JP5646688B2 - Contactless power supply system - Google Patents

Contactless power supply system Download PDF

Info

Publication number
JP5646688B2
JP5646688B2 JP2013111335A JP2013111335A JP5646688B2 JP 5646688 B2 JP5646688 B2 JP 5646688B2 JP 2013111335 A JP2013111335 A JP 2013111335A JP 2013111335 A JP2013111335 A JP 2013111335A JP 5646688 B2 JP5646688 B2 JP 5646688B2
Authority
JP
Japan
Prior art keywords
winding portion
flat
coil
power feeding
power
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2013111335A
Other languages
Japanese (ja)
Other versions
JP2014230474A (en
Inventor
志朗 長谷川
志朗 長谷川
森 正裕
正裕 森
賢治 上谷
賢治 上谷
市川 昌宏
昌宏 市川
聖 三浦
聖 三浦
克司 近藤
克司 近藤
達也 飯島
達也 飯島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SWCC Showa Device Technology Co Ltd
Original Assignee
SWCC Showa Device Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SWCC Showa Device Technology Co Ltd filed Critical SWCC Showa Device Technology Co Ltd
Priority to JP2013111335A priority Critical patent/JP5646688B2/en
Publication of JP2014230474A publication Critical patent/JP2014230474A/en
Application granted granted Critical
Publication of JP5646688B2 publication Critical patent/JP5646688B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Description

本発明は、電磁誘導型の非接触給電システムに関し、特に給電側コイルと受電側コイルの位置ずれが生じやすいEV用の非接触給電システムに関する。   The present invention relates to an electromagnetic induction type non-contact power feeding system, and more particularly to an EV non-contact power feeding system in which positional deviation between a power feeding side coil and a power receiving side coil is likely to occur.

近年、電気自動車(EV:Electric Vehicle)の充電方法の一つとして、コイルを用いた電磁誘導型の非接触給電システムの実用化が進んでいる。非接触給電システムは、交流電源から電圧が供給される給電側コイル(一次コイル)を有する給電装置と、給電側コイルに対向して配置され、給電側コイルと磁気的に結合する受電側コイル(二次コイル)を有する受電装置とを備える。EV用の非接触給電システムにおいては、給電装置が車外(地上)に設置され、受電装置が車内に設置される。   In recent years, an electromagnetic induction type non-contact power feeding system using a coil has been put into practical use as one of charging methods for an electric vehicle (EV). The non-contact power feeding system includes a power feeding device having a power feeding side coil (primary coil) to which a voltage is supplied from an AC power source, and a power receiving side coil that is disposed opposite to the power feeding side coil and is magnetically coupled to the power feeding side coil ( A power receiving device having a secondary coil. In the EV non-contact power feeding system, the power feeding device is installed outside the vehicle (ground), and the power receiving device is installed in the vehicle.

EV用の非接触給電システムのように、高周波の大電流を流して大電力を伝送する必要がある場合、一次コイル及び二次コイルには、例えば複数本のエナメル線(素線)を撚り合わせてなるリッツ線を、同一平面上に所定の巻数で巻線した渦巻き型コイルが有用である。一次コイル及び二次コイルを渦巻き型コイルで構成することにより、給電装置及び受電装置の薄型化を図ることができる。また、リッツ線を用いることで、高周波特有の表皮効果や近接効果による交流抵抗の増大を抑制することができる。   When it is necessary to transmit a large amount of high-frequency electric current as in a contactless power supply system for EVs, for example, a plurality of enamel wires (strands) are twisted together in the primary coil and the secondary coil. A spiral coil obtained by winding a litz wire with a predetermined number of turns on the same plane is useful. By configuring the primary coil and the secondary coil with spiral coils, the power feeding device and the power receiving device can be thinned. Further, by using the litz wire, it is possible to suppress an increase in AC resistance due to the skin effect and proximity effect peculiar to high frequencies.

また、特許文献1には、非接触給電システムの用途に好適なコイルとして、平編みリッツ線を渦巻き状に巻線した渦巻き型コイルが開示されている。平編みリッツ線とは、複数の素線が扁平形状に編み込まれた平編み線のうち、絶縁被覆されたエナメル線が素線として用いられているものである。
特許文献2には、非接触給電システムの用途に好適なコイルとして、U字型の磁性体コアの両脚部に巻線部を配置した、いわゆるコアコイルが開示されている。特許文献2における巻線部は、エナメル線が磁性体コアの脚部に沿って巻線されたソレノイドコイルで構成されている。
Patent Document 1 discloses a spiral coil in which a flat knitted litz wire is wound in a spiral as a coil suitable for use in a non-contact power feeding system. The flat knitted litz wire is one in which an enameled wire with insulation coating is used as a strand among flat knitted wires in which a plurality of strands are knitted into a flat shape.
Patent Document 2 discloses a so-called core coil in which winding portions are disposed on both leg portions of a U-shaped magnetic core as a coil suitable for use in a non-contact power feeding system. The winding part in patent document 2 is comprised with the solenoid coil by which the enamel wire was wound along the leg part of a magnetic body core.

このようなコイルを適用した電磁誘導型の非接触給電システムでは、コイルの共振現象を利用することにより、電力伝送効率を高めることができる。この場合、給電回路の共振周波数と、受電回路の共振周波数を合わせる必要があるため、通常、一次コイル及び二次コイルには同じ寸法で、同等のインダクタンスを有するコイルが用いられる。   In the electromagnetic induction type non-contact power feeding system to which such a coil is applied, the power transmission efficiency can be increased by utilizing the resonance phenomenon of the coil. In this case, since it is necessary to match the resonance frequency of the power feeding circuit and the resonance frequency of the power receiving circuit, normally, coils having the same dimensions and equivalent inductance are used as the primary coil and the secondary coil.

特開2009−64856号公報JP 2009-64856 A 特開2002−170725号公報JP 2002-170725 A

しかしながら、非接触給電システムの一次コイル及び二次コイルとして特許文献1に記載のディスクコイルを単体で適用した場合、一次コイルと二次コイルの位置関係が理想的な配置からずれると、一次コイルの中空部を通過した磁束の一部が二次コイルの中空部を通過せず漏れ磁束となる。電力の受け渡しに寄与する磁束数が減少することとなるため、電力伝送効率が著しく低下してしまう。
また、非接触給電システムの一次コイル及び二次コイルとして特許文献2に記載のコアコイルを適用した場合、所望のインダクタンスを得るために巻数を確保しようとすると巻線部(磁性体コアの脚部)の高さが高くなるため、薄型化するのが困難である。また、エナメル線又はリッツ線を重ね巻きして巻線部を低背化することも考えられるが、巻崩れが生じやすく完全に整列した状態で仕上げるのは困難であるため、同等のインダクタンスを有するコイルを安定して生産することが困難となる。
However, when the disk coil described in Patent Document 1 is applied alone as the primary coil and secondary coil of the non-contact power feeding system, if the positional relationship between the primary coil and the secondary coil deviates from the ideal arrangement, A part of the magnetic flux that has passed through the hollow portion does not pass through the hollow portion of the secondary coil and becomes a leakage magnetic flux. Since the number of magnetic fluxes contributing to power delivery is reduced, power transmission efficiency is significantly reduced.
In addition, when the core coil described in Patent Document 2 is applied as the primary coil and the secondary coil of the non-contact power feeding system, the winding portion (the leg portion of the magnetic core) tries to secure the number of turns in order to obtain a desired inductance. Therefore, it is difficult to reduce the thickness. In addition, it is possible to reduce the height of the winding part by overlappingly winding enameled wire or litz wire, but it is easy to cause winding collapse and it is difficult to finish it in a completely aligned state, so it has equivalent inductance It becomes difficult to produce a coil stably.

さらには、特許文献1、2に記載の技術を組み合わせて、コアコイルの両脚部に配置される巻線部を渦巻き型コイルで構成することも考えられる。しかしながら、コアコイルの長手方向(磁性体コイルの平板部の長手方向)の長さを、渦巻き型コイルの直径よりも長くする必要があり、コイルが大型になる虞がある。   Furthermore, combining the techniques described in Patent Documents 1 and 2, it is also conceivable that the winding portions arranged on both leg portions of the core coil are constituted by spiral coils. However, the length of the core coil in the longitudinal direction (longitudinal direction of the flat portion of the magnetic coil) needs to be longer than the diameter of the spiral coil, which may increase the size of the coil.

本発明の目的は、一次コイルと二次コイルの位置ずれによる電力伝送効率の低下を抑制できるとともに、共振現象を利用した大電力伝送を容易に実現できる非接触給電システムを提供することである。   The objective of this invention is providing the non-contact electric power feeding system which can implement | achieve the high electric power transmission using a resonance phenomenon easily while being able to suppress the fall of the electric power transmission efficiency by the position shift of a primary coil and a secondary coil.

本発明に係る非接触給電システムは、エアギャップを介して対向して配置される一次コイル及び二次コイルを備え、前記一次コイル側から前記二次コイル側へ非接触で電力を伝送する電磁誘導型の非接触給電システムであって、
前記一次コイル及び前記二次コイルは、矩形の平板部と前記平板部の長手方向両端に連設される第1の脚部及び第2の脚部とを有するU字型の磁性体コア部と、前記第1の脚部に巻線される第1の巻線部と、前記第2の脚部に巻線される第2の巻線部と、を備え、
前記第1の巻線部及び前記第2の巻線部は、複数本のエナメル線が平編みされてなる平編みリッツ線を扁平面が重なるように巻線した矩形の渦巻き型コイルで構成され、長辺が前記平板部の長手方向と直交する方向に一致し、互いに逆方向の電流が流れるように前記第1の脚部又は前記第2の脚部に配置され、
前記平編みリッツ線の扁平比(幅/厚さ)が5〜15であり、
前記第1の巻線部及び前記第2の巻線部の細長比(長辺の長さ/短辺の長さ)が1.5〜5.0であることを特徴とする。
A non-contact power feeding system according to the present invention includes a primary coil and a secondary coil arranged to face each other through an air gap, and electromagnetically transmits power in a non-contact manner from the primary coil side to the secondary coil side. Type non-contact power supply system,
The primary coil and the secondary coil include a U-shaped magnetic core portion having a rectangular flat plate portion and a first leg portion and a second leg portion that are connected to both ends in the longitudinal direction of the flat plate portion; A first winding portion wound around the first leg portion, and a second winding portion wound around the second leg portion,
The first winding portion and the second winding portion are formed of rectangular spiral coils in which flat knitted litz wires obtained by flat knitting a plurality of enamel wires are wound so that the flat surfaces overlap. , The long side coincides with the direction orthogonal to the longitudinal direction of the flat plate portion, and is arranged in the first leg portion or the second leg portion so that currents in opposite directions flow.
The flat ratio (width / thickness) of the flat knitted litz wire is 5 to 15,
The slenderness ratio (long side length / short side length) of the first winding portion and the second winding portion is 1.5 to 5.0.

本発明によれば、一次コイルと二次コイルの位置ずれによる電力伝送効率の低下を抑制できるとともに、共振現象を利用した大電力伝送を容易に実現することができる。   ADVANTAGE OF THE INVENTION According to this invention, while being able to suppress the fall of the power transmission efficiency by the position shift of a primary coil and a secondary coil, the high power transmission using a resonance phenomenon can be implement | achieved easily.

実施の形態に係るEV用の非接触給電システムを示す図である。It is a figure which shows the non-contact electric power feeding system for EV which concerns on embodiment. 一次コイルの構成を示す図である。It is a figure which shows the structure of a primary coil. 二次コイルの構成を示す図である。It is a figure which shows the structure of a secondary coil. 一次コイルの断面を示す拡大図である。It is an enlarged view which shows the cross section of a primary coil. 平編みリッツ線の構成を示す拡大図である。It is an enlarged view which shows the structure of a flat knitting litz wire. 理想的な給電位置となっているときの磁束を示す図である。It is a figure which shows the magnetic flux when it is an ideal electric power feeding position. 一次コイルと二次コイルが長手方向に位置ずれした場合の磁束を示す図である。It is a figure which shows the magnetic flux when a primary coil and a secondary coil are displaced in the longitudinal direction. 一次コイルと二次コイルが長手方向に直交する方向に位置ずれした場合の磁束を示す図である。It is a figure which shows the magnetic flux when a primary coil and a secondary coil are displaced in the direction orthogonal to a longitudinal direction.

以下、本発明の実施の形態を図面に基づいて詳細に説明する。
図1は、実施の形態に係るEV用の非接触給電システムを示す図である。図1に示すように、非接触給電システム1は、地上に設置される給電装置10と、車両Cに設置される受電装置20を備える。
給電装置10は、一次コイル11を含む給電回路11A、インバーター12、交流電源13等を備える。給電回路11Aは、一次コイル11の他、共振用コンデンサー(図示略)を含んでいてもよい。
受電装置20は、二次コイル21を含む受電回路21A、整流器22、二次電池23等を備える。受電回路21Aは、二次コイル21の他、共振用コンデンサー(図示略)を含んでいてもよい。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
FIG. 1 is a diagram illustrating an EV contactless power supply system according to an embodiment. As shown in FIG. 1, the non-contact power feeding system 1 includes a power feeding device 10 installed on the ground and a power receiving device 20 installed on a vehicle C.
The power feeding device 10 includes a power feeding circuit 11A including a primary coil 11, an inverter 12, an AC power source 13, and the like. The power feeding circuit 11 </ b> A may include a resonance capacitor (not shown) in addition to the primary coil 11.
The power receiving device 20 includes a power receiving circuit 21A including a secondary coil 21, a rectifier 22, a secondary battery 23, and the like. The power receiving circuit 21 </ b> A may include a resonance capacitor (not shown) in addition to the secondary coil 21.

図2は、一次コイル11の構成を示す図である。図2Aは一次コイル11の上面図、図2Bは一次コイル11の側面図、図2Cは一次コイル11の下面図である。
図3は、二次コイル21の構成を示す図である。図3Aは二次コイル21の上面図、図3Bは二次コイル21の側面図、図3Cは二次コイル21の下面図である。
FIG. 2 is a diagram illustrating a configuration of the primary coil 11. 2A is a top view of the primary coil 11, FIG. 2B is a side view of the primary coil 11, and FIG. 2C is a bottom view of the primary coil 11.
FIG. 3 is a diagram illustrating a configuration of the secondary coil 21. 3A is a top view of the secondary coil 21, FIG. 3B is a side view of the secondary coil 21, and FIG. 3C is a bottom view of the secondary coil 21.

図2に示すように、一次コイル11は、給電側コア部111、第1の給電側巻線部112A、及び第2の給電側巻線部112Bを有する、いわゆるコアコイルである。以下において、第1の給電側巻線部112Aと第2の給電側巻線部112Bを区別しない場合は単に給電側巻線部112と称する。また、後述する第1の受電側巻線部212Aと第2の受電側巻線部212Bを区別しない場合は単に受電側巻線部212と称する。   As shown in FIG. 2, the primary coil 11 is a so-called core coil having a power feeding side core portion 111, a first power feeding side winding portion 112 </ b> A, and a second power feeding side winding portion 112 </ b> B. Hereinafter, when the first power feeding side winding portion 112A and the second power feeding side winding portion 112B are not distinguished, they are simply referred to as the power feeding side winding portion 112. Moreover, when not distinguishing the 1st power receiving side coil | winding part 212A and the 2nd power receiving side coil | winding part 212B which are mentioned later, it only calls the power receiving side coil | winding part 212. FIG.

給電側コア部111は、例えば高周波向けに有用なフェライトで構成される。給電側コア部111は、矩形の平板部111cと、平板部111cの長手方向両端に連設(ここでは垂設)される第1の脚部111a及び第2の脚部111bを有する、U字型の磁性体コアである。第1の脚部111aに第1の給電側巻線部112Aが配置され、第2の脚部111bに第2の給電側巻線部112Bが配置される。
第1の脚部111a及び第2の脚部111bは、これらの基端側に給電側巻線部112を当接させて配置したときに、給電側巻線部112よりも二次コイル21側に若干突出する程度の高さ(例えば5mm)を有する。
The power supply side core unit 111 is made of, for example, ferrite useful for high frequencies. The power supply side core portion 111 has a rectangular flat plate portion 111c, and a U-shape having a first leg portion 111a and a second leg portion 111b that are connected to (in this case, suspended from) the longitudinal ends of the flat plate portion 111c. Type magnetic core. 112 A of 1st electric power feeding side coil parts are arrange | positioned at the 1st leg part 111a, and the 2nd electric power feeding side coil part 112B is arrange | positioned at the 2nd leg part 111b.
When the first leg portion 111a and the second leg portion 111b are arranged with the power supply side winding portion 112 in contact with the base end side of the first leg portion 111a and the second leg portion 111b, they are closer to the secondary coil 21 than the power supply side winding portion 112. Have a height (for example, 5 mm).

給電側巻線部112(第1の給電側巻線部112A、第2の給電側巻線部112B)は、全体として矩形形状を有する。給電側巻線部112の細長比は長辺の長さL2/短辺の長さS2で表される。給電側巻線部112は、長辺が給電側コア部111の長手方向(平板部111cの長手方向)と直交するように、脚部111a、111bに配置される。給電側巻線部112の端部には、例えば半田付けにより端子金具が接続される。   The power feeding side winding portion 112 (the first power feeding side winding portion 112A and the second power feeding side winding portion 112B) has a rectangular shape as a whole. The slenderness ratio of the power supply side winding portion 112 is represented by the length L2 of the long side / the length S2 of the short side. The power supply side winding portion 112 is disposed on the legs 111a and 111b so that the long side is orthogonal to the longitudinal direction of the power supply side core portion 111 (longitudinal direction of the flat plate portion 111c). A terminal fitting is connected to the end of the power supply side winding portion 112 by soldering, for example.

給電側巻線部112を矩形とすることにより、第1の給電側巻線部112Aと第2の給電側巻線部112Bの中心間距離dを狭くすることができるので、一次コイル11の長手方向の小型化を図ることができる。
なお、一次コイル11と二次コイル21とが長手方向に位置ずれすると、同極性の磁極が接近して磁束が著しく減衰するため、第1の給電側巻線部112Aと第2の給電側巻線部112Bの中心間距離dは、許容される範囲内で長い方が好ましい。
By making the power supply side winding portion 112 rectangular, the distance d between the centers of the first power supply side winding portion 112A and the second power supply side winding portion 112B can be reduced. The direction can be reduced in size.
If the primary coil 11 and the secondary coil 21 are displaced in the longitudinal direction, the magnetic poles of the same polarity approach each other and the magnetic flux is remarkably attenuated. Therefore, the first feeding side winding portion 112A and the second feeding side winding It is preferable that the distance d between the centers of the line portions 112B is long within an allowable range.

給電側巻線部112は、平編みリッツ線を、扁平面が重なるように所定の巻数で巻線した渦巻き型コイルで構成される(図4参照)。平編みリッツ線は、導体に絶縁被覆を焼き付けたエナメル線(素線)を、複数本平編みした線材である(図5参照)。また、扁平面とは、平編みリッツ線の断面における長辺が含まれる平たい面である。   The power supply side winding section 112 is constituted by a spiral coil in which a flat knitted litz wire is wound with a predetermined number of turns so that flat surfaces overlap (see FIG. 4). The flat knitted litz wire is a wire material obtained by flat knitting a plurality of enameled wires (elementary wires) obtained by baking an insulating coating on a conductor (see FIG. 5). The flat surface is a flat surface including a long side in the cross section of the flat knitted litz wire.

平編みリッツ線を構成するエナメル線の導体は、銅又は銅合金であることが好ましく、アルミニウム、アルミニウム合金、又は銅とアルミニウムのクラッド材等を適用することもできる。また、エナメル線の絶縁皮膜には、ポリウレタン、ポリビニルホルマール、ポリウレタンナイロン、ポリエステル、ポリエステルナイロン、ポリエステルイミド、ポリアミドイミド、ポリエステルイミド/ポリアミドイミド、ポリイミド等、給電側巻線部112の端部を端子金具(図示略)に半田付けする際に高温の半田により溶融する樹脂材料が好適である。   The conductor of the enameled wire constituting the flat knitted litz wire is preferably copper or a copper alloy, and aluminum, an aluminum alloy, a clad material of copper and aluminum, or the like can also be applied. Also, for the enameled wire insulation film, the end of the power supply side winding portion 112 is a terminal fitting such as polyurethane, polyvinyl formal, polyurethane nylon, polyester, polyester nylon, polyesterimide, polyamideimide, polyesterimide / polyamideimide, polyimide, etc. A resin material that melts with high-temperature solder when soldering (not shown) is suitable.

平編みリッツ線は、リッツ線を加圧成型して扁平させる場合に比較して、容易に扁平比(リッツ線断面の幅L1/厚さS1)を大きくし、薄くすることができる。例えばリッツ線を加圧成型して扁平させる場合、扁平比は2〜3以上とすることは困難であるが、扁平比が2〜3以上である平編みリッツ線は容易に製造することができる。
したがって、扁平面が重なるように平編みリッツ線を巻線することにより、給電側巻線部112にリッツ線を扁平させた線材を適用する場合に比較して、同じコイル径に対する巻数を格段に多くすることができるので、コイル特性の向上を図ることができる。また、巻数を同じにして所定の電気特性を有するようにした場合は、コイルの小型化、軽量化を図ることができる。
さらに、リッツ線(扁平させたものを含む)を巻線する場合、形状の不安定性から、重ね巻きしたときに巻崩れが発生しやすく、特性悪化を招くこともあったが、平編みリッツ線を採用することにより、このような不具合も回避することができる。
The flat knitted litz wire can be easily thinned by increasing the flatness ratio (width L1 / thickness S1 of the litz wire cross section) as compared with the case where the litz wire is pressed and flattened. For example, when pressure-molding a litz wire to make it flat, it is difficult to set the flat ratio to 2 or more, but a flat knitted litz wire having a flat ratio of 2 to 3 or more can be easily manufactured. .
Therefore, by winding the flat knitted litz wire so that the flat surfaces overlap, the number of turns for the same coil diameter is markedly greater than when applying a wire material in which the litz wire is flattened to the power supply side winding portion 112. Since it can be increased, the coil characteristics can be improved. In addition, when the number of turns is the same and the electric characteristics are predetermined, the coil can be reduced in size and weight.
In addition, when winding litz wires (including flattened ones), the instability of the shape is likely to cause collapse when overwrapped, which may lead to deterioration of properties. By adopting, such a problem can be avoided.

一次コイル11においては、第1の給電側巻線部112Aと第2の給電側巻線部112Bは、電流を流したとき、給電側コア部111に同方向の磁束が発生するように直列又は並列に接続される。第1の給電側巻線部112Aと第2の給電側巻線部112Bの巻線方向によって直列接続とするか並列接続とするかは決定される。つまり、電流を流したときに、給電側コア部111に同方向の磁束が発生するように接続されていれば、第1の給電側巻線部112Aと第2の給電側巻線部112Bの巻線方向は同一方向であってもよいし、反対方向であってもよい。
図2においては、第1の給電側巻線部112Aと第2の給電側巻線部112Bは同一方向に巻線されているので、第1の給電側巻線部112Aの内側端部と第2の給電側巻線部112Bの内側端部が接続されることになる。
In the primary coil 11, the first power supply side winding portion 112 </ b> A and the second power supply side winding portion 112 </ b> B are connected in series or in such a manner that a magnetic flux in the same direction is generated in the power supply side core portion 111 when a current flows. Connected in parallel. Whether to connect in series or in parallel is determined depending on the winding direction of the first feeding side winding portion 112A and the second feeding side winding portion 112B. That is, when the current is passed, if the power supply side core unit 111 is connected to generate a magnetic flux in the same direction, the first power supply side winding unit 112A and the second power supply side winding unit 112B The winding direction may be the same direction or the opposite direction.
In FIG. 2, since the first feeding side winding portion 112A and the second feeding side winding portion 112B are wound in the same direction, the inner end portion of the first feeding side winding portion 112A and the first feeding side winding portion 112A The inner end portions of the two power supply side winding portions 112B are connected.

なお、第1の給電側巻線部112Aと第2の給電側巻線部112Bの寸法、形状、巻数等は、異なっていてもよいが、伝送効率の面から同等であることが好ましい。また、給電側巻線部112は、給電側コア部111に絶縁物を介して直接巻線して形成されてもよいし、巻枠(図示略)に巻線したものを給電側コア部111に配置するようにしてもよい。   In addition, although the dimension of the 1st electric power feeding side coil | winding part 112A and the 2nd electric power feeding side coil | winding part 112B may differ, the number of turns, etc. are preferable from the surface of transmission efficiency. Further, the power supply side winding portion 112 may be formed by directly winding the power supply side core portion 111 via an insulator, or a power supply side core portion 111 that is wound around a winding frame (not shown). You may make it arrange | position to.

このように、一次コイル11は、矩形の平板部111cと平板部111cの長手方向両端に連設(垂設)される第1の脚部111a及び第2の脚部111bとを有するU字型の給電側コア部111と、第1の脚部111aに巻線される第1の巻線部112Aと、第2の脚部111bに巻線される第2の巻線部112Bと、を備える。
また、第1の巻線部112A及び第2の巻線部112Bは、複数本のエナメル線が平編みされてなる平編みリッツ線を扁平面が重なるように巻線した矩形の渦巻き型コイルで構成される。そして、第1の巻線部112A及び第2の巻線部112Bは、長辺が平板部111cの長手方向と直交するように第1の脚部111a又は第2の脚部111bに配置される。
As described above, the primary coil 11 has a U-shaped shape including the rectangular flat plate portion 111c and the first leg portion 111a and the second leg portion 111b that are connected (suspended) at both ends in the longitudinal direction of the flat plate portion 111c. Power supply-side core portion 111, a first winding portion 112A wound around the first leg portion 111a, and a second winding portion 112B wound around the second leg portion 111b. .
In addition, the first winding portion 112A and the second winding portion 112B are rectangular spiral coils in which flat knitted litz wires obtained by flat knitting a plurality of enamel wires are wound so that the flat surfaces overlap. Composed. The first winding portion 112A and the second winding portion 112B are arranged on the first leg portion 111a or the second leg portion 111b so that the long side is orthogonal to the longitudinal direction of the flat plate portion 111c. .

図3に示すように、二次コイル21は、一次コイル11(図2参照)を上下逆向きに配置したものであり、構成自体は一次コイル11と同様である。通常、一次コイル11と二次コイル21にはコイル寸法を含めて同じ構成のものが適用される。したがって、二次コイル21の説明のうち、一次コイル11と同一又は対応する構成要素についての説明は省略する。   As shown in FIG. 3, the secondary coil 21 is configured by disposing the primary coil 11 (see FIG. 2) upside down, and the configuration itself is the same as that of the primary coil 11. Usually, the primary coil 11 and the secondary coil 21 having the same configuration including the coil dimensions are applied. Therefore, in the description of the secondary coil 21, the description of the same or corresponding components as those of the primary coil 11 is omitted.

すなわち、二次コイル21は、矩形の平板部211cと平板部211cの長手方向両端に連設(垂設)される第1の脚部211a及び第2の脚部211bとを有するU字型の受電側コア部211と、第1の脚部211aに巻線される第1の受電側巻線部212Aと、第2の脚部211bに巻線される第2の受電側巻線部212Bと、を備える。
また、第1の受電側巻線部212A及び第2の受電側巻線部212Bは、複数本のエナメル線が平編みされてなる平編みリッツ線を扁平面が重なるように巻線した矩形の渦巻き型コイルで構成される。そして、第1の受電側巻線部212A及び第2の受電側巻線部212Bは、長辺が平板部211cの長手方向と直交するように第1の脚部211a又は第2の脚部211bに配置される。
That is, the secondary coil 21 has a U-shaped shape having a rectangular flat plate portion 211c and a first leg portion 211a and a second leg portion 211b that are connected (suspended) at both longitudinal ends of the flat plate portion 211c. The power receiving side core portion 211, the first power receiving side winding portion 212A wound around the first leg portion 211a, and the second power receiving side winding portion 212B wound around the second leg portion 211b .
Further, the first power receiving side winding portion 212A and the second power receiving side winding portion 212B are rectangular shapes in which flat knitted litz wires formed by flat knitting a plurality of enamel wires are wound so that the flat surfaces overlap. Consists of spiral coils. The first power receiving side winding part 212A and the second power receiving side winding part 212B have the first leg part 211a or the second leg part 211b so that the long side is orthogonal to the longitudinal direction of the flat plate part 211c. Placed in.

二次コイル21においては、第1の受電側巻線部212Aと第2の受電側巻線部212Bは、給電時に同方向の電流が取り出されるように直列又は並列に接続される。第1の受電側巻線部212Aと第2の受電側巻線部212Bの巻線方向によって直列接続とするか並列接続とするかは決定される。つまり、給電時に同方向の電流が取り出されるように接続されていれば、第1の巻線部212Aと第2の巻線部212Bの巻線方向は同一方向であってもよいし、反対方向であってもよい。
図3においては、第1の受電側巻線部212Aと第2の受電側巻線部212Bは同一方向に巻線されているので、第1の受電側巻線部212Aの内側端部と第2の受電側巻線部212Bの内側端部が接続されることになる。
In the secondary coil 21, the first power receiving side winding portion 212A and the second power receiving side winding portion 212B are connected in series or in parallel so that a current in the same direction is taken out during power feeding. Whether the first power receiving side winding portion 212A and the second power receiving side winding portion 212B are connected in series or in parallel is determined depending on the winding direction. That is, the winding direction of the first winding part 212A and the second winding part 212B may be the same direction or the opposite direction as long as currents in the same direction are extracted during power feeding. It may be.
In FIG. 3, since the first power receiving side winding portion 212A and the second power receiving side winding portion 212B are wound in the same direction, the inner end portion of the first power receiving side winding portion 212A and the The inner end portion of the second power receiving side winding portion 212B is connected.

図6は、理想的な給電位置となっているときの磁束を示す図である。
図6に示すように、給電時には、一次コイル11と二次コイル21とは、エアギャップGを介して対向して配置される。給電側コア部111の第1の脚部111aと受電側コア部211の第1の脚部211aとが対向し、給電側コア部111の第2の脚部111bと受電側コア部211の第2の脚部211bとが対向している状態が、理想的な状態(位置ずれのない状態)である。
FIG. 6 is a diagram showing the magnetic flux when the ideal feeding position is reached.
As shown in FIG. 6, at the time of power feeding, the primary coil 11 and the secondary coil 21 are arranged to face each other with an air gap G interposed therebetween. The first leg portion 111 a of the power feeding side core portion 111 and the first leg portion 211 a of the power receiving side core portion 211 face each other, and the second leg portion 111 b of the power feeding side core portion 111 and the first leg portion 211 a of the power receiving side core portion 211. The state in which the second leg portion 211b faces is an ideal state (a state in which there is no displacement).

給電装置10において、交流電源13から供給された商用周波数の交流電圧は、インバーター12で高周波数(例えば20kHz)の交流電圧に変換され、一次コイル11を含む給電回路11Aに印加される(図1参照)。一次コイル11の給電側巻線部112に交流電流が流れると、給電側コア部111には、例えば第2の脚部111bから平板部111cを通って第1の脚部111aに向かう磁束が発生する。
このとき、二次コイル21が一次コイル11に対向していれば、一次コイル11で発生した磁束が、二次コイル21において、受電側コア部211の第1の脚部211aから入射して、平板部211cを通って第2の脚部211bから出射する。そして、受電側巻線部212を鎖交する磁束の変化により、受電側巻線部212に誘導起電力が生じる。受電側巻線部212に流れる電流は整流器22を介して取り出され、二次電池23に充電される(図1参照)。
In the power supply apparatus 10, the commercial frequency AC voltage supplied from the AC power supply 13 is converted into a high frequency (for example, 20 kHz) AC voltage by the inverter 12 and applied to the power supply circuit 11 </ b> A including the primary coil 11 (FIG. 1). reference). When an alternating current flows through the power supply side winding portion 112 of the primary coil 11, for example, a magnetic flux is generated in the power supply side core portion 111 from the second leg portion 111b through the flat plate portion 111c toward the first leg portion 111a. To do.
At this time, if the secondary coil 21 is opposed to the primary coil 11, the magnetic flux generated in the primary coil 11 is incident on the secondary coil 21 from the first leg portion 211 a of the power receiving side core portion 211. The light is emitted from the second leg portion 211b through the flat plate portion 211c. Then, an induced electromotive force is generated in the power receiving side winding portion 212 due to a change in magnetic flux interlinking the power receiving side winding portion 212. The current flowing through the power receiving side winding section 212 is taken out via the rectifier 22 and charged in the secondary battery 23 (see FIG. 1).

給電側コア部111及び受電側コア部211により、磁気抵抗の低い通路が形成されるので、結果として一次コイル11及び二次コイル21の性能(Q値)が高まり、漏れ磁束が少なくなる。したがって、電力伝送に寄与する有効な磁束数が増加し、漏れ磁束が減少するので、高い電力伝送効率を実現することができる。   Since the power supply side core unit 111 and the power reception side core unit 211 form a path with low magnetic resistance, the performance (Q value) of the primary coil 11 and the secondary coil 21 is increased as a result, and the leakage magnetic flux is reduced. Therefore, the number of effective magnetic fluxes contributing to power transmission increases and leakage magnetic flux decreases, so that high power transmission efficiency can be realized.

図7は、一次コイル11と二次コイル21が長手方向に位置ずれした場合の磁束を示す図である。図7Aは上面図であり、図7Bは図7Aにおける矢視方向の側面図である。
図7に示すように、一次コイル11と二次コイル21が長手方向に位置ずれした場合、同極性の磁極が接近するため磁束が著しく減衰する。したがって、給電側巻線部112及び受電側巻線部212の中心間距離dは、許容される範囲内で長い方が好ましい。すなわち、第1の給電側巻線部112Aと第2の給電側巻線部112Bの中心間距離dをできるだけ長くすることにより、同極性の磁極が接近しにくくなるため、磁束が減衰するのを抑制することができる。
FIG. 7 is a diagram showing the magnetic flux when the primary coil 11 and the secondary coil 21 are displaced in the longitudinal direction. 7A is a top view, and FIG. 7B is a side view in the direction of the arrow in FIG. 7A.
As shown in FIG. 7, when the primary coil 11 and the secondary coil 21 are displaced in the longitudinal direction, the magnetic poles of the same polarity approach each other, so that the magnetic flux is significantly attenuated. Therefore, it is preferable that the center distance d between the power feeding side winding portion 112 and the power receiving side winding portion 212 is long within an allowable range. That is, by making the distance d between the centers of the first feeding side winding portion 112A and the second feeding side winding portion 112B as long as possible, it becomes difficult for the magnetic poles of the same polarity to approach each other. Can be suppressed.

図8は、一次コイル11と二次コイル21が長手方向に直交する方向に位置ずれした場合の磁束を示す図である。図8Aは上面図であり、図8Bは図8Aにおける矢視方向の側面図である。
図8に示すように、一次コイル11と二次コイル21が長手方向に直交する方向に位置ずれした場合、給電側コア部111と受電側コア部211の磁極間距離に比例して電力伝送効率は低下するが、ソレノイド型のコイルと同様に、依然として高い電力伝送効率を確保できる。
FIG. 8 is a diagram showing the magnetic flux when the primary coil 11 and the secondary coil 21 are displaced in the direction orthogonal to the longitudinal direction. 8A is a top view, and FIG. 8B is a side view in the direction of the arrow in FIG. 8A.
As shown in FIG. 8, when the primary coil 11 and the secondary coil 21 are displaced in the direction orthogonal to the longitudinal direction, the power transmission efficiency is proportional to the distance between the magnetic poles of the power supply side core part 111 and the power reception side core part 211. However, as with the solenoid type coil, high power transmission efficiency can still be secured.

さらに、本実施の形態では、給電側巻線部112及び受電側巻線部212の細長比(長辺の長さL2/短辺の長さS2、図2、3参照)は1.5〜5.0に設定される。給電側巻線部112及び受電側巻線部212の細長比は、好ましくは1.7〜2.3、より好ましくは1.9〜2.1である。具体的には、給電側巻線部112の長辺は190〜320mmの範囲で、短辺は130〜150mmの範囲で、上記細長比を満たすように設定される。   Further, in the present embodiment, the slenderness ratio of the power supply side winding portion 112 and the power receiving side winding portion 212 (long side length L2 / short side length S2, see FIGS. 2 and 3) is 1.5 to. Set to 5.0. The slenderness ratio of the power feeding side winding portion 112 and the power receiving side winding portion 212 is preferably 1.7 to 2.3, and more preferably 1.9 to 2.1. Specifically, the long side of the power supply side winding portion 112 is set in a range of 190 to 320 mm, and the short side is set in a range of 130 to 150 mm so as to satisfy the above-described elongated ratio.

給電側巻線部112及び受電側巻線部212の細長比が1.5未満の場合、コイル全体の長さが増加する。また、給電側巻線部112及び受電側巻線部212の細長比が5.0より大きい場合、結合係数が低下する。すなわち、給電側巻線部112及び受電側巻線部212の細長比を1.5〜5.0とすることにより、一次コイル11及び二次コイル21の長手方向の長さを抑制できるとともに、給電側巻線部112の中心間距離dを十分に確保することができる。   When the slenderness ratio of the power feeding side winding portion 112 and the power receiving side winding portion 212 is less than 1.5, the length of the entire coil increases. Further, when the slenderness ratio of the power feeding side winding portion 112 and the power receiving side winding portion 212 is larger than 5.0, the coupling coefficient is lowered. That is, by setting the slenderness ratio of the power feeding side winding portion 112 and the power receiving side winding portion 212 to 1.5 to 5.0, the length in the longitudinal direction of the primary coil 11 and the secondary coil 21 can be suppressed, A sufficient distance d between the centers of the power supply side winding portions 112 can be secured.

また、給電側巻線部112及び受電側巻線部212に適用される平編みリッツ線の扁平比(リッツ線断面の幅L1/厚さS1、図5参照)は5〜15に設定される。平編みリッツ線の扁平比は、好ましくは7〜12、より好ましくは9〜11である。具体的には、平編みリッツ線の幅(長辺の長さ)は5〜15mm、厚さ(短辺の長さ)は0.5〜3.0mmの範囲で、上記扁平比を満たすように設定される。   Further, the flat ratio of the flat knitted litz wire applied to the power supply side winding portion 112 and the power receiving side winding portion 212 (width L1 / thickness S1 of the litz wire cross section, see FIG. 5) is set to 5-15. . The flat ratio of the flat knitted litz wire is preferably 7 to 12, and more preferably 9 to 11. Specifically, the flat knitted litz wire has a width (long side length) of 5 to 15 mm and a thickness (short side length) of 0.5 to 3.0 mm so as to satisfy the above flat ratio. Set to

平編みリッツ線の扁平比が5未満の場合、短辺を同じとすれば同等のインダクタンスを実現することはできるが、断面積が小さくなるために、非接触給電システムに要求される大電流を流すのが困難となる。また、平編みリッツ線の扁平比が15よりも大きい場合、短辺を同じとすれば同等のインダクタンスを実現することはできるが、給電側巻線部112の高さが高くなるため、一次コイル11及び二次コイルの低背化が阻害される。
すなわち、給電側巻線部112及び受電側巻線部212に適用される平編みリッツ線の扁平比を5〜15とすることにより、給電側巻線部112及び受電側巻線部212において、所望のインダクタンスが得られる巻数を容易に確保することができるとともに、小型化、軽量化、薄型化を図ることができ、さらには高い給電特性を得ることができる。
If the flat ratio of the flat knitted litz wire is less than 5, the equivalent inductance can be realized if the short sides are the same, but the large current required for the non-contact power feeding system is reduced because the cross-sectional area is small. It becomes difficult to flow. Further, when the flat ratio of the flat knitted litz wire is larger than 15, the same inductance can be realized if the short sides are the same, but the height of the power supply side winding portion 112 is increased, so the primary coil 11 and the secondary coil are reduced in height.
That is, by setting the flat ratio of the flat knitted litz wire applied to the power feeding side winding portion 112 and the power receiving side winding portion 212 to 5 to 15, in the power feeding side winding portion 112 and the power receiving side winding portion 212, The number of turns for obtaining a desired inductance can be easily ensured, the size can be reduced, the weight can be reduced, and the thickness can be reduced. Further, high power supply characteristics can be obtained.

また、給電側巻線部112及び受電側巻線部212の巻数は20〜50ターンであることが好ましい。さらに、給電側巻線部112及び受電側巻線部212に適用される平編みリッツ線は、素線径が0.04〜0.25mm、素線数が300〜4000本であることが好ましい。これにより、一次コイル11及び二次コイルの電気特性(特にインダクタンス)の安定化を図ることができるので、EV用の非接触給電システム1の用途として好適である。   Moreover, it is preferable that the winding number of the electric power feeding side coil | winding part 112 and the power receiving side coil | winding part 212 is 20-50 turns. Further, the flat knitted litz wire applied to the power supply side winding portion 112 and the power receiving side winding portion 212 preferably has a strand diameter of 0.04 to 0.25 mm and a number of strands of 300 to 4000. . Thereby, since the electrical characteristics (especially inductance) of the primary coil 11 and the secondary coil can be stabilized, it is suitable as a use of the non-contact electric power feeding system 1 for EV.

このように、実施の形態に係る非接触給電システム1によれば、一次コイル11と二次コイル21の位置ずれによる電力伝送効率の低下を抑制できるとともに、共振現象を利用した大電力伝送を容易に実現することができる。また、一次コイル11と二次コイル21の小型化、軽量化、薄型化を図ることができる。   Thus, according to the non-contact electric power feeding system 1 which concerns on embodiment, while being able to suppress the fall of the power transmission efficiency by the position shift of the primary coil 11 and the secondary coil 21, large power transmission using a resonance phenomenon is easy. Can be realized. Further, the primary coil 11 and the secondary coil 21 can be reduced in size, weight, and thickness.

EV用の非接触給電システム1の場合、車両の走行方向の位置ずれは輪留めなどによって抑制できるため、走行方向と直交する方向の位置ずれが大きくなると考えられる。したがって、二次コイル21は、長手方向が走行方向に一致するように車両に実装されるのが好ましい。   In the case of the EV non-contact power feeding system 1, it is considered that the positional deviation in the direction orthogonal to the traveling direction becomes large because the positional deviation in the traveling direction of the vehicle can be suppressed by a ring stop or the like. Therefore, it is preferable that the secondary coil 21 is mounted on the vehicle such that the longitudinal direction coincides with the traveling direction.

以上、本発明者によってなされた発明を実施の形態に基づいて具体的に説明したが、本発明は上記実施の形態に限定されるものではなく、その要旨を逸脱しない範囲で変更可能である。
例えば、実施の形態では、給電側巻線部112及び受電側巻線部212の形状として矩形の場合を例示したが、楕円状、角丸長方形状等を含む扁平形状であればよい。この場合、給電側巻線部112及び受電側巻線部212の細長比は、これらに外接する矩形の長辺の長さ/短辺の長さで表される。
As mentioned above, the invention made by the present inventor has been specifically described based on the embodiment. However, the present invention is not limited to the above embodiment, and can be changed without departing from the gist thereof.
For example, in the embodiment, the case where the shapes of the power feeding side winding portion 112 and the power receiving side winding portion 212 are rectangular has been illustrated, but it may be a flat shape including an elliptical shape, a rounded rectangular shape, or the like. In this case, the slenderness ratio of the power feeding side winding portion 112 and the power receiving side winding portion 212 is expressed by the length of the long side / short side length of the rectangle circumscribing these.

今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。   The embodiment disclosed this time should be considered as illustrative in all points and not restrictive. The scope of the present invention is defined by the terms of the claims, rather than the description above, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.

1 非接触給電システム
10 給電装置
11 一次コイル
11A 給電回路
111 給電側コア部
111a 第1の脚部
111b 第2の脚部
111c 平板部
112 給電側巻線部
112A 第1の給電側巻線部(第1の巻線部)
112B 第2の給電側巻線部(第2の巻線部)
12 インバーター
13 交流電源
20 受電装置
21 二次コイル
21A 受電回路
211 受電側コア部
211a 第1の脚部
211b 第2の脚部
211c 平板部
212 受電側巻線部
212A 第1の受電側巻線部(第1の巻線部)
212B 第2の受電側巻線部(第2の巻線部)
22 整流器
23 二次電池
DESCRIPTION OF SYMBOLS 1 Contactless electric power feeding system 10 Electric power feeding apparatus 11 Primary coil 11A Feeding circuit 111 Feeding side core part 111a 1st leg part 111b 2nd leg part 111c Flat plate part 112 Feeding side winding part 112A 1st feeding side winding part ( First winding part)
112B 2nd electric power feeding side coil | winding part (2nd coil | winding part)
12 Inverter 13 AC power source 20 Power receiving device 21 Secondary coil 21A Power receiving circuit 211 Power receiving side core portion 211a First leg portion 211b Second leg portion 211c Flat plate portion 212 Power receiving side winding portion 212A First power receiving side winding portion (First winding part)
212B Second power receiving side winding part (second winding part)
22 Rectifier 23 Secondary battery

Claims (6)

エアギャップを介して対向して配置される一次コイル及び二次コイルを備え、前記一次コイル側から前記二次コイル側へ非接触で電力を伝送する電磁誘導型の非接触給電システムであって、
前記一次コイル及び前記二次コイルは、矩形の平板部と前記平板部の長手方向両端に連設される第1の脚部及び第2の脚部とを有するU字型の磁性体コア部と、前記第1の脚部に巻線される第1の巻線部と、前記第2の脚部に巻線される第2の巻線部と、を備え、
前記第1の巻線部及び前記第2の巻線部は、複数本のエナメル線が平編みされてなる平編みリッツ線を扁平面が重なるように巻線した矩形の渦巻き型コイルで構成され、長辺が前記平板部の長手方向と直交する方向に一致し、互いに逆方向の電流が流れるように前記第1の脚部又は前記第2の脚部に配置され、
前記平編みリッツ線の扁平比(幅/厚さ)が5〜15であり、
前記第1の巻線部及び前記第2の巻線部の細長比(長辺の長さ/短辺の長さ)が1.5〜5.0であることを特徴とする非接触給電システム。
An electromagnetic induction type non-contact power feeding system comprising a primary coil and a secondary coil arranged to face each other via an air gap, and transmitting power in a non-contact manner from the primary coil side to the secondary coil side,
The primary coil and the secondary coil include a U-shaped magnetic core portion having a rectangular flat plate portion and a first leg portion and a second leg portion that are connected to both ends in the longitudinal direction of the flat plate portion; A first winding portion wound around the first leg portion, and a second winding portion wound around the second leg portion,
The first winding portion and the second winding portion are formed of rectangular spiral coils in which flat knitted litz wires obtained by flat knitting a plurality of enamel wires are wound so that the flat surfaces overlap. , The long side coincides with the direction orthogonal to the longitudinal direction of the flat plate portion, and is arranged in the first leg portion or the second leg portion so that currents in opposite directions flow.
The flat ratio (width / thickness) of the flat knitted litz wire is 5 to 15,
A non-contact power feeding system, wherein a slenderness ratio (long side length / short side length) of the first winding portion and the second winding portion is 1.5 to 5.0. .
前記平編みリッツ線の扁平比が7〜12であることを特徴とする請求項1に記載の非接触給電システム。   The non-contact power feeding system according to claim 1, wherein a flat ratio of the flat knitted litz wire is 7 to 12. 前記第1の巻線部及び前記第2の巻線部の細長比が1.7〜2.3であることを特徴とする請求項1又は2に記載の非接触給電システム。   The contactless power feeding system according to claim 1 or 2, wherein a slenderness ratio of the first winding portion and the second winding portion is 1.7 to 2.3. 前記平編み線の素線径が0.04〜0.25mm、素線数が300〜4000本、巻数が20〜50ターンであることを特徴とする請求項1から3のいずれか一項に記載の非接触給電システム。   The strand diameter of the flat knitted wire is 0.04 to 0.25 mm, the number of strands is 300 to 4000, and the number of turns is 20 to 50 turns. The non-contact power feeding system described. 前記平編みリッツ線の幅が5〜15mm、厚さが0.5〜3.0mmであることを特徴とする請求項1から4のいずれか一項に記載の非接触給電システム。   The non-contact power feeding system according to any one of claims 1 to 4, wherein the flat knitted litz wire has a width of 5 to 15 mm and a thickness of 0.5 to 3.0 mm. 前記第1の巻線部及び第2の巻線部の長辺が190〜320mm、短辺が130〜150mmであることを特徴とする請求項1から5のいずれか一項に記載の非接触給電システム。   6. The non-contact according to claim 1, wherein the first winding portion and the second winding portion have a long side of 190 to 320 mm and a short side of 130 to 150 mm. Power supply system.
JP2013111335A 2013-05-27 2013-05-27 Contactless power supply system Expired - Fee Related JP5646688B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013111335A JP5646688B2 (en) 2013-05-27 2013-05-27 Contactless power supply system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013111335A JP5646688B2 (en) 2013-05-27 2013-05-27 Contactless power supply system

Publications (2)

Publication Number Publication Date
JP2014230474A JP2014230474A (en) 2014-12-08
JP5646688B2 true JP5646688B2 (en) 2014-12-24

Family

ID=52129828

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013111335A Expired - Fee Related JP5646688B2 (en) 2013-05-27 2013-05-27 Contactless power supply system

Country Status (1)

Country Link
JP (1) JP5646688B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6808961B2 (en) * 2016-04-19 2021-01-06 日立金属株式会社 Manufacturing method of insulated wire
KR101927215B1 (en) * 2016-07-11 2018-12-11 한국과학기술원 Power Feeding Apparatus Strong to Deviation
JP2018029039A (en) * 2016-08-19 2018-02-22 タツタ電線株式会社 Flat conductor insulation wire
CN106981931B (en) * 2017-05-17 2020-01-14 中国科学院电工研究所 Non-contact induction power supply device of primary coil of three-phase structure
JP7141920B2 (en) * 2018-11-15 2022-09-26 株式会社ダイヘン Parallel two-wire unit
JP7092068B2 (en) * 2019-02-28 2022-06-28 株式会社デンソー Non-contact power supply system while driving
WO2020190096A1 (en) * 2019-03-21 2020-09-24 에스케이씨 주식회사 Reception device for wireless charging of moving means, and moving means including same

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6384105A (en) * 1986-09-29 1988-04-14 Matsushita Electric Ind Co Ltd Coil for high-frequency transformer
JP3274727B2 (en) * 1992-11-30 2002-04-15 日立電線株式会社 Litz wire for high-frequency transformer, double-braided litz wire, and manufacturing method thereof
JP2002170725A (en) * 2000-11-30 2002-06-14 Toko Inc Power supply unit
JP2009064856A (en) * 2007-09-05 2009-03-26 Totoku Electric Co Ltd Spiral coil
JP2011100819A (en) * 2009-11-05 2011-05-19 Fuji Electric Systems Co Ltd Magnetic coupler
JP5605297B2 (en) * 2011-04-26 2014-10-15 株式会社デンソー Non-contact power feeding device

Also Published As

Publication number Publication date
JP2014230474A (en) 2014-12-08

Similar Documents

Publication Publication Date Title
JP5646688B2 (en) Contactless power supply system
US10158256B2 (en) Contactless connector system tolerant of position displacement between transmitter coil and receiver coil and having high transmission efficiency
JP6371364B2 (en) Non-contact power supply device
JP5405694B1 (en) Power transmission device, electronic device and wireless power transmission system
EP3924987A1 (en) Wireless power transfer based on magnetic induction
JP6179375B2 (en) Coil unit
JP5613268B2 (en) Contactless power supply system
JP2012244763A (en) Power supply device, power supply system and electronic device
JP2011142177A (en) Contactless power transmission device, and coil unit for contactless power transmission device
JP5490385B2 (en) Non-contact power feeding device
WO2013150785A1 (en) Coil unit, and power transmission device equipped with coil unit
JP2013051285A5 (en)
JP2013051285A (en) Coil device and coil device with core
JP7131815B2 (en) Wireless power transmission coil unit
JP2017212880A (en) Wireless power transmission apparatus
JP5384195B2 (en) Non-contact power supply device
JPH1197263A (en) Non-contact power transmitter and spiral coil used therefor
JP2013214613A (en) Coil unit and power transmission device having coil unit
JP6455798B2 (en) Coil unit
JPH11186086A (en) Manufacture of spiral coil for noncontact power transmitter
US9672974B2 (en) Magnetic component and power transfer device
JP2012156281A (en) Air-core coil
JP6365108B2 (en) Coil unit
JP6365109B2 (en) Coil unit
JP2002198237A (en) Leakage flux type power converter/transformer

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141021

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141105

R150 Certificate of patent or registration of utility model

Ref document number: 5646688

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees