JP7131815B2 - Wireless power transmission coil unit - Google Patents

Wireless power transmission coil unit Download PDF

Info

Publication number
JP7131815B2
JP7131815B2 JP2018172049A JP2018172049A JP7131815B2 JP 7131815 B2 JP7131815 B2 JP 7131815B2 JP 2018172049 A JP2018172049 A JP 2018172049A JP 2018172049 A JP2018172049 A JP 2018172049A JP 7131815 B2 JP7131815 B2 JP 7131815B2
Authority
JP
Japan
Prior art keywords
coil
magnetic
conductor
winding
power transmission
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018172049A
Other languages
Japanese (ja)
Other versions
JP2020047614A (en
Inventor
水野勉
卜穎剛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shinshu University NUC
Original Assignee
Shinshu University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shinshu University NUC filed Critical Shinshu University NUC
Priority to JP2018172049A priority Critical patent/JP7131815B2/en
Publication of JP2020047614A publication Critical patent/JP2020047614A/en
Application granted granted Critical
Publication of JP7131815B2 publication Critical patent/JP7131815B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles

Description

本開示は、非接触で電力を伝送できる非接触給電用のワイヤレス電力伝送コイルユニットに関する。 The present disclosure relates to a wireless power transmission coil unit for contactless power supply that can transmit power in a contactless manner.

近年、電気自動車やハイブリッド型自動車などの車両のバッテリーの充電に対して、電磁誘導方式のワイヤレス給電装置の使用が検討されている。ワイヤレス給電装置では、送電コイルに高周波の交流電流(概ね数10kHz~200kHz)を通電し、送電コイルから発生する高周波磁界を受電コイルが受け取ることで、非接触で電力送電する。 2. Description of the Related Art In recent years, the use of an electromagnetic induction wireless power supply device has been studied for charging batteries of vehicles such as electric vehicles and hybrid vehicles. In a wireless power supply device, a power transmission coil is energized with a high-frequency alternating current (approximately several 10 kHz to 200 kHz), and a power reception coil receives a high-frequency magnetic field generated from the power transmission coil, thereby transmitting power in a contactless manner.

このような非接触給電装置において、装置の薄型化に対応してスパイラル状(らせん状)の断面矩形の平面コイルが用いることが従来検討されている。また高周波磁界によって周囲の金属製部品に渦電流が発生し異常発熱が起きることを回避するため、フェライト等からなる磁気シールドをコイル近傍に配置している(例えば、特許文献1)。このように伝送コイルユニットは、平面コイルと磁気シールドの組合せで構成される。 In such a contactless power supply device, the use of a spiral planar coil having a rectangular cross-section has been conventionally studied in response to the thinning of the device. In addition, a magnetic shield made of ferrite or the like is placed in the vicinity of the coil in order to avoid abnormal heat generation due to eddy currents generated in surrounding metal parts due to a high-frequency magnetic field (for example, Patent Document 1). Thus, the transmission coil unit is composed of a combination of planar coils and magnetic shields.

一般的に、伝送コイルユニットにおいて、コイルに通電した際、コイル断面を囲むように磁力線が発生する。また磁力線は、磁気シールドの透磁率が高いため、磁気シールドの表面から垂直に流れるよう分布する。またコイルは複数の導体(コイル導体)が回巻されており、コイル導体同士が互いに近接している。このため、コイルには、自身を流れる電流による表皮効果と近接するコイル導体に生じる渦電流による近接効果の両方が存在する。したがって、各コイル導体を流れる電流は導体内部で偏ったものとなっており、特にコイルの内周部でコイル導体内の内周側に、外周部でコイル導体内の外周側に偏ったものとなって、それらの部分で電流が集中し磁力線も集中する。 Generally, in a transmission coil unit, when the coil is energized, magnetic lines of force are generated so as to surround the cross section of the coil. Also, since the magnetic shield has a high magnetic permeability, the magnetic lines of force are distributed so as to flow vertically from the surface of the magnetic shield. The coil is wound with a plurality of conductors (coil conductors), and the coil conductors are close to each other. Therefore, the coil has both the skin effect due to the current flowing through it and the proximity effect due to the eddy currents generated in the adjacent coil conductors. Therefore, the current flowing through each coil conductor is biased inside the conductor, especially the inner circumference of the coil conductor and the outer circumference of the coil conductor. As a result, currents and magnetic lines of force concentrate at those parts.

特に特許文献1に示されたコイルは、断面矩形が平面であるため高周波表皮厚さが薄く、その薄い部分に上記の電流が集中して流れる。このため銅損が発生して交流抵抗が高くなり、その結果電力伝送効率が低下する。磁束を外に出さない単体のコイルあるいはインダクタでは、鎖交する渡り磁束密度に応じて、コイル内周と外周のコイル導体の幅を細く、中周の導体の幅を太くすることで、銅損の発生を極力抑えているものがある(特許文献3)。しかし、このような構成のコイルをワイヤレス電力伝送に用いる場合、対面して置かれる磁気シールドの影響を考慮する必要がある。 In particular, the coil disclosed in Patent Literature 1 has a thin high-frequency skin because the rectangular cross-section is flat, and the current flows intensively in the thin portion. As a result, copper loss occurs and the AC resistance increases, resulting in a decrease in power transmission efficiency. In a single coil or inductor that does not emit magnetic flux, copper loss can be reduced by narrowing the width of the coil conductors on the inner and outer circumferences of the coil and widening the width of the conductor on the middle circumference according to the crossover magnetic flux density. (Patent Document 3). However, when using a coil with such a configuration for wireless power transmission, it is necessary to consider the influence of magnetic shields placed facing each other.

このような問題に対して、コイルの巻線として多数の絶縁素線をより合わせたリッツ線を使用することが知られている(例えば、特許文献3)。リッツ線は、細い素線(例えば線径0.1mm以下のエナメル線)を数多く(例えば500本以上)より合わせた線であり、上記表皮効果や近接効果による高周波損失を抑制することができる。 In order to solve such a problem, it is known to use a litz wire obtained by twisting a large number of insulated wires as a coil winding (for example, Patent Document 3). A litz wire is a wire obtained by twisting a large number (eg, 500 or more) of fine wires (eg, enameled wires with a wire diameter of 0.1 mm or less), and can suppress high-frequency loss due to the skin effect and proximity effect.

特開2013-201296号公報Japanese Unexamined Patent Application Publication No. 2013-201296 特開平11-40438号公報JP-A-11-40438 特開2016-219252号公報JP 2016-219252 A

しかしながら、リッツ線は素線が細くしかも本数が多いため、製造コストが高いという問題があった。そこで、本発明は、上記事情に鑑み、平面スパイラルコイルの表皮効果や近接効果による高周波損失(銅損)を低減し、交流抵抗の増大を抑制して、低コストで製造可能な非接触給電用の伝送コイルユニットを提供することを目的とする。 However, the litz wire has a problem that the manufacturing cost is high because the wires are thin and the number of wires is large. Therefore, in view of the above circumstances, the present invention reduces the high frequency loss (copper loss) due to the skin effect and proximity effect of the planar spiral coil, suppresses the increase in AC resistance, and can be manufactured at low cost. An object of the present invention is to provide a transmission coil unit of

本開示の一態様に係る非接触給電用伝送コイルユニットは、スパイラル状に巻回された平板状のコイルと前記コイルに対向して設けられた磁気シールドとを備えたワイヤレス電力伝送コイルユニットであって、前記コイルの中周部に位置する任意の巻線のコイル導体とこれに隣接する巻線のコイル導体との間隙が、コイル内周側または外周側に位置する任意の巻線のコイル導体とこれに隣接する巻線のコイル導体との間隙よりも狭く、かつ、少なくともコイル内周部および外周部に位置する任意の巻線のコイル導体とこれらにそれぞれ隣接する巻線のコイル導体との間隙に、前記磁気シールドと対向するのと反対の側に前記コイルより突出して、磁性体が設けられ、さらに、前記コイルの前記磁気シールドと対向するのと反対の側の面の一部に磁性体が設けられたことを特徴とする。 A transmission coil unit for contactless power supply according to one aspect of the present disclosure is a wireless power transmission coil unit including a spirally wound planar coil and a magnetic shield provided facing the coil. and the gap between the coil conductor of any winding positioned in the middle circumference of the coil and the coil conductor of the winding adjacent thereto is the coil conductor of any winding positioned on the inner circumference side or the outer circumference side of the coil. and the coil conductors of any windings that are narrower than the gap between and the coil conductors of the adjacent windings and are located at least on the inner and outer circumferences of the coil and the coil conductors of the windings adjacent to them In the gap, a magnetic body is provided so as to protrude from the coil on the side opposite to facing the magnetic shield, and on a part of the surface of the coil on the side opposite to the magnetic shield A magnetic body is provided .

前記コイルの前記磁気シールドと対向する側の面の全面に磁性体が設けられてもよい。 A magnetic body may be provided on the entire surface of the coil facing the magnetic shield.

前記コイル内周部の任意の巻線のコイルにおいては内周側に、スパイラル外周部の任意の巻線のコイルにおいては外周側に、それぞれ偏在させて磁性体が設けられてもよい。 The magnetic material may be unevenly distributed on the inner peripheral side of a coil of arbitrary windings on the inner peripheral portion of the coil, and on the outer peripheral side of a coil of arbitrary windings on the spiral outer peripheral portion.

本開示の一態様によれば、平板上のスパイラルコイル導体の表面および側面に集中していた磁束線を磁性層に誘導してコイル導体を貫通する磁力線の数を減少でき、これによりコイル導体内の渦電流を抑えてコイルの交流抵抗(銅損)を低減することが可能となり、リッツ線を使った場合とほぼ同等もしくはそれ以上の伝送効率を得ることができる。 According to one aspect of the present disclosure, it is possible to reduce the number of magnetic lines of force penetrating the coil conductor by inducing the magnetic flux lines concentrated on the surface and side surfaces of the spiral coil conductor on the flat plate to the magnetic layer. It is possible to reduce the AC resistance (copper loss) of the coil by suppressing the eddy current of the coil, and it is possible to obtain a transmission efficiency that is almost equal to or higher than that when using a litz wire.

一般的なスパイラルコイルユニットの平面図と断面図Top view and cross-sectional view of a typical spiral coil unit 本開示の第1の実施の形態のワイヤレス伝送コイルユニットの断面図Sectional view of the wireless transmission coil unit according to the first embodiment of the present disclosure 本開示の第2の実施の形態のワイヤレス伝送コイルユニットの断面図Sectional view of the wireless transmission coil unit of the second embodiment of the present disclosure 本開示の第2の実施の形態のワイヤレス伝送コイルユニットの拡大断面図An enlarged cross-sectional view of a wireless transmission coil unit according to a second embodiment of the present disclosure ワイヤレス伝送コイルユニットにおける磁性体の効果を示す説明図Explanatory diagram showing the effect of the magnetic material in the wireless transmission coil unit 本開示の実施例1のワイヤレス伝送コイルユニットの断面図Sectional view of the wireless transmission coil unit of Example 1 of the present disclosure 受電側リッツ線コイルユニットの構成図Configuration diagram of the litz wire coil unit on the power receiving side 送電側リッツ線コイルユニットの構成図Configuration diagram of power transmission side litz wire coil unit 本開示の実施例2におけるワイヤレス伝送コイルユニットの解析モデル図Analysis model diagram of the wireless transmission coil unit in the second embodiment of the present disclosure 本開示の実施例2における銅板コイルの磁束と電流分布図Magnetic flux and current distribution diagram of copper plate coil in Embodiment 2 of the present disclosure 本開示の実施例2におけるMPCコイルの磁束と電流分布図Magnetic flux and current distribution diagram of MPC coil in Embodiment 2 of the present disclosure 本開示の実施例2におけるMPCコイルの形状寸法図Dimensional drawing of the MPC coil in Example 2 of the present disclosure 本開示の実施例3における各種コイルの電気特性Electrical characteristics of various coils in Example 3 of the present disclosure 本開示の実施例4における各種コイルユニットの伝送効率Transmission Efficiency of Various Coil Units in Example 4 of the Present Disclosure

以下、本開示の一態様に係る実施の形態について図面を参照して詳細に説明する。 Hereinafter, embodiments according to one aspect of the present disclosure will be described in detail with reference to the drawings.

まず図1に一般的な平面スパイラルコイル型のワイヤレス伝送コイルユニットの構成を示す。スパイラル状に形成されたコイル導体部(Copper)と磁気シールド(Ferrite)とが対向して設けられていることが特徴である。図1において破線四角で囲った部分は半径方向の断面図であり、以降本実施の形態ではこのような半径方向の断面図でもってワイヤレス伝送コイルユニットの構造的特徴を説明する。 First, FIG. 1 shows the configuration of a general planar spiral coil type wireless transmission coil unit. It is characterized in that a spiral coil conductor (Copper) and a magnetic shield (Ferrite) are provided facing each other. In FIG. 1, the portion surrounded by a broken line square is a radial cross-sectional view, and the structural features of the wireless transmission coil unit will be described below with such a radial cross-sectional view in the present embodiment.

図2は本開示の第1の実施の形態のワイヤレス伝送コイルユニットの断面図である。図2において1は磁気シールドであり、フェライト等の磁性体により構成されている。2はコイルであり、銅またはアルミ等のコイル導体(2a)をスパイラル状にしかも平板状に製造したものである。製造方法としては、一枚の金属版をプレスやエッチングなどの方法でスパイラル状に切り取るものでもよいし、鋳造するものでもよいし、また帯状の導体を平面上で巻いて作成したものであってもよい。磁気シールド1とコイル2は直には接触していないが、間に非磁性の絶縁材(樹脂、セラミック、等)を挟んでもよい(図示せず)。 FIG. 2 is a cross-sectional view of the wireless transmission coil unit according to the first embodiment of the present disclosure. In FIG. 2, 1 is a magnetic shield, which is made of a magnetic material such as ferrite. Reference numeral 2 denotes a coil, which is made by forming a coil conductor (2a) of copper, aluminum, or the like into a spiral shape and a plate shape. As a manufacturing method, it may be made by cutting a single metal plate into a spiral shape by pressing or etching, or by casting, or by winding a belt-shaped conductor on a plane. good too. Although the magnetic shield 1 and the coil 2 are not in direct contact with each other, a non-magnetic insulating material (resin, ceramic, etc.) may be interposed therebetween (not shown).

図2において、スパイラルコイルの中周部に位置する任意の巻線のコイル2cとこれに隣接する巻線のコイルとの間隙2dは、コイル内周側および外周側の任意の巻線のコイル導体(2a、2e)と各々に隣接する巻線のコイル導体との間隙(2b、2f)よりも狭いことを特徴とする。なお、本実施の形態において、内周とはコイル2の巻き数をN(N>8)として最内から外側にN/4~N/2巻きまでの領域を言い、外周とは最外から内側に1~N/3巻きまでの領域を言う。中周とは、前記内周および外周で囲まれた領域を言うものとする。 In FIG. 2, the gap 2d between the coil 2c of an arbitrary winding located in the middle circumference of the spiral coil and the coil of the winding adjacent thereto is the coil conductor of the arbitrary winding on the inner circumference side and the outer circumference side of the coil. (2a, 2e) and the gaps (2b, 2f) between the coil conductors of the respective adjacent windings. In the present embodiment, the inner circumference refers to an area from the innermost to N/2 turns from the innermost to the outermost when the number of turns of the coil 2 is N (N>8), and the outer circumference refers to the area from the outermost. Refers to the area from 1 to N/3 turns inside. The middle circumference refers to the area surrounded by the inner circumference and the outer circumference.

以上のようにコイル2を構成することにより、銅損を低減させるように磁力線の通る経路を制御することができる。一般に、背面に磁気シールド1を有したコイルユニットにおいては、コイル2からは、内周から外周にかけて円弧状の磁力線が発生する。すなわち図5(a)に示されるように、磁気シールド(Ferrite)内を通りつつ、内周では上向きに、中周では水平(コイルと平行)に、外周では下向きに、磁力線が発生する。 By configuring the coil 2 as described above, it is possible to control the path along which the lines of magnetic force pass so as to reduce the copper loss. In general, in a coil unit having a magnetic shield 1 on its back surface, arcuate lines of magnetic force are generated from the coil 2 from the inner circumference to the outer circumference. That is, as shown in FIG. 5A, while passing through the magnetic shield (Ferrite), magnetic lines of force are generated upward on the inner circumference, horizontally (parallel to the coil) on the middle circumference, and downward on the outer circumference.

そこで、磁力線が水平となる中周付近では互いに隣接するコイル導体の間隙(2b)をできるだけ狭めたほうが、磁束は磁気シールド1側に(上下方向に)方向を変えずにそのままコイル2と平行になりやすい。一方、磁力線が上下性成分を含むコイルの内周および外周側では、できるだけコイル導体に磁力線を交差させないように、前記中周部とは逆に間隙(2bおよび2f)の間隙を拡げて、なるべく多くの磁束を磁気シールド1の側に逃がす方がよい。 Therefore, in the vicinity of the middle circumference where the lines of magnetic force are horizontal, it is better to narrow the gap (2b) between the adjacent coil conductors as much as possible so that the magnetic flux does not change its direction toward the magnetic shield 1 (in the vertical direction) and is parallel to the coil 2 as it is. Prone. On the other hand, on the inner and outer peripheral sides of the coil where the magnetic lines of force include vertical components, the gaps (2b and 2f) are widened as much as possible so that the lines of magnetic force do not intersect the coil conductors as much as possible. It is better to release a large amount of magnetic flux to the magnetic shield 1 side.

以上のように、本実施の形態においては中周部に位置する任意の巻線のコイル2cとこれに隣接する巻線のコイルとの間隙2dを、内周側および外周側の任意の巻線のコイル導体(2a、2e)と各々に隣接する巻線のコイル導体との間隙(2b、2f)よりも狭くすることにより、コイル内周から外周にかけて円弧状に発生する磁力線を効率よく磁気シールド1に誘導することができ、その結果、コイル導体に鎖交する磁束を低減することができ、さらにその結果、渦電流による銅損を低減することができる。 As described above, in the present embodiment, the gap 2d between the coil 2c of an arbitrary winding located in the intermediate circumference and the coil of the winding adjacent thereto is formed by the arbitrary windings on the inner and outer circumferences. By making the gaps (2b, 2f) between the coil conductors (2a, 2e) and the coil conductors of the adjacent windings narrower than the gaps (2b, 2f), the magnetic lines of force generated in an arc shape from the inner circumference to the outer circumference of the coil are efficiently magnetically shielded. 1, and as a result, the magnetic flux interlinking with the coil conductor can be reduced, and as a result, copper loss due to eddy currents can be reduced.

なお、間隙2b、2d、2fを調整するにあたり、図2にはコイル導体2a、2c、2eの幅を変える方法を採っているが、本実施の形態はこの方法には限定されない。コイル導体の幅を均一にして、巻回のピッチを変えるようにしてもよい。 In adjusting the gaps 2b, 2d and 2f, a method of changing the widths of the coil conductors 2a, 2c and 2e is employed in FIG. 2, but the present embodiment is not limited to this method. The width of the coil conductor may be made uniform and the winding pitch may be changed.

以下、本開示の第2の実施の形態について説明する。図3は本開示の第2の実施の形態のワイヤレス伝送コイルユニットの断面図である。図3において磁気シールド1とコイル2は図2に示したものと同様の機能を有するものである。本実施の形態においては、コイル2の少なくとも内周側および外周側の間隙2b、2d、2fとその周辺に磁性体3(3a、3b、3c)が設けられている。なお、磁性体3は絶縁体である樹脂の中に磁性紛が練り込まれたコンポジット磁性材であってもよい。 A second embodiment of the present disclosure will be described below. FIG. 3 is a cross-sectional view of a wireless transmission coil unit according to a second embodiment of the present disclosure; 3, the magnetic shield 1 and the coil 2 have the same functions as those shown in FIG. In the present embodiment, magnetic bodies 3 (3a, 3b, 3c) are provided in at least the gaps 2b, 2d, 2f on the inner and outer peripheral sides of the coil 2 and their surroundings. The magnetic body 3 may be a composite magnetic material in which magnetic powder is kneaded into resin, which is an insulating material.

図4は図3の部分拡大図である。まず、少なくとも内周側および外周側の任意の巻線のコイル導体2aとこれに隣接する巻線のコイル導体との間隙2bに磁性体3bが設けられている。この磁性体3bがコイル2を鎖交する磁束を磁性体の壁で左右に誘導することで鎖交磁束を減らしている。 4 is a partially enlarged view of FIG. 3. FIG. First, magnetic bodies 3b are provided in gaps 2b between coil conductors 2a of arbitrary windings on at least the inner and outer circumferential sides and coil conductors of adjacent windings. This magnetic body 3b reduces the interlinking magnetic flux by inducing the magnetic flux linking the coil 2 to the left and right with the wall of the magnetic body.

また、コイル2の記磁気シールド1と対向する側(以降、コイル下面ともいう)の面の全面に磁性体3aが設けられている。この磁性体により磁気シールドに引き寄せられる磁束を磁性体に誘導し、コイル上部やコイル端部に鎖交する磁束を低減している。 A magnetic body 3a is provided on the entire surface of the coil 2 facing the magnetic shield 1 (hereinafter also referred to as the lower surface of the coil). The magnetic body induces the magnetic flux attracted to the magnetic shield to the magnetic body, thereby reducing the magnetic flux interlinking with the upper part of the coil and the ends of the coil.

また、コイル2の中周部を除く間隙部の磁性体3は磁気シールド1と対向するのと反対の側にコイル導体2aの上面より突出して設けられている。さらにコイル導体の磁気シールド1と対向するのと反対の側の面(以降、コイル上面ともいう)の一部に磁性体3cが設けられている。この磁性体は、内周においてはコイル導体2aの内周側のみを覆うように、外周においてはコイル導体の外周側のみを覆うように、偏在して設けられている。 The magnetic body 3 in the gap portion of the coil 2 except for the middle portion is provided on the side opposite to the magnetic shield 1 so as to protrude from the upper surface of the coil conductor 2a. Further, a magnetic body 3c is provided on a part of the surface of the coil conductor opposite to the magnetic shield 1 (hereinafter also referred to as the upper surface of the coil). The magnetic bodies are unevenly distributed so as to cover only the inner circumference side of the coil conductor 2a on the inner circumference, and to cover only the outer circumference side of the coil conductor on the outer circumference.

以上の構成により、コイルに鎖交する磁束を極力低減することができるようになり、近接効果によるコイル導体内の電流の偏りを軽減できるようになり、その結果第1の実施の形態の構成のものよりもさらに損失を低減することができる。 With the above configuration, the magnetic flux interlinking with the coil can be reduced as much as possible, and the bias of the current in the coil conductor due to the proximity effect can be reduced. It is possible to reduce the loss even more than that.

上記第1および第2の実施の形態におけるワイヤレス伝送コイルユニットの構成例ならびに解析およびシミュレーションの結果について、以下の実施例において説明する。 Configuration examples of the wireless transmission coil units in the first and second embodiments and results of analysis and simulation will be described in the following examples.

まず、一般的な構造を有するワイヤレス伝送コイルユニット(図1)の断面およびそこを流れる電流と、そこから発生する磁力性の模式図を図5(a)に示す。図5において、磁気シールド1としてフェライト(Ferrite)を、コイル導体2aとして銅板(Copper)を用いている。図5(a)に示されるように、磁力線は磁気シールドを通ってコイル内周側から外周側に円弧上に形成される。コイル導体(Copper)断面中、〇囲い×印の記号は導体中を紙面上から下方向に流れる電流を意味する。この電流はコイル導体を貫通する磁力線に応じて片寄りが生じる。すなわち、磁力線が斜めに交差する導体(内周部の外周寄り、外周部の内周寄り)では角部に電流が集中する。また磁束はフェライトに引き寄せられることにより、コイル上部に電流が片寄る傾向にもある。 First, FIG. 5(a) shows a cross section of a wireless transmission coil unit (FIG. 1) having a general structure, a current flowing therethrough, and a schematic diagram of magnetic force generated therefrom. In FIG. 5, ferrite is used as the magnetic shield 1, and copper is used as the coil conductor 2a. As shown in FIG. 5A, the lines of magnetic force pass through the magnetic shield and form an arc from the inner circumference side to the outer circumference side of the coil. In the cross section of the coil conductor (Copper), the cross-marked symbol in the circle means the current flowing downward from the top of the paper through the conductor. This current is biased according to the magnetic lines of force penetrating the coil conductor. In other words, the current concentrates at the corners of conductors where magnetic lines of force obliquely intersect (closer to the outer circumference of the inner circumference, closer to the inner circumference of the outer circumference). In addition, the magnetic flux is attracted to the ferrite, so that the current tends to be biased toward the upper part of the coil.

ここで、コイル導体に挟まれた間隙に磁性体の壁を設けると(図5(b))、磁力線の流れが変わり、これに応じて電流分布も変化する。つまり、コイルのより内周側とより外周側の巻線において、電流がコイル端部と上部に片寄る。また、コイル中周部の巻線に流れる電流はコイル上部に片寄る傾向にある。 Here, when a magnetic wall is provided in the gap sandwiched between the coil conductors (FIG. 5(b)), the flow of the lines of magnetic force changes, and the current distribution changes accordingly. In other words, in the inner and outer windings of the coil, the current is biased toward the ends and upper portion of the coil. In addition, the current flowing through the windings in the middle circumference of the coil tends to be biased towards the upper part of the coil.

そこで、さらに実施の形態2で示したように、コイル上面偏在位置に磁性体を設けると(図5(c))、端部の片寄りを低減することができる。さらにコイル下面(磁気シールド1と対向する側)全面に磁性体を設けて、磁気シールド1(フェライト)に引き寄せられる磁束をこの磁性材料に通すことにより、コイルの内側と外側の巻線における電流が上部だけではなく側面にも流れるようになる。このように磁束の流れを、磁性体を用いて制御することで銅損を低減し、電流の片寄りを抑えることができる。 Therefore, as shown in the second embodiment, if a magnetic material is provided at the unevenly distributed position on the upper surface of the coil (FIG. 5(c)), the deviation of the ends can be reduced. Furthermore, by providing a magnetic material on the entire lower surface of the coil (the side facing the magnetic shield 1) and passing the magnetic flux attracted to the magnetic shield 1 (ferrite) through this magnetic material, the current in the inner and outer windings of the coil is increased. It will flow not only to the top but also to the sides. By controlling the flow of the magnetic flux using the magnetic material in this way, the copper loss can be reduced and the bias of the current can be suppressed.

(実施例1)ワイヤレス伝送用コイルユニットの構造
図6は第2の実施形態のワイヤレス伝送用コイルユニット(以下、MPC(Magnetic Path Control)コイルユニット)の受電側の具体的構造を示したものである。図6において(a)は平面図、(b)は断面図、(c)は構造図をそれぞれ示す。コイル2(Coil)はスパイラル形状で巻数N=10である。また、放射電磁界低減のためにコイル背面にフェライト(磁気シールド1)を設けている。銅板(コイル導体2a)は厚さ1.5 mmで、コイル巻線間と電流密度の片寄りが生じる部分に磁性体(3b、3c)が設けられてある。また、コイル下部にも磁性体(3a)を用いた。コイル下部の磁性体とフェライトの間隙は3mmで、フェライトの厚さは5mmである。
(Embodiment 1) Structure of Wireless Transmission Coil Unit FIG. 6 shows the specific structure of the power receiving side of the wireless transmission coil unit (hereinafter referred to as MPC (Magnetic Path Control) coil unit) of the second embodiment. be. In FIG. 6, (a) is a plan view, (b) is a sectional view, and (c) is a structural drawing. The coil 2 (Coil) has a spiral shape and the number of turns N=10. In addition, a ferrite (magnetic shield 1) is provided on the back surface of the coil to reduce the radiated electromagnetic field. The copper plate (coil conductor 2a) has a thickness of 1.5 mm, and magnetic bodies (3b, 3c) are provided between the coil windings and at the portions where the current density is uneven. A magnetic material (3a) was also used for the lower part of the coil. The gap between the magnetic material under the coil and the ferrite is 3 mm, and the thickness of the ferrite is 5 mm.

(比較例1)リッツ線コイルを用いたワイヤレス伝送用コイルユニットの構造
図7はコイルとしてリッツ線を用いた受電側のコイルユニット(以下、LCWコイル)の構造を示したものである。図7(a)に平面図、(b)に断面図、(c)に構造図を示した。実施例1のMPCコイルユニットと同じ巻数N=10である。また放射電磁界低減のため、フェライトとアルミニウム板を用いている。LCWコイル線は導体径0.05mmの銅線を段階的に4200本撚っている(図7(c))。仕上がり外径は5mmである。
(Comparative Example 1) Structure of Wireless Transmission Coil Unit Using Litz Wire Coil FIG. 7 shows the structure of a power receiving side coil unit (hereinafter referred to as LCW coil) using a litz wire as a coil. 7(a) is a plan view, (b) is a sectional view, and (c) is a structural drawing. The number of turns N=10, which is the same as the MPC coil unit of the first embodiment. In addition, ferrite and an aluminum plate are used to reduce the radiated electromagnetic field. The LCW coil wire is made by twisting 4200 copper wires with a conductor diameter of 0.05 mm in stages (Fig. 7(c)). The finished outer diameter is 5 mm.

図8は送電側のLCWコイルの構造であり、図8(a)に平面図、(b)に断面図を示した。全体形状は受電側よりも横長であるが、使用しているリッツ線は受電側コイルと同じものである。 FIG. 8 shows the structure of the LCW coil on the power transmission side, with FIG. 8(a) showing a plan view and FIG. 8(b) showing a cross-sectional view. The overall shape is longer than the power receiving side, but the litz wire used is the same as the power receiving side coil.

(実施例2)コイルユニットの磁場解析
本実施例においては、ワイヤレス伝送用コイルユニットの解析にあたり、二次元交流磁場解析(Ansys Maxwell)を用いた。さらに磁場解析結果から、受電コイルの抵抗R、インダクタンスL、Q値を算出した。また三次元交流磁場解析から相互インダクタンスMを算出し、これらの値から下記式(1)~(4)を用いて伝送効率ηを算出した。なお、解析条件を表1に示した。コイルに用いる磁性体3はアモルファス粉末を用いた磁性コンポジット材料を適用するとした。

Figure 0007131815000001

Figure 0007131815000002
Figure 0007131815000003
Figure 0007131815000004
Figure 0007131815000005
ここで、Q:送電コイルのQ値、Q:受電コイルのQ値、U:性能指標、η:伝送効率(%)とする。 (Example 2) Magnetic Field Analysis of Coil Unit In this example, a two-dimensional AC magnetic field analysis (Ansys Maxwell) was used to analyze the coil unit for wireless transmission. Furthermore, the resistance R, inductance L, and Q value of the receiving coil were calculated from the magnetic field analysis results. Also, the mutual inductance M was calculated from the three-dimensional AC magnetic field analysis, and the transmission efficiency η c was calculated from these values using the following equations (1) to (4). Table 1 shows the analysis conditions. A magnetic composite material using amorphous powder is applied to the magnetic material 3 used for the coil.

Figure 0007131815000001

Figure 0007131815000002
Figure 0007131815000003
Figure 0007131815000004
Figure 0007131815000005
Here, Q 1 is the Q value of the power transmitting coil, Q 2 is the Q value of the power receiving coil, U is the performance index, and η c is the transmission efficiency (%).

図9に二次元円筒座標系での解析モデルを示した。コイルの実際の形状は正方形状であるが、解析では円筒座標系であるため、コイルの線長とピッチを同じにして、円形にして解析を行った。図10、図11に二次元円筒座標系での解析を示す。なお、図10はコイル中周部の間隙を狭くした実施の形態1のタイプ(以下、銅板コイル)について、図11は銅板コイルの間隙とその周辺に磁性体を設けた実施の形態2のタイプ(MPCコイル)についてそれぞれシミュレーションしたものである。 FIG. 9 shows an analysis model in a two-dimensional cylindrical coordinate system. Although the actual shape of the coil is square, the analysis is performed in a cylindrical coordinate system. Therefore, the wire length and pitch of the coil are set to be the same, and the analysis is performed in a circular shape. 10 and 11 show analysis in a two-dimensional cylindrical coordinate system. FIG. 10 shows the type of the first embodiment in which the gap in the middle circumference of the coil is narrowed (hereinafter referred to as a copper plate coil), and FIG. (MPC coil) is simulated.

磁場解析に用いたコイルの形状寸法について以下説明する。総巻き数N=10、コイル導体間のピッチは7mmとした。内周部(最内周から外側に5巻きまで)におけるコイル導体間の間隙は2.2mmとした。外周部(最外周から内側に2巻きまで)については、最外周(1巻目)と2巻目のコイル導体間の間隙を2.2mm、2巻目と3巻目(中周部との境)を1.2mmとした。 The dimensions of the coil used for the magnetic field analysis will be explained below. The total number of turns was N=10, and the pitch between the coil conductors was 7 mm. The gap between the coil conductors in the inner circumference (5 turns from the innermost circumference to the outside) was set to 2.2 mm. For the outer circumference (up to two turns inward from the outermost circumference), the gap between the outermost circumference (first winding) and the second winding is 2.2 mm, and the second and third windings (between the middle circumference and border) was set to 1.2 mm.

さらに図10(銅板コイルモデル)に磁力線と電流分布のシミュレーション結果を示す。コイル中周部では磁力線は綺麗に平行状態となっているが、コイルの内周側と外周側ではコイル平面に対して垂直に磁束が鎖交する。そのため、左右に電流の片寄りが生じる。なお、電流分布は図中濃淡で示されている。例えば、コイル導体中白っぽい部分が電流の多く流れている部分である。コイル中周部でも磁力線は平行ではあるもののコイル導体と平行に鎖交するため、コイル導体上部と端部に電流の片寄りが生じる。 Further, FIG. 10 (copper plate coil model) shows the simulation results of the magnetic lines of force and the current distribution. The lines of magnetic force are perfectly parallel at the middle circumference of the coil, but the magnetic flux interlinks perpendicularly to the plane of the coil on the inner and outer circumferences of the coil. As a result, the current is biased to the left and right. The current distribution is indicated by shading in the drawing. For example, a whitish portion in the coil conductor is a portion where a large amount of current flows. Although the lines of magnetic force are parallel even in the middle portion of the coil, they are interlinked in parallel with the coil conductor.

図10のコイルの間隙とその周辺に磁性体を設けたMPCコイルのシミュレーション結果を図11に示す。なお、本実施例では、磁性体がコイル上面より突出している高さは1mm、コイル下面全面を覆う磁性体の厚さは0.5mmとした。コイル上面を一部覆う磁性体の長さは0.4mm~0.6mmとした。磁性体の形状寸法の詳細については図12に示す。 FIG. 11 shows a simulation result of an MPC coil in which a magnetic material is provided in the gap between the coils in FIG. 10 and around it. In this embodiment, the height at which the magnetic material protrudes from the upper surface of the coil is set to 1 mm, and the thickness of the magnetic material covering the entire lower surface of the coil is set to 0.5 mm. The length of the magnetic material partially covering the upper surface of the coil was set to 0.4 mm to 0.6 mm. Details of the shape and dimensions of the magnetic body are shown in FIG.

MPCコイル(図11)では、コイル巻線の内側と外側においてコイル平面に対して垂直に鎖交する磁束を磁性体の壁で左右に誘導することで、コイル導体との鎖交を極力抑えている。また、コイル端部などの電流の片寄りが大きい場所に磁性体を用いるので、鎖交磁束も低減している。ただ、コイル巻線の中央では磁束がコイル平面に対して平行に鎖交するため、コイル上部に電流の片寄りが生じている。しかし、コイル下面に磁性体を用いることで、フェライトに引き寄せられる磁束を磁性体に誘導し、コイル上部やコイル端部に鎖交する磁束を低減させている。 In the MPC coil (Fig. 11), the magnetic flux that interlinks perpendicularly to the plane of the coil inside and outside the coil winding is induced to the left and right by the walls of the magnetic material, thereby suppressing the interlinkage with the coil conductor as much as possible. there is In addition, since the magnetic material is used in places such as the ends of the coil where the current is largely biased, the interlinkage magnetic flux is also reduced. However, since the magnetic flux interlinks parallel to the coil plane at the center of the coil winding, the current is biased to the upper part of the coil. However, by using a magnetic material on the lower surface of the coil, the magnetic flux attracted to the ferrite is guided to the magnetic material, and the magnetic flux interlinking with the upper part of the coil and the ends of the coil is reduced.

(実施例3)コイルユニットのインピーダンス特性
本実施例では、図10(銅板)および図11(MPC)のコイルユニットのインピーダンス特性を、電磁界解析を用いて算出した。なお比較のため、LCWコイルと送電コイルのインピーダンスもインピーダンスアナライザインピーダンスアナライザ(Agilent Technologies 4294A)を用いて測定した。また結合係数kは伝送距離l=150mmの条件で測定した。コイルの同相直列接続でのインダクタンスLa、逆相接続でのインダクタンスLbを測定し、相互インダクタンスMを算出した。また、送電コイルのインダクタンスL1と受電コイルのインダクタンスL2、相互インダクタンスMからコイルの結合係数kを算出した。測定した結合係数kおよびコイルのQ値を用いてコイルの性能指標Uを算出した。最後に性能指標Uから伝送効率ηを算出した。図13にそれぞれのコイルユニットのインピーダンス特性を示す。
(Example 3) Impedance Characteristics of Coil Unit In this example, the impedance characteristics of the coil units shown in FIG. 10 (copper plate) and FIG. 11 (MPC) were calculated using electromagnetic field analysis. For comparison, the impedance of the LCW coil and the power transmission coil was also measured using an impedance analyzer (Agilent Technologies 4294A). Coupling coefficient k was measured under the condition of transmission distance l=150 mm. The inductance La in the in-phase series connection of the coils and the inductance Lb in the reverse-phase connection were measured, and the mutual inductance M was calculated. Also, the coupling coefficient k of the coil was calculated from the inductance L1 of the power transmitting coil, the inductance L2 of the power receiving coil, and the mutual inductance M. A performance index U of the coil was calculated using the measured coupling coefficient k and the Q value of the coil. Finally, the transmission efficiency η c was calculated from the performance index U. FIG. 13 shows the impedance characteristics of each coil unit.

図13(a)において、銅板コイル、MPCコイル、LCWコイル、送電コイルの85kHzにおける抵抗はそれぞれ187.4mΩ、80.2mΩ、32.6mΩ、29.5mΩと示される。一般的な銅板のコイルユニットに対し、第2の実施の形態の磁束経路制御技術を適用することにより、抵抗値は187.4mΩから80.2mΩまで低減した(図13(b))。このとき、銅板コイルユニット、第2の実施形態のコイルユニット、LCWコイルユニット、送電コイルユニットの85kHzにおけるインダクタンスはそれぞれ40.1μH、43.6μH、37.7μH、40.3μHであった。なお、送電コイルは受電コイルと比べて巻数は少ないが、外径が大きいためインダクタンスは受電用のLCWよりも大きい。第2の実施形態のコイルユニットは、電流密度の片寄りを抑える効果があるため、銅板コイルに比べてインダクタンスがわずかに増加している。 In FIG. 13(a), the resistances at 85 kHz of the copper plate coil, MPC coil, LCW coil, and transmission coil are shown as 187.4 mΩ, 80.2 mΩ, 32.6 mΩ, and 29.5 mΩ, respectively. By applying the magnetic flux path control technology of the second embodiment to a general copper plate coil unit, the resistance value was reduced from 187.4 mΩ to 80.2 mΩ (FIG. 13(b)). At this time, the inductances at 85 kHz of the copper plate coil unit, the coil unit of the second embodiment, the LCW coil unit, and the power transmission coil unit were 40.1 μH, 43.6 μH, 37.7 μH, and 40.3 μH, respectively. Note that although the power transmission coil has a smaller number of turns than the power reception coil, it has a larger outer diameter and therefore has a larger inductance than the LCW for power reception. The coil unit of the second embodiment has the effect of suppressing the bias of the current density, so the inductance is slightly increased compared to the copper plate coil.

図13(c)に銅板コイルユニット、MPCコイルユニット、LCWコイルユニット、送電コイルユニットの85kHzにおけるQ値を示す。それぞれ、114、290、610、724であった。MPCコイルは銅板コイルに比べて抵抗が半減しインダクタンスが向上したため、Q値が2.5倍増加した。 FIG. 13(c) shows the Q values at 85 kHz of the copper plate coil unit, the MPC coil unit, the LCW coil unit, and the power transmission coil unit. They were 114, 290, 610 and 724, respectively. Since the MPC coil has half the resistance and improved inductance compared to the copper plate coil, the Q value increases 2.5 times.

表2に図13に示されたインピーダンス特性と結合係数k、伝送効率ηをまとめて示す。結合係数と効率についてより詳細に説明する。図14に性能指数U((3)式)を横軸にプロットしたコイルの伝送効率を示す。まずは電磁界解析ソフト(Maxwell 3D)を用いて銅板コイルとMPCコイルの相互インダクタンスを算出し、(2)式から結合係数を計算した。またLCWコイルと送電コイルは同相直列接続でのインダクタンスLa、逆相接続でのインダクタンスLbを測定し、(1)式を用いて相互インダクタンスMを算出した。

Figure 0007131815000006
Table 2 summarizes the impedance characteristics, coupling coefficient k, and transmission efficiency η shown in FIG. Coupling coefficients and efficiencies are discussed in more detail. FIG. 14 shows the transmission efficiency of the coil in which the figure of merit U (formula (3)) is plotted on the horizontal axis. First, electromagnetic field analysis software (Maxwell 3D) was used to calculate the mutual inductance between the copper plate coil and the MPC coil, and the coupling coefficient was calculated from equation (2). Further, the inductance La in the in-phase series connection and the inductance Lb in the opposite-phase connection of the LCW coil and the power transmission coil were measured, and the mutual inductance M was calculated using the formula (1).

Figure 0007131815000006

銅板コイル、MPCコイル、LCWコイルの結合係数はそれぞれ0.102(測定値)、0.125(計算値)、0.175(計算値)であった。MPCコイルに用いられる磁性材料は送電コイルからの磁束を受電コイルに誘導するため、銅板コイルと比較してMPCコイルの結合係数kは高い。電流の片寄りを抑制し、コイル面に電流を流すことで、電流に鎖交する磁束が増加し、結合係数kが向上したと考えられる。 The coupling coefficients of the copper plate coil, MPC coil, and LCW coil were 0.102 (measured value), 0.125 (calculated value), and 0.175 (calculated value), respectively. Since the magnetic material used for the MPC coil induces the magnetic flux from the power transmitting coil to the power receiving coil, the coupling coefficient k of the MPC coil is higher than that of the copper plate coil. It is considered that the magnetic flux interlinking with the current is increased and the coupling coefficient k is improved by suppressing the deviation of the current and allowing the current to flow through the coil surface.

図14に示されるように、銅板コイル、MPCコイル、LCWコイルにおける効率はそれぞれ94.58%(解析値)、97.54 %(解析値)、97.29 %(測定値)であった。銅板コイルに比べてMPCコイルは磁束経路制御技術を用いることで銅損が低減し、抵抗Rは減少する。また、電流密度の片寄りが抑えられたことにより、インダクタンスが増加し、その結果Q値が向上した。MPCコイルは銅板コイルに比べて受電コイルに磁束を誘導する効果があり、結合係数が高い。よって銅板コイルの効率が94.58%であるのに対してMPCコイルは97.54%と2.96ポイント向上した。またLCWコイルの97.29%(測定値)に対してMPCコイルは97.54%(解析値)であり、MPCコイルとLCWコイルはほぼ同等の伝送効率が見込まれる。 As shown in FIG. 14, the efficiencies in the copper plate coil, MPC coil, and LCW coil were 94.58% (analysis value), 97.54% (analysis value), and 97.29% (measurement value), respectively. Compared to copper plate coils, MPC coils use magnetic flux path control technology to reduce copper loss and reduce resistance R. In addition, since the bias of the current density was suppressed, the inductance increased, and as a result, the Q value improved. The MPC coil has the effect of inducing magnetic flux to the receiving coil and has a high coupling coefficient compared to the copper plate coil. Therefore, the efficiency of the copper plate coil is 94.58%, whereas the efficiency of the MPC coil is 97.54%, which is an improvement of 2.96 points. Also, the MPC coil is 97.54% (analysis value) compared to 97.29% (measurement value) for the LCW coil, and the MPC coil and the LCW coil are expected to have approximately the same transmission efficiency.

以上、本開示の一態様に係る実施の形態について説明した。第1の実施形態ではコイル導体間の間隙を中周部で狭めることによりコイル導体をなるべく避けるように磁力線を制御することができ。さらに第2の実施形態では、コイル間隙に磁性体の壁を設け、またコイル端部に磁性体を偏在して配置したことにより、端部の電流の片寄りを低減した。さらに第2の実施形態では、コイル下部に磁性体を用いる事により、フェライトに引き寄せられる磁束を磁性材料に通すことで、コイル上部に流れる電流密度を低減した。これらの工夫により、リッツ線よりはるかに簡素な構造にもかかわらず、リッツ線とほぼ同等の伝送効率を有する、ワイヤレス伝送コイルユニットを実現することができる。 The embodiment according to one aspect of the present disclosure has been described above. In the first embodiment, by narrowing the gap between the coil conductors at the middle circumference, the lines of magnetic force can be controlled to avoid the coil conductors as much as possible. Furthermore, in the second embodiment, a wall of magnetic material is provided in the coil gap, and the magnetic material is unevenly distributed at the ends of the coils, thereby reducing the bias of the current at the ends. Furthermore, in the second embodiment, the current density flowing in the upper part of the coil is reduced by using a magnetic material in the lower part of the coil so that the magnetic flux attracted to the ferrite passes through the magnetic material. With these ideas, it is possible to realize a wireless transmission coil unit having a transmission efficiency substantially equal to that of a litz wire, although the structure is much simpler than that of a litz wire.

本発明は、電気自動車、携帯電話機、家電機器、医療機器その他充電池を内蔵した機器向けの、非接触給電システムに利用することができる。 INDUSTRIAL APPLICABILITY The present invention can be used in contactless power feeding systems for electric vehicles, mobile phones, home appliances, medical devices, and other devices with built-in rechargeable batteries.

1 磁気シールド
2 コイル
2a、2c、2e コイル導体
2b、2d、2f 間隙
3(3a、3b、3c) 磁性体
1 magnetic shield 2 coils 2a, 2c, 2e coil conductors 2b, 2d, 2f gap 3 (3a, 3b, 3c) magnetic material

Claims (3)

スパイラル状に巻回された平板状のコイルと前記コイルに対向して設けられた磁気シールドとを備えたワイヤレス電力伝送コイルユニットであって、
前記コイルの中周部に位置する任意の巻線のコイル導体とこれに隣接する巻線のコイル導体との間隙が、コイル内周側または外周側に位置する任意の巻線のコイル導体とこれに隣接する巻線のコイル導体との間隙よりも狭く、かつ、
少なくともコイル内周部および外周部に位置する任意の巻線のコイル導体とこれらにそれぞれ隣接する巻線のコイル導体との間隙に、前記磁気シールドと対向するのと反対の側に前記コイルより突出して、磁性体が設けられ、さらに、
前記コイルの前記磁気シールドと対向するのと反対の側の面の一部に磁性体が設けられたことを特徴とするワイヤレス電力伝送コイルユニット。
A wireless power transmission coil unit comprising a spirally wound planar coil and a magnetic shield provided facing the coil,
The gap between the coil conductor of any winding positioned on the middle circumference of the coil and the coil conductor of the winding adjacent thereto is such that the gap between the coil conductor of any winding positioned on the inner circumference side or the outer circumference side of the coil is is narrower than the gap between the coil conductor of the winding adjacent to the
protruding from the coil on the side opposite to the magnetic shield in the gaps between the coil conductors of arbitrary windings located at least on the inner and outer circumferences of the coil and the coil conductors of windings adjacent thereto a magnetic body is provided, and
A wireless power transmission coil unit , wherein a magnetic body is provided on a part of the surface of the coil opposite to the magnetic shield .
前記コイルの前記磁気シールドと対向する側の面の全面に磁性体が設けられたことを特徴とする請求項に記載のワイヤレス電力伝送コイルユニット。 2. The wireless power transmission coil unit according to claim 1 , wherein a magnetic material is provided on the entire surface of the coil facing the magnetic shield. 前記コイル内周部の任意の巻線のコイルにおいては内周側に、スパイラル外周部の任意の巻線のコイルにおいては外周側に、それぞれ偏在させて磁性体が設けられたことを特徴とする、請求項1又は2に記載のワイヤレス電力伝送コイルユニット。 The magnetic material is unevenly distributed on the inner peripheral side of the coil of the arbitrary winding on the inner peripheral portion of the coil, and on the outer peripheral side of the coil of the arbitrary winding on the spiral outer peripheral portion. , The wireless power transmission coil unit according to claim 1 or 2 .
JP2018172049A 2018-09-14 2018-09-14 Wireless power transmission coil unit Active JP7131815B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018172049A JP7131815B2 (en) 2018-09-14 2018-09-14 Wireless power transmission coil unit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018172049A JP7131815B2 (en) 2018-09-14 2018-09-14 Wireless power transmission coil unit

Publications (2)

Publication Number Publication Date
JP2020047614A JP2020047614A (en) 2020-03-26
JP7131815B2 true JP7131815B2 (en) 2022-09-06

Family

ID=69901615

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018172049A Active JP7131815B2 (en) 2018-09-14 2018-09-14 Wireless power transmission coil unit

Country Status (1)

Country Link
JP (1) JP7131815B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022025300A (en) * 2020-07-29 2022-02-10 株式会社デンソー Transmission coil used for non-contact power supply
KR102432870B1 (en) * 2020-12-09 2022-08-16 에스케이씨 주식회사 Wireless charging device and vehicle comprising same
KR102499892B1 (en) * 2020-12-09 2023-02-15 에스케이씨 주식회사 Wireless charging device and vehicle comprising same
WO2024053620A1 (en) * 2022-09-05 2024-03-14 大日本印刷株式会社 Coil component, manufacturing method for same, power transmission device, power reception device, power transmission system, and mobile body

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007128928A (en) 2005-10-31 2007-05-24 Tdk Corp Coil element
JP2011211176A (en) 2010-03-09 2011-10-20 Nitto Denko Corp Magnetic element for wireless power transmission and device for power supply
JP2013175673A (en) 2012-02-27 2013-09-05 Nissan Motor Co Ltd Non-contact power supply device
JP2014116543A (en) 2012-12-12 2014-06-26 Piolax Inc Antenna and wireless power supply device

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0390371U (en) * 1989-12-28 1991-09-13

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007128928A (en) 2005-10-31 2007-05-24 Tdk Corp Coil element
JP2011211176A (en) 2010-03-09 2011-10-20 Nitto Denko Corp Magnetic element for wireless power transmission and device for power supply
JP2013175673A (en) 2012-02-27 2013-09-05 Nissan Motor Co Ltd Non-contact power supply device
JP2014116543A (en) 2012-12-12 2014-06-26 Piolax Inc Antenna and wireless power supply device

Also Published As

Publication number Publication date
JP2020047614A (en) 2020-03-26

Similar Documents

Publication Publication Date Title
JP7131815B2 (en) Wireless power transmission coil unit
US20220123593A1 (en) Wireless Power Transfer Based on Magnetic Induction
JP2011142177A (en) Contactless power transmission device, and coil unit for contactless power transmission device
US20190304670A1 (en) Coil component and wireless power transmission circuit having the same
JP5646688B2 (en) Contactless power supply system
KR102031615B1 (en) Soft magnetic ribbon for magnetic core, magnetic core, coil unit, and wireless power transmission unit
JP6702282B2 (en) Coil antenna and electronic device
JP6168500B2 (en) Wireless power transmission device, power transmission device, and power reception device
JP2020178034A (en) Non-contact power supply transmission coil unit, manufacturing method thereof, and non-contact power supply device
JP2019036649A (en) Inductor
US10692646B2 (en) Single litz wire transformers
JP6111645B2 (en) Coil device and wireless power transmission system using the same
EP2787515B1 (en) Inductor gap spacer
EP2698799B1 (en) Magnetic configuration for High Efficiency Power Processing
WO2018201484A1 (en) Transformer, and switching power supply
KR102348415B1 (en) wireless power transfer module
JP2015012656A (en) Wireless power transmission device
JP5918020B2 (en) Non-contact power supply coil
JP2021027112A (en) Contactless power supply coil
JP7082785B2 (en) Transmission coil parts for non-contact power supply, their manufacturing method, and non-contact power supply equipment
JP2021068815A (en) Coil, coil unit, and wireless power transmission device, and manufacturing method of coil
Endo et al. Copper loss reduction in wireless power transmission coil using magnetic path control technology
CN109416967B (en) Inductor
US11626239B2 (en) Wire-wound inductor
JP2017092071A (en) Inductance element and evaluation method for inductance element

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210618

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220408

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220419

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220512

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220809

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220818

R150 Certificate of patent or registration of utility model

Ref document number: 7131815

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150