面の図示およびIV−IV断面に現れた構造に関する説明を省略する。
この比較例では、第1外部電極570nに設けられた凹部CV5のほぼ直下に延出部Ep2が位置し、第1絶縁層140の第1貫通孔141も凹部CV5のほぼ直下に位置している。図14に模式的に示すように、第1内部電極150nの一部は、第1貫通孔141内に充填されることにより、第1内部電極150nをn型半導体層120nに電気的に接続するビア150nvを構成する。
図14に模式的に示すように、第1内部電極150nは、第1貫通孔141付近において第1絶縁層140の側部を覆い、n型半導体層120nと接続されている。本発明者らの検討によると、n型半導体層120nのうち活性層120aおよびp型半導体層120pに覆われていない領域およびその周辺に、共晶接合に起因する熱応力が集中すると、第1絶縁層140の例えば段差部分にクラックが発生することがある。第1絶縁層140に例えばクラックが生じると、発光構造の内部に配置された電極の材料のマイグレーションによって、p側の電極とn側の電極との間(例えば、光反射性電極とn側の内部電極)との間の短絡が生じるおそれがある。すなわち、リークが発生して発光素子の信頼性が低下し得る。
これに対し、本実施形態では、熱応力が集中する可能性のある、第1外部電極170Anの角部CA1〜CA4および第2外部電極170Apの角部CA5〜CA8のいずれにも重ならない位置に、第1絶縁層140の第1貫通孔141が設けられる延出部Epを配置している。これにより、例えば光反射性電極130と第1内部電極150nとの間の短絡に起因するリークの発生を抑制する効果が得られる。これは、n型半導体層120nとの間に電気的な接続を形成するビア150nv等の導電構造およびその周囲への熱応力の集中が回避されるために第1絶縁層140へのクラックの発生を回避し得るからであると推測される。
このように、本開示の実施形態によれば、発光素子内部におけるリークの発生を抑制して、発光素子の信頼性を向上させ得る。上面視において複数の延出部Epと重なる位置以外の箇所に第1外部電極170Anおよび第2外部電極170Apを配置したり、図10に例示するように、第1外部電極170Anおよび第2外部電極170Apの外形として、上面視において複数の延出部Epに重ならない形状を採用したりすることにより、リークの発生をより有利に抑制し得る。
(外部電極の形状と複数の延出部の配置との間の関係)
以下、第1外部電極170Anおよび第2外部電極170Apの形状と、複数の延出部Epの配置との間の関係をより詳細に説明する。
図15は、第1外部電極170Anおよび第2外部電極170Apの形状と複数の延出部Epの配置との間の関係の一例を説明するための図であり、図10と同様に、発光素子100Aのうちの半導体構造112Aと、第1外部電極170Anおよび第2外部電極170Apとを取り出して示す図である。
図15に例示する構成において、第1外部電極170Anおよび第2外部電極170Apは、概ね長方形状の外形を有する。第1外部電極170Anの外形は、互いに対向する第1短辺SS1および第2短辺SS2の組を有する。同様に、ここでは、第2外部電極170Apの外形は、互いに対向する第3短辺SS3および第4短辺SS4の組を有する。なお、この例では、第1外部電極170Anの上面視における外形、および、第2外部電極170Apの上面視における外形は、いずれも概ね長方形状であるが、第1外部電極170Anおよび第2外部電極170Apの上面視における形状が一致している必要はない。
図示する例において、第1短辺SS1〜第4短辺SS4のいずれも、n型半導体層120nの長方形状の外形の第2長辺LS2に垂直である。図示するように、第1短辺SS1は、第2短辺SS2よりも第2外部電極170Apから遠くに位置し、第3短辺SS3は、第4短辺SS4よりも第1外部電極170Anの近くに位置する。
ここでは、n型半導体層120nの第1領域R1は、第1〜第4の延出部Ep1〜Ep4を有する。図15に模式的に示すように、上面視において、n型半導体層120nの外形の第2長辺LS2に垂直かつ第1外部電極170Anの長方形状の外形の中心を通る仮想的な第1線L1を想定したとき、第1延出部である延出部Ep1は、この仮想的な第1線L1と、上述の第1短辺SS1との間に位置する。第2延出部である延出部Ep2は、この仮想的な第1線L1と、上述の第2短辺SS2との間に位置する。したがって、この例では、延出部Ep1上に設けられた第1貫通孔141および第1外部電極170Anに設けられた凹部CV1も第1線L1と第1短辺SS1との間に位置している。また、延出部Ep2上に設けられた第1貫通孔141および第1外部電極170Anに設けられた凹部CV2も第1線L1と第2短辺SS2との間に位置している。
同様に、上面視において、第2長辺LS2に垂直かつ第2外部電極170Apの長方形状の外形の中心を通る仮想的な第2線L2を想定したとき、第3延出部である延出部Ep3は、この仮想的な第2線L2と、第3短辺SS3との間に位置する。第4延出部である延出部Ep4は、仮想的な第2線L2と、第4短辺SS4との間に位置する。延出部Ep3上に設けられた第1貫通孔141および第2外部電極170Apに設けられた凹部CV3も第2線L2と第3短辺SS3との間に位置する。また、延出部Ep4上に設けられた第1貫通孔141および第2外部電極170Apに設けられた凹部CV4も第2線L2と第4短辺SS4との間に位置する。
図15に例示する構成において、図15に両矢印da1で示す、延出部Ep1と第1線L1との間の距離は、図15に両矢印da2で示す、延出部Ep1と第1短辺SS1との間の距離よりも小さい。ここで、ある延出部と、ある仮想線またはある辺との間の距離とは、その延出部の中心から第2長辺LS2に沿って測ったときの、仮想線または辺までの距離を指す。この例のように、上面視において、第1外部電極170Anの中心を通る第1線L1を基準としたときと比較して、第1外部電極170Anの角部CA2が位置する第1短辺SS1からより離れた位置に延出部Ep1を配置することにより、延出部Ep1近傍への、角部CA2に生じる熱応力の影響を低減し得る。同様に、この例では、図15に両矢印da3で示す、延出部Ep2と第1線L1との間の距離は、図15に両矢印da4で示す、延出部Ep2と第2短辺SS2との間の距離よりも小さい。すなわち、延出部Ep2は、第1線L1を基準としたときと比較して、第1外部電極170Anの角部CA3が位置する第2短辺SS2からより離れた位置にあり、角部CA3に生じる熱応力に起因するリークの発生を抑制する効果が期待できる。
この例では、延出部Ep3およびEp4についても、延出部Ep1およびEp2に似た配置が採用されている。すなわち、上面視において、第2長辺LS2に垂直かつ第2外部電極170Apの長方形状の外形の中心を通る仮想的な第2線L2を想定したとき、延出部Ep3は、この仮想的な第2線L2と、第3短辺SS3との間に位置する。図15に模式的に示すように、図15に両矢印db1で示す、延出部Ep3と第2線L2との間の距離は、図15に両矢印db2で示す、延出部Ep3と第3短辺SS3との間の距離よりも小さい。延出部Ep3は、第2線L2を基準としたときと比較して、第2外部電極170Apの角部CA6が位置する第3短辺SS3からより離れた位置に配置されている。また、図15に両矢印db3で示す、延出部Ep4と第2線L2との間の距離は、図15に両矢印db4で示す、延出部Ep4と第4短辺SS4との間の距離よりも小さい。延出部Ep4は、第2線L2を基準としたときと比較して、第2外部電極170Apの角部CA7が位置する第4短辺SS4からより離れた位置に配置されている。したがって、角部CA6、CA7に生じる熱応力に起因する、延出部Ep3またはEp4の位置でのリークの発生を抑制する効果が期待できる。
(変形例)
図16は、本開示の実施形態による発光素子の他の一例を示す。図16に示す発光素子100Bは、図1および図2を参照して説明した発光素子100の他の一例である。図16は、図3と同様に、発光素子100Bを下面側から見た模式的な透視図である。図16のIV−IV線の位置での断面およびV−V線の位置での断面は、それぞれ、図4および図5に示す断面とほぼ同様であり得る。そのため、ここでは、図16のIV−IV断面およびV−V断面の図示と、これらの断面に現れた構造に関する説明を省略する。
図3等を参照して説明した発光素子100Aと比較して、図16に示す発光素子100Bは、第1外部電極170Anおよび第2外部電極170Apに代えて、第1外部電極170Bnおよび第2外部電極170Bpを有する。図16に例示する構成において、第1外部電極170Bnは、互いに対向する第1短辺SS1および第2短辺SS2の組を含む、概ね長方形状の外形を有する。同様に、第2外部電極170Bpも、互いに対向する第3短辺SS3および第4短辺SS4の組を含む、概ね長方形状の外形を有する。第1短辺SS1〜第4短辺SS4のいずれも、n型半導体層120nの長方形状の外形の第2長辺LS2に垂直である。
図17Aは、図16に示す発光素子100B中の半導体構造と、第1外部電極170Bnおよび第2外部電極170Bpとを取り出して模式的に示す。図17Aに示す半導体構造112Bは、第1領域R1および第2領域R2を有するn型半導体層120nと、n型半導体層120nの第2領域R2上に位置する、図17Aにおいて不図示の活性層120aと、活性層120a上のp型半導体層120pとを含む。上述の例と同様に、n型半導体層120nの第1領域R1は、上面視において第2領域R2の外周に位置する外周部Ppと、外周部Ppから第2領域R2に延出した複数の延出部Epとを含む。
ただし、ここでは、n型半導体層120nの第1領域R1は、n型半導体層120nの第2長辺LS2に沿って並ぶ3つの延出部Ep1〜Ep3を含む。図17Aでは、図6と同様に、網掛けにより、第1領域R1のうち延出部Ep1〜Ep3に相当する部分を示している。延出部Ep1〜Ep3のうち、延出部Ep3は、上面視において第1外部電極170Bnと第2外部電極170Bpとの間に位置する。図16および図17Aに示す例では、図3〜図15を参照して説明した例と比較して、p型半導体層120pおよび活性層120aの除去された部分の面積が小さいので、発光に関わる部分の面積の低減を抑える観点から有利である。
図17Aに例示する構成において、延出部Ep1は、n型半導体層120nの外形の第2長辺LS2に垂直かつ第1外部電極170Bnの長方形状の外形の中心を通る仮想的な第1線L1上に位置する。延出部Ep2は、第2長辺LS2に垂直かつ第2外部電極170Bpの長方形状の外形の中心を通る仮想的な第2線L2上に位置する。このような配置を採用することにより、第1外部電極170Bnの角部CA2およびCA3から離れた位置に延出部Ep1を配置し、第2外部電極170Bpの角部CA6およびCA7から離れた位置に延出部Ep2を配置することができる。なお、この例では、延出部Ep3は、第2長辺LS2に垂直かつ第2長辺LS2の中心を通る仮想的な第3線L3上に位置している。
図17Aに模式的に示すように、ここでは、第1外部電極170Bnの長方形状の外形は、上面視において延出部Ep1に対応する位置に第1凹部としての凹部CV1を有し、第2外部電極170Bpの長方形状の外形は、上面視において延出部Ep2に対応する位置に第2凹部としての凹部CV2を有する。すなわち、この例においても、第1外部電極170Bnおよび第2外部電極170Bpは、上面視において延出部Ep1〜Ep3のいずれにも重ならない形状を有する。
図3から図15を参照して説明した例と同様に、図16および図17Aに示す例においても、n型半導体層120nと、第1内部電極150nとの間の電気的接続を形成する導電構造が配置され得る延出部Epを、第1外部電極170Bnの角部と重なる位置以外の箇所および第2外部電極170Bpの角部と重なる位置以外の箇所に配置している。これにより、第1外部電極170Bnおよび第2外部電極170Bpに生じた熱応力に起因して例えば光反射性電極130と第1内部電極150nとの間において短絡が発生することを抑制し得る。
図17Bは、本開示の実施形態による発光素子のさらに他の一例を示す。図17Bに示す発光素子100Cは、図1および図2を参照して説明した発光素子100のさらに他の一例である。図17Bは、図3および図16と同様に、発光素子100Cを下面側から見た模式的な透視図である。
図16を参照して説明した発光素子100Bと比較して、図17Bに示す発光素子100Cは、第1外部電極170Bnおよび第2外部電極170Bpに代えて、第1外部電極170Cnおよび第2外部電極170Cpを有する。第1外部電極170Cnおよび第2外部電極170Cpは、外形が異なる点以外は、第1外部電極170Bnおよび第2外部電極170Bpとそれぞれ同様の構成を有する。図17Bでは、わかり易さのために、ハッチングを付すことにより第1外部電極170Cnおよび第2外部電極170Cpの形状を示している。
図17Bに例示する構成において、n型半導体層120nの長方形状の長手方向に沿った、光反射性電極130の外縁から外部電極(第1外部電極170Cnまたは第2外部電極170Cp)の外縁までの距離は、n型半導体層120nの長方形状の短手方向に沿った、光反射性電極130の外縁から外部電極の外縁までの距離と比較して大きい。例えば、光反射性電極130の、n型半導体層120nの短辺側に位置する外縁から第2外部電極170Cpの外縁までの距離(図17B中に両矢印Lgで模式的に示す。)は、光反射性電極130の、n型半導体層120nの長辺側に位置する外縁から第2外部電極170Cpの外縁までの距離(図17B中に両矢印Sgで模式的に示す。)よりも大きい。同様に、光反射性電極130の、n型半導体層120nの短辺側に位置する外縁から第1外部電極170Cnの外縁までの距離は、光反射性電極130の、n型半導体層120nの長辺側に位置する外縁から第1外部電極170Cnの外縁までの距離よりも大きくてもよい。
上面視において長方形状の外形を有する発光素子は、端部が図の−Z方向に向かうような反りを有することがある。このような反りを有する発光素子を、配線を有する部材(例えば上述の支持体200)に共晶接合により実装すると、配線と発光素子側の電極とが接合される結果、発光素子の端部に、反りが矯正されるような方向の応力が加わることになる。このとき、共晶接合によって配線に接合される発光素子側の電極の面積が大きいほど、より大きな接合強度が得られる反面、発光素子の端部が受ける負荷も増大する。本発明者の検討によると、この応力は、発光素子の中心から離れるほど大きくなり得る。そのため、共晶接合によって生じた応力に起因して、発光素子において長方形状の外形の特に短辺に近い位置にクラックが生じることがあり得る。
図17Bに示す例では、光反射性電極130の外縁の位置を基準としたとき、発光素子の長方形状の長手方向に関する、外部電極の外縁までの距離は、発光素子の長方形状の短手方向と比較して大きくされている。このような構成によれば、共晶接合に起因して発光素子の長方形状の短辺に近い部位にかかる応力を緩和する効果が得られ、したがって、クラックの発生の可能性を低減することができる。なお、第1外部電極170Cnが、上述の第1外部電極170Bnよりも小さな面積を有していてもよい。同様に、第2外部電極170Cpが、上述の第2外部電極170Bpよりも小さな面積を有していてもよい。
図示する例において、n型半導体層120nの短辺側に位置する、光反射性電極130の外縁から外部電極の外縁までの距離は、発光素子の長手方向(図のX方向)における長さの例えば3%以上7%以下の範囲であり、より好ましくは、4%以上5%以下の範囲である。図17B中に両矢印Lgで示す距離は、例えば40μm〜50μm程度であり得る。他方、n型半導体層120nの長辺(例えば第2長辺LS2)側に位置する、光反射性電極130の外縁から外部電極の外縁までの距離は、発光素子の短手方向(図のY方向)における長さの例えば10%以上15%以下の範囲であり、より好ましくは、12%以上15%以下の範囲である。図17B中に両矢印Sgで示す距離は、例えば20μm〜30μm程度であり得る。なお、第2長辺LS2側に位置する、光反射性電極130の外縁から外部電極の外縁までの距離と、第1長辺LS1側に位置する、光反射性電極130の外縁から外部電極の外縁までの距離とは、同等であってよい。
発光素子の短手方向(図のX方向)は、発光素子の長手方向(図のY方向)と比較して反りの大きさが一般に小さく、したがって、外部電極の外縁の位置を光反射性電極130の外縁に近づけても発光素子にクラックを生じさせにくい。発光素子の短手方向(図のX方向)に関して外部電極の外縁の位置を光反射性電極130の外縁に近づけることにより、外部電極の面積が小さくなり過ぎることを回避でき、したがって、接合強度の過度の低下を抑制することができる。
なお、n型半導体層120nの延出部Ep(延出部Ep1、Ep3)の位置における、光反射性電極130の外縁から外部電極の外縁までの距離(図17B中に両矢印Mgで模式的に示す。)は、上述の距離Sgよりも小さくされ得る。延出部Epの位置における、光反射性電極130の外縁から外部電極の外縁までの距離は、例えば10μm〜20μm程度であり得る。上述したように、発光素子の長辺に近い側の端部にかかる応力は、短辺に近い側の端部にかかる応力と比較して小さい傾向にある。したがって、発光素子の短手方向(図のX方向)については、外部電極の外縁を光反射性電極130の外縁に近づけやすい。この例のように、光反射性電極130の外縁から外部電極の外縁までの距離を、例えば延出部Epの位置において他の部分と比較して小さくすることにより、発光素子への応力による発光素子の端部への負荷の増大を抑制しながら、外部電極の面積の極端な減少を回避し得る。すなわち、外部電極の面積が減少することに起因して接合強度が極端に低下してしまうことを回避し得る。
以下、外部電極にかかるせん断応力の大きさをシミュレーションによって評価することにより、外部電極の上面視における形状と、熱応力の集中しやすい箇所との関連を調べた。
(参考例1)
上面視における外部電極の形状として、図10等に示す、2つの延出部に対応して2つの凹部を有する第1外部電極170Anおよび第2外部電極170Apの形状を想定し、支持体に発光素子を共晶接合により実装する際、リフロー降温時に半導体層表面に発生する応力を計算した。計算によって得られた値は、XZ面内のX方向におけるせん断応力τYXであり、以降の図中ではτYXの絶対値に基づき、せん断応力の強さを濃淡を付して図示している。τYXは、応力テンソルの成分のうちの1つである。なお、以下の参考例1〜4すべてにおいて計算条件を統一しており、図18〜図21にわたって、同じ値のせん断応力は、同じ濃淡を付して図示している。
図18は、参考例1のサンプルに関する計算結果を示す。図18中、色の濃い部分が、せん断応力の絶対値が大きい領域を示し、相対的に大きな熱応力がかかる領域に相当する。図18に示す結果から、外部電極の外形として例えば矩形状を採用した場合、支持体200等への接合において、角部CA1〜CA8の位置に特に応力が集中する可能性が高いことがわかった。また、2つの角部を結ぶ辺上の位置における熱応力は、比較的に小さいこともわかった。
(参考例2)
上面視における外部電極の形状として、図17A等に示す、1つの延出部に対応して1つの凹部を有する第1外部電極170Bnおよび第2外部電極170Bpの形状を想定し、参考例1のサンプルと同様にして、せん断応力τYXの絶対値を計算した。
図19は、参考例2のサンプルに関する計算結果を示す。図18に示す結果と同様に、図19に示す結果においても、外部電極の角部CA1〜CA8の位置に特に応力が集中する可能性が高いことがわかった。
(参考例3)
図13を参照して説明した例のように、矩形状の外部電極の角部と重なる位置にn型半導体層の延出部が位置する配置を想定し、参考例1のサンプルと同様にして、せん断応力τYXの絶対値を計算した。
図20は、参考例3のサンプルに関する計算結果を示す。図20に示す結果から、外部電極の矩形状の辺上に位置する延出部Ep1、Ep4の位置と比較して、外部電極の角部CA3と重なる位置にある延出部Ep2およびその周辺、ならびに、外部電極の角部CA6と重なる位置にある延出部Ep3およびその周辺に熱応力が集中し得ることがわかった。
(参考例4)
n型半導体層に延出部を有しない半導体構造を想定し、参考例1のサンプルと同様にして、せん断応力τYXの絶対値を計算した。
図21は、参考例4のサンプルに関する計算結果を示す。図21に示す結果から、外部電極の矩形状の辺上の位置よりも角部と重なる位置に熱応力が集中しやすい傾向があるとわかった。
図20および図21に示す結果と、図18および図19に示す結果とから、外部電極の角部と重なる位置以外の箇所に延出部を配置することにより、延出部およびその周辺のせん断応力を低減可能であり、延出部およびその周辺への熱応力の集中を回避して、延出部の位置での絶縁層のクラック等を抑制可能であることがわかった。本開示の実施形態によれば、リークが生じやすい箇所を避けて延出部Epを配置しているので、発光構造内部でのリークの発生を抑制し得る。
本開示の実施形態は、各種照明用光源、車載用光源、ディスプレイ用光源等に有用である。特に、液晶表示装置に向けられたバックライトユニットに有利に適用できる。
100、100A〜100C 発光素子
110、110A 発光構造
111 第1基板
112A、112B 半導体構造
120a 活性層
120n n型半導体層
120p p型半導体層
130 光反射性電極
140 第1絶縁層
141 第1貫通孔
142 第2貫通孔
150n 第1内部電極
150nv ビア
150p 第2内部電極
160 第2絶縁層
163 第3貫通孔
164 第4貫通孔
170An〜170Cn、570n 第1外部電極
170Ap〜170Cp、570p 第2外部電極
174 導光部材
180 波長変換部材
182 透光部材
190、190A 光反射性部材
200 支持体
210、210A 第1配線
220、220A 第2配線
230 基台
300、300A 発光装置
500 発光素子
CA1〜CA8 外部電極の角部
CV1〜CV6 外部電極の凹部
LS1 第1長辺
LS2 第2長辺
R1 第1領域
R2 第2領域
Ep、Ep1〜Ep4 第1領域の延出部
Pp 第1領域の外周部
SS1 第1短辺
SS2 第2短辺
SS3 第3短辺
SS4 第4短辺

Claims (13)

  1. 第1領域および前記第1領域の内側に位置する第2領域を有する第1導電型の第1半導体層、前記第2領域上に位置する活性層、ならびに、前記活性層上に位置する第2導電型の第2半導体層を含む半導体構造であって、前記第1領域は、上面視において前記第2領域の外周に位置する外周部と、それぞれが前記外周部から前記第2領域に延出した複数の延出部とを含む、半導体構造と、
    前記第2半導体層の上面を覆う光反射性電極と、
    前記半導体構造および前記光反射性電極を覆い、前記第1領域の各延出部に位置する第1貫通孔および前記第2領域に位置する第2貫通孔を有する第1絶縁層と、
    前記第1絶縁層上に位置し、前記第1貫通孔を介して前記第1半導体層に電気的に接続された第1内部電極と、
    前記第1絶縁層上に位置し、前記第2貫通孔を介して前記光反射性電極に電気的に接続された第2内部電極と、
    前記第1内部電極および前記第2内部電極を覆い、前記第1内部電極および前記第2内部電極を互いに電気的に絶縁する第2絶縁層であって、前記第1内部電極上に位置する第3貫通孔および前記第2内部電極上に位置する第4貫通孔を有する第2絶縁層と、
    前記第3貫通孔を介して前記第1内部電極に電気的に接続された複数の角部を有する第1外部電極と、
    前記第4貫通孔を介して前記第2内部電極に電気的に接続された複数の角部を有する第2外部電極と
    を備え、
    前記第1領域の前記複数の延出部のそれぞれは、上面視において前記第1半導体層の上面のうち前記第1外部電極の前記複数の角部と重なる位置以外の箇所および前記第2外部電極の前記複数の角部と重なる位置以外の箇所に配置されている、発光素子。
  2. 前記第1半導体層は、上面視において長方形状の外形を有し、
    前記長方形状の外形は、互いに対向する第1長辺および第2長辺を含み、
    前記複数の延出部は、前記第1長辺よりも前記第2長辺に近い位置に前記第2長辺に沿って並んでいる、請求項1に記載の発光素子。
  3. 前記第1外部電極および前記第2外部電極は、上面視において前記複数の延出部に重ならない形状を有している、請求項2に記載の発光素子。
  4. 前記第1外部電極の外形は、互いに対向し、かつ、前記第2長辺と垂直な第1短辺および第2短辺を含む長方形状であり、
    前記第2外部電極の外形は、互いに対向し、かつ、前記第2長辺と垂直な第3短辺および第4短辺を含む長方形状であり、
    前記第1短辺は、前記第2短辺よりも前記第2外部電極から遠くに位置し、
    前記第3短辺は、前記第4短辺よりも前記第1外部電極の近くに位置し、
    前記複数の延出部は、前記第2長辺に垂直かつ前記第1外部電極の前記長方形状の中心を通る仮想的な第1線と前記第1短辺との間に位置する第1延出部と、前記第1線と前記第2短辺との間に位置する第2延出部と、前記第2長辺に垂直かつ前記第2外部電極の前記長方形状の中心を通る仮想的な第2線と前記第3短辺との間に位置する第3延出部と、前記第2線と前記第4短辺との間に位置する第4延出部とを含む、請求項2または3に記載の発光素子。
  5. 前記第1延出部と前記第1線との間の距離は、前記第1延出部と前記第1短辺との間の距離よりも小さく、
    前記第2延出部と前記第1線との間の距離は、前記第2延出部と前記第2短辺との間の距離よりも小さい、請求項4に記載の発光素子。
  6. 前記第3延出部と前記第2線との間の距離は、前記第3延出部と前記第3短辺との間の距離よりも小さく、
    前記第4延出部と前記第2線との間の距離は、前記第4延出部と前記第4短辺との間の距離よりも小さい、請求項5に記載の発光素子。
  7. 前記第1外部電極は、上面視において前記第1延出部および前記第2延出部に対応する位置に第1凹部および第2凹部をそれぞれ有し、
    前記第2外部電極は、上面視において前記第3延出部および前記第4延出部に対応する位置に第3凹部および第4凹部をそれぞれ有する、請求項4から6のいずれかに記載の発光素子。
  8. 前記第1外部電極の外形は、互いに対向し、かつ、前記第2長辺と垂直な第1短辺および第2短辺を含む長方形状であり、
    前記第2外部電極の外形は、互いに対向し、かつ、前記第2長辺と垂直な第3短辺および第4短辺を含む長方形状であり、
    前記複数の延出部は、前記第2長辺に垂直かつ前記第1外部電極の前記長方形状の中心を通る仮想的な第1線上に位置する第1延出部と、前記第2長辺に垂直かつ前記第2外部電極の前記長方形状の中心を通る仮想的な第2線上に位置する第2延出部を含む、請求項2または3に記載の発光素子。
  9. 前記第1外部電極は、上面視において前記第1延出部に対応する位置に第1凹部を有し、
    前記第2外部電極は、上面視において前記第2延出部に対応する位置に第2凹部を有する、請求項8に記載の発光素子。
  10. 前記複数の延出部は、前記第1外部電極と前記第2外部電極との間に位置する第3延出部であって、前記第2長辺に垂直かつ前記第2長辺の中心を通る仮想的な第3線上に位置する第3延出部を含む、請求項8または9に記載の発光素子。
  11. 前記第1半導体層の前記長方形状の外形は、前記第1長辺と前記第2長辺との間に位置する第5短辺を含み、
    前記第1外部電極および前記第2外部電極の一方の、前記第5短辺側の外縁から、前記光反射性電極の、前記第5短辺側の外縁までの距離は、前記第1外部電極および前記第2外部電極の前記一方の、前記第2長辺側の外縁から、前記光反射性電極の、前記第2長辺側の外縁までの距離よりも大きい、請求項2から10のいずれかに記載の発光素子。
  12. 前記半導体構造を支持する透光性の第1基板をさらに備える、請求項1から11のいずれかに記載の発光素子。
  13. 請求項1から12のいずれかに記載の発光素子と、
    前記第1外部電極を介して前記発光素子に電気的に接続された第1配線、および、前記第2外部電極を介して前記発光素子に電気的に接続された第2配線を有する第2基板と
    を含む、発光装置。
JP2019011449A 2018-02-16 2019-01-25 発光素子および発光装置 Active JP6635206B1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
EP19157196.7A EP3528296B1 (en) 2018-02-16 2019-02-14 Light emitting element and light emitting device
TW108105063A TWI788522B (zh) 2018-02-16 2019-02-15 發光元件及發光裝置
KR1020190018218A KR102581957B1 (ko) 2018-02-16 2019-02-15 발광 소자 및 발광 장치
US16/277,243 US10644203B2 (en) 2018-02-16 2019-02-15 Light emitting element and light emitting device
CN201910116248.7A CN110165033A (zh) 2018-02-16 2019-02-15 发光元件及发光装置
US16/835,725 US10923632B2 (en) 2018-02-16 2020-03-31 Light emitting element and light emitting device
US17/129,069 US11393954B2 (en) 2018-02-16 2020-12-21 Light emitting element and light emitting device

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2018026347 2018-02-16
JP2018026347 2018-02-16
JP2018195754 2018-10-17
JP2018195754 2018-10-17

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2019219653A Division JP2020065057A (ja) 2018-02-16 2019-12-04 発光素子および発光装置

Publications (2)

Publication Number Publication Date
JP6635206B1 JP6635206B1 (ja) 2020-01-22
JP2020065037A true JP2020065037A (ja) 2020-04-23

Family

ID=69166730

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2019011449A Active JP6635206B1 (ja) 2018-02-16 2019-01-25 発光素子および発光装置
JP2019219653A Pending JP2020065057A (ja) 2018-02-16 2019-12-04 発光素子および発光装置

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2019219653A Pending JP2020065057A (ja) 2018-02-16 2019-12-04 発光素子および発光装置

Country Status (1)

Country Link
JP (2) JP6635206B1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113363366B (zh) 2020-03-06 2024-04-19 隆达电子股份有限公司 发光元件
CN114267762B (zh) * 2021-11-23 2023-08-15 厦门市三安光电科技有限公司 一种发光二极管芯片及发光装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160005926A1 (en) * 2014-07-03 2016-01-07 Epistar Corporation Optoelectronic device and method for manufacturing the same
KR20160003561A (ko) * 2014-07-01 2016-01-11 서울바이오시스 주식회사 발광 소자
JP2016143682A (ja) * 2015-01-29 2016-08-08 豊田合成株式会社 Iii族窒化物半導体発光素子
JP2016208012A (ja) * 2015-04-27 2016-12-08 日亜化学工業株式会社 発光装置
JP2017092477A (ja) * 2015-11-13 2017-05-25 晶元光電股▲ふん▼有限公司 発光デバイス
WO2017154975A1 (ja) * 2016-03-08 2017-09-14 株式会社 東芝 半導体発光装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160003561A (ko) * 2014-07-01 2016-01-11 서울바이오시스 주식회사 발광 소자
US20160005926A1 (en) * 2014-07-03 2016-01-07 Epistar Corporation Optoelectronic device and method for manufacturing the same
JP2016143682A (ja) * 2015-01-29 2016-08-08 豊田合成株式会社 Iii族窒化物半導体発光素子
JP2016208012A (ja) * 2015-04-27 2016-12-08 日亜化学工業株式会社 発光装置
JP2017092477A (ja) * 2015-11-13 2017-05-25 晶元光電股▲ふん▼有限公司 発光デバイス
WO2017154975A1 (ja) * 2016-03-08 2017-09-14 株式会社 東芝 半導体発光装置

Also Published As

Publication number Publication date
JP2020065057A (ja) 2020-04-23
JP6635206B1 (ja) 2020-01-22

Similar Documents

Publication Publication Date Title
KR100876737B1 (ko) 반도체 발광소자 및 그 제조방법
JP5486759B2 (ja) 半導体発光素子の製造方法
JP5850036B2 (ja) 発光装置
JP4935514B2 (ja) 発光装置
JP2012142410A (ja) 発光素子ユニットおよびその製造方法、発光素子パッケージならびに照明装置
JP2007258326A (ja) 発光素子
JP2006210730A (ja) 発光素子
JP2020065057A (ja) 発光素子および発光装置
JPH11289110A (ja) 半導体発光装置
EP1983571B1 (en) Light emission device
KR102581957B1 (ko) 발광 소자 및 발광 장치
JP2007027539A (ja) 半導体発光素子およびこれを用いた照明装置
JP2007258320A (ja) 発光素子
JP2013089834A (ja) 発光装置
KR102601419B1 (ko) 고 신뢰성 발광 다이오드
JP2015153793A (ja) 半導体発光素子とその製造方法および発光装置
JP7053249B2 (ja) 半導体発光装置
JP2017152504A (ja) 半導体装置および発光装置
KR101063907B1 (ko) 발광 소자
KR101762325B1 (ko) 발광 소자
KR101751909B1 (ko) 발광 소자
CN114122239A (zh) 焊盘、包含该焊盘的半导体器件、封装件、背光单元及照明设备
KR20120130853A (ko) 발광 소자 및 발광 소자 패키지
KR20120130852A (ko) 발광 소자 및 발광 소자 패키지
KR20210017280A (ko) 발광소자 및 이를 포함하는 발광소자 패키지

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190318

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20190320

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190729

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20190730

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190820

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190927

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191119

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191202

R150 Certificate of patent or registration of utility model

Ref document number: 6635206

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250