JP2020047614A - Wireless power transmission coil unit - Google Patents

Wireless power transmission coil unit Download PDF

Info

Publication number
JP2020047614A
JP2020047614A JP2018172049A JP2018172049A JP2020047614A JP 2020047614 A JP2020047614 A JP 2020047614A JP 2018172049 A JP2018172049 A JP 2018172049A JP 2018172049 A JP2018172049 A JP 2018172049A JP 2020047614 A JP2020047614 A JP 2020047614A
Authority
JP
Japan
Prior art keywords
coil
magnetic
conductor
power transmission
wireless power
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018172049A
Other languages
Japanese (ja)
Other versions
JP7131815B2 (en
Inventor
水野勉
Tsutomu Mizuno
卜穎剛
Yinggang Bu
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shinshu University NUC
Original Assignee
Shinshu University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shinshu University NUC filed Critical Shinshu University NUC
Priority to JP2018172049A priority Critical patent/JP7131815B2/en
Publication of JP2020047614A publication Critical patent/JP2020047614A/en
Application granted granted Critical
Publication of JP7131815B2 publication Critical patent/JP7131815B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles

Landscapes

  • Coils Of Transformers For General Uses (AREA)

Abstract

To provide a wireless power transmission coil unit capable of little power loss by using an inexpensive plat-plate spiral coil and skin effect or proximity effect.SOLUTION: The wireless power transmission coil unit includes a spirally wound flat-plate coil 2 and a magnetic shield 1 provided to face the coil 2. A clearance between a coil conductor of an optional winding positioned at a central peripheral part of the coil 2 and a coil conductor of a winding adjacent thereto is smaller than that between a coil conductor of any winding positioned on coil inner-peripheral side or outer-peripheral side and a coil conductor of a winding adjacent thereto.SELECTED DRAWING: Figure 3

Description

本開示は、非接触で電力を伝送できる非接触給電用のワイヤレス電力伝送コイルユニットに関する。   The present disclosure relates to a wireless power transmission coil unit for wireless power transfer capable of wirelessly transmitting power.

近年、電気自動車やハイブリッド型自動車などの車両のバッテリーの充電に対して、電磁誘導方式のワイヤレス給電装置の使用が検討されている。ワイヤレス給電装置では、送電コイルに高周波の交流電流(概ね数10kHz〜200kHz)を通電し、送電コイルから発生する高周波磁界を受電コイルが受け取ることで、非接触で電力送電する。   In recent years, use of an electromagnetic induction type wireless power supply device for charging a battery of a vehicle such as an electric vehicle or a hybrid vehicle has been studied. In the wireless power supply device, a high-frequency alternating current (approximately several 10 kHz to 200 kHz) is applied to the power transmission coil, and the power reception coil receives the high-frequency magnetic field generated from the power transmission coil, thereby transmitting power in a non-contact manner.

このような非接触給電装置において、装置の薄型化に対応してスパイラル状(らせん状)の断面矩形の平面コイルが用いることが従来検討されている。また高周波磁界によって周囲の金属製部品に渦電流が発生し異常発熱が起きることを回避するため、フェライト等からなる磁気シールドをコイル近傍に配置している(例えば、特許文献1)。このように伝送コイルユニットは、平面コイルと磁気シールドの組合せで構成される。   In such a non-contact power supply device, the use of a planar coil having a spiral (spiral) rectangular cross section has been studied in order to reduce the thickness of the device. Further, a magnetic shield made of ferrite or the like is arranged near the coil in order to avoid occurrence of eddy current in the surrounding metal parts due to the high frequency magnetic field and abnormal heat generation (for example, Patent Document 1). As described above, the transmission coil unit is configured by the combination of the planar coil and the magnetic shield.

一般的に、伝送コイルユニットにおいて、コイルに通電した際、コイル断面を囲むように磁力線が発生する。また磁力線は、磁気シールドの透磁率が高いため、磁気シールドの表面から垂直に流れるよう分布する。またコイルは複数の導体(コイル導体)が回巻されており、コイル導体同士が互いに近接している。このため、コイルには、自身を流れる電流による表皮効果と近接するコイル導体に生じる渦電流による近接効果の両方が存在する。したがって、各コイル導体を流れる電流は導体内部で偏ったものとなっており、特にコイルの内周部でコイル導体内の内周側に、外周部でコイル導体内の外周側に偏ったものとなって、それらの部分で電流が集中し磁力線も集中する。   Generally, in a transmission coil unit, when a coil is energized, magnetic lines of force are generated so as to surround the coil cross section. Further, the magnetic lines of force are distributed so as to flow perpendicularly from the surface of the magnetic shield because the magnetic shield has high magnetic permeability. Further, the coil is wound with a plurality of conductors (coil conductors), and the coil conductors are close to each other. For this reason, a coil has both a skin effect due to a current flowing through the coil and a proximity effect due to an eddy current generated in an adjacent coil conductor. Therefore, the current flowing through each coil conductor is biased inside the conductor, especially the current that is biased toward the inner circumference inside the coil conductor at the inner circumference of the coil and toward the outer circumference inside the coil conductor at the outer circumference. As a result, current concentrates at those portions, and the lines of magnetic force also concentrate.

特に特許文献1に示されたコイルは、断面矩形が平面であるため高周波表皮厚さが薄く、その薄い部分に上記の電流が集中して流れる。このため銅損が発生して交流抵抗が高くなり、その結果電力伝送効率が低下する。磁束を外に出さない単体のコイルあるいはインダクタでは、鎖交する渡り磁束密度に応じて、コイル内周と外周のコイル導体の幅を細く、中周の導体の幅を太くすることで、銅損の発生を極力抑えているものがある(特許文献3)。しかし、このような構成のコイルをワイヤレス電力伝送に用いる場合、対面して置かれる磁気シールドの影響を考慮する必要がある。   In particular, the coil disclosed in Patent Document 1 has a thin high-frequency skin because the rectangular cross section is a plane, and the above-described current flows intensively in the thin portion. As a result, copper loss occurs and the AC resistance increases, resulting in a decrease in power transmission efficiency. In a single coil or inductor that does not output magnetic flux, the copper loss can be reduced by reducing the width of the inner and outer coil conductors and increasing the width of the middle conductor in accordance with the interlinkage magnetic flux density. There is one that suppresses generation of as much as possible (Patent Document 3). However, when a coil having such a configuration is used for wireless power transmission, it is necessary to consider the influence of a magnetic shield placed face to face.

このような問題に対して、コイルの巻線として多数の絶縁素線をより合わせたリッツ線を使用することが知られている(例えば、特許文献3)。リッツ線は、細い素線(例えば線径0.1mm以下のエナメル線)を数多く(例えば500本以上)より合わせた線であり、上記表皮効果や近接効果による高周波損失を抑制することができる。   For such a problem, it is known to use a litz wire in which a large number of insulated wires are twisted as a coil winding (for example, Patent Document 3). The litz wire is a wire formed by combining many thin wires (for example, enamel wires having a wire diameter of 0.1 mm or less) (for example, 500 wires or more), and can suppress high-frequency loss due to the skin effect and the proximity effect.

特開2013−201296号公報JP 2013-201296 A 特開平11−40438号公報JP-A-11-40438 特開2016−219252号公報JP-A-2006-219252

しかしながら、リッツ線は素線が細くしかも本数が多いため、製造コストが高いという問題があった。そこで、本発明は、上記事情に鑑み、平面スパイラルコイルの表皮効果や近接効果による高周波損失(銅損)を低減し、交流抵抗の増大を抑制して、低コストで製造可能な非接触給電用の伝送コイルユニットを提供することを目的とする。 However, the litz wire has a problem that the production cost is high because the wires are thin and the number of wires is large. In view of the above circumstances, the present invention reduces the high-frequency loss (copper loss) due to the skin effect and proximity effect of a planar spiral coil, suppresses the increase in AC resistance, and can be manufactured at low cost for wireless power supply. It is an object of the present invention to provide a transmission coil unit.

本開示の一態様に係る非接触給電用伝送コイルユニットは、スパイラル状に巻回された平板状のコイルと前記コイルに対向して設けられた磁気シールドとを備えたワイヤレス電力伝送コイルユニットであって、前記コイルの中周部に位置する任意の巻線のコイル導体とこれに隣接する巻線のコイル導体との間隙が、コイル内周側または外周側に位置する任意の巻線のコイル導体とこれに隣接する巻線のコイル導体との間隙よりも狭いことを特徴とする。   A wireless power transmission coil unit according to an embodiment of the present disclosure is a wireless power transmission coil unit including a flat coil wound in a spiral shape and a magnetic shield provided to face the coil. The gap between the coil conductor of an arbitrary winding located at the middle peripheral portion of the coil and the coil conductor of the adjacent winding is changed to the coil conductor of an arbitrary winding located at the inner peripheral side or outer peripheral side of the coil. And a gap between the coil conductor and a coil conductor of a winding adjacent thereto.

少なくともコイル内周部および外周部に位置する任意の巻線のコイル導体とこれらにそれぞれ隣接する巻線のコイル導体との間隙に磁性体が設けられてもよい。   A magnetic body may be provided at least in the gap between the coil conductors of the arbitrary windings located at the inner and outer peripheral portions of the coil and the coil conductors of the windings adjacent to these.

前記コイルの前記磁気シールドと対向する側の面の全面に磁性体が設けられてもよい。   A magnetic body may be provided on the entire surface of the coil facing the magnetic shield.

前記コイルの間隙部の磁性体は前記磁気シールドと対向するのと反対の側に前記コイルより突出して設けられてもよい。   The magnetic body in the gap of the coil may be provided on the side opposite to the side facing the magnetic shield so as to protrude from the coil.

前記コイルの前記磁気シールドと対向するのと反対の側の面の一部に磁性体が設けられてもよい。   A magnetic body may be provided on a part of the surface of the coil opposite to the side facing the magnetic shield.

前記コイル内周部の任意の巻線のコイルにおいては内周側に、スパイラル外周部の任意の巻線のコイルにおいては外周側に、それぞれ偏在させて磁性体が設けられてもよい。   A magnetic material may be provided to be unevenly distributed on the inner peripheral side of the coil of an arbitrary winding on the inner peripheral part of the coil and on the outer peripheral side of the coil of the arbitrary winding on the spiral outer peripheral part.

本開示の一態様によれば、平板上のスパイラルコイル導体の表面および側面に集中していた磁束線を磁性層に誘導してコイル導体を貫通する磁力線の数を減少でき、これによりコイル導体内の渦電流を抑えてコイルの交流抵抗(銅損)を低減することが可能となり、リッツ線を使った場合とほぼ同等もしくはそれ以上の伝送効率を得ることができる。   According to an embodiment of the present disclosure, it is possible to guide the magnetic flux lines concentrated on the surface and the side surface of the spiral coil conductor on the flat plate to the magnetic layer to reduce the number of magnetic force lines penetrating the coil conductor, thereby reducing the number of magnetic field lines inside the coil conductor. Eddy current can be suppressed to reduce the AC resistance (copper loss) of the coil, and a transmission efficiency almost equal to or higher than that in the case of using a litz wire can be obtained.

一般的なスパイラルコイルユニットの平面図と断面図Plan view and sectional view of a general spiral coil unit 本開示の第1の実施の形態のワイヤレス伝送コイルユニットの断面図Sectional view of wireless transmission coil unit according to the first embodiment of the present disclosure 本開示の第2の実施の形態のワイヤレス伝送コイルユニットの断面図Sectional view of a wireless transmission coil unit according to a second embodiment of the present disclosure. 本開示の第2の実施の形態のワイヤレス伝送コイルユニットの拡大断面図FIG. 5 is an enlarged cross-sectional view of the wireless transmission coil unit according to the second embodiment of the present disclosure. ワイヤレス伝送コイルユニットにおける磁性体の効果を示す説明図Explanatory drawing showing the effect of a magnetic body in a wireless transmission coil unit 本開示の実施例1のワイヤレス伝送コイルユニットの断面図Sectional view of a wireless transmission coil unit according to a first embodiment of the present disclosure. 受電側リッツ線コイルユニットの構成図Configuration diagram of litz wire coil unit on the receiving side 送電側リッツ線コイルユニットの構成図Configuration diagram of Litz wire coil unit on power transmission side 本開示の実施例2におけるワイヤレス伝送コイルユニットの解析モデル図Analysis model diagram of the wireless transmission coil unit according to the second embodiment of the present disclosure 本開示の実施例2における銅板コイルの磁束と電流分布図Magnetic flux and current distribution diagram of a copper plate coil in Embodiment 2 of the present disclosure 本開示の実施例2におけるMPCコイルの磁束と電流分布図Magnetic flux and current distribution diagram of the MPC coil according to the second embodiment of the present disclosure 本開示の実施例2におけるMPCコイルの形状寸法図Shape and dimension diagram of MPC coil in embodiment 2 of the present disclosure 本開示の実施例3における各種コイルの電気特性Electric characteristics of various coils in Embodiment 3 of the present disclosure 本開示の実施例4における各種コイルユニットの伝送効率Transmission efficiency of various coil units in Embodiment 4 of the present disclosure

以下、本開示の一態様に係る実施の形態について図面を参照して詳細に説明する。   Hereinafter, embodiments according to an aspect of the present disclosure will be described in detail with reference to the drawings.

まず図1に一般的な平面スパイラルコイル型のワイヤレス伝送コイルユニットの構成を示す。スパイラル状に形成されたコイル導体部(Copper)と磁気シールド(Ferrite)とが対向して設けられていることが特徴である。図1において破線四角で囲った部分は半径方向の断面図であり、以降本実施の形態ではこのような半径方向の断面図でもってワイヤレス伝送コイルユニットの構造的特徴を説明する。   First, FIG. 1 shows a configuration of a general planar spiral coil type wireless transmission coil unit. It is characterized in that a coil conductor (Copper) formed in a spiral shape and a magnetic shield (Ferrite) are provided to face each other. In FIG. 1, a portion surrounded by a broken-line square is a radial cross-sectional view. Hereinafter, in the present embodiment, the structural features of the wireless transmission coil unit will be described with such a radial cross-sectional view.

図2は本開示の第1の実施の形態のワイヤレス伝送コイルユニットの断面図である。図2において1は磁気シールドであり、フェライト等の磁性体により構成されている。2はコイルであり、銅またはアルミ等のコイル導体(2a)をスパイラル状にしかも平板状に製造したものである。製造方法としては、一枚の金属版をプレスやエッチングなどの方法でスパイラル状に切り取るものでもよいし、鋳造するものでもよいし、また帯状の導体を平面上で巻いて作成したものであってもよい。磁気シールド1とコイル2は直には接触していないが、間に非磁性の絶縁材(樹脂、セラミック、等)を挟んでもよい(図示せず)。   FIG. 2 is a cross-sectional view of the wireless transmission coil unit according to the first embodiment of the present disclosure. In FIG. 2, reference numeral 1 denotes a magnetic shield, which is made of a magnetic material such as ferrite. Reference numeral 2 denotes a coil, which is a coil conductor (2a) made of copper, aluminum or the like manufactured in a spiral shape and in a flat shape. As a manufacturing method, a metal plate may be cut in a spiral shape by a method such as pressing or etching, may be cast, or may be formed by winding a band-shaped conductor on a plane. Is also good. Although the magnetic shield 1 and the coil 2 are not in direct contact with each other, a nonmagnetic insulating material (resin, ceramic, or the like) may be interposed therebetween (not shown).

図2において、スパイラルコイルの中周部に位置する任意の巻線のコイル2cとこれに隣接する巻線のコイルとの間隙2dは、コイル内周側および外周側の任意の巻線のコイル導体(2a、2e)と各々に隣接する巻線のコイル導体との間隙(2b、2f)よりも狭いことを特徴とする。なお、本実施の形態において、内周とはコイル2の巻き数をN(N>8)として最内から外側にN/4〜N/2巻きまでの領域を言い、外周とは最外から内側に1〜N/3巻きまでの領域を言う。中周とは、前記内周および外周で囲まれた領域を言うものとする。   In FIG. 2, a gap 2 d between a coil 2 c of an arbitrary winding located in the middle peripheral portion of the spiral coil and a coil of an adjacent winding is a coil conductor of an arbitrary winding on the inner peripheral side and the outer peripheral side of the coil. It is characterized in that it is narrower than the gap (2b, 2f) between (2a, 2e) and the coil conductor of the adjacent winding. In the present embodiment, the inner periphery refers to a region from N / 4 to N / 2 turns from the innermost to the outermost with the number of turns of the coil 2 being N (N> 8), and the outer periphery refers to the region from the outermost. A region from 1 to N / 3 turns is defined inside. The middle circumference refers to a region surrounded by the inner circumference and the outer circumference.

以上のようにコイル2を構成することにより、銅損を低減させるように磁力線の通る経路を制御することができる。一般に、背面に磁気シールド1を有したコイルユニットにおいては、コイル2からは、内周から外周にかけて円弧状の磁力線が発生する。すなわち図5(a)に示されるように、磁気シールド(Ferrite)内を通りつつ、内周では上向きに、中周では水平(コイルと平行)に、外周では下向きに、磁力線が発生する。   By configuring the coil 2 as described above, it is possible to control the path through which the magnetic force lines pass so as to reduce copper loss. Generally, in a coil unit having a magnetic shield 1 on the back surface, an arc-shaped magnetic field line is generated from the coil 2 from the inner circumference to the outer circumference. That is, as shown in FIG. 5 (a), while passing through the magnetic shield (Ferrite), magnetic lines of force are generated upward on the inner circumference, horizontally (parallel to the coil) on the middle circumference, and downward on the outer circumference.

そこで、磁力線が水平となる中周付近では互いに隣接するコイル導体の間隙(2b)をできるだけ狭めたほうが、磁束は磁気シールド1側に(上下方向に)方向を変えずにそのままコイル2と平行になりやすい。一方、磁力線が上下性成分を含むコイルの内周および外周側では、できるだけコイル導体に磁力線を交差させないように、前記中周部とは逆に間隙(2bおよび2f)の間隙を拡げて、なるべく多くの磁束を磁気シールド1の側に逃がす方がよい。   Therefore, it is better to make the gap (2b) between the coil conductors adjacent to each other as small as possible in the vicinity of the middle circumference where the lines of magnetic force are horizontal, so that the magnetic flux flows parallel to the coil 2 without changing the direction (in the vertical direction) toward the magnetic shield 1 Prone. On the other hand, on the inner and outer peripheral sides of the coil in which the magnetic field lines include a vertical component, the gaps (2b and 2f) are expanded in the opposite direction to the middle so as to minimize the magnetic field lines from intersecting with the coil conductor. It is better to let a lot of magnetic flux escape to the magnetic shield 1 side.

以上のように、本実施の形態においては中周部に位置する任意の巻線のコイル2cとこれに隣接する巻線のコイルとの間隙2dを、内周側および外周側の任意の巻線のコイル導体(2a、2e)と各々に隣接する巻線のコイル導体との間隙(2b、2f)よりも狭くすることにより、コイル内周から外周にかけて円弧状に発生する磁力線を効率よく磁気シールド1に誘導することができ、その結果、コイル導体に鎖交する磁束を低減することができ、さらにその結果、渦電流による銅損を低減することができる。   As described above, in the present embodiment, the gap 2d between the coil 2c of an arbitrary winding located in the middle periphery and the coil of the winding adjacent thereto is set to be equal to that of the arbitrary windings on the inner and outer circumferences. The gap between the coil conductors (2a, 2e) and the coil conductors of the adjacent windings (2b, 2f) is narrower than that of the coil conductors (2a, 2e). 1 as a result, the magnetic flux linked to the coil conductor can be reduced, and as a result, the copper loss due to the eddy current can be reduced.

なお、間隙2b、2d、2fを調整するにあたり、図2にはコイル導体2a、2c、2eの幅を変える方法を採っているが、本実施の形態はこの方法には限定されない。コイル導体の幅を均一にして、巻回のピッチを変えるようにしてもよい。   In adjusting the gaps 2b, 2d, 2f, a method of changing the width of the coil conductors 2a, 2c, 2e is adopted in FIG. 2, but the present embodiment is not limited to this method. The winding pitch may be changed by making the width of the coil conductor uniform.

以下、本開示の第2の実施の形態について説明する。図3は本開示の第2の実施の形態のワイヤレス伝送コイルユニットの断面図である。図3において磁気シールド1とコイル2は図2に示したものと同様の機能を有するものである。本実施の形態においては、コイル2の少なくとも内周側および外周側の間隙2b、2d、2fとその周辺に磁性体3(3a、3b、3c)が設けられている。なお、磁性体3は絶縁体である樹脂の中に磁性紛が練り込まれたコンポジット磁性材であってもよい。   Hereinafter, a second embodiment of the present disclosure will be described. FIG. 3 is a cross-sectional view of the wireless transmission coil unit according to the second embodiment of the present disclosure. In FIG. 3, the magnetic shield 1 and the coil 2 have the same functions as those shown in FIG. In the present embodiment, the magnetic body 3 (3a, 3b, 3c) is provided at least in the gaps 2b, 2d, and 2f on the inner and outer peripheral sides of the coil 2 and the periphery thereof. Note that the magnetic body 3 may be a composite magnetic material in which magnetic powder is kneaded in a resin that is an insulator.

図4は図3の部分拡大図である。まず、少なくとも内周側および外周側の任意の巻線のコイル導体2aとこれに隣接する巻線のコイル導体との間隙2bに磁性体3bが設けられている。この磁性体3bがコイル2を鎖交する磁束を磁性体の壁で左右に誘導することで鎖交磁束を減らしている。   FIG. 4 is a partially enlarged view of FIG. First, a magnetic body 3b is provided at least in a gap 2b between a coil conductor 2a of an arbitrary winding on the inner peripheral side and an outer peripheral side and a coil conductor of an adjacent winding. The magnetic body 3b guides the magnetic flux linking the coil 2 to the left and right by the wall of the magnetic body, thereby reducing the linking magnetic flux.

また、コイル2の記磁気シールド1と対向する側(以降、コイル下面ともいう)の面の全面に磁性体3aが設けられている。この磁性体により磁気シールドに引き寄せられる磁束を磁性体に誘導し、コイル上部やコイル端部に鎖交する磁束を低減している。   A magnetic body 3a is provided on the entire surface of the coil 2 on the side facing the magnetic shield 1 (hereinafter, also referred to as the coil lower surface). The magnetic material guides the magnetic flux attracted to the magnetic shield to the magnetic material, thereby reducing the magnetic flux linked to the coil upper portion and the coil end.

また、コイル2の中周部を除く間隙部の磁性体3は磁気シールド1と対向するのと反対の側にコイル導体2aの上面より突出して設けられている。さらにコイル導体の磁気シールド1と対向するのと反対の側の面(以降、コイル上面ともいう)の一部に磁性体3cが設けられている。この磁性体は、内周においてはコイル導体2aの内周側のみを覆うように、外周においてはコイル導体の外周側のみを覆うように、偏在して設けられている。   In addition, the magnetic body 3 in the gap except for the middle part of the coil 2 is provided on the side opposite to the side facing the magnetic shield 1 so as to protrude from the upper surface of the coil conductor 2a. Further, a magnetic body 3c is provided on a part of the surface of the coil conductor opposite to the side facing the magnetic shield 1 (hereinafter also referred to as the coil upper surface). The magnetic material is unevenly provided so as to cover only the inner peripheral side of the coil conductor 2a on the inner periphery and to cover only the outer peripheral side of the coil conductor on the outer periphery.

以上の構成により、コイルに鎖交する磁束を極力低減することができるようになり、近接効果によるコイル導体内の電流の偏りを軽減できるようになり、その結果第1の実施の形態の構成のものよりもさらに損失を低減することができる。   With the above configuration, the magnetic flux linked to the coil can be reduced as much as possible, and the bias of the current in the coil conductor due to the proximity effect can be reduced. As a result, the configuration of the first embodiment can be reduced. The loss can be further reduced than the one.

上記第1および第2の実施の形態におけるワイヤレス伝送コイルユニットの構成例ならびに解析およびシミュレーションの結果について、以下の実施例において説明する。   Examples of the configuration of the wireless transmission coil unit according to the first and second embodiments and the results of analysis and simulation will be described in the following examples.

まず、一般的な構造を有するワイヤレス伝送コイルユニット(図1)の断面およびそこを流れる電流と、そこから発生する磁力性の模式図を図5(a)に示す。図5において、磁気シールド1としてフェライト(Ferrite)を、コイル導体2aとして銅板(Copper)を用いている。図5(a)に示されるように、磁力線は磁気シールドを通ってコイル内周側から外周側に円弧上に形成される。コイル導体(Copper)断面中、〇囲い×印の記号は導体中を紙面上から下方向に流れる電流を意味する。この電流はコイル導体を貫通する磁力線に応じて片寄りが生じる。すなわち、磁力線が斜めに交差する導体(内周部の外周寄り、外周部の内周寄り)では角部に電流が集中する。また磁束はフェライトに引き寄せられることにより、コイル上部に電流が片寄る傾向にもある。   First, a cross section of a wireless transmission coil unit (FIG. 1) having a general structure, a current flowing therethrough, and a schematic diagram of magnetic force generated therefrom are shown in FIG. In FIG. 5, a ferrite (Ferrite) is used as the magnetic shield 1, and a copper plate (Copper) is used as the coil conductor 2a. As shown in FIG. 5A, the lines of magnetic force are formed in an arc from the inner circumference to the outer circumference of the coil through the magnetic shield. In the cross section of the coil conductor (Copper), a symbol with a cross and an open square means a current flowing through the conductor in a downward direction from above the paper surface. This current is offset in accordance with the lines of magnetic force passing through the coil conductor. In other words, in a conductor in which the lines of magnetic force cross obliquely (the inner periphery is closer to the outer periphery and the outer periphery is closer to the inner periphery), the current is concentrated at the corners. In addition, the magnetic flux is attracted to the ferrite, so that the current tends to be biased toward the upper part of the coil.

ここで、コイル導体に挟まれた間隙に磁性体の壁を設けると(図5(b))、磁力線の流れが変わり、これに応じて電流分布も変化する。つまり、コイルのより内周側とより外周側の巻線において、電流がコイル端部と上部に片寄る。また、コイル中周部の巻線に流れる電流はコイル上部に片寄る傾向にある。   Here, when a wall of a magnetic material is provided in the gap between the coil conductors (FIG. 5B), the flow of the lines of magnetic force changes, and the current distribution changes accordingly. That is, in the windings on the inner peripheral side and the outer peripheral side of the coil, the current is biased toward the coil end and upper part. In addition, the current flowing through the winding in the middle part of the coil tends to be shifted toward the upper part of the coil.

そこで、さらに実施の形態2で示したように、コイル上面偏在位置に磁性体を設けると(図5(c))、端部の片寄りを低減することができる。さらにコイル下面(磁気シールド1と対向する側)全面に磁性体を設けて、磁気シールド1(フェライト)に引き寄せられる磁束をこの磁性材料に通すことにより、コイルの内側と外側の巻線における電流が上部だけではなく側面にも流れるようになる。このように磁束の流れを、磁性体を用いて制御することで銅損を低減し、電流の片寄りを抑えることができる。   Therefore, as shown in the second embodiment, when a magnetic material is provided at the position where the coil is unevenly distributed (FIG. 5C), the deviation of the end can be reduced. Further, a magnetic material is provided on the entire lower surface of the coil (the side facing the magnetic shield 1), and the magnetic flux attracted to the magnetic shield 1 (ferrite) is passed through this magnetic material, so that the current in the inner and outer windings of the coil is reduced. It flows not only on the top but also on the sides. As described above, by controlling the flow of the magnetic flux by using the magnetic material, the copper loss can be reduced, and the bias of the current can be suppressed.

(実施例1)ワイヤレス伝送用コイルユニットの構造
図6は第2の実施形態のワイヤレス伝送用コイルユニット(以下、MPC(Magnetic Path Control)コイルユニット)の受電側の具体的構造を示したものである。図6において(a)は平面図、(b)は断面図、(c)は構造図をそれぞれ示す。コイル2(Coil)はスパイラル形状で巻数N=10である。また、放射電磁界低減のためにコイル背面にフェライト(磁気シールド1)を設けている。銅板(コイル導体2a)は厚さ1.5 mmで、コイル巻線間と電流密度の片寄りが生じる部分に磁性体(3b、3c)が設けられてある。また、コイル下部にも磁性体(3a)を用いた。コイル下部の磁性体とフェライトの間隙は3mmで、フェライトの厚さは5mmである。
(Example 1) Structure of coil unit for wireless transmission FIG. 6 shows a specific structure on the power receiving side of a coil unit for wireless transmission (hereinafter, MPC (Magnetic Path Control) coil unit) of the second embodiment. is there. 6A is a plan view, FIG. 6B is a sectional view, and FIG. 6C is a structural view. The coil 2 (Coil) has a spiral shape and the number of turns N = 10. Also, a ferrite (magnetic shield 1) is provided on the back of the coil to reduce the radiation electromagnetic field. The copper plate (coil conductor 2a) has a thickness of 1.5 mm, and magnetic members (3b, 3c) are provided between the coil windings and at a portion where the current density is shifted. The magnetic material (3a) was also used below the coil. The gap between the magnetic body and the ferrite under the coil is 3 mm, and the thickness of the ferrite is 5 mm.

(比較例1)リッツ線コイルを用いたワイヤレス伝送用コイルユニットの構造
図7はコイルとしてリッツ線を用いた受電側のコイルユニット(以下、LCWコイル)の構造を示したものである。図7(a)に平面図、(b)に断面図、(c)に構造図を示した。実施例1のMPCコイルユニットと同じ巻数N=10である。また放射電磁界低減のため、フェライトとアルミニウム板を用いている。LCWコイル線は導体径0.05mmの銅線を段階的に4200本撚っている(図7(c))。仕上がり外径は5mmである。
(Comparative Example 1) Structure of coil unit for wireless transmission using litz wire coil FIG. 7 shows the structure of a coil unit (hereinafter, LCW coil) on the power receiving side using litz wire as a coil. 7A is a plan view, FIG. 7B is a cross-sectional view, and FIG. 7C is a structural view. The number of turns N = 10 which is the same as that of the MPC coil unit of the first embodiment. Ferrite and an aluminum plate are used to reduce the radiation electromagnetic field. As for the LCW coil wire, 4200 copper wires having a conductor diameter of 0.05 mm are stepwise twisted (FIG. 7C). The finished outer diameter is 5 mm.

図8は送電側のLCWコイルの構造であり、図8(a)に平面図、(b)に断面図を示した。全体形状は受電側よりも横長であるが、使用しているリッツ線は受電側コイルと同じものである。   FIG. 8 shows the structure of the LCW coil on the power transmission side. FIG. 8A is a plan view, and FIG. 8B is a cross-sectional view. The overall shape is longer than the power receiving side, but the litz wire used is the same as the power receiving side coil.

(実施例2)コイルユニットの磁場解析
本実施例においては、ワイヤレス伝送用コイルユニットの解析にあたり、二次元交流磁場解析(Ansys Maxwell)を用いた。さらに磁場解析結果から、受電コイルの抵抗R、インダクタンスL、Q値を算出した。また三次元交流磁場解析から相互インダクタンスMを算出し、これらの値から下記式(1)〜(4)を用いて伝送効率ηを算出した。なお、解析条件を表1に示した。コイルに用いる磁性体3はアモルファス粉末を用いた磁性コンポジット材料を適用するとした。


ここで、Q:送電コイルのQ値、Q:受電コイルのQ値、U:性能指標、η:伝送効率(%)とする。
(Example 2) Magnetic field analysis of coil unit In this example, a two-dimensional alternating magnetic field analysis (Ansys Maxwell) was used for analyzing the coil unit for wireless transmission. Furthermore, the resistance R, inductance L, and Q value of the receiving coil were calculated from the results of the magnetic field analysis. Further, the mutual inductance M was calculated from the three-dimensional alternating magnetic field analysis, and the transmission efficiency η c was calculated from these values using the following equations (1) to (4). The analysis conditions are shown in Table 1. The magnetic material 3 used for the coil is a magnetic composite material using amorphous powder.


Here, Q 1 is the Q value of the transmitting coil, Q 2 is the Q value of the receiving coil, U is the performance index, and η c is the transmission efficiency (%).

図9に二次元円筒座標系での解析モデルを示した。コイルの実際の形状は正方形状であるが、解析では円筒座標系であるため、コイルの線長とピッチを同じにして、円形にして解析を行った。図10、図11に二次元円筒座標系での解析を示す。なお、図10はコイル中周部の間隙を狭くした実施の形態1のタイプ(以下、銅板コイル)について、図11は銅板コイルの間隙とその周辺に磁性体を設けた実施の形態2のタイプ(MPCコイル)についてそれぞれシミュレーションしたものである。   FIG. 9 shows an analysis model in a two-dimensional cylindrical coordinate system. Although the actual shape of the coil is a square shape, the analysis was performed in a cylindrical coordinate system, so that the analysis was performed with the coil having the same wire length and pitch and a circular shape. 10 and 11 show the analysis in the two-dimensional cylindrical coordinate system. FIG. 10 shows the type of the first embodiment (hereinafter, referred to as a copper plate coil) in which the gap at the center portion of the coil is narrowed, and FIG. 11 shows the type of the second embodiment in which a magnetic material is provided in the gap of the copper plate coil and its periphery. (MPC coil).

磁場解析に用いたコイルの形状寸法について以下説明する。総巻き数N=10、コイル導体間のピッチは7mmとした。内周部(最内周から外側に5巻きまで)におけるコイル導体間の間隙は2.2mmとした。外周部(最外周から内側に2巻きまで)については、最外周(1巻目)と2巻目のコイル導体間の間隙を2.2mm、2巻目と3巻目(中周部との境)を1.2mmとした。   The shape and dimensions of the coil used for the magnetic field analysis will be described below. The total number of windings N was 10, and the pitch between the coil conductors was 7 mm. The gap between the coil conductors at the inner circumference (from the innermost circumference to 5 turns outward) was 2.2 mm. Regarding the outer peripheral portion (from the outermost periphery to the innermost two turns), the gap between the outermost periphery (the first winding) and the second winding coil conductor is 2.2 mm, and the second and third windings (from the outermost periphery to the middle peripheral portion) Boundary) was 1.2 mm.

さらに図10(銅板コイルモデル)に磁力線と電流分布のシミュレーション結果を示す。コイル中周部では磁力線は綺麗に平行状態となっているが、コイルの内周側と外周側ではコイル平面に対して垂直に磁束が鎖交する。そのため、左右に電流の片寄りが生じる。なお、電流分布は図中濃淡で示されている。例えば、コイル導体中白っぽい部分が電流の多く流れている部分である。コイル中周部でも磁力線は平行ではあるもののコイル導体と平行に鎖交するため、コイル導体上部と端部に電流の片寄りが生じる。   FIG. 10 (copper coil model) shows a simulation result of the magnetic field lines and the current distribution. The lines of magnetic force are neatly parallel in the middle part of the coil, but the magnetic flux interlinks perpendicular to the coil plane on the inner and outer sides of the coil. As a result, the current is shifted left and right. Note that the current distribution is shown by shading in the figure. For example, a whitish portion in the coil conductor is a portion where a large amount of current flows. Although the lines of magnetic force are also parallel at the middle part of the coil, they intersect in parallel with the coil conductor, so that current bias occurs at the upper part and the end of the coil conductor.

図10のコイルの間隙とその周辺に磁性体を設けたMPCコイルのシミュレーション結果を図11に示す。なお、本実施例では、磁性体がコイル上面より突出している高さは1mm、コイル下面全面を覆う磁性体の厚さは0.5mmとした。コイル上面を一部覆う磁性体の長さは0.4mm〜0.6mmとした。磁性体の形状寸法の詳細については図12に示す。   FIG. 11 shows a simulation result of the MPC coil in which a magnetic material is provided around the gap between the coils in FIG. 10 and the periphery thereof. In this embodiment, the height of the magnetic body protruding from the upper surface of the coil was 1 mm, and the thickness of the magnetic body covering the entire lower surface of the coil was 0.5 mm. The length of the magnetic material that partially covers the coil upper surface was 0.4 mm to 0.6 mm. FIG. 12 shows details of the shape and dimensions of the magnetic body.

MPCコイル(図11)では、コイル巻線の内側と外側においてコイル平面に対して垂直に鎖交する磁束を磁性体の壁で左右に誘導することで、コイル導体との鎖交を極力抑えている。また、コイル端部などの電流の片寄りが大きい場所に磁性体を用いるので、鎖交磁束も低減している。ただ、コイル巻線の中央では磁束がコイル平面に対して平行に鎖交するため、コイル上部に電流の片寄りが生じている。しかし、コイル下面に磁性体を用いることで、フェライトに引き寄せられる磁束を磁性体に誘導し、コイル上部やコイル端部に鎖交する磁束を低減させている。   In the MPC coil (FIG. 11), the magnetic flux interlinking perpendicularly to the coil plane inside and outside the coil winding is guided to the left and right by the wall of the magnetic body, so that the interlinkage with the coil conductor is suppressed as much as possible. I have. In addition, since the magnetic material is used in a place where the current is largely offset such as the coil end, the linkage flux is also reduced. However, at the center of the coil winding, the magnetic flux interlinks parallel to the coil plane, so that the current is biased at the top of the coil. However, by using a magnetic material on the lower surface of the coil, the magnetic flux attracted to the ferrite is guided to the magnetic material, and the magnetic flux linked to the coil upper portion and the coil end is reduced.

(実施例3)コイルユニットのインピーダンス特性
本実施例では、図10(銅板)および図11(MPC)のコイルユニットのインピーダンス特性を、電磁界解析を用いて算出した。なお比較のため、LCWコイルと送電コイルのインピーダンスもインピーダンスアナライザインピーダンスアナライザ(Agilent Technologies 4294A)を用いて測定した。また結合係数kは伝送距離l=150mmの条件で測定した。コイルの同相直列接続でのインダクタンスLa、逆相接続でのインダクタンスLbを測定し、相互インダクタンスMを算出した。また、送電コイルのインダクタンスL1と受電コイルのインダクタンスL2、相互インダクタンスMからコイルの結合係数kを算出した。測定した結合係数kおよびコイルのQ値を用いてコイルの性能指標Uを算出した。最後に性能指標Uから伝送効率ηを算出した。図13にそれぞれのコイルユニットのインピーダンス特性を示す。
Example 3 Impedance Characteristics of Coil Unit In this example, the impedance characteristics of the coil units in FIGS. 10 (copper plate) and 11 (MPC) were calculated using electromagnetic field analysis. For comparison, the impedances of the LCW coil and the power transmission coil were also measured using an impedance analyzer (Agilent Technologies 4294A). The coupling coefficient k was measured under the condition that the transmission distance 1 was 150 mm. The inductance La in the in-phase series connection of the coils and the inductance Lb in the anti-phase connection were measured, and the mutual inductance M was calculated. Also, the coil coupling coefficient k was calculated from the inductance L1 of the power transmission coil, the inductance L2 of the power reception coil, and the mutual inductance M. The coil performance index U was calculated using the measured coupling coefficient k and coil Q value. Finally, the transmission efficiency η c was calculated from the performance index U. FIG. 13 shows the impedance characteristics of each coil unit.

図13(a)において、銅板コイル、MPCコイル、LCWコイル、送電コイルの85kHzにおける抵抗はそれぞれ187.4mΩ、80.2mΩ、32.6mΩ、29.5mΩと示される。一般的な銅板のコイルユニットに対し、第2の実施の形態の磁束経路制御技術を適用することにより、抵抗値は187.4mΩから80.2mΩまで低減した(図13(b))。このとき、銅板コイルユニット、第2の実施形態のコイルユニット、LCWコイルユニット、送電コイルユニットの85kHzにおけるインダクタンスはそれぞれ40.1μH、43.6μH、37.7μH、40.3μHであった。なお、送電コイルは受電コイルと比べて巻数は少ないが、外径が大きいためインダクタンスは受電用のLCWよりも大きい。第2の実施形態のコイルユニットは、電流密度の片寄りを抑える効果があるため、銅板コイルに比べてインダクタンスがわずかに増加している。   In FIG. 13A, the resistances of the copper plate coil, the MPC coil, the LCW coil, and the power transmission coil at 85 kHz are indicated as 187.4 mΩ, 80.2 mΩ, 32.6 mΩ, and 29.5 mΩ, respectively. The resistance was reduced from 187.4 mΩ to 80.2 mΩ by applying the magnetic flux path control technology of the second embodiment to a general copper plate coil unit (FIG. 13B). At this time, the inductance at 85 kHz of the copper plate coil unit, the coil unit of the second embodiment, the LCW coil unit, and the power transmission coil unit was 40.1 μH, 43.6 μH, 37.7 μH, and 40.3 μH, respectively. The power transmission coil has a smaller number of turns than the power reception coil, but has a larger outer diameter and thus has a larger inductance than the power reception LCW. The coil unit according to the second embodiment has an effect of suppressing the deviation of the current density, and thus has a slightly increased inductance as compared with the copper plate coil.

図13(c)に銅板コイルユニット、MPCコイルユニット、LCWコイルユニット、送電コイルユニットの85kHzにおけるQ値を示す。それぞれ、114、290、610、724であった。MPCコイルは銅板コイルに比べて抵抗が半減しインダクタンスが向上したため、Q値が2.5倍増加した。   FIG. 13C shows the Q value of the copper plate coil unit, the MPC coil unit, the LCW coil unit, and the power transmission coil unit at 85 kHz. They were 114, 290, 610, and 724, respectively. Since the resistance of the MPC coil was reduced by half and the inductance was improved as compared with the copper plate coil, the Q value was increased by 2.5 times.

表2に図13に示されたインピーダンス特性と結合係数k、伝送効率ηをまとめて示す。結合係数と効率についてより詳細に説明する。図14に性能指数U((3)式)を横軸にプロットしたコイルの伝送効率を示す。まずは電磁界解析ソフト(Maxwell 3D)を用いて銅板コイルとMPCコイルの相互インダクタンスを算出し、(2)式から結合係数を計算した。またLCWコイルと送電コイルは同相直列接続でのインダクタンスLa、逆相接続でのインダクタンスLbを測定し、(1)式を用いて相互インダクタンスMを算出した。

Table 2 collectively shows the impedance characteristics, the coupling coefficient k, and the transmission efficiency η shown in FIG. The coupling coefficient and the efficiency will be described in more detail. FIG. 14 shows the transmission efficiency of the coil in which the figure of merit U (formula (3)) is plotted on the horizontal axis. First, the mutual inductance of the copper plate coil and the MPC coil was calculated using electromagnetic field analysis software (Maxwell 3D), and the coupling coefficient was calculated from equation (2). Further, the inductance La of the LCW coil and the power transmission coil were measured in an in-phase series connection, and the inductance Lb in an anti-phase connection, and the mutual inductance M was calculated using the equation (1).

銅板コイル、MPCコイル、LCWコイルの結合係数はそれぞれ0.102(測定値)、0.125(計算値)、0.175(計算値)であった。MPCコイルに用いられる磁性材料は送電コイルからの磁束を受電コイルに誘導するため、銅板コイルと比較してMPCコイルの結合係数kは高い。電流の片寄りを抑制し、コイル面に電流を流すことで、電流に鎖交する磁束が増加し、結合係数kが向上したと考えられる。   The coupling coefficients of the copper plate coil, the MPC coil, and the LCW coil were 0.102 (measured value), 0.125 (calculated value), and 0.175 (calculated value), respectively. Since the magnetic material used for the MPC coil induces the magnetic flux from the power transmission coil to the power receiving coil, the coupling coefficient k of the MPC coil is higher than that of the copper plate coil. It is considered that by suppressing the bias of the current and flowing the current to the coil surface, the magnetic flux linked to the current increased, and the coupling coefficient k was improved.

図14に示されるように、銅板コイル、MPCコイル、LCWコイルにおける効率はそれぞれ94.58%(解析値)、97.54 %(解析値)、97.29 %(測定値)であった。銅板コイルに比べてMPCコイルは磁束経路制御技術を用いることで銅損が低減し、抵抗Rは減少する。また、電流密度の片寄りが抑えられたことにより、インダクタンスが増加し、その結果Q値が向上した。MPCコイルは銅板コイルに比べて受電コイルに磁束を誘導する効果があり、結合係数が高い。よって銅板コイルの効率が94.58%であるのに対してMPCコイルは97.54%と2.96ポイント向上した。またLCWコイルの97.29%(測定値)に対してMPCコイルは97.54%(解析値)であり、MPCコイルとLCWコイルはほぼ同等の伝送効率が見込まれる。   As shown in FIG. 14, the efficiencies of the copper plate coil, the MPC coil, and the LCW coil were 94.58% (analysis value), 97.54% (analysis value), and 97.29% (measurement value), respectively. Compared with the copper plate coil, the MPC coil uses the magnetic flux path control technology to reduce the copper loss and the resistance R. Further, since the bias of the current density was suppressed, the inductance was increased, and as a result, the Q value was improved. The MPC coil has an effect of inducing magnetic flux in the power receiving coil as compared with the copper plate coil, and has a high coupling coefficient. Accordingly, the efficiency of the copper plate coil was 94.58%, whereas the efficiency of the MPC coil was 97.54%, an improvement of 2.96 points. The MPC coil is 97.54% (analysis value) compared to the 97.29% (measurement value) of the LCW coil, and almost the same transmission efficiency is expected for the MPC coil and the LCW coil.

以上、本開示の一態様に係る実施の形態について説明した。第1の実施形態ではコイル導体間の間隙を中周部で狭めることによりコイル導体をなるべく避けるように磁力線を制御することができ。さらに第2の実施形態では、コイル間隙に磁性体の壁を設け、またコイル端部に磁性体を偏在して配置したことにより、端部の電流の片寄りを低減した。さらに第2の実施形態では、コイル下部に磁性体を用いる事により、フェライトに引き寄せられる磁束を磁性材料に通すことで、コイル上部に流れる電流密度を低減した。これらの工夫により、リッツ線よりはるかに簡素な構造にもかかわらず、リッツ線とほぼ同等の伝送効率を有する、ワイヤレス伝送コイルユニットを実現することができる。   The embodiment according to one aspect of the present disclosure has been described above. In the first embodiment, the line of magnetic force can be controlled so as to avoid the coil conductor as much as possible by narrowing the gap between the coil conductors at the middle portion. Further, in the second embodiment, a magnetic material wall is provided in the coil gap, and the magnetic material is unevenly arranged at the coil end, thereby reducing the current bias at the end. Further, in the second embodiment, by using a magnetic material in the lower part of the coil, the magnetic flux attracted to the ferrite is passed through the magnetic material, thereby reducing the current density flowing in the upper part of the coil. By these measures, it is possible to realize a wireless transmission coil unit having substantially the same transmission efficiency as a Litz wire, despite a structure much simpler than a Litz wire.

本発明は、電気自動車、携帯電話機、家電機器、医療機器その他充電池を内蔵した機器向けの、非接触給電システムに利用することができる。   INDUSTRIAL APPLICABILITY The present invention can be used in a non-contact power supply system for electric vehicles, mobile phones, home appliances, medical devices, and other devices having a built-in rechargeable battery.

1 磁気シールド
2 コイル
2a、2c、2e コイル導体
2b、2d、2f 間隙
3(3a、3b、3c) 磁性体
Reference Signs List 1 magnetic shield 2 coil 2a, 2c, 2e coil conductor 2b, 2d, 2f gap 3 (3a, 3b, 3c) magnetic material

Claims (6)

スパイラル状に巻回された平板状のコイルと前記コイルに対向して設けられた磁気シールドとを備えたワイヤレス電力伝送コイルユニットであって、
前記コイルの中周部に位置する任意の巻線のコイル導体とこれに隣接する巻線のコイル導体との間隙が、コイル内周側または外周側に位置する任意の巻線のコイル導体とこれに隣接する巻線のコイル導体との間隙よりも狭いことを特徴とするワイヤレス電力伝送コイルユニット。
A wireless power transmission coil unit including a flat coil wound in a spiral shape and a magnetic shield provided to face the coil,
The gap between the coil conductor of an arbitrary winding located in the middle part of the coil and the coil conductor of the winding adjacent thereto is the coil conductor of an arbitrary winding located on the inner or outer peripheral side of the coil. A wireless power transmission coil unit, wherein the gap is smaller than a gap between a coil conductor of a winding adjacent to the coil.
少なくともコイル内周部および外周部に位置する任意の巻線のコイル導体とこれらにそれぞれ隣接する巻線のコイル導体との間隙に磁性体が設けられたことを特徴とする請求項1に記載のワイヤレス電力伝送コイルユニット。   2. The magnetic body according to claim 1, wherein a magnetic material is provided at least in a gap between a coil conductor of an arbitrary winding located at an inner peripheral portion and an outer peripheral portion of the coil and a coil conductor of a winding adjacent thereto. Wireless power transmission coil unit. 前記コイルの前記磁気シールドと対向する側の面の全面に磁性体が設けられたことを特徴とする請求項2に記載のワイヤレス電力伝送コイルユニット。   3. The wireless power transmission coil unit according to claim 2, wherein a magnetic body is provided on the entire surface of the coil facing the magnetic shield. 4. 前記コイルの間隙部の磁性体は前記磁気シールドと対向するのと反対の側に前記コイルより突出して設けられたことを特徴とする請求項2または請求項3に記載のワイヤレス電力伝送コイルユニット。   The wireless power transmission coil unit according to claim 2, wherein a magnetic body in a gap portion of the coil is provided so as to protrude from the coil on a side opposite to the side facing the magnetic shield. 前記コイルの前記磁気シールドと対向するのと反対の側の面の一部に磁性体が設けられたことを特徴とする請求項4に記載のワイヤレス電力伝送コイルユニット。   The wireless power transmission coil unit according to claim 4, wherein a magnetic body is provided on a part of the surface of the coil opposite to the side facing the magnetic shield. 前記コイル内周部の任意の巻線のコイルにおいては内周側に、スパイラル外周部の任意の巻線のコイルにおいては外周側に、それぞれ偏在させて磁性体が設けられたことを特徴とする、請求項5に記載のワイヤレス電力伝送コイルユニット。

A magnetic material is provided on the inner peripheral side of the coil of an arbitrary winding on the inner peripheral part of the coil and on the outer peripheral side of the coil of the arbitrary winding on the outer peripheral part of the spiral, respectively. The wireless power transmission coil unit according to claim 5.

JP2018172049A 2018-09-14 2018-09-14 Wireless power transmission coil unit Active JP7131815B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018172049A JP7131815B2 (en) 2018-09-14 2018-09-14 Wireless power transmission coil unit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018172049A JP7131815B2 (en) 2018-09-14 2018-09-14 Wireless power transmission coil unit

Publications (2)

Publication Number Publication Date
JP2020047614A true JP2020047614A (en) 2020-03-26
JP7131815B2 JP7131815B2 (en) 2022-09-06

Family

ID=69901615

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018172049A Active JP7131815B2 (en) 2018-09-14 2018-09-14 Wireless power transmission coil unit

Country Status (1)

Country Link
JP (1) JP7131815B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022024585A1 (en) * 2020-07-29 2022-02-03 株式会社デンソー Transmission coil used in contactless power supply
KR20220081774A (en) * 2020-12-09 2022-06-16 에스케이씨 주식회사 Wireless charging device and vehicle comprising same
KR20220081804A (en) * 2020-12-09 2022-06-16 에스케이씨 주식회사 Wireless charging device and vehicle comprising same
WO2024053620A1 (en) * 2022-09-05 2024-03-14 大日本印刷株式会社 Coil component, manufacturing method for same, power transmission device, power reception device, power transmission system, and mobile body
WO2024181452A1 (en) * 2023-02-27 2024-09-06 大日本印刷株式会社 Coil component, power transmission device, power reception device, power transmission system, and power transmission method
WO2024181449A1 (en) * 2023-02-27 2024-09-06 大日本印刷株式会社 Transformer

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0390371U (en) * 1989-12-28 1991-09-13
JP2007128928A (en) * 2005-10-31 2007-05-24 Tdk Corp Coil element
JP2011211176A (en) * 2010-03-09 2011-10-20 Nitto Denko Corp Magnetic element for wireless power transmission and device for power supply
JP2013175673A (en) * 2012-02-27 2013-09-05 Nissan Motor Co Ltd Non-contact power supply device
JP2014116543A (en) * 2012-12-12 2014-06-26 Piolax Inc Antenna and wireless power supply device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0390371U (en) * 1989-12-28 1991-09-13
JP2007128928A (en) * 2005-10-31 2007-05-24 Tdk Corp Coil element
JP2011211176A (en) * 2010-03-09 2011-10-20 Nitto Denko Corp Magnetic element for wireless power transmission and device for power supply
JP2013175673A (en) * 2012-02-27 2013-09-05 Nissan Motor Co Ltd Non-contact power supply device
JP2014116543A (en) * 2012-12-12 2014-06-26 Piolax Inc Antenna and wireless power supply device

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022024585A1 (en) * 2020-07-29 2022-02-03 株式会社デンソー Transmission coil used in contactless power supply
JP7552119B2 (en) 2020-07-29 2024-09-18 株式会社デンソー Transmission coil used in non-contact power supply
KR20220081774A (en) * 2020-12-09 2022-06-16 에스케이씨 주식회사 Wireless charging device and vehicle comprising same
KR20220081804A (en) * 2020-12-09 2022-06-16 에스케이씨 주식회사 Wireless charging device and vehicle comprising same
KR102432870B1 (en) 2020-12-09 2022-08-16 에스케이씨 주식회사 Wireless charging device and vehicle comprising same
KR102499892B1 (en) * 2020-12-09 2023-02-15 에스케이씨 주식회사 Wireless charging device and vehicle comprising same
WO2024053620A1 (en) * 2022-09-05 2024-03-14 大日本印刷株式会社 Coil component, manufacturing method for same, power transmission device, power reception device, power transmission system, and mobile body
WO2024181452A1 (en) * 2023-02-27 2024-09-06 大日本印刷株式会社 Coil component, power transmission device, power reception device, power transmission system, and power transmission method
WO2024181449A1 (en) * 2023-02-27 2024-09-06 大日本印刷株式会社 Transformer

Also Published As

Publication number Publication date
JP7131815B2 (en) 2022-09-06

Similar Documents

Publication Publication Date Title
JP7131815B2 (en) Wireless power transmission coil unit
US20220123593A1 (en) Wireless Power Transfer Based on Magnetic Induction
JP2011142177A (en) Contactless power transmission device, and coil unit for contactless power transmission device
US12046409B2 (en) Transformer and switch-mode power supply
KR102031615B1 (en) Soft magnetic ribbon for magnetic core, magnetic core, coil unit, and wireless power transmission unit
JP5646688B2 (en) Contactless power supply system
US9672973B2 (en) Wireless power transmission device
JP2021068815A (en) Coil, coil unit, and wireless power transmission device, and manufacturing method of coil
US10692646B2 (en) Single litz wire transformers
JP2019036649A (en) Inductor
CN109767892A (en) Choke coil
TW201933389A (en) Electronic device and the method to make the same
JP2021027112A (en) Contactless power supply coil
JP2011222617A (en) Wire for inductor and inductor
EP2698799B1 (en) Magnetic configuration for High Efficiency Power Processing
JP2024501965A (en) Coils and transformers with improved electromagnetic shielding
KR102348415B1 (en) wireless power transfer module
JP5918020B2 (en) Non-contact power supply coil
JP6548080B2 (en) Magnetic component and power transmission device
Endo et al. Copper loss reduction in wireless power transmission coil using magnetic path control technology
JP7082785B2 (en) Transmission coil parts for non-contact power supply, their manufacturing method, and non-contact power supply equipment
JP2012156281A (en) Air-core coil
WO2023171485A1 (en) Power transmission coil structure and power transmission device equipped with same
KR101994746B1 (en) Sheet for shielding electromagnetic wave and wireless power charging device
KR102536831B1 (en) Transformer and method for manufacturing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210618

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220408

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220419

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220512

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220809

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220818

R150 Certificate of patent or registration of utility model

Ref document number: 7131815

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150