JP2020064170A - 感光性樹脂組成物、パターン硬化膜及びその製造方法、半導体素子、並びに、電子デバイス - Google Patents

感光性樹脂組成物、パターン硬化膜及びその製造方法、半導体素子、並びに、電子デバイス Download PDF

Info

Publication number
JP2020064170A
JP2020064170A JP2018195643A JP2018195643A JP2020064170A JP 2020064170 A JP2020064170 A JP 2020064170A JP 2018195643 A JP2018195643 A JP 2018195643A JP 2018195643 A JP2018195643 A JP 2018195643A JP 2020064170 A JP2020064170 A JP 2020064170A
Authority
JP
Japan
Prior art keywords
group
photosensitive resin
resin composition
film
component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2018195643A
Other languages
English (en)
Inventor
卓也 小峰
Takuya KOMINE
卓也 小峰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko Materials Co Ltd
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP2018195643A priority Critical patent/JP2020064170A/ja
Publication of JP2020064170A publication Critical patent/JP2020064170A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Materials For Photolithography (AREA)

Abstract

【課題】薬液耐性に優れる硬化膜を低温で形成することができる感光性樹脂組成物を提供すること。【解決手段】本発明の感光性樹脂組成物は、A)アルカリ可溶性樹脂と、(B)ヒドロキシ基及びシクロアルキル環を含む構造単位を有するアクリル系エラストマと、(C)光により酸を生成する化合物と、を含有する。【選択図】なし

Description

本発明は、感光性樹脂組成物、パターン硬化膜及びその製造方法、半導体素子、並びに電子デバイスに関する。
近年、半導体素子の高集積化、小型化に伴い、半導体素子の層間絶縁層、表面保護層等の絶縁層は、より優れた電気特性、耐熱性、機械特性等を有することが求められている。このような特性を併せ持つ絶縁層を形成するための材料として、アルカリ可溶性樹脂を含有する感光性樹脂組成物が開発されている(例えば、特許文献1、2及び3参照)。これらの感光性樹脂組成物を基板上に塗布及び乾燥して樹脂膜を形成し、該樹脂膜を露光及び現像することでパターン樹脂膜(パターン形成された樹脂膜)が得られる。そして、上記パターン樹脂膜を加熱硬化することでパターン硬化膜(パターン形成された硬化膜)を形成でき、該パターン硬化膜は絶縁層として用いることができる。
特開2008−309885号公報 特開2007−057595号公報 国際公開第2010/073948号
感光性樹脂組成物にはパターン硬化膜を形成する工程において、硬化温度を従来の230℃よりも低くすることが求められている。しかしながら、低温で硬化膜を作製した場合、硬化膜の架橋密度が低くなり、膜強度が低下して、パターン硬化膜の薬液耐性が低下したりする傾向にある。
本発明は、このような事情に鑑みてなされたものであり、薬液耐性に優れる硬化膜を低温で形成することができる感光性樹脂組成物を提供することを主な目的とする。
本発明の一側面は、(A)アルカリ可溶性樹脂と、(B)ヒドロキシ基及びシクロアルキル環を含む構造単位を有するアクリル系エラストマと、(C)光により酸を生成する化合物と、を含有する感光性樹脂組成物を提供する。
上記アクリル系エラストマは、下記一般式(4)で表される構造単位を更に有するアクリル系エラストマであってもよい。
Figure 2020064170

式(4)中、R31は水素原子又はメチル基を示し、R32はヒドロキシアルキル基を示す。
上記感光性樹脂組成物は、(D)熱架橋剤を更に含有してもよい。当該熱架橋剤は、下記一般式(11)で表される化合物又は下記一般式(12)で表される化合物を含んでもよい。
Figure 2020064170

式(11)中、R〜Rは、それぞれ独立に炭素数1〜10のアルキル基を示し、式(12)中、R〜R12は、それぞれ独立に炭素数1〜10のアルキル基を示す。
別の側面において、パターンを有し、パターンが上記の感光性樹脂組成物からなる樹脂膜の硬化物を含む、パターン硬化膜を提供する。
別の側面において、上記の感光性樹脂組成物を基板の一部又は全部に塗布及び乾燥して樹脂膜を形成する工程と、樹脂膜の一部又は全部を露光する工程と、露光後の樹脂膜をアルカリ水溶液によって現像してパターン樹脂膜を形成する工程と、パターン樹脂膜を加熱する工程と、を備える、パターン硬化膜の製造方法を提供する。
別の側面において、上記のパターン硬化膜を層間絶縁層又は表面保護層として備える、半導体素子を提供する。別の側面において、上記の半導体素子を備える、電子デバイスを提供する。
本発明によれば、薬液耐性に優れる硬化膜を低温で形成することができる感光性樹脂組成物を提供することができる。また、本発明によれば、該感光性樹脂組成物を用いたパターン硬化膜及びその製造方法、半導体素子、並びに電子デバイスを提供することができる。
半導体素子の製造工程の一実施形態を説明する概略斜視図及び概略端面図である。 半導体素子の製造工程の一実施形態を説明する概略斜視図及び概略端面図である。 半導体素子の製造工程の一実施形態を説明する概略斜視図及び概略端面図である。 半導体素子の製造工程の一実施形態を説明する概略斜視図及び概略端面図である。 半導体素子の製造工程の一実施形態を説明する概略斜視図及び概略端面図である。 半導体素子の一実施形態を示す概略断面図である。 半導体素子の一実施形態を示す概略断面図である。
以下、本発明の実施形態について詳細に説明する。ただし、本発明は以下の実施形態に限定されるものではない。本明細書における「(メタ)アクリル酸」とは、「アクリル酸」又は「メタクリル酸」を意味し、(メタ)アクリレート等の他の類似の表現においても同様である。
[感光性樹脂組成物]
一実施形態の感光性樹脂組成物は、(A)アルカリ可溶性樹脂(以下、「(A)成分」という場合もある。)と、(B)ヒドロキシ基及びシクロアルキル環を含む構造単位を有するアクリル系エラストマ(以下、「(B)成分」という場合もある。)と、(C)光により酸を生成する化合物(以下、「(C)成分」という場合もある。)と、を含有する。
<(A)成分>
(A)成分は、アルカリ水溶液(現像液)に対して可溶な樹脂である。アルカリ水溶液とは、テトラメチルアンモニウムヒドロキシド(TMAH)水溶液、金属水酸化物水溶液、有機アミン水溶液等のアルカリ性の溶液である。一般には、濃度が2.38質量%のテトラメチルアンモニウムヒドロキシド水溶液が、現像に用いられる。(A)成分がアルカリ水溶液に可溶であることは、例えば、以下のようにして確認することができる。
(A)成分を任意の溶剤に溶解して得られたワニスを、シリコンウェハ等の基板上にスピン塗布して形成することにより膜厚5μm程度の塗膜とする。これをTMAH水溶液、金属水酸化物水溶液又は有機アミン水溶液のいずれかに20〜25℃において、浸漬する。この結果、塗膜が均一に溶解し得るとき、その(A)成分はアルカリ性現像液で可溶であると見なすことができる。
アルカリ水溶液への溶解性の観点から、(A)成分は、フェノール性水酸基を有する樹脂であることが好ましい。フェノール性水酸基を有する樹脂としては、例えば、ポリヒドロキシスチレン、ヒドロキシスチレンをモノマ単位として含む共重合体等のヒドロキシスチレン系樹脂、フェノール樹脂、ポリ(ヒドロキシアミド)等のポリベンゾオキサゾール前駆体、ポリ(ヒドロキシフェニレン)エーテル、及びポリナフトールが挙げられる。(A)成分は、これらの樹脂のうちの1種のみで構成されていてもよく、また、2種以上を含んで構成されていてもよい。
これらの中で、電気特性(絶縁性)に優れること及び硬化時の体積収縮が小さいことから、(A)成分は、ヒドロキシスチレン系樹脂を含むことが好ましい。
アルカリ水溶液への溶解性の観点から、ヒドロキシスチレン系樹脂は、下記一般式(1)で表される構造単位を有することが好ましい。
Figure 2020064170
式(1)中、R21は水素原子又はメチル基を示し、R22は炭素数1〜10のアルキル基、炭素数6〜10のアリール基又は炭素数1〜10のアルコキシ基を示し、aは0〜3の整数を示し、bは1〜3の整数を示す。aとbの合計は5以下である。
22で表わされる炭素数1〜10のアルキル基としては、例えば、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、ノニル基及びデシル基が挙げられる。これらのアルキル基は直鎖状であっても、分岐鎖状であってもよい。R22で表わされる炭素数6〜10のアリール基としては、例えば、フェニル基及びナフチル基が挙げられる。R22で表わされる炭素数1〜10のアルコキシ基としては、例えば、メトキシ基、エトキシ基、プロポキシ基、ブトキシ基、ペントキシ基、ヘキソキシ基、ヘプトキシ基、オクトキシ基、ノノキシ基及びデコキシ基が挙げられる。これらのアルコキシ基は直鎖状であっても、分岐鎖状であってもよい。
ヒドロキシスチレン系樹脂は、一般式(1)で表される構造単位を与えるモノマ等を重合させることで得ることができる。一般式(1)で表される構造単位を与えるモノマとしては、例えば、p−ヒドロキシスチレン、m−ヒドロキシスチレン、o−ヒドロキシスチレン、p−イソプロペニルフェノール、m−イソプロペニルフェノール及びo−イソプロペニルフェノールが挙げられる。これらのモノマは1種単独で又は2種以上を組み合わせて使用することができる。
ヒドロキシスチレン系樹脂は、その製造方法に制限されないが、例えば、一般式(1)で表される構造単位を与えるモノマの水酸基をtert−ブチル基、アセチル基等で保護して水酸基が保護されたモノマとし、水酸基が保護されたモノマを重合して重合体を得て、さらに得られた重合体を、公知の方法(酸触媒下で脱保護してヒドロキシスチレン系構造単位に変換すること等)で脱保護することにより得ることができる。
ヒドロキシスチレン系樹脂は、一般式(1)で表される構造単位を与えるモノマのみからなる重合体又は共重合体であってもよく、一般式(1)で表される構造単位を与えるモノマとそれ以外のモノマとの共重合体であってもよい。ヒドロキシスチレン系樹脂が共重合体である場合、共重合体中の一般式(1)で表される構造単位の割合は、露光部のアルカリ現像液に対する溶解性の観点から、(A)成分100モル%に対して、10〜100モル%が好ましく、20〜97モル%がより好ましく、30〜95モル%が更に好ましく、50〜95モル%が特に好ましい。
ヒドロキシスチレン系樹脂が、一般式(1)で表される構造単位を与えるモノマと、それ以外のモノマとの共重合体である場合、未露光部のアルカリ現像液に対する溶解阻害性をより向上する観点から、ヒドロキシスチレン系樹脂は、下記一般式(2)で表される構造単位を有してもよい。
Figure 2020064170
式(2)中、R23は水素原子又はメチル基を示し、R24は炭素数1〜10のアルキル基、炭素数6〜10のアリール基又は炭素数1〜10のアルコキシ基を示し、cは0〜3の整数を示す。
24で表わされる炭素数1〜10のアルキル基、炭素数6〜10のアリール基又は炭素数1〜10のアルコキシ基としては、それぞれR22と同様の基が例示できる。
一般式(2)で表される構造単位を有するヒドロキシスチレン系樹脂は、一般式(2)で表される構造単位を与えるモノマを用いることによって得られる。一般式(2)で表される構造単位を与えるモノマとしては、例えば、スチレン、α−メチルスチレン、o−メチルスチレン、m−メチルスチレン、p−メチルスチレン、o−メトキシスチレン、m−メトキシスチレン、p−メトキシスチレン等の芳香族ビニル化合物が挙げられる。これらのモノマは1種単独で又は2種以上を組み合わせて使用することができる。
ヒドロキシスチレン系樹脂が一般式(2)で表される構造単位を有する場合、未露光部のアルカリ現像液に対する溶解阻害性及びパターン硬化膜の機械特性の観点から、一般式(2)で表される構造単位の割合は(A)成分100モル%に対して、1〜90モル%が好ましく、3〜80モル%がより好ましく、5〜70モル%が更に好ましく、5〜50モル%が特に好ましい。
ヒドロキシスチレン系樹脂が、一般式(1)で表される構造単位を与えるモノマと、それ以外のモノマとの共重合体である場合、弾性率を低くする観点から、ヒドロキシスチレン系樹脂は、下記一般式(3)で表される構造単位を有してもよい。
Figure 2020064170
式(3)中、R25は水素原子又はメチル基を示し、R26は炭素数1〜10のアルキル基又は炭素数1〜10のヒドロキシアルキル基を示す。
一般式(3)で表される構造単位を有するヒドロキシスチレン系樹脂は、一般式(3)で表される構造単位を与えるモノマを用いることで得られる。一般式(3)で表される構造単位を与えるモノマとしては、例えば、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸プロピル、(メタ)アクリル酸ブチル、(メタ)アクリル酸ペンチル、(メタ)アクリル酸ヘキシル、(メタ)アクリル酸ヘプチル、(メタ)アクリル酸オクチル、(メタ)アクリル酸ノニル、(メタ)アクリル酸デシル、(メタ)アクリル酸ヒドロキシメチル、(メタ)アクリル酸ヒドロキシエチル、(メタ)アクリル酸ヒドロキシプロピル、(メタ)アクリル酸ヒドロキシブチル、(メタ)アクリル酸ヒドロキシペンチル、(メタ)アクリル酸ヒドロキシヘキシル、(メタ)アクリル酸ヒドロキシヘプチル、(メタ)アクリル酸ヒドロキシオクチル、(メタ)アクリル酸ヒドロキシノニル及び(メタ)アクリル酸ヒドロキシデシルが挙げられる。これらのモノマは1種単独で又は2種以上を組み合わせて使用することができる。
ヒドロキシスチレン系樹脂が一般式(3)で表される構造単位を有する場合、未露光部のアルカリ現像液に対する溶解阻害性及びパターン硬化膜の機械特性の観点から、一般式(3)で表される構造単位の割合は(A)成分100モル%に対して、1〜90モル%が好ましく、3〜80モル%がより好ましく、5〜70モル%が更に好ましく、5〜50モル%が特に好ましい。
(A)成分の分子量は、アルカリ水溶液に対する溶解性、感光特性及びパターン硬化膜の機械特性のバランスを考慮すると、重量平均分子量(Mw)で1000〜500000が好ましく、2000〜200000がより好ましく、2000〜100000であることが更に好ましい。Mwは、ゲルパーミエーションクロマトグラフィー(GPC)法により測定し、標準ポリスチレン検量線より換算して得られる値である。
<(B)成分>
(B)成分であるヒドロキシ基及びシクロアルキル環を含む構造単位を有するアクリル系エラストマは、硬化膜の破断強度を向上して耐クラック性を向上することができる成分である。(B)成分は、(A)成分とは異なる組成を有している。シクロアルキル環としては、例えば、シクロプロピル、シクロブチル、シクロペンチル、シクロヘキシル、シクロヘプチル基及びシクロオクチルが挙げられる。
ヒドロキシ基及びシクロアルキル環を含む構造単位は、ヒドロキシシクロアルキル基を有するアクリルモノマに基づく構造単位であってもよい。ヒドロキシシクロアルキル基としては、例えば、ヒドロキシシクロプロピル基、ヒドロキシシクロブチル基、ヒドロキシシクロペンチル基、ヒドロキシシクロヘキシル基、ヒドロキシシクロヘプチル基及びヒドロキシシクロオクチル基が挙げられる。
ヒドロキシ基及びシクロアルキル環を含む構造単位は、ヒドロキシ基が炭素数1〜3のアルキレン基を介してシクロアルキル環に結合した基を有するアクリルモノマに基づく構造単位であってもよい。このようなアクリルモノマとしては、例えば、1,4−シクロヘキサンジメタノールモノアクリレートが挙げられる。
(B)成分は、硬化膜の破断強度、破断伸び及び熱膨張性に優れることから、下記一般式(4)で表される構造単位を更に有することが好ましい。
Figure 2020064170
一般式(4)中、R31は水素原子又はメチル基を示し、R32はヒドロキシアルキル基を示す。
32で表わされる炭素数2〜20のヒドロキシアルキル基としては、例えば、ヒドロキシエチル基、ヒドロキシプロピル基、ヒドロキシブチル基、ヒドロキシペンチル基、ヒドロキシヘキシル基、ヒドロキシヘプチル基、ヒドロキシオクチル基、ヒドロキシノニル基、ヒドロキシデシル基、ヒドロキシウンデシル基、ヒドロキシドデシル基(ヒドロキシラウリル基という場合もある。)、ヒドロキシトリデシル基、ヒドロキシテトラデシル基、ヒドロキシペンタデシル基、ヒドロキシヘキサデシル基、ヒドロキシヘプタデシル基、ヒドロキシオクタデシル基、ヒドロキシノナデシル基及びヒドロキシエイコシル基が挙げられる。
アクリル系エラストマは、さらに下記一般式(5)で表される構造単位、下記一般式(6)で表される構造単位、又は下記一般式(7)で表される構造単位を有していてもよい。
Figure 2020064170

式(5)中、R33は水素原子又はメチル基を示し、R34は1級、2級又は3級アミノ基を有する1価の有機基を示す。
34で表わされる1級、2級又は3級アミノ基としては、例えば、アミノエチル基、N−メチルアミノエチル基、N,N−ジメチルアミノエチル基、N−エチルアミノエチル基、N,N−ジエチルアミノエチル基、アミノプロピル基、N−メチルアミノプロピル基、N,N−ジメチルアミノプロピル基、N−エチルアミノプロピル基、N,N−ジエチルアミノプロピル基、ピペリジン−4−イル基、1−メチルピペリジン−4−イル基、2,2,6,6−テトラメチルピペリジン−4−イル基、1,2,2,6,6−ペンタメチルピペリジン−4−イル基、(ピペリジン−4−イル)メチル基及び2−(ピペリジン−4−イル)エチル基が挙げられる。
Figure 2020064170

式(6)中、R35は水素原子又はメチル基を示し、R36は炭素数4〜20のアルキル基を示す。
36で表わされる炭素数4〜20のアルキル基としては、例えば、ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ウンデシル基、ドデシル基(ラウリル基という場合もある。)、トリデシル基、テトラデシル基、ペンタデシル基、ヘキサデシル基、ヘプタデシル基、オクタデシル基、ノナデシル基及びエイコシル基が挙げられる。これらの基は、直鎖状であっても分岐鎖状であってもよい。
Figure 2020064170

式(7)中、R37は水素原子又はメチル基を示す。
(B)成分は、例えば、ヒドロキシ基及びシクロアルキル環を含む構造単位を与えるモノマ、及び必要に応じて添加される上記一般式(4)、(5)、(6)又は(7)で表される構造単位を与えるモノマを配合し、乳酸エチル、トルエン、イソプロパノール等の溶媒中で撹拌し、必要に応じて加熱することによって得ることができる。(B)成分中のヒドロキシ基及びシクロアルキル環を含む構造単位の割合は、耐薬品性をより向上する観点から、(B)成分の総量に対して、0.1〜30モル%であることが好ましく、0.3〜20モル%であることがより好ましく、0.5〜10モル%であることが更に好ましい。
(B)成分の重量平均分子量(Mw)は、2000〜100000であることが好ましく、3000〜60000であることがより好ましく、5000〜50000であることが更に好ましく、10000〜40000であることが特に好ましい。ここで、Mwは、ゲルパーミエーションクロマトグラフィー(GPC)法により測定し、標準ポリスチレン検量線より換算して得られる値である。
(B)成分の含有量は、破断強度及び破断伸びにより優れる観点から、(A)成分100質量部に対して、1〜35質量部であることが好ましく、3〜30質量部であることがより好ましく、5〜25質量部であることが更に好ましい。
<(C)成分>
(C)成分である光により(光を受けることにより)酸を生成する化合物は、感光性樹脂組成物において感光剤として機能する。(C)成分は、光照射を受けて酸を生成させ、樹脂膜の光照射を受けた部分のアルカリ水溶液への可溶性を増大させる機能を有する。(C)成分としては、一般に光酸発生剤と称される化合物を用いることができる。(C)成分の具体例としては、o−キノンジアジド化合物、アリールジアゾニウム塩、ジアリールヨードニウム塩及びトリアリールスルホニウム塩が挙げられる。(C)成分は、これらの化合物のうちの1種のみからなるものであってもよく、また2種以上を含んで構成されるものであってもよい。これらの中で、感度が高いことから、(C)成分は、o−キノンジアジド化合物であることが好ましい。
o−キノンジアジド化合物としては、例えば、o−キノンジアジドスルホニルクロリドと、ヒドロキシ化合物及び/又はアミノ化合物等とを脱塩酸剤の存在下で縮合反応させることで得られる化合物を用いることができる。
o−キノンジアジドスルホニルクロリドとしては、例えば、ベンゾキノン−1,2−ジアジド−4−スルホニルクロリド、ナフトキノン−1,2−ジアジド−5−スルホニルクロリド及びナフトキノン−1,2−ジアジド−6−スルホニルクロリドが挙げられる。
ヒドロキシ化合物としては、例えば、ヒドロキノン、レゾルシノール、ピロガロール、ビスフェノールA、ビス(4−ヒドロキシフェニル)メタン、1,1−ビス(4−ヒドロキシフェニル)−1−[4−{1−(4−ヒドロキシフェニル)−1−メチルエチル}フェニル]エタン、2,2−ビス(4−ヒドロキシフェニル)ヘキサフルオロプロパン、2,3,4−トリヒドロキシベンゾフェノン、2,3,4,4’−テトラヒドロキシベンゾフェノン、2,2’,4,4’−テトラヒドロキシベンゾフェノン、2,3,4,2’,3’−ペンタヒドロキシベンゾフェノン、2,3,4,3’,4’,5’−ヘキサヒドロキシベンゾフェノン、ビス(2,3,4−トリヒドロキシフェニル)メタン、ビス(2,3,4−トリヒドロキシフェニル)プロパン、4b,5,9b,10−テトラヒドロ−1,3,6,8−テトラヒドロキシ−5,10−ジメチルインデノ[2,1−a]インデン、トリス(4−ヒドロキシフェニル)メタン及びトリス(4−ヒドロキシフェニル)エタンが挙げられる。
アミノ化合物としては、例えば、p−フェニレンジアミン、m−フェニレンジアミン、4,4’−ジアミノジフェニルエーテル、4,4’−ジアミノジフェニルメタン、4,4’−ジアミノジフェニルスルホン、4,4’−ジアミノジフェニルスルフィド、o−アミノフェノール、m−アミノフェノール、p−アミノフェノール、3,3’−ジアミノ−4,4’−ジヒドロキシビフェニル、4,4’−ジアミノ−3,3’−ジヒドロキシビフェニル、ビス(3−アミノ−4−ヒドロキシフェニル)プロパン、ビス(4−アミノ−3−ヒドロキシフェニル)プロパン、ビス(3−アミノ−4−ヒドロキシフェニル)スルホン、ビス(4−アミノ−3−ヒドロキシフェニル)スルホン、ビス(3−アミノ−4−ヒドロキシフェニル)ヘキサフルオロプロパン及びビス(4−アミノ−3−ヒドロキシフェニル)ヘキサフルオロプロパンが挙げられる。
これらの中でも、o−キノンジアジド化合物を合成する際の反応性の観点と、樹脂膜を露光する際に適度な吸収波長範囲である観点から、1,1−ビス(4−ヒドロキシフェニル)−1−[4−{1−(4−ヒドロキシフェニル)−1−メチルエチル}フェニル]エタンと1−ナフトキノン−2−ジアジド−5−スルホニルクロリドとの縮合物、トリス(4−ヒドロキシフェニル)メタン又はトリス(4−ヒドロキシフェニル)エタンと1−ナフトキノン−2−ジアジド−5−スルホニルクロリドとの縮合物を用いることが好ましい。
脱塩酸剤としては、例えば、炭酸ナトリウム、水酸化ナトリウム、炭酸水素ナトリウム、炭酸カリウム、水酸化カリウム、トリメチルアミン、トリエチルアミン及びピリジンが挙げられる。反応溶媒としては、例えば、ジオキサン、アセトン、メチルエチルケトン、テトラヒドロフラン、ジエチルエーテル及びN−メチルピロリドンが挙げられる。
o−キノンジアジドスルホニルクロリドと、ヒドロキシ化合物及び/又はアミノ化合物との配合は、o−キノンジアジドスルホニルクロリド1モルに対して、ヒドロキシ基とアミノ基とのモル数の合計が0.5〜1モルになるように配合されることが好ましい。脱塩酸剤とo−キノンジアジドスルホニルクロリドの好ましい配合割合は、0.95/1〜1/0.95モル当量の範囲である。
なお、上述の反応の好ましい反応温度は0〜40℃、好ましい反応時間は1〜10時間である。
(C)成分の含有量は、露光部と未露光部の溶解速度差が大きくなり、感度がより良好となる点から、(A)成分100質量部に対して3〜100質量部が好ましく、5〜50質量部がより好ましく、5〜30質量部が更に好ましく、5〜20質量部とすることが特に好ましい。
<(D)成分>
本実施形態の感光性樹脂組成物は、(D)成分として、熱架橋剤を更に含有してもよい。(D)成分は、樹脂膜を加熱して硬化膜を形成する際に、(A)成分と反応して橋架け構造を形成し得る構造を有する化合物である。(D)成分を用いることで、硬化膜の強度を向上することができる。(D)成分としては、例えば、フェノール性水酸基を有する化合物、アルコキシメチル基を有する化合物及びエポキシ基を有する化合物が挙げられる。
なお、ここでいう「フェノール性水酸基を有する化合物」には、(A)成分は包含されない。熱架橋剤としてのフェノール性水酸基を有する化合物は、熱架橋剤としてだけでなく、樹脂膜をアルカリ水溶液で現像する際の露光部の溶解速度を増加させ、感度を向上させることができる。このようなフェノール性水酸基を有する化合物のMwは、アルカリ水溶液に対する溶解性及び機械特性のバランスを考慮して、2000以下であることが好ましく、94〜2000であることがより好ましく、108〜2000であることが更に好ましく、108〜1500であることが特に好ましい。
(D)成分は、樹脂膜の硬化時の溶融を防止する効果に優れている点から、アルコキシメチル基を有する化合物であることが好ましく、硬化膜の耐熱性及び機械特性の観点から、4つ以上のアルコキシメチル基を有する化合物であることがより好ましい。
4つ以上のアルコキシメチル基を有する化合物は、耐熱性及び薬品耐性の観点から、下記一般式(11)で表される化合物又は下記一般式(12)で表される化合物であることが更に好ましい。
Figure 2020064170
式(11)中、R〜Rは、それぞれ独立に炭素数1〜10のアルキル基を示す。R〜Rで示される炭素数1〜10のアルキル基は、R22と同様の基が例示できる。アルキル基の炭素数は低温での反応性の観点から、1〜5であることが好ましく、1〜3であることがより好ましく、1又は2であることが更に好ましく、1であることが特に好ましい。
Figure 2020064170
式(12)中、R〜R12は、それぞれ独立に炭素数1〜10のアルキル基を示す。R〜R12で示される炭素数1〜10のアルキル基は、R22と同様の基が例示できる。アルキル基の炭素数は、1〜5であることが好ましく、1〜3であることがより好ましく、1又は2であることが更に好ましく、1であることが特に好ましい。
(D)成分の含有量は、硬化膜の耐熱性を向上すると共に、基板上に硬化膜を形成した際の反りを低減する点から、(A)成分100質量部に対して0.5〜50質量部が好ましく、1〜40質量部がより好ましく、2〜30質量部が更に好ましい。
<(E)成分>
本実施形態の感光性樹脂組成物は、(E)成分として、2以上のエポキシ基を有する化合物を更に含有してもよい。(E)成分は、上述の(D)成分である化合物と共に、パターン形成後の樹脂膜を加熱して硬化する際に、(A)成分と反応して橋架け構造を形成することができる。
(E)成分は、2以上のエポキシ基を有しているものであれば、特に制限なく使用することができる。(E)成分としては、例えば、脂肪族エポキシ化合物、芳香族エポキシ化合物、脂環式エポキシ化合物、複素環式エポキシ化合物、ビスフェノール型エポキシ化合物、ノボラック型エポキシ化合物、グリシジルアミン型エポキシ化合物、ハロゲン化エポキシ化合物等が挙げられる。これらは1種を単独で又は2種以上を組み合わせて用いることができる。
(E)成分は、薬液耐性により優れる観点から、芳香環又は複素環を有するエポキシ化合物であることが好ましく、複素環を有するエポキシ化合物であることがより好ましく、含窒素複素環を有するエポキシ化合物であることが更に好ましい。
(E)成分は、薬液耐性により優れる観点から、下記一般式(13)で表される化合物であることが好ましい。
Figure 2020064170
式(13)中、R13〜R15は、それぞれ独立に炭素数1〜10のアルキレン基を示す。
一般式(13)において、R13〜R15で表わされる炭素数1〜10のアルキレン基としては、例えば、メチレン基、エチレン基、プロピレン基、ブチレン基、ペンチレン基、ヘキシレン基、ヘプチレン基、オクチレン基、ノニレン基及びデシレン基が挙げられる。これらの基は直鎖状であっても、分岐鎖状であってもよい。アルキレン基の炭素数は、1〜8であることが好ましく、1〜6であることがより好ましい。
(D)成分に対する(E)成分のモル比率((E)成分のモル数/(D)成分のモル数)は、薬液耐性及び破断強度により優れる観点から、1.0以下が好ましく、0.9以下であることがより好ましく、0.8以下であることが更に好ましい。(D)成分に対する(E)成分のモル比率の下限は、特に制限されないが、0.1以上、0.2以上又は0.3以上であってもよい。
(D)成分及び(E)成分の合計量は、薬液耐性により優れる観点から、(A)成分100質量部に対して、2〜35質量部であることが好ましく、4〜30質量部であることがより好ましく、5〜25質量部であることが更に好ましい。
<その他の成分>
本実施形態の感光性樹脂組成物は、上記(A)〜(E)成分以外に、溶媒、加熱により酸を生成する化合物、溶解促進剤、溶解阻害剤、カップリング剤、界面活性剤、レベリング剤等の成分を含有してもよい。
(溶媒)
本実施形態の感光性樹脂組成物は、溶媒を含有することにより、基板上への塗布を容易にし、均一な厚さの塗膜を形成することができる。溶媒としては、例えば、γ−ブチロラクトン、乳酸エチル、プロピレングリコールモノメチルエーテルアセテート、酢酸ベンジル、n−ブチルアセテート、エトキシエチルプロピオナート、3−メチルメトキシプロピオナート、N−メチル−2−ピロリドン、N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド、ジメチルスルホキシド、ヘキサメチルホスホリルアミド、テトラメチレンスルホン、ジエチルケトン、ジイソブチルケトン、メチルアミルケトン、シクロヘキサノン、プロピレングリコールモノメチルエーテル、プロピレングリコールモノプロピルエーテル、プロピレングリコールモノブチルエーテル及びジプロピレングリコールモノメチルエーテルが挙げられる。これらの溶媒は1種を単独で又は2種以上を組み合わせて用いることができる。これらの中でも、溶解性及び塗布膜の均一性の点から、溶媒として、乳酸エチル又はプロピレングリコールモノメチルエーテルアセテートを用いることが好ましい。
(加熱により酸を生成する化合物)
加熱により酸を生成する化合物を用いることによって、樹脂膜を加熱する際に酸を発生させることが可能となるため、(A)成分と(D)成分及び(C)成分との反応、すなわち熱架橋反応が促進され、硬化膜の耐熱性が向上する。また、加熱により酸を生成する化合物は、光照射によっても酸を発生するため、露光部のアルカリ水溶液への溶解性が増大する。よって、樹脂膜における未露光部と露光部とのアルカリ水溶液に対する溶解性の差が更に大きくなり、解像度がより向上する。
このような加熱により酸を生成する化合物は、例えば、50〜250℃まで加熱することにより酸を生成する化合物であってもよい。加熱により酸を生成する化合物の具体例としては、オニウム塩等の強酸と塩基とから形成される塩、及びイミドスルホナートが挙げられる。
加熱により酸を生成する化合物を用いる場合の含有量は、(A)成分100質量部に対して、0.1〜30質量部が好ましく、0.2〜20質量部がより好ましく、0.5〜10質量部が更に好ましい。
(溶解促進剤)
溶解促進剤を感光性樹脂組成物に配合することによって、樹脂膜をアルカリ水溶液で現像する際の露光部の溶解速度を増加させ、感度及び解像性を向上させることができる。溶解促進剤としては従来公知のものを用いることができる。溶解促進剤の具体例としては、カルボキシ基、スルホン酸又はスルホンアミド基を有する化合物が挙げられる。
溶解促進剤を用いる場合の含有量は、アルカリ水溶液に対する溶解速度によって決めることができ、例えば、(A)成分100質量部に対して、0.01〜30質量部とすることができる。
(溶解阻害剤)
溶解阻害剤は、(A)成分のアルカリ水溶液に対する溶解性を阻害する化合物であり、残膜厚、現像時間及びコントラストをコントロールするために用いられる。溶解阻害剤としては、例えば、ジフェニルヨードニウムニトラート、ビス(p−tert−ブチルフェニル)ヨードニウムニトラート、ジフェニルヨードニウムブロミド、ジフェニルヨードニウムクロリド及びジフェニルヨードニウムヨージドが挙げられる。溶解阻害剤を用いる場合の含有量は、感度及び現像時間の許容幅の点から、(A)成分100質量部に対して0.01〜20質量部が好ましく、0.01〜15質量部がより好ましく、0.05〜10質量部が更に好ましい。
(カップリング剤)
カップリング剤を感光性樹脂組成物に配合することによって、形成される硬化膜の基板との接着性をより高めることができる。カップリング剤としては、例えば、有機シラン化合物及びアルミキレート化合物が挙げられる。有機シラン化合物としては、例えば、KBM−403、KBM−803及びKBM−903(信越化学工業株式会社製、商品名)が挙げられる。カップリング剤を用いる場合の含有量は、(A)成分100質量部に対して、0.1〜20質量部が好ましく、0.5〜10質量部がより好ましい。
(界面活性剤、レベリング剤)
界面活性剤又はレベリング剤を感光性樹脂組成物に配合することによって、塗布性をより向上することができる。具体的には、例えば、界面活性剤又はレベリング剤を含有することで、ストリエーション(膜厚のムラ)をより防いだり、現像性をより向上させたりすることができる。界面活性剤又はレベリング剤としては、例えば、ポリオキシエチレンラウリルエーテル、ポリオキシエチレンステアリルエーテル、ポリオキシエチレンオレイルエーテル及びポリオキシエチレンオクチルフェノールエーテルが挙げられる。市販品としては、例えば、メガファックF−171、F−565、RS−78(DIC株式会社製、商品名)が挙げられる。
界面活性剤又はレベリング剤を用いる場合の含有量は、(A)成分100質量部に対して、0.001〜5質量部が好ましく、0.01〜3質量部がより好ましい。
本実施形態の感光性樹脂組成物は、テトラメチルアンモニウムヒドロキシド(TMAH)等のアルカリ水溶液を用いて現像することが可能である。上記感光性樹脂組成物は、ポジ型感光性樹脂組成物である。本実施形態の感光性樹脂組成物を用いることにより、薬液耐性に優れる硬化膜を形成することが可能となる。
[パターン硬化膜及びその製造方法]
一実施形態のパターン硬化膜は、パターンを有し、パターンが上述の感光性樹脂組成物からなる樹脂膜の硬化物を含む。パターン硬化膜は、上述の感光性樹脂組成物を加熱することによって得られる。以下、パターン硬化膜の製造方法について説明する。
本実施形態のパターン硬化膜の製造方法は、上述の感光性樹脂組成物を基板の一部又は全部に塗布及び乾燥し樹脂膜を形成する工程(塗布・乾燥(成膜)工程)と、樹脂膜の一部又は全部を露光する工程(露光工程)と、露光後の樹脂膜をアルカリ水溶液により現像してパターン樹脂膜を形成する工程(現像工程)と、パターン樹脂膜を加熱する工程(加熱処理工程)とを備える。以下、各工程について説明する。
<塗布・乾燥(成膜)工程>
まず、本実施形態の感光性樹脂組成物を基板上に塗布し乾燥して樹脂膜を形成する。この工程では、ガラス基板、半導体、金属酸化物絶縁体(例えば、TiO、SiO等)、窒化ケイ素等の基板上に、本実施形態の感光性樹脂組成物を、スピンナー等を用いて回転塗布し、塗膜を形成する。塗膜の厚さに特に制限はないが、0.1〜40μmであることが好ましい。この塗膜が形成された基板をホットプレート、オーブン等を用いて乾燥する。乾燥温度及び乾燥時間に特に制限はないが80〜140℃で、1〜7分間行うことが好ましい。これにより、支持基板上に樹脂膜が形成される。樹脂膜の厚さに特に制限はないが、0.1〜40μmであることが好ましい。
<露光工程>
次に、露光工程では、基板上に形成した樹脂膜に、マスクを介して紫外線、可視光線、放射線等の活性光線を照射する。本実施形態の感光性樹脂組成物において、(A)成分はi線に対する透明性が高いので、i線の照射を好適に用いることができる。なお、露光後、必要に応じて、溶解速度を向上させる観点から露光後加熱(PEB)を行うこともできる。露光後加熱を行う場合の温度は70℃〜140℃、露光後加熱の時間は1〜5分間が好ましい。
<現像工程>
現像工程では、露光工程後の樹脂膜の露光部を現像液で除去することにより、樹脂膜がパターン化され、パターン樹脂膜が得られる。現像液としては、例えば、炭酸ナトリウム、水酸化ナトリウム、水酸化カリウム、ケイ酸ナトリウム、アンモニア、エチルアミン、ジエチルアミン、トリエチルアミン、トリエタノールアミン、水酸化テトラメチルアンモニウム(TMAH)等のアルカリ水溶液が好適に用いられる。これらの水溶液の塩基濃度は、0.1〜10質量%とすることが好ましい。さらに、上記現像液にアルコール類又は界面活性剤を添加して使用することもできる。これらはそれぞれ、現像液100質量部に対して、好ましくは0.01〜10質量部、より好ましくは0.1〜5質量部の範囲で配合することができる。現像液を用いて現像を行う場合は、例えば、シャワー現像、スプレー現像、浸漬現像、パドル現像等の方法によって、現像液を樹脂膜上に配し、18〜40℃の条件下、30〜360秒間放置する。放置後、水洗しスピン乾燥を行うことでパターン樹脂膜を洗浄する。
<加熱処理工程>
次いで、加熱処理工程では、パターン樹脂膜を加熱処理することにより、パターン硬化膜を形成することができる。加熱処理工程における加熱温度は、半導体装置に対する熱によるダメージを充分に防止する点から、230℃未満が好ましく、220℃以下がより好ましく、210℃以下が更に好ましく、200℃以下が特に更に好ましい。
加熱処理は、例えば、石英チューブ炉、ホットプレート、ラピッドサーマルアニール、縦型拡散炉、赤外線硬化炉、電子線硬化炉、マイクロ波硬化炉等のオーブンを用いて行うことができる。また、大気中又は窒素等の不活性雰囲気中いずれを選択することもできるが、窒素下で行う方がパターンの酸化を防ぐことができるので望ましい。上述の好ましい加熱温度の範囲は従来の加熱温度よりも低いため、支持基板及び半導体装置へのダメージを小さく抑えることができる。従って、本実施形態のレジストパターンの製造方法を用いることによって、電子デバイスを歩留まり良く製造することができる。また、プロセスの省エネルギー化につながる。さらに、本実施形態の感光性樹脂組成物によれば、感光性ポリイミド等に見られる加熱処理工程における体積収縮(硬化収縮)が小さいため、寸法精度の低下を防ぐことができる。
加熱処理工程における加熱処理時間は、感光性樹脂組成物が硬化するのに充分な時間であればよいが、作業効率との兼ね合いから、5時間以下が好ましい。
また、加熱処理は、上述のオーブンの他、マイクロ波硬化装置又は周波数可変マイクロ波硬化装置を用いて行うこともできる。これらの装置を用いることにより、基板及び半導体装置の温度を例えば200℃以下に保ったままで、感光性樹脂膜のみを効果的に加熱することが可能である(J.Photopolym.Sci.Technol.,18,327−332(2005)参照)。
上述の本実施形態のパターン硬化膜の製造方法によれば、充分に高い感度及び解像度で、密着性及び熱衝撃性にも優れるパターン硬化膜が得られる。
[層間絶縁層、表面保護層]
本実施形態のパターン硬化膜は、半導体素子の層間絶縁層又は表面保護層として用いることができる。
[半導体素子]
一実施形態の半導体素子は、本実施形態の層間絶縁層又は表面保護層を備える。本実施形態の半導体素子は、特に制限に制限されないが、多層配線構造、再配線構造等を有する、メモリ、パッケージ等のことを意味する。
ここで、半導体素子の製造工程の一例を図面に基づいて説明する。図1〜5は、多層配線構造を有する半導体素子の製造工程の一実施形態を示す概略斜視図及び概略端面図である。図1〜5中、(a)は概略斜視図であり、(b)は、それぞれ(a)におけるIb−Ib〜Vb−Vb端面を示す概略端面図である。
まず、図1に示す構造体100を準備する。構造体100は、回路素子を有するSi基板等の半導体基板1と、回路素子が露出する所定のパターンを有し、半導体基板1を被覆するシリコン酸化膜等の保護膜2と、露出した回路素子上に形成された第1導体層3と、保護膜2及び第1導体層3上にスピンコート法等により成膜されたポリイミド樹脂等からなる層間絶縁層4とを備える。
次に、層間絶縁層4上に窓部6Aを有する感光性樹脂層5を形成することにより、図2に示す構造体200を得る。感光性樹脂層5は、例えば、塩化ゴム系、フェノールノボラック系、ポリヒドロキシスチレン系、ポリアクリル酸エステル系等の感光性樹脂を、スピンコート法により塗布することにより形成される。窓部6Aは、公知の写真食刻技術によって所定部分の層間絶縁層4が露出するように形成される。
層間絶縁層4をエッチングして窓部6Bを形成した後に、感光性樹脂層5を除去し、図3に示す構造体300を得る。層間絶縁層4のエッチングには、酸素、四フッ化炭素等のガスを用いるドライエッチング手段を用いることができる。このエッチングにより、窓部6Aに対応する部分の層間絶縁層4が選択的に除去され、第1導体層3が露出するように窓部6Bが設けられた層間絶縁層4が得られる。次いで、窓部6Bから露出した第1導体層3を腐食することなく、感光性樹脂層5のみを腐食するようなエッチング溶液を用いて感光性樹脂層5を除去する。
さらに、窓部6Bに対応する部分に第2導体層7を形成し、図4に示す構造体400を得る。第2導体層7の形成には、公知の写真食刻技術を用いることができる。これにより、第2導体層7と第1導体層3との電気的接続が行われる。
最後に、層間絶縁層4及び第2導体層7上に表面保護層8を形成し、図5に示す半導体素子500を得る。本実施形態では、表面保護層8は次のようにして形成する。まず、上述の感光性樹脂組成物をスピンコート法により層間絶縁層4及び第2導体層7上に塗布し、乾燥して感光性樹脂膜を形成する。次に、所定部分に窓部6Cに対応するパターンを描いたマスクを介して光照射した後、露光後の樹脂膜をアルカリ水溶液にて現像してパターン樹脂膜を形成する。その後、パターン樹脂膜を加熱により硬化することで、表面保護層8として用いられるパターン硬化膜が形成される。この表面保護層8は、第1導体層3及び第2導体層7を外部からの応力、α線等から保護するものであり、本実施形態の表面保護層8を用いた半導体素子500は信頼性に優れる。
なお、上述の実施形態では2層の配線構造を有する半導体素子の製造方法を示したが、3層以上の多層配線構造を形成する場合は、上述の工程を繰り返して行い、各層を形成することができる。すなわち、層間絶縁層4を形成する各工程、及び表面保護層8を形成する各工程を繰り返すことによって、多層のパターンを形成することが可能である。また、上記例において、表面保護層8のみでなく、層間絶縁層4も本実施形態の感光性樹脂組成物を用いて形成することが可能である。
本実施形態の半導体素子は、上述の感光性樹脂組成物を用いて形成される表面保護層、カバーコート層又は層間絶縁層を有するものに限られず、様々な構造をとることができる。
図6及び7は、再配線構造を有する半導体素子の一実施形態を示す概略断面図である。本実施形態の感光性樹脂組成物は、応力緩和性、接着性等にも優れるため、近年開発された図6及び7のような再配線構造を有する半導体素子において使用することができる。
図6は、半導体素子の一実施形態としての配線構造を示す概略断面図である。図6に示す半導体素子600は、シリコン基板23と、シリコン基板23の一方面側に設けられた層間絶縁層11と、層間絶縁層11上に形成された、パッド部15を含むパターンを有するAl配線層12と、パッド部15上に開口を形成しながら層間絶縁層11及びAl配線層12上に順次積層された絶縁層13(例えば、P−SiN層等)及び表面保護層14と、表面保護層14上で開口近傍に配された島状のコア18と、絶縁層13及び表面保護層14の開口内でパッド部15と接するとともにコア18の表面保護層14とは反対側の面に接するように表面保護層14上に延在する再配線層16とを備える。さらに、半導体素子600は、表面保護層14、コア18及び再配線層16を覆って形成され、コア18上の再配線層16の部分に開口が形成されているカバーコート層19と、カバーコート層19の開口においてバリアメタル20を間に挟んで再配線層16と接続された導電性ボール17と、導電性ボールを保持するカラー21と、導電性ボール17周囲のカバーコート層19上に設けられたアンダーフィル22とを備える。導電性ボール17は外部接続端子として用いられ、はんだ、金等から形成される。アンダーフィル22は、半導体素子600を実装する際に応力を緩和するために設けられている。
図7の半導体素子700においては、シリコン基板23上にAl配線層(図示せず)及びAl配線層のパッド部15が形成されており、その上部には絶縁層13が形成され、さらに素子の表面保護層14が形成されている。パッド部15上には、再配線層16が形成され、この再配線層16は、導電性ボール17との接続部24の上部まで伸びている。さらに、表面保護層14の上には、カバーコート層19が形成されている。再配線層16は、バリアメタル20を介して導電性ボール17に接続されている。
図6及び7の半導体素子において、感光性樹脂組成物は、層間絶縁層11及び表面保護層14ばかりではなく、カバーコート層19、コア18、カラー21、アンダーフィル22等を形成するための材料として使用することができる。本実施形態の感光性樹脂組成物を用いたパターン硬化膜は、Al配線層12若しくは再配線層16等のメタル層又は封止剤等との接着性に優れ、応力緩和効果も高いため、このパターン硬化膜を層間絶縁層11、表面保護層14、カバーコート層19、コア18、はんだ等のカラー21、フリップチップ等で用いられるアンダーフィル22等に用いた半導体素子は、極めて信頼性に優れるものとなる。
本実施形態の感光性樹脂組成物は、図6及び7における再配線層16を有する半導体素子の層間絶縁層11、表面保護層14又はカバーコート層19に用いることが好適である。
層間絶縁層11、表面保護層14及び上記カバーコート層19の膜厚は、3〜20μmであることが好ましく、5〜15μmであることがより好ましい。
[電子デバイス]
一実施形態の電子デバイスは、本実施形態の半導体素子を有する。電子デバイスとは、上述の半導体素子を含むものであり、例えば、携帯電話、スマートフォン、タブレット型端末、パソコン、ハードディスクサスペンション等が挙げられる。
以下に、本発明を実施例に基づいて具体的に説明するが、本発明はこれらに限定されるものではない。
実施例で用いた材料を以下に示す。
[(A)成分]
A1:4−ヒドロキシスチレン/スチレン=85/15(モル比)の共重合体(Mw=10000、丸善石油化学株式会社製の商品名「マルカリンカーCST」)
Mwは、ゲルパーミエーションクロマトグラフィー(GPC)法を用いて、標準ポリスチレン換算により求めた。具体的には、以下の装置及び条件にてMwを測定した。
(測定装置)
検出器:L4000UV(株式会社日立製作所製)
ポンプ:L6000(株式会社日立製作所製)
カラム:Gelpack GL−S300MDT−5×2本
測定条件:
溶離液:THF
LiBr(0.03mol/L)、HPO(0.06mol/L)
流速:1.0mL/分、検出器:UV270nm
試料0.5mgに対して溶媒[THF/DMF=1/L(容積比)]1mLの溶液を用いて測定した。
[(B)成分]
B1:撹拌機、窒素導入管及び温度計を備えた100mLの三口フラスコに、乳酸エチル55gを秤取し、重合性単量体(アクリル酸n−ブチル(BA)32.9g、アクリル酸(AA)5.3g、ペンタメチルピペリジルメタクリレ−ト(日立化成株式会社製、商品名「FA−711MM」)0.4g、4−ヒドロキシブチルアクリレート(HBA)2.7g、1,4−シクロヘキサンジメタノールモノアクリレート(CHDMMA)3.7g)、及びアゾビスイソブチロニトリル(AIBN)0.30gを加えた。室温にて約160rpmの撹拌回転数で撹拌しながら、窒素ガスを400mL/分の流量で30分間流し、溶存酸素を除去した。その後、窒素ガスの流入を止め、フラスコを密閉し、恒温水槽にて約25分で65℃まで昇温した。同温度を10時間保持して重合反応を行い、エラストマB1を得た。なお、エラストマB1における重合性単量体のモル比は以下のとおりである。
BA/AA/FA−711MM/HBA/CHDMMA=69.5/20.0/0.5/5.0/5.0(mol%)
[(B’)成分]
B2:重合性単量体として、BAを36.3g、AAを5.5g、FA−711MMを0.5g、HBAを2.7g用いて、エラストマB2を得た。なお、エラストマB2における重合性単量体のモル比は以下のとおりである。
BA/AA/FA−711MM/HBA=74.5/20.0/0.5/5.0(mol%)
[(C)成分]
C1:下記式(Y)で表される化合物(ダイトーケミックス株式会社製の商品名「PA−28」)
Figure 2020064170
[(D)成分]
D1:一般式(12)のR〜R12が全てメチル基である化合物(本州化学工業株式会社製の商品名「HMOM−TPPA」、分子量688.9)
(実施例1〜4及び比較例1)
表1に示す配合量(質量部)の(A)〜(D)成分、溶剤として乳酸エチル120質量部を配合し、これを3μm孔のテフロン(登録商標)フィルターを用いて加圧ろ過して、実施例及び比較例の感光性樹脂組成物を調製した。
[評価]
(パターン硬化膜の作製)
感光性樹脂組成物を6インチシリコン基板上にスピンコートして、120℃で3分間加熱し、膜厚約12〜14μmの樹脂膜を形成した。その後、この樹脂膜をプロキシミティ露光機(キャノン株式会社製の商品名「PLA−600FA」)を用いて、マスクを介して全波長で、最小露光量の2倍の露光量で露光を行った。露光後、TMAH(テトラメチルアンモニウムヒドロキシド)の2.38質量%水溶液を用いて現像を行い、10mm幅のパターン樹脂膜を得た。その後、パターン樹脂膜を以下の(i)の方法で加熱処理(硬化)し、膜厚約10μmのパターン硬化膜を得た。
(i)縦型拡散炉(光洋サーモシステム株式会社製の商品名「μ−TF」)を用い、窒素中、温度200℃(昇温時間1.5時間)で2時間、パターン樹脂膜を加熱処理した。
(耐薬液性)
硬化膜上に、薬液としてフラックス(千住金属工業株式会社製の商品名「WF−6300LF」)を塗布し、260℃で3分加熱処理を行った後に、水洗して薬液を除去した。薬液処理前後での硬化膜の膜厚を測定し、以下の式から薬液膨潤率を算出した。薬液膨潤率は、数値が小さいほど、硬化膜の薬液耐性が良好であることを意味する。薬液膨潤率が25%以下であった場合を「A」、25%を超える場合を「B」と判定した。
薬液膨潤率(%)=[(薬液処理後の硬化膜の膜厚)/(薬液処理前の硬化膜の膜厚)−1]×100
(破断強度)
パターン硬化膜の破断強度をオートグラフAGS−H100N(株式会社島津製作所製)を用いて測定した。試料の幅は10mm、膜厚は9〜11μmであり、チャック間は20mmとした。引っ張り速度は5mm/分で、測定温度は20℃〜25℃とした。同一条件で得たパターン硬化膜から得た5本以上の試験片の測定値の平均を「破断強度」とした。破断強度は、数値が大きいほど、硬化膜の強度が向上していることを意味する。破断強度が100MPa以上であった場合を「A」、90MPa以上100MPa未満であった場合を「B」、90MPa未満であった場合を「C」と判定した。
(耐クラック性)
シリコン基板上に、スパッタリングにより、ライン/スペースが20μm/20μ、高さが10μmの銅/チタン層を形成した評価用基板を準備した。感光性樹脂組成物を基板上にスピンコートして、120℃で3分間加熱した後、縦型拡散炉(光洋サーモシステム株式会社製の商品名「μ−TF」)を用い、窒素中、200℃(昇温時間1.5時間)で2時間加熱して、膜厚約10μmの硬化膜を有する試料を得た。次いで、試料をサーマルサイクル試験機に入れ、信頼性試験を行った。サイクル条件は、−65℃〜150℃で、上下限ピーク温度に達する時間を15分間、上下限ピーク温度で保持する時間を15分間とした。硬化膜にクラックが入るまでのサイクル数を確認した。クラックが入るまでのサイクル数が1000サイクル以上であった場合を「A」、600サイクル以上1000サイクル未満であった場合を「B」、600サイクル未満であった場合を「C」と判定した。
Figure 2020064170
1…半導体基板、2…保護膜、3…第1導体層、4…層間絶縁層、5…感光性樹脂層、6A,6B,6C…窓部、7…第2導体層、8…表面保護層、11…層間絶縁層、12…Al配線層、13…絶縁層、14…表面保護層、15…パッド部、16…再配線層、17…導電性ボール、18…コア、19…カバーコート層、20…バリアメタル、21…カラー、22…アンダーフィル、23…シリコン基板、24…接続部、100,200,300,400…構造体、500,600,700…半導体素子。

Claims (8)

  1. (A)アルカリ可溶性樹脂と、
    (B)ヒドロキシ基及びシクロアルキル環を含む構造単位を有するアクリル系エラストマと、
    (C)光により酸を生成する化合物と、
    を含有する、感光性樹脂組成物。
  2. 前記アクリル系エラストマが、下記一般式(4)で表される構造単位を更に有するアクリル系エラストマある、請求項1に記載の感光性樹脂組成物。
    Figure 2020064170

    [式(4)中、R31は水素原子又はメチル基を示し、R32はヒドロキシアルキル基を示す。]
  3. (D)熱架橋剤を更に含有する、請求項1又は2に記載の感光性樹脂組成物。
  4. 前記熱架橋剤が、下記一般式(11)で表される化合物又は下記一般式(12)で表される化合物を含む、請求項3に記載の感光性樹脂組成物。
    Figure 2020064170

    [式(11)中、R〜Rは、それぞれ独立に炭素数1〜10のアルキル基を示し、式(12)中、R〜R12は、それぞれ独立に炭素数1〜10のアルキル基を示す。]
  5. パターンを有し、前記パターンが請求項1〜4のいずれか一項に記載の感光性樹脂組成物からなる樹脂膜の硬化物を含む、パターン硬化膜。
  6. 請求項1〜4のいずれか一項に記載の感光性樹脂組成物を基板の一部又は全部に塗布及び乾燥して樹脂膜を形成する工程と、
    前記樹脂膜の一部又は全部を露光する工程と、
    露光後の前記樹脂膜をアルカリ水溶液によって現像してパターン樹脂膜を形成する工程と、
    前記パターン樹脂膜を加熱する工程と、
    を備える、パターン硬化膜の製造方法。
  7. 請求項5に記載のパターン硬化膜を、層間絶縁層又は表面保護層として備える、半導体素子。
  8. 請求項7に記載の半導体素子を備える、電子デバイス。
JP2018195643A 2018-10-17 2018-10-17 感光性樹脂組成物、パターン硬化膜及びその製造方法、半導体素子、並びに、電子デバイス Pending JP2020064170A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018195643A JP2020064170A (ja) 2018-10-17 2018-10-17 感光性樹脂組成物、パターン硬化膜及びその製造方法、半導体素子、並びに、電子デバイス

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018195643A JP2020064170A (ja) 2018-10-17 2018-10-17 感光性樹脂組成物、パターン硬化膜及びその製造方法、半導体素子、並びに、電子デバイス

Publications (1)

Publication Number Publication Date
JP2020064170A true JP2020064170A (ja) 2020-04-23

Family

ID=70388275

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018195643A Pending JP2020064170A (ja) 2018-10-17 2018-10-17 感光性樹脂組成物、パターン硬化膜及びその製造方法、半導体素子、並びに、電子デバイス

Country Status (1)

Country Link
JP (1) JP2020064170A (ja)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012162642A (ja) * 2011-02-07 2012-08-30 Gun Ei Chem Ind Co Ltd フェノール樹脂型架橋剤
JP2015079191A (ja) * 2013-10-18 2015-04-23 日立化成株式会社 感光性樹脂組成物、パターン硬化膜とその製造方法、半導体素子及び電子デバイス

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012162642A (ja) * 2011-02-07 2012-08-30 Gun Ei Chem Ind Co Ltd フェノール樹脂型架橋剤
JP2015079191A (ja) * 2013-10-18 2015-04-23 日立化成株式会社 感光性樹脂組成物、パターン硬化膜とその製造方法、半導体素子及び電子デバイス

Similar Documents

Publication Publication Date Title
US10175577B2 (en) Photosensitive resin composition, method for manufacturing patterned cured film, and electronic component
TWI595315B (zh) 感光性樹脂組成物、圖案硬化膜與其製造方法、半導體元件以及電子裝置
WO2013122208A1 (ja) 感光性樹脂組成物、パターン硬化膜の製造方法及び電子部品
JP2012226044A (ja) ポジ型感光性樹脂組成物、レジストパターンの製造方法、半導体装置及び電子デバイス
JP2018173573A (ja) 感光性樹脂組成物、パターン硬化物の製造方法、硬化物、層間絶縁膜、カバーコート層、表面保護膜、及び電子部品
JP7293796B2 (ja) 樹脂組成物、硬化物、半導体素子及び電子デバイス
TWI781171B (zh) 正型感光性樹脂組成物、圖案硬化膜及其製造方法、半導體元件以及電子裝置
JP2019211669A (ja) 樹脂組成物、硬化膜、パターン硬化膜の製造方法、半導体素子及び電子デバイス
JP2020064170A (ja) 感光性樹脂組成物、パターン硬化膜及びその製造方法、半導体素子、並びに、電子デバイス
JP7264174B2 (ja) 感光性樹脂組成物、パターン硬化膜及びその製造方法、半導体素子、並びに電子デバイス
JP7151874B2 (ja) 樹脂組成物、硬化物、半導体素子及び電子デバイス
JP2016024306A (ja) 感光性樹脂組成物、パターン硬化膜とその製造方法、半導体素子及び電子デバイス
JP2015079191A (ja) 感光性樹脂組成物、パターン硬化膜とその製造方法、半導体素子及び電子デバイス
JP7287453B2 (ja) 感光性樹脂組成物、パターン硬化膜及びその製造方法、半導体素子並びに電子デバイス
WO2020065860A1 (ja) 感光性樹脂組成物、パターン硬化膜及びその製造方法、半導体素子、並びに電子デバイス
JP2020008627A (ja) 感光性樹脂組成物、パターン硬化膜及びその製造方法、半導体素子、並びに電子デバイス
JP2019210399A (ja) 樹脂組成物、硬化膜、パターン硬化膜の製造方法、半導体素子及び電子デバイス
JP2021081643A (ja) ポジ型感光性樹脂組成物、パターン硬化膜及びその製造方法、半導体素子、並びに電子デバイス
JP2020079846A (ja) 感光性樹脂組成物、パターン硬化膜及びその製造方法、半導体素子、並びに電子デバイス
JP2024004027A (ja) 感光性樹脂組成物、パターン硬化膜の製造方法、パターン硬化膜、及び半導体素子
JP6776733B2 (ja) ポジ型感光性樹脂組成物
JP2015022057A (ja) 感光性樹脂組成物、パターン硬化膜の製造方法、半導体素子及び電子デバイス
JP2024002706A (ja) 感光性樹脂組成物、パターン硬化膜の製造方法、パターン硬化膜、及び半導体素子
JP2014126776A (ja) 樹脂組成物、パターン硬化膜の製造方法、半導体装置及び電子デバイス

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210917

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220825

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220906

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220930

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221213

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20230530