JP5918020B2 - Non-contact power supply coil - Google Patents

Non-contact power supply coil Download PDF

Info

Publication number
JP5918020B2
JP5918020B2 JP2012115420A JP2012115420A JP5918020B2 JP 5918020 B2 JP5918020 B2 JP 5918020B2 JP 2012115420 A JP2012115420 A JP 2012115420A JP 2012115420 A JP2012115420 A JP 2012115420A JP 5918020 B2 JP5918020 B2 JP 5918020B2
Authority
JP
Japan
Prior art keywords
coil
tape
power transmission
magnetic
current density
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012115420A
Other languages
Japanese (ja)
Other versions
JP2013243250A (en
Inventor
長谷 隆司
隆司 長谷
慎也 川嶋
慎也 川嶋
井上 憲一
憲一 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2012115420A priority Critical patent/JP5918020B2/en
Publication of JP2013243250A publication Critical patent/JP2013243250A/en
Application granted granted Critical
Publication of JP5918020B2 publication Critical patent/JP5918020B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Coils Of Transformers For General Uses (AREA)

Description

本発明は、間隔をおいて配置された相手側コイルに相互誘導によって電力を供給可能な非接触給電用コイルに関する。   The present invention relates to a non-contact power supply coil capable of supplying power to a counterpart coil arranged at intervals by mutual induction.

従来から、特許文献1に開示された非接触給電用コイルが知られている。この非接触給電用コイルは、導体によって形成された長尺な導電線材が巻回されることによって構成されている。この導電線材は、長手方向における各位置での断面形状が円形又は略円形の線材である。   Conventionally, a non-contact power feeding coil disclosed in Patent Document 1 is known. This non-contact power supply coil is configured by winding a long conductive wire formed of a conductor. This conductive wire is a wire having a circular or substantially circular cross-sectional shape at each position in the longitudinal direction.

この非接触給電用コイル(1次コイル)に対し、当該コイルのコイル軸方向に間隔を空けた状態(即ち、非接触状態)で相手側コイル(2次コイル)が配置され、この状態で非接触給電用コイルに交流電流が流されることによって当該コイルが形成した磁場による相互誘導により、相手側コイルに電流が流れる(即ち、相手側コイルに電力(誘導起電力)が供給される)。   With respect to this non-contact power supply coil (primary coil), a counterpart coil (secondary coil) is arranged in a state of being spaced apart in the coil axial direction of the coil (that is, non-contact state). When an alternating current flows through the contact power supply coil, a current flows through the counterpart coil due to the mutual induction by the magnetic field formed by the coil (that is, electric power (inductive electromotive force) is supplied to the counterpart coil).

特開2008−87733号公報JP 2008-87733 A

近年、非接触給電用コイルは、例えば、電気自動車等の容量の大きなバッテリーの充電等にも利用されるため、相手側コイル(2次コイル)へ電力を供給する際の給電効率の更なる向上が求められている。   In recent years, the non-contact power supply coil is also used for charging a battery having a large capacity such as an electric vehicle, so that the power supply efficiency when supplying power to the counterpart coil (secondary coil) is further improved. Is required.

そこで、本発明は、相手側コイルへの給電効率のより高い非接触給電用コイルを提供することを目的とする。   Then, an object of this invention is to provide the coil for non-contact electric power feeding with higher electric power feeding efficiency to the other party coil.

本発明者は、種々検討した結果、上記目的は、以下の本発明により達成されることを見出した。すなわち、本発明にかかる一態様では、間隔をおいて配置された相手側コイルに相互誘導によって電力を供給可能な非接触給電用コイルであって、導体によって形成され、且つ幅寸法が厚さ寸法よりも大きなテープ状導電部材を備え、前記テープ状導電部材は、その幅方向がコイル軸方向と平行で且つ当該非接触給電用コイルの径方向において隣り合うテープ状導電部材間に絶縁層が位置するよう巻回されて主コイル部を構成し、前記主コイル部における前記相手側コイルと反対側の面と平行な対向面を有し、且つ磁性体によって形成されるコア部材を備え、前記主コイル部をその径方向の外側から囲う副コイル部を備え、前記コア部材は、前記対向面を有するコア本体と、前記コア本体の対向面から前記主コイル部側に突出し、前記主コイル部をその径方向外側から囲む外周部と、を有し、
前記副コイル部は、前記主コイル部と同形状のテープ状導電部材を、その幅方向が主コイル部のコイル軸方向と平行で且つ前記主コイル部の径方向において隣り合うテープ状導電部材間に絶縁層が位置するよう巻回することで構成され、且つ、前記外周部の外側に配置されて前記主コイル部を流れる電流と逆向きの電流が流れる非接触給電用コイルである。
As a result of various studies, the present inventor has found that the above object is achieved by the present invention described below. That is, in one aspect according to the present invention, a non-contact power supply coil capable of supplying power to a counterpart coil arranged at an interval by mutual induction, is formed of a conductor, and a width dimension is a thickness dimension. A tape-shaped conductive member larger than the tape-shaped conductive member, and the tape-shaped conductive member has a width direction parallel to the coil axial direction and an insulating layer positioned between adjacent tape-shaped conductive members in the radial direction of the non-contact power feeding coil. A core member formed by a magnetic body having a facing surface parallel to a surface on the opposite side of the counterpart coil in the main coil portion. A sub-coil portion surrounding the coil portion from the outside in the radial direction, wherein the core member has a core body having the facing surface, projects from the facing surface of the core body to the main coil portion side, and Part of a and the peripheral portion surrounding the radially outer side, and
The sub-coil part is a tape-like conductive member having the same shape as the main coil part, and the width direction is parallel to the coil axis direction of the main coil part and between the tape-like conductive members adjacent in the radial direction of the main coil part. And a coil for non-contact power feeding that is configured to be wound so that an insulating layer is positioned on the outer periphery, and that is disposed outside the outer peripheral portion and flows a current in a direction opposite to the current flowing through the main coil portion .

かかる構成によれば、幅寸法が厚さ寸法よりも大きなテープ状導電部材が用いられることによって、非接触給電用コイル内における磁力線のテープ状導電部材の主面(当該テープ状導電部材の幅方向及び長手方向に広がる面)に垂直な成分を小さくすることができ、これにより、当該テープ状導体部材に生じる渦電流を抑えて当該非接触給電用コイルにおける交流損失(渦電流損失等)を効果的に抑制することができる。このため、当該非接触給電用コイルにおけるエネルギー効率が向上して当該コイルが形成する磁場の強度が向上し、その結果、相互誘導によって相手側コイルに生じる誘導起電力が大きくなって給電効率が向上する。   According to this configuration, by using a tape-shaped conductive member having a width dimension larger than the thickness dimension, the main surface of the tape-shaped conductive member of the magnetic field lines in the non-contact power supply coil (the width direction of the tape-shaped conductive member). And a component perpendicular to the longitudinal direction) can be reduced, thereby suppressing the eddy current generated in the tape-like conductor member and effecting AC loss (eddy current loss, etc.) in the non-contact power supply coil. Can be suppressed. For this reason, the energy efficiency of the non-contact power supply coil is improved and the strength of the magnetic field formed by the coil is improved. As a result, the induced electromotive force generated in the counterpart coil is increased by mutual induction, and the power supply efficiency is improved. To do.

具体的には、テープ状導電部材の幅方向が非接触給電用コイルのコイル軸方向と平行となるようにテープ状導電部材が巻回されることにより、テープ状導電部材の幅方向が当該非接触給電用コイル内の磁力線の向きに沿った状態となるため、前記磁力線におけるテープ状導電部材の主面に垂直な成分が小さくなる。これにより、非接触給電用コイルに生じる渦電流が効果的に抑えられ、その結果、当該非接触給電用コイルにおけるエネルギー効率が向上する。
又、コア部材がヨークとして働くため、当該非接触給電用コイルが形成する磁場の強度をより増大させることができ、これにより、給電効率がより向上する。
しかも、コア部材が相手側コイルと反対側の面と平行な対向面を有するため、コア部材から非接触給電コイルに入射する磁力線におけるテープ状導電部材の幅方向成分をより増大させると共に、前記テープ状導電部材の厚さ方向成分をより減少させることができる。
また、副コイル部の形成する磁場が、主コイル部の形成する磁場を副コイル部の内側(径方向内側)領域に閉じ込めようと作用するため、当該非接触給電用コイルにおける漏れ磁場を効果的に抑えることができる。
Specifically, the tape-shaped conductive member is wound so that the width direction of the tape-shaped conductive member is parallel to the coil axis direction of the non-contact power supply coil, so that the width direction of the tape-shaped conductive member Since it becomes a state along the direction of the magnetic field lines in the contact power supply coil, the component perpendicular to the main surface of the tape-like conductive member in the magnetic field lines is reduced. Thereby, the eddy current generated in the non-contact power supply coil is effectively suppressed, and as a result, the energy efficiency of the non-contact power supply coil is improved.
In addition, since the core member functions as a yoke, the strength of the magnetic field formed by the non-contact power supply coil can be further increased, thereby further improving power supply efficiency.
In addition, since the core member has a facing surface parallel to the surface opposite to the counterpart coil, the tape-shaped conductive member in the width direction component in the magnetic field lines incident on the non-contact power feeding coil from the core member is further increased, and the tape The thickness direction component of the conductive member can be further reduced.
In addition, since the magnetic field formed by the sub-coil part acts to confine the magnetic field formed by the main coil part in the inner side (radially inner side) region of the sub-coil part, the leakage magnetic field in the non-contact power feeding coil is effective. Can be suppressed.

本発明に係る非接触用給電コイルは、好ましくは、磁性体によって形成され且つ幅寸法が厚さ寸法よりも大きなテープ状磁性部材を備え、前記テープ状磁性部材は、前記テープ状導電部材と共巻きされる。   The non-contact power supply coil according to the present invention preferably includes a tape-shaped magnetic member formed of a magnetic material and having a width dimension larger than a thickness dimension, and the tape-shaped magnetic member is co-located with the tape-shaped conductive member. It is wound.

このように、非接触給電用コイル内に磁気異方性を有する部位(テープ状磁性部材)を設けることにより、磁力線をテープ状導電部材の幅方向に沿わす(即ち、磁力線におけるテープ状導電部材の幅方向成分を増大させ、且つ前記テープ状導電部材の厚さ方向成分を減少させる)と共にテープ状導電部材の内部を通過する磁束密度を低減することができ、これにより、テープ状導電部材に生じる渦電流をより効果的に抑制することができる。即ち、テープ状導電部材よりも透磁率の高いテープ状磁性部材の方が磁力線を通し易く、このため、テープ状磁性部材をテープ状導電部材と共巻きすることによって非接触給電用コイル内に入った磁力線をテープ状磁性部材に集中させてテープ状導電部材の内部を通過する磁束密度を低減させると共に、テープ状導電部材と共巻きされたテープ状磁性部材内を通過させることによって当該非接触給電用コイル内の磁力線の向きをテープ状導電部材の幅方向に沿わすことができる。これにより、磁力線(磁束密度)におけるテープ状導電部材の主面に垂直な成分を小さくすることができるため、テープ状導電部材に生じる渦電流をより効果的に抑えることができる。その結果、非接触給電用コイルと、この非接触給電用コイルと間隔を空けて対向するように配置された相手側コイルとの相互インダクタンス及び結合係数が向上して給電効率がより向上する。   In this way, by providing a portion (tape-like magnetic member) having magnetic anisotropy in the non-contact power supply coil, the magnetic lines of force extend along the width direction of the tape-like conductive member (that is, the tape-like conductive member at the magnetic lines of force). The magnetic flux density passing through the inside of the tape-shaped conductive member and the tape-shaped conductive member can be reduced. The generated eddy current can be more effectively suppressed. That is, the magnetic tape has a higher magnetic permeability than the tape-shaped conductive member, so that the magnetic lines of force can be easily passed. For this reason, the tape-shaped magnetic member enters the coil for non-contact power feeding by co-winding with the tape-shaped conductive member. The magnetic field lines are concentrated on the tape-like magnetic member to reduce the magnetic flux density passing through the inside of the tape-like conductive member, and also pass through the tape-like magnetic member co-wound with the tape-like conductive member, thereby providing the contactless power supply. The direction of the lines of magnetic force in the coil for use can be along the width direction of the tape-like conductive member. Thereby, since the component perpendicular | vertical to the main surface of the tape-shaped electroconductive member in a magnetic force line (magnetic flux density) can be made small, the eddy current which arises in a tape-shaped electroconductive member can be suppressed more effectively. As a result, the mutual inductance and coupling coefficient between the non-contact power feeding coil and the counterpart coil arranged so as to face the non-contact power feeding coil with an interval are improved, and the power feeding efficiency is further improved.

また、非接触給電用コイルは、好ましくは、当該コイルの径方向に沿った断面において、電流密度が当該径方向における他の領域より小さい低電流密度領域が形成されるような構造を有する。尚、前記電流密度は、テープ状導電部材の単位断面積当たりに流れる電流ではなく、非接触給電用コイルにおける単位断面積当たりに流れる電流である。   Moreover, the non-contact power supply coil preferably has a structure in which a low current density region having a current density smaller than other regions in the radial direction is formed in a cross section along the radial direction of the coil. The current density is not a current that flows per unit cross-sectional area of the tape-shaped conductive member but a current that flows per unit cross-sectional area of the non-contact power feeding coil.

かかる構成によれば、非接触給電用コイルの径方向に沿った断面(径方向断面)において磁力線が環状となる領域(環状に閉じた磁力線が生じる領域:図9参照)の前記電流密度を他の領域の電流密度より小さくすることによって、前記環状に閉じた磁力線における当該コイルの径方向に沿った直径を小さくすることができ(換言すると、磁力線(磁束密度)のテープ状導電部材の幅方向に沿った成分を大きくすると共に主面に垂直な成分を小さくすることができ)、これにより、非接触給電用コイルに生じる渦電流が抑えられて交流損(銅損等)が低減される。その結果、非接触給電用コイルと、この非接触給電用コイルと間隔を空けて対向するように配置された相手側コイルとの相互インダクタンス及び結合係数が向上して給電効率がさらに向上する。   According to such a configuration, the current density in the region where the magnetic lines of force are annular in the cross section (the radial cross section) along the radial direction of the contactless power supply coil (region where the closed magnetic lines of force are generated: see FIG. 9) is different. Can be made smaller than the current density in the region, the diameter along the radial direction of the coil in the annularly closed magnetic field lines can be reduced (in other words, the width direction of the tape-like conductive member of the magnetic field lines (magnetic flux density)). In addition, the component perpendicular to the main surface can be reduced and the eddy current generated in the non-contact power supply coil can be suppressed, and the AC loss (copper loss, etc.) can be reduced. As a result, the mutual inductance and the coupling coefficient between the non-contact power supply coil and the counterpart coil arranged so as to face the non-contact power supply coil with an interval are improved, and the power supply efficiency is further improved.

前記径方向断面に生じる前記環状に閉じた磁力線は、前記径方向断面における径方向外側の端部に生じ易い。そのため、前記低電流密度領域は、より好ましくは、前記径方向に沿った断面における径方向外側端部を含む位置に形成される。   The annularly closed magnetic field lines that occur in the radial cross section are likely to occur at the radially outer end of the radial cross section. Therefore, the low current density region is more preferably formed at a position including a radially outer end portion in a cross section along the radial direction.

かかる構成によれば、前記環状に閉じた磁力線の径(コイルの径方向に沿った直径)をより確実に小さくすることができる。   According to such a configuration, the diameter of the magnetic field lines closed in an annular shape (diameter along the radial direction of the coil) can be reduced more reliably.

例えば、具体的に、非接触給電用コイルでは、前記低電流密度領域において前記径方向に隣接するテープ状導電部材同士の間隔を、前記他の領域において前記径方向に隣接するテープ状導電部材同士の間隔より大きくすることによって、低電流密度領域における電流密度(非接触給電用コイルにおける単位断面積当たりに流れる電流)を他の領域に比べて小さくすることができる。   For example, specifically, in the non-contact power supply coil, the interval between the tape-like conductive members adjacent in the radial direction in the low current density region is set between the tape-like conductive members adjacent in the radial direction in the other region. By making it larger than the interval, the current density in the low current density region (current flowing per unit cross-sectional area in the non-contact power feeding coil) can be made smaller than in other regions.

以上より、本発明によれば、相手側コイルへの給電効率のより高い非接触給電用コイルを提供することができる。   As mentioned above, according to this invention, the coil for non-contact electric power feeding with higher electric power feeding efficiency to the other party coil can be provided.

本実施形態に係る非接触給電装置の構成を示す断面図である。It is sectional drawing which shows the structure of the non-contact electric power feeder which concerns on this embodiment. 前記非接触給電装置の送電部の平面図である。It is a top view of the power transmission part of the said non-contact electric power feeder. 非接触給電用コイル及び当該非接触給電用コイルを構成するコイル線材を説明するための斜視図である。It is a perspective view for demonstrating the coil wire which comprises the coil for non-contact electric power feeding, and the said coil for non-contact electric power feeding. 送電部の非接触給電用コイルにおける低電流密度領域を説明するための図である。It is a figure for demonstrating the low current density area | region in the coil for non-contact electric power feeding of a power transmission part. 主コイル部と副コイル部とを備えた送電用コイルによって形成される磁場における磁力線の分布を示す図である。It is a figure which shows distribution of the magnetic force line in the magnetic field formed with the coil for power transmission provided with the main coil part and the subcoil part. 副コイル部を備えた送電用コイルと、主コイル部のみで構成される送電用コイルとにおける磁束密度の半径方向成分(Br)の半径方向における分布を示す図である。It is a figure which shows distribution in the radial direction of the radial direction component (Br) of the magnetic flux density in the power transmission coil provided with the subcoil part, and the power transmission coil comprised only by the main coil part. コイルの結合係数を比較するための図である。It is a figure for comparing the coupling coefficient of a coil. コイルの径方向断面の中央よりも外側の領域における電流密度の分布を示す図である。It is a figure which shows distribution of the current density in the area | region outside the center of the radial direction cross section of a coil. (A)は、磁束密度のコイル軸C方向成分(Bz)の半径方向における分布を示し、(B)は、磁束密度の半径方向成分(Br)の半径方向における分布を示す。(A) shows the distribution in the radial direction of the coil axis C 1 direction component of the magnetic flux density (Bz), it shows the distribution in the radial direction (B) in the radial component of the magnetic flux density (Br). (A)は、第2及び第5の給電装置の各送電用コイルにおける半径方向各位置での磁束密度のコイル軸C方向の成分(Bz)と半径方向成分(Br)との分布をそれぞれ示し、(B)は、第2及び第5の給電装置の各受電用コイルにおける半径方向各位置での磁束密度のコイル軸C方向成分(Bz)と半径方向成分(Br)との分布をそれぞれ示す。(A), respectively the coil axis C 1 direction component of the magnetic flux density in the radial direction each position in each power transmission coil of the second and fifth power supply device and (Bz) the distribution of the radial component (Br) shows the distribution of the (B), the coil axis C 2 direction component (Bz) and the radial component of the magnetic flux density in the radial direction each position in each power receiving coil of the second and fifth power supply device (Br) Each is shown. (A)は、第2の給電装置の送電用コイルによって形成された磁場における磁力線の分布を示し、(B)は、第5の給電装置の送電用コイルによって形成された磁場における磁力線の分布を示す。(A) shows the distribution of magnetic lines of force in the magnetic field formed by the power transmission coil of the second power feeding device, and (B) shows the distribution of magnetic field lines in the magnetic field formed by the power transmission coil of the fifth power feeding device. Show.

以下、本発明にかかる実施の一形態を図面に基づいて説明する。なお、各図において同一の符号を付した構成は、同一の構成であることを示し、適宜、その説明を省略する。   Hereinafter, an embodiment according to the present invention will be described with reference to the drawings. In addition, the structure which attached | subjected the same code | symbol in each figure shows that it is the same structure, The description is abbreviate | omitted suitably.

本実施形態に係る非接触給電装置は、図1に示されるように、非接触給電用コイル20、30を有する送電部12と受電部14とを備え、送電部12の非接触給電用コイル(1次コイル)20によって形成された磁場によって受電部14の非接触給電用コイル(2次コイル)30に誘導起電力を生成させ、これにより、送電部12から受電部14に給電する。   As shown in FIG. 1, the non-contact power feeding device according to the present embodiment includes a power transmission unit 12 and a power receiving unit 14 having non-contact power feeding coils 20 and 30, and a non-contact power feeding coil ( The induced electromotive force is generated in the non-contact power feeding coil (secondary coil) 30 of the power receiving unit 14 by the magnetic field formed by the primary coil) 20, and thereby the power is fed from the power transmitting unit 12 to the power receiving unit 14.

本実施形態の非接触給電装置10は、例えば、電気自動車等に用いられる。具体的には、送電部12が地上に配置された状態で図略の電源に接続されると共に、受電部14が図略の電気自動車等に搭載される。そして、図略の電気自動車等の充電(給電)時には、送電部12と受電部14とを、互いのコイル軸C、Cが一致若しくは略一致し、且つ所定の間隔を空けて対向した状態(非接触状態:図1参照)とし、この状態で送電部12に前記電源から所定の電力を供給することにより、送電部12から受電部14に電力が供給される。 The non-contact power feeding device 10 of the present embodiment is used for an electric vehicle, for example. Specifically, the power transmission unit 12 is connected to a power supply (not shown) with the power transmission unit 12 disposed on the ground, and the power reception unit 14 is mounted on an electric vehicle (not shown). When charging (powering) an unillustrated electric vehicle or the like, the power transmission unit 12 and the power reception unit 14 face each other with the coil axes C 1 and C 2 coincident or substantially coincide with each other with a predetermined interval therebetween. By setting the state (non-contact state: see FIG. 1) and supplying predetermined power from the power source to the power transmission unit 12 in this state, power is supplied from the power transmission unit 12 to the power reception unit 14.

送電部12は、図2及び図3にも示されるように、非接触給電用コイル20と、コア部材16と、モールド部18と、を備える。以下では、送電部12の非接触給電用コイル20を、送電用コイルとも称する。   As shown in FIGS. 2 and 3, the power transmission unit 12 includes a non-contact power supply coil 20, a core member 16, and a mold unit 18. Hereinafter, the non-contact power supply coil 20 of the power transmission unit 12 is also referred to as a power transmission coil.

送電用コイル20は、コイル線材22が巻回されることによって構成されている。本実施形態の送電用コイル20は、単一のコイル(主コイル部のみ)で構成されている。   The power transmission coil 20 is configured by winding a coil wire 22. The power transmission coil 20 of the present embodiment is composed of a single coil (only the main coil portion).

コイル線材22は、幅寸法が厚み寸法よりも大きい帯状形状を有する。そして、このコイル線材22がフラットワイズに巻回されることにより、送電用コイル20が形成される。即ち、送電用コイル20は、その幅方向がコイル軸Cと平行となるようにコイル線材22をコイル軸C周りに巻回することによって形成される。このように構成される送電用コイル20のコイル軸C方向(コイル線材22の幅方向)の両端面は、平行になっている。 The coil wire 22 has a strip shape whose width dimension is larger than the thickness dimension. And the coil 20 for power transmission is formed when this coil wire 22 is wound flatwise. That is, the power transmission coil 20 has a width direction is formed by winding a coil wire 22 so as to be parallel to the coil axis C 1 around the coil axis C 1. Both end surfaces of the coil axis C 1 direction of the thus configured electric power transmission coil 20 (the width direction of the coil wire 22) are parallel.

具体的に、コイル線材22は、複数のテープ状線材(本実施形態の例では3つのテープ状線材22a、22b、22c:図3参照)が積層されることにより形成される。本実施形態のコイル線材22は、導電テープ(テープ状導電部材)22aと、磁性テープ(テープ状磁性部材)22bと、絶縁性テープ(絶縁層)22cと、を備える。これら各テープ22a、22b、22cの幅寸法はそれぞれ等しい。そのため、コイル線材22を幅方向から見ると、各テープ22a、22b、22cの幅方向の端面が露出している。本実施形態における各テープ22a、22b、22cの断面におけるアスペクト比は、10以上である。   Specifically, the coil wire 22 is formed by laminating a plurality of tape-like wires (in the example of the present embodiment, three tape-like wires 22a, 22b, and 22c: see FIG. 3). The coil wire 22 of the present embodiment includes a conductive tape (tape-like conductive member) 22a, a magnetic tape (tape-like magnetic member) 22b, and an insulating tape (insulating layer) 22c. These tapes 22a, 22b, and 22c have the same width dimension. Therefore, when the coil wire 22 is viewed from the width direction, the end surfaces in the width direction of the respective tapes 22a, 22b, and 22c are exposed. The aspect ratio in the cross section of each tape 22a, 22b, 22c in this embodiment is 10 or more.

導電テープ22aは、導体(導電材料)によって形成され、その幅寸法が厚み寸法よりも大きいテープ形状を有する。この導電テープ22aは、幅寸法をw、厚み寸法をtとしたときに、t/w=1/10以下となることが好ましい。本実施形態の導電テープ22aは、例えば、銅(Cu)によって形成されるが、これに限定されない。 The conductive tape 22a is formed of a conductor (conductive material) and has a tape shape whose width dimension is larger than the thickness dimension. The conductive tape 22a is the width w a, the thickness is taken as t a, it is preferable that a t a / w a = 1/ 10 or less. The conductive tape 22a of the present embodiment is formed of, for example, copper (Cu), but is not limited to this.

磁性テープ22bは、磁性体(好ましくは軟磁性体)によって形成され、その幅寸法が厚み寸法よりも大きいテープ形状を有する。この磁性テープ22bは、幅寸法をw、厚み寸法をtとしたときに、導電テープ22aと同様、t/w=1/10以下となることが好ましい。本実施形態の磁性テープ22bは、例えば、鉄(Fe:例えば、純鉄、商用純鉄、低炭素鋼等)によって形成されるが、これに限定されない。 The magnetic tape 22b is formed of a magnetic material (preferably a soft magnetic material), and has a tape shape in which the width dimension is larger than the thickness dimension. The magnetic tape 22b preferably has t b / w b = 1/10 or less, like the conductive tape 22a, where the width dimension is w b and the thickness dimension is t b . The magnetic tape 22b of the present embodiment is formed of, for example, iron (Fe: for example, pure iron, commercial pure iron, low carbon steel, etc.), but is not limited thereto.

絶縁性テープ22cは、樹脂やアモルファス等の絶縁材料により形成され、その幅寸法が厚み寸法よりも大きいテープ形状を有する。絶縁性テープ22cの厚さ寸法は、コイル線材22がその厚さ方向に積層されたときに、積層方向に隣り合う導電テープ22a、22a間が絶縁状態となる大きさであればよい。本実施形態の絶縁性テープ22cは、例えば、ポリイミドによって形成されるが、これに限定されない。   The insulating tape 22c is formed of an insulating material such as resin or amorphous, and has a tape shape whose width dimension is larger than the thickness dimension. The thickness dimension of the insulating tape 22c may be a size that allows the conductive tapes 22a and 22a adjacent in the laminating direction to be in an insulated state when the coil wire 22 is laminated in the thickness direction. The insulating tape 22c of this embodiment is formed of, for example, polyimide, but is not limited to this.

このようなコイル線材22が巻回されることによって形成される送電用コイル20は、電流が流されたときに電流密度が小さい領域(低電流密度領域)24を有する。尚、本実施形態における電流密度は、導電テープ22aの単位断面積当たりに流れる電流ではなく、送電用コイル20における単位断面積当たりに流れる電流である。   The power transmission coil 20 formed by winding the coil wire 22 has a region 24 (low current density region) where the current density is small when a current is passed. Note that the current density in the present embodiment is not a current that flows per unit cross-sectional area of the conductive tape 22a but a current that flows per unit cross-sectional area of the power transmission coil 20.

具体的には、送電用コイル20に電流が流されたときに、図4(A)に示す送電用コイル20の径方向に沿った断面(径方向断面)において、径方向の中央より外側の領域(低電流密度領域)24の電流密度が他の領域(図4(A)に示す例では、径方向の中央よりも内側の領域)26の電流密度よりも小さくなる。   Specifically, when a current is passed through the power transmission coil 20, a cross section (radial cross section) along the radial direction of the power transmission coil 20 shown in FIG. The current density in the region (low current density region) 24 is smaller than the current density in the other region (region inside the radial center in the example shown in FIG. 4A).

本実施形態の低電流密度領域24は、径方向断面において図4(B)に示すような電流密度の分布を有する。この電流密度の分布は、送電用コイル20の径方向における分布である。詳しくは、低電流密度領域24が径方向に間隔の等しい10の区画(径方向の中央から外側に向かって第1区画24−1、第2区画24−2、…、第n区画24−n、…、第10区画24−10:nは自然数且つ1≦n≦10)に分けられた場合に、第5区画24−5及び第6区画24−6の電流密度が最も小さくなるような谷型の分布となっている。   The low current density region 24 of the present embodiment has a current density distribution as shown in FIG. The distribution of the current density is a distribution in the radial direction of the power transmission coil 20. Specifically, the low current density region 24 is divided into ten sections having the same interval in the radial direction (first section 24-1, second section 24-2,..., N-th section 24-n from the center in the radial direction toward the outside. , ..., the tenth section 24-10: a valley where the current density of the fifth section 24-5 and the sixth section 24-6 is the smallest when n is a natural number and 1 ≦ n ≦ 10). It has a distribution of molds.

尚、低電流密度領域24における径方向(送電用コイル20の径方向)の電流密度の分布は、上記谷型の分布に限定されない。例えば、低電流密度領域24における径方向の電流密度の分布は、第1区画24−1から第10区画24−10に向けて所定の割合で減少するような分布でもよく、ステップ状に減少する分布でもよい。即ち、低電流密度領域24は、径方向における他の領域26よりも電流密度が小さければよい。   The distribution of the current density in the radial direction (the radial direction of the power transmission coil 20) in the low current density region 24 is not limited to the valley-shaped distribution. For example, the radial current density distribution in the low current density region 24 may be a distribution that decreases at a predetermined rate from the first section 24-1 to the tenth section 24-10, and decreases stepwise. Distribution may be sufficient. That is, the low current density region 24 only needs to have a smaller current density than the other regions 26 in the radial direction.

本実施形態の送電用コイル20では、低電流密度領域24における絶縁性テープ22cの厚さを他の領域26の絶縁性テープ22cの厚さよりも大きくすることによって(即ち、低電流密度領域24における径方向に隣接する導電テープ22a、22a同士の間隔を、他の領域26における径方向に隣接する導電テープ22a、22a同士の間隔より大きくすることによって)、低電流密度領域24における電流密度を他の領域26の電流密度よりも小さくしている。また、低電流密度領域24における絶縁性テープ22cの長手方向の厚さ分布を適宜に設定することによって、図4(B)に示す谷型の電流密度の分布が形成される。具体的には、第5区画24−5及び第6区画24−6における絶縁性テープ22cの厚さ寸法が最も小さく、第5区画24−5から第1区画24−1に向けて絶縁性テープ22cの厚さ寸法が徐々に大きくなっている。また、第6区画24−6から第10区画24−10に向けて絶縁性テープ22cの厚さ寸法が徐々に大きくなっている。   In the power transmission coil 20 of the present embodiment, the thickness of the insulating tape 22c in the low current density region 24 is made larger than the thickness of the insulating tape 22c in the other regions 26 (that is, in the low current density region 24). By making the interval between the conductive tapes 22a, 22a adjacent in the radial direction larger than the interval between the conductive tapes 22a, 22a adjacent in the radial direction in the other regions 26), the current density in the low current density region 24 is changed to the other. The current density of the region 26 is smaller. Further, by appropriately setting the thickness distribution in the longitudinal direction of the insulating tape 22c in the low current density region 24, a valley-shaped current density distribution shown in FIG. 4B is formed. Specifically, the thickness dimension of the insulating tape 22c in the fifth section 24-5 and the sixth section 24-6 is the smallest, and the insulating tape is directed from the fifth section 24-5 to the first section 24-1. The thickness dimension of 22c is gradually increased. Further, the thickness dimension of the insulating tape 22c gradually increases from the sixth section 24-6 to the tenth section 24-10.

また、本実施形態の送電用コイル20において、低電流密度領域24を構成するコイル線材22の部位は、磁性テープ22bを有していない。換言すると、他の領域26を構成するコイル線材22の部位にのみ、磁性テープ22bが設けられている。これにより、当該低電流密度領域24が発生させる磁場のコイル軸C方向の成分が抑制される。 Further, in the power transmission coil 20 of the present embodiment, the portion of the coil wire 22 constituting the low current density region 24 does not have the magnetic tape 22b. In other words, the magnetic tape 22 b is provided only at the portion of the coil wire 22 that constitutes the other region 26. Thus, the coil axis C 1 direction component of the magnetic field in which the low current density region 24 is generated is suppressed.

コア部材16は、送電用コイル20が形成する磁場の強度を増大させるヨークとして働く。このコア部材16は、円板状のコア本体161と、コア本体161の一方の面(図1においては上面)161aから突出し、送電用コイル20を径方向外側から囲む外周部162と、を備える。   The core member 16 functions as a yoke that increases the strength of the magnetic field formed by the power transmission coil 20. The core member 16 includes a disk-shaped core body 161 and an outer peripheral portion 162 that protrudes from one surface (upper surface in FIG. 1) 161a of the core body 161 and surrounds the power transmission coil 20 from the radially outer side. .

コア本体161は、磁性体によって形成され、上面161aに送電用コイル20が載置される。これにより、上面161aと送電用コイル20におけるコイル軸C方向の一方の面(受電部14の非接触給電用コイル30と反対側の面)とが平行な状態で対向する。外周部162は、コア本体161に載置された送電用コイル20を当該コイル20の径方向外側から周方向に囲む平面視が円環状の突条である。これらコア本体161と外周部162とは、一体成型されている。 The core body 161 is made of a magnetic material, and the power transmission coil 20 is placed on the upper surface 161a. Thus, the upper surface 161a and the one surface of the coil axis C 1 direction in the electric power transmission coil 20 (surface opposite to the non-contact power supply coil 30 of the power receiving portion 14) is opposed in parallel with. The outer peripheral portion 162 is an annular ridge in plan view surrounding the power transmission coil 20 placed on the core body 161 in the circumferential direction from the radially outer side of the coil 20. The core main body 161 and the outer peripheral portion 162 are integrally formed.

このように構成されるコア部材16は、所定の磁気特性(透磁率)を有しており、軟磁性体粉末を圧縮して固めることにより形成されている。また、コア部材16は、軟磁性体粉末と非磁性体粉末との混合物を圧縮して固めたものであってもよい。この場合、軟磁性体粉末と非磁性体粉末との混合比率を比較的容易に調整することができ、前記混合比率を適宜に調整することによって、コア部材16において所望の磁気特性を容易に実現することができる。   The core member 16 configured as described above has a predetermined magnetic property (permeability), and is formed by compressing and hardening a soft magnetic powder. Further, the core member 16 may be formed by compressing and hardening a mixture of soft magnetic powder and non-magnetic powder. In this case, the mixing ratio of the soft magnetic powder and the non-magnetic powder can be adjusted relatively easily, and desired magnetic characteristics can be easily realized in the core member 16 by appropriately adjusting the mixing ratio. can do.

この軟磁性体粉末は、強磁性の金属粉末である。より具体的には、軟磁性体粉末として、例えば、純鉄粉、鉄基合金粉末(Fe−Al合金、Fe―Si合金、センダスト、パーマロイ等)及びアモルファス粉末、さらには、表面にリン酸系化成皮膜等の電気絶縁皮膜が形成された鉄粉等が挙げられる。これら軟磁性体粉末は、公知の手段、例えば、アトマイズ法等によって微粒子化する方法や、酸化鉄等を微粉砕した後にこれを還元する方法等によって製造することができる。また、一般に、透磁率が同一である場合に飽和磁束密度が大きいので、軟磁性粉末は、例えば、上記純鉄粉、鉄基合金粉末及びアモルファス粉末等の金属系材料であることが特に好ましい。   This soft magnetic powder is a ferromagnetic metal powder. More specifically, as the soft magnetic powder, for example, pure iron powder, iron-based alloy powder (Fe-Al alloy, Fe-Si alloy, Sendust, Permalloy, etc.) and amorphous powder, and further phosphoric acid based on the surface Examples thereof include iron powder on which an electrical insulating film such as a chemical conversion film is formed. These soft magnetic powders can be produced by a known means, for example, a method of making fine particles by an atomizing method or the like, a method of finely pulverizing iron oxide or the like and then reducing it. In general, since the saturation magnetic flux density is large when the magnetic permeability is the same, the soft magnetic powder is particularly preferably a metal-based material such as the pure iron powder, iron-based alloy powder, and amorphous powder.

このような軟磁性体粉末を形成した圧粉コアであるコア部材16は、例えば、圧粉形成等の公知の常套手段によって形成される。   The core member 16 which is a dust core formed with such a soft magnetic powder is formed by known conventional means such as dust formation.

尚、コア部材16は、圧粉コアに限定されず、例えば、珪素鋼板などの一般磁性鋼板や、構造用炭素鋼等によって形成されてもよい。   In addition, the core member 16 is not limited to a powder core, For example, you may form with general magnetic steel plates, such as a silicon steel plate, structural carbon steel, etc.

モールド部18は、送電用コイル20が載置された状態のコア部材16の上面側を被覆すると共に送電用コイル20をコア部材16上に固定する。このモールド部18は、樹脂を前記上面に充填することによって形成される。   The mold unit 18 covers the upper surface side of the core member 16 in a state where the power transmission coil 20 is placed and fixes the power transmission coil 20 on the core member 16. The mold portion 18 is formed by filling the upper surface with resin.

受電部14は、非接触給電用コイル30と、コア部材16と、モールド部18と、を備える。以下では、受電部14の非接触給電用コイル30を受電用コイルと称する。   The power receiving unit 14 includes a non-contact power supply coil 30, a core member 16, and a mold unit 18. Hereinafter, the non-contact power feeding coil 30 of the power receiving unit 14 is referred to as a power receiving coil.

受電用コイル(相手側コイル)30は、送電用コイル20と異なり、径方向断面の各領域の電流密度が一様(即ち、均一若しくは略均一)になるように構成される。即ち、受電用コイル30は、低電流密度領域を有していない。このため、受電用コイル30のコイル線材12において、絶縁性テープ22cの厚さは、当該絶縁性テープ22cの長手方向の各位置において均一である。   Unlike the power transmission coil 20, the power reception coil (mating coil) 30 is configured such that the current density in each region in the radial cross section is uniform (that is, uniform or substantially uniform). That is, the power receiving coil 30 does not have a low current density region. For this reason, in the coil wire 12 of the power receiving coil 30, the thickness of the insulating tape 22c is uniform at each position in the longitudinal direction of the insulating tape 22c.

以上の非接触給電装置10によれば、送電用コイル20に幅寸法が厚さ寸法よりも大きな導電テープ22aが用いられることによって、送電用コイル20内における磁力線の導電テープ22aの主面に垂直な成分を小さくすることができ、これにより、当該導電テープ22aに生じる渦電流を抑えて当該送電用コイル20における交流損失(渦電流損失等)を効果的に抑制することができる。このため、当該送電用コイル20におけるエネルギー効率が向上して当該コイル20が形成する磁場の強度が向上し、その結果、相互誘導によって受電用コイル30に生じる誘導起電力が大きくなって給電効率が向上する。   According to the above non-contact power feeding device 10, the conductive tape 22 a having a width dimension larger than the thickness dimension is used for the power transmission coil 20, so that the magnetic field lines in the power transmission coil 20 are perpendicular to the main surface of the conductive tape 22 a. Thus, the eddy current generated in the conductive tape 22a can be suppressed, and the AC loss (such as eddy current loss) in the power transmission coil 20 can be effectively suppressed. For this reason, the energy efficiency in the power transmission coil 20 is improved and the strength of the magnetic field formed by the coil 20 is improved. As a result, the induced electromotive force generated in the power receiving coil 30 by mutual induction is increased, and the power supply efficiency is increased. improves.

具体的には、導電テープ22aの幅方向が送電用コイル20のコイル軸C方向と平行となるようにコイル線材22(導電テープ22a)が巻回されることにより、導電テープ22aの幅方向が当該送電用コイル20内の磁力線(当該送電用コイル20によって形成された磁場の磁力線)の向きに沿った状態となるため、前記磁力線における導電テープ22aの主面に垂直な成分が小さくなる。 Specifically, by the width direction of the conductive tape 22a is the coil wire 22 in parallel with the coil axis C 1 direction of the power transmission coil 20 (conductive tape 22a) is wound, the width direction of the conductive tape 22a Is in a state along the direction of the magnetic lines of force in the power transmission coil 20 (magnetic field lines of the magnetic field formed by the power transmission coil 20), the component perpendicular to the main surface of the conductive tape 22a in the magnetic field lines is reduced.

ここで、両面が絶縁された状態のテープ形状の導電テープ22a内においては、当該導電テープ22aを貫く磁束密度(磁力線)の導電テープ22aの主面に垂直な成分が大きい程、生じる渦電流も大きくなる、即ち、前記主面に垂直な成分が小さい程、導電テープ22a内に生じる渦電流が小さくなる。   Here, in the tape-shaped conductive tape 22a in which both surfaces are insulated, the eddy current generated becomes larger as the component perpendicular to the main surface of the conductive tape 22a having the magnetic flux density (line of magnetic force) penetrating the conductive tape 22a increases. The larger the component, that is, the smaller the component perpendicular to the main surface, the smaller the eddy current generated in the conductive tape 22a.

このため、上記のように磁力線における導電テープ22aの主面に垂直な成分が小さくなると、送電用コイル20に生じる渦電流が効果的に抑えられ、その結果、当該送電用コイル20におけるエネルギー効率が向上する。   For this reason, when the component perpendicular to the main surface of the conductive tape 22a in the magnetic field lines is reduced as described above, the eddy current generated in the power transmission coil 20 is effectively suppressed. As a result, the energy efficiency in the power transmission coil 20 is reduced. improves.

また、受電用コイル30においても、導電テープ22aの幅方向が受電用コイル30のコイル軸C方向と平行となるようにコイル線材22(導電テープ22a)が巻回されているため、導電テープ22aの幅方向が当該受電用コイル30内の磁力線(送電用コイル20によって形成された磁場の磁力線)の向きに沿った状態となり、これにより、前記磁力線(磁束密度)の導電テープ22aの主面に垂直な成分が抑えられる。このため、受電用コイル30に生じる渦電流が効果的に抑えられ、その結果、当該受電用コイル30における交流損失(渦電流損等)が抑えられて送電用コイル20からの給電効率が向上する。 Also in the power receiving coil 30, since the conductive width direction of the tape 22a is the power receiving coil 30 coil axis C 2 direction to be parallel to the coil wire 22 (conductive tape 22a) is wound, conductive tape The width direction of 22a is in a state along the direction of the magnetic lines of force in the power receiving coil 30 (the magnetic field lines of the magnetic field formed by the power transmission coil 20). The component perpendicular to is suppressed. For this reason, the eddy current generated in the power receiving coil 30 is effectively suppressed, and as a result, the AC loss (such as eddy current loss) in the power receiving coil 30 is suppressed, and the power supply efficiency from the power transmitting coil 20 is improved. .

また、本実施形態の送電用コイル20では、その内部に磁気異方性を有する部位(磁性テープ22b)を設けることにより、磁力線を磁性テープ22bの幅方向に沿わす(即ち、磁力線における導電テープ22aの幅方向成分を増大させ、且つ導電テープ22aの厚さ方向成分を減少させる)と共に導電テープ22aの内部を通過する磁束密度を低減することができ、これにより、導電テープ22aに生じる渦電流をより効果的に抑制することができる。即ち、導電テープ22aよりも透磁率の高い磁性テープ22bの方が磁力線を通し易く、このため、磁性テープ22bを導電テープ22aと共巻きすることによって送電用コイル20内に入った磁力線を磁性テープ22bに集中させて導電テープ22aの内部を通過する磁束密度を低減させると共に、導電テープ22aと共巻きされた磁性テープ22b内を通過させることによって前記磁力線の向きを導電テープ22aの幅方向に沿わすことができる。これにより、磁力線(磁束密度)における導電テープ22aの主面に垂直な成分を小さくすることができるため、導電テープ22aに生じる渦電流をより効果的に抑えることができる。その結果、送電用コイル20と、この送電用コイル20と間隔を空けて対向するように配置された受電用コイル30との相互インダクタンス及び結合係数が向上して給電効率がより向上する。   In addition, in the power transmission coil 20 of the present embodiment, by providing a portion having magnetic anisotropy (magnetic tape 22b) in the inside thereof, the magnetic field lines extend along the width direction of the magnetic tape 22b (that is, the conductive tape at the magnetic field lines). 22a can be increased and the thickness direction component of the conductive tape 22a can be decreased), and the magnetic flux density passing through the inside of the conductive tape 22a can be reduced, and thereby the eddy current generated in the conductive tape 22a. Can be more effectively suppressed. That is, the magnetic tape 22b having a higher magnetic permeability than the conductive tape 22a is more likely to pass the magnetic lines of force. For this reason, the magnetic lines of force that have entered the power transmission coil 20 by wrapping the magnetic tape 22b together with the conductive tape 22a. The magnetic flux density passing through the inside of the conductive tape 22a by concentrating on the conductive tape 22a is reduced, and the direction of the magnetic lines is aligned with the width direction of the conductive tape 22a by passing through the magnetic tape 22b wound together with the conductive tape 22a. I can do it. Thereby, since the component perpendicular to the main surface of the conductive tape 22a in the magnetic field lines (magnetic flux density) can be reduced, the eddy current generated in the conductive tape 22a can be more effectively suppressed. As a result, the mutual inductance and coupling coefficient between the power transmission coil 20 and the power reception coil 30 disposed so as to face the power transmission coil 20 with an interval therebetween are improved, and the power supply efficiency is further improved.

また、本実施形態の受電用コイル30においても、送電用コイル20同様、磁性テープ22bを共巻きすることによって磁力線を磁性テープ22bの幅方向に沿わすことができるため、導電テープ22aに生じる渦電流をより効果的に抑制することができる。これにより、給電効率がより向上する。   Also, in the power receiving coil 30 of this embodiment, like the power transmitting coil 20, since the magnetic lines of force can be aligned along the width direction of the magnetic tape 22b by co-winding the magnetic tape 22b, the vortex generated in the conductive tape 22a. The current can be more effectively suppressed. Thereby, the power supply efficiency is further improved.

また、本実施形態の送電用コイル20のように、径方向断面内において磁力線が環状となる領域(環状に閉じた磁力線が生じる領域(本実施形態では低電流密度領域24):図9参照)の電流密度を他の領域26の電流密度より小さくすることによって、前記環状に閉じた磁力線における当該コイル20の径方向(図4(A)における水平方向)の直径を小さくすることができる。即ち、磁力線(磁束密度)の導電テープ22aの幅方向に沿った成分を大きくすると共に当該導電テープ22aの主面に垂直な成分を小さくすることができる。これにより、送電用コイル20に生じる渦電流が抑えられて交流損(銅損等)が低減され、その結果、送電用コイル20と、この送電用コイル20と間隔を空けて対向するように配置された受電用コイル30との相互インダクタンス及び結合係数が向上して給電効率がさらに向上する。   Moreover, like the power transmission coil 20 of the present embodiment, a region in which the magnetic lines of force are annular in the radial cross section (a region in which the magnetic lines of force closed in a ring form (low current density region 24 in the present embodiment): see FIG. 9) By making the current density smaller than the current density in the other region 26, the diameter of the coil 20 in the radial direction (the horizontal direction in FIG. 4A) at the annularly closed magnetic field lines can be reduced. That is, it is possible to increase the component of the lines of magnetic force (magnetic flux density) along the width direction of the conductive tape 22a and reduce the component perpendicular to the main surface of the conductive tape 22a. Thereby, the eddy current generated in the power transmission coil 20 is suppressed, and the AC loss (copper loss or the like) is reduced. As a result, the power transmission coil 20 is disposed so as to face the power transmission coil 20 with a space therebetween. The mutual inductance and coupling coefficient with the received power receiving coil 30 are improved, and the power feeding efficiency is further improved.

また、本実施形態の送電用コイル20のように、低電流密度領域24を構成するコイル線材22の部位が磁性テープ22bを有していない構成とすることにより、当該低電流密度領域24が発生させる磁場のコイル軸C方向の成分が抑制される。これにより、送電用コイル20全体により形成される磁場においては、前記低電流密度領域24に生じる環状に閉じた磁力線の直径をより小さくすることができる。 In addition, like the power transmission coil 20 of the present embodiment, the low current density region 24 is generated when the portion of the coil wire material 22 constituting the low current density region 24 does not have the magnetic tape 22b. coil axis C 1 direction component of the magnetic field to be is suppressed. Thereby, in the magnetic field formed by the power transmission coil 20 as a whole, the diameter of the annularly closed magnetic field lines generated in the low current density region 24 can be further reduced.

また、径方向断面に生じる前記環状に閉じた磁力線は、径方向断面における径方向外側の端部に生じ易い。そのため、本実施形態の送電用コイル20では、低電流密度領域24を前記径方向断面における径方向外側の端部(前記環状に閉じた磁力線の生じ易い領域)を含む位置に形成することにより、送電用コイル20内に生じる前記環状に閉じた磁力線の径(送電用コイル20の径方向に沿った直径)をより確実に小さくすることができる。   Further, the annularly closed magnetic force lines generated in the radial cross section are likely to be generated at the radially outer end of the radial cross section. Therefore, in the power transmission coil 20 of the present embodiment, the low current density region 24 is formed at a position including the radially outer end portion (the region where the line of magnetic force close to the ring is easily generated) in the radial section, The diameter of the annularly closed magnetic force lines generated in the power transmission coil 20 (diameter along the radial direction of the power transmission coil 20) can be more reliably reduced.

尚、本発明の非接触給電装置は、上記実施形態に限定されるものではなく、本発明の要旨を逸脱しない範囲内において種々変更を加え得ることは勿論である。   In addition, the non-contact electric power feeder of this invention is not limited to the said embodiment, Of course, a various change can be added in the range which does not deviate from the summary of this invention.

上記実施形態では、送電用コイル20及び受電用コイル30を形成するコイル線材22は、導電テープ22a、磁性テープ22b、及び絶縁性テープ22cを有するが、この構成に限定されない。   In the above embodiment, the coil wire 22 forming the power transmission coil 20 and the power reception coil 30 includes the conductive tape 22a, the magnetic tape 22b, and the insulating tape 22c, but is not limited to this configuration.

例えば、コイル線材が導電テープ22aのみによって構成されてもよい。このコイル線材によって形成された送電用コイル20又は受電用コイル30によっても、送電用コイル20内の磁力線における導電テープ22a(送電用コイル20又は受電用コイル30を構成する導電テープ22a)の主面に垂直な成分を小さくすることができ、当該導電テープ22aに生じる渦電流を抑えて送電用コイル20又は受電用コイル30における交流損失(渦電流損失等)を効果的に抑制することができる。   For example, the coil wire material may be constituted only by the conductive tape 22a. The main surface of the conductive tape 22a (the conductive tape 22a constituting the power transmission coil 20 or the power reception coil 30) at the magnetic field lines in the power transmission coil 20 also by the power transmission coil 20 or the power reception coil 30 formed by this coil wire. As a result, the eddy current generated in the conductive tape 22a can be suppressed and AC loss (such as eddy current loss) in the power transmission coil 20 or the power reception coil 30 can be effectively suppressed.

また、送電用コイル20は、低電流密度領域24を備えなくてもよい。即ち、送電用コイル20の径方向断面全域において電流密度が一様(均一又は略均一)であってもよい。導電テープ22aと磁性テープ22bとが共巻き(互いに主面同士を対向させるように重ね合わせた状態で巻回)されていれば、送電用コイル20内の磁力線を磁性テープ22bの幅方向に沿わせて磁力線(磁束密度)における導電テープ22aの主面に垂直な成分を小さくすることができるため、導電テープ22aに生じる渦電流が効果的に抑えられる。これにより、送電用コイル20と、この送電用コイル20と間隔を空けて対向するように配置された受電用コイル30との相互インダクタンス及び結合係数が向上して給電効率を向上させることができる。   Further, the power transmission coil 20 may not include the low current density region 24. That is, the current density may be uniform (uniform or substantially uniform) over the entire radial cross section of the power transmission coil 20. If the conductive tape 22a and the magnetic tape 22b are co-wound (wound in a state where the principal surfaces are opposed to each other), the magnetic field lines in the power transmission coil 20 are aligned along the width direction of the magnetic tape 22b. Accordingly, since the component perpendicular to the main surface of the conductive tape 22a in the magnetic field lines (magnetic flux density) can be reduced, the eddy current generated in the conductive tape 22a is effectively suppressed. Thereby, the mutual inductance and the coupling coefficient between the power transmission coil 20 and the power reception coil 30 disposed so as to face the power transmission coil 20 with a space therebetween can be improved, and the power supply efficiency can be improved.

上記実施形態の送電用コイル20では、絶縁性テープ22cの厚さを変化させることによって低電流密度領域24における径方向に隣接する導電テープ22a同士の間隔を他の領域26における導電テープ22a同士の間隔よりも大きくし、これにより、低電流密度領域24を形成しているが、この構成に限定されない。例えば、スペーサ等が巻回されたコイル線材22間に挟み込まれる(配置される)ことによって径方向に隣接する導電テープ22a同士の間隔が調整され、これにより、低電流密度領域24が形成されてもよい。   In the power transmission coil 20 of the above-described embodiment, by changing the thickness of the insulating tape 22c, the interval between the conductive tapes 22a adjacent in the radial direction in the low current density region 24 is changed between the conductive tapes 22a in the other regions 26. Although it is larger than the interval, thereby forming the low current density region 24, it is not limited to this configuration. For example, the interval between the conductive tapes 22a adjacent to each other in the radial direction is adjusted by being sandwiched (arranged) between the coil wire rods 22 around which the spacers are wound, whereby the low current density region 24 is formed. Also good.

上記実施形態の送電用コイル20及び受電用コイル30は、コイル軸C、C方向から見て円形のコイルであるが、この形状に限定されない。送電用コイル20及び受電用コイル30は、コイル軸C、C方向から見て、例えば、所謂レーストラック形状、又は四隅を丸めた四角形状等であってもよい。 The power transmission coil 20 and the power reception coil 30 of the above embodiment are circular coils as viewed from the coil axis C 1 and C 2 directions, but are not limited to this shape. The power transmission coil 20 and the power reception coil 30 may have, for example, a so-called race track shape or a quadrangular shape with four rounded corners as viewed from the coil axis C 1 and C 2 directions.

また、上記実施形態の送電用コイル20は、1つ(単一)のコイル(主コイル部のみ)であるが、複数のコイル部を備えた構成でもよい。   Moreover, although the coil 20 for power transmission of the said embodiment is one (single) coil (only main coil part), the structure provided with the several coil part may be sufficient.

例えば、図5に示されるように、送電用コイル200は、2つのコイル部(主コイル部202と、副コイル部(シールドコイル)204と)を備える。主コイル部202は、第1実施形態の送電用コイル20と同じ構成を有する。副コイル部204は、コア部材16の外周部162の外側(主コイル部202の径方向外側)に配置される。即ち、副コイル部202は、主コイル部204をその径方向外側から囲んでいる。   For example, as illustrated in FIG. 5, the power transmission coil 200 includes two coil portions (a main coil portion 202 and a subcoil portion (shield coil) 204). The main coil unit 202 has the same configuration as the power transmission coil 20 of the first embodiment. The sub-coil portion 204 is disposed outside the outer peripheral portion 162 of the core member 16 (outside in the radial direction of the main coil portion 202). That is, the sub coil portion 202 surrounds the main coil portion 204 from the outside in the radial direction.

副コイル部204は、主コイル部202と同様のコイル線材22が主コイル部202と同心となるように巻回されることにより形成されている。副コイル部204におけるコイル線材22の巻回方向は、主コイル部202と同じ方向であるが、逆方向であってもよい。このように構成される副コイル部204では、主コイル部202における電流の向きと逆方向の電流が流れる。例えば、平面視において、主コイル部202で電流が時計回りに流れるときには、主コイル部202と同じ大きさの電流が副コイル部204で反時計回りに流れ、主コイル部202で電流が反時計回りに流れる時には、主コイル部202と同じ大きさの電流が副コイル部204では時計回りに流れる。   The sub coil portion 204 is formed by winding the same coil wire 22 as the main coil portion 202 so as to be concentric with the main coil portion 202. The winding direction of the coil wire material 22 in the sub-coil portion 204 is the same direction as that of the main coil portion 202, but may be in the opposite direction. In the sub-coil unit 204 configured as described above, a current in a direction opposite to the direction of the current in the main coil unit 202 flows. For example, when a current flows clockwise in the main coil unit 202 in plan view, a current having the same magnitude as that of the main coil unit 202 flows counterclockwise in the sub-coil unit 204, and the current counterclockwise in the main coil unit 202. When flowing around, a current having the same magnitude as that of the main coil portion 202 flows clockwise in the sub coil portion 204.

このように副コイル部204が設けられることにより、副コイル部204の形成する磁場が、主コイル部202の形成する磁場を副コイル部204の内側(径方向内側)領域に閉じ込めようと作用し、これにより、当該送電用コイル200における漏れ磁場を効果的に抑えることができる。   By providing the sub-coil portion 204 in this manner, the magnetic field formed by the sub-coil portion 204 acts to confine the magnetic field formed by the main coil portion 202 in the inner (radially inner) region of the sub-coil portion 204. Thus, the leakage magnetic field in the power transmission coil 200 can be effectively suppressed.

具体的には、図5に示す例では、例えば、主コイル部202の半径方向の幅が、上記実施形態の送電用コイル20と同様に、200mmであり、副コイル部204の半径方向の幅が10mmである。この場合、図6に示されるように、副コイル部204が設けられていない送電用コイル(即ち、上記実施形態における送電用コイル20)と比べて、半径r>0.25mでの磁束密度(漏洩磁束密度)のコイル軸C方向成分(Bz)が抑制されていることが確認できる。尚、図6は、図5における主コイル部202及び副コイル部204の上面に沿った径方向各位置において、磁束密度のコイル軸C方向成分(Bz)を測定した結果を示す図である。 Specifically, in the example illustrated in FIG. 5, for example, the radial width of the main coil portion 202 is 200 mm, similarly to the power transmission coil 20 of the above-described embodiment, and the radial width of the sub-coil portion 204. Is 10 mm. In this case, as shown in FIG. 6, compared with a power transmission coil (that is, the power transmission coil 20 in the above-described embodiment) in which the auxiliary coil unit 204 is not provided, the magnetic flux density at a radius r> 0.25 m ( the coil axis C 1 direction component of the leakage magnetic flux density) (Bz) is suppressed can be confirmed. 6 shows, in radial each position along the upper surface of the main coil 202 and the auxiliary coil 204 in FIG. 5, is a graph showing the results of measuring the coil axis C 1 direction component of the magnetic flux density (Bz) .

ここで、上記実施形態の非接触給電装置の効果を確認するために、i)上記実施形態の非接触給電装置(第1の給電装置)と、ii)送電部のコイルが、低電流密度領域が設けられていない点以外は上記実施形態の送電用コイルと同じ構成の共巻きコイルである非接触給電装置(第2の給電装置)と、iii)送電部のコイルが、導電テープと絶縁テープとで構成された普通巻きコイルである非接触給電装置(第3の給電装置)と、の3種類の非接触給電装置を用い、コイル間のギャップ(送電用コイルと受電用コイルとの間隔)と結合係数との間係を求めた。   Here, in order to confirm the effect of the non-contact power feeding device of the above embodiment, i) the non-contact power feeding device (first power feeding device) of the above-described embodiment, and ii) the coil of the power transmission unit is a low current density region. A non-contact power feeding device (second power feeding device) that is a co-wound coil having the same configuration as that of the power transmission coil of the above embodiment, except that is not provided, and iii) the coil of the power transmission unit is a conductive tape and an insulating tape. And a non-contact power feeding device (third power feeding device) that is a normal winding coil composed of the three types of non-contact power feeding devices, and a gap between the coils (interval between the power transmission coil and the power reception coil). And the coupling coefficient.

詳しくは、この実施例1で用いた第1〜第3の給電装置の各送電用コイルは、いずれも、内径が200mm、外径が400mm、240turnsである。また、第1の給電装置の送電用コイルは、導電テープ、磁性テープ及び絶縁テープからなるコイル線材を巻回することによって形成され、半径300mm〜400mmの領域に低電流密度領域が形成されている。また、第2の給電装置の送電用コイルは、導電テープ、磁性テープ及び絶縁テープからなるコイル線材を巻回することによって形成され、半径方向断面における電流密度は一様(均一又は略均一)である。また、第3の給電装置の送電用コイルは、導電テープ及び絶縁テープからなるコイル線材を巻回することによって形成され、半径方向断面における電流密度は一様(均一又は略均一)である。   Specifically, each of the power transmission coils of the first to third power feeding devices used in Example 1 has an inner diameter of 200 mm, an outer diameter of 400 mm, and 240 turn. Further, the power transmission coil of the first power feeding device is formed by winding a coil wire made of a conductive tape, a magnetic tape, and an insulating tape, and a low current density region is formed in a region having a radius of 300 mm to 400 mm. . The power transmission coil of the second power feeding device is formed by winding a coil wire made of a conductive tape, a magnetic tape and an insulating tape, and the current density in the radial cross section is uniform (uniform or substantially uniform). is there. Further, the power transmission coil of the third power feeding device is formed by winding a coil wire made of a conductive tape and an insulating tape, and the current density in the radial cross section is uniform (uniform or substantially uniform).

このような送電用コイルに、周波数が20kHz、出力が10kWの電力をそれぞれ供給してコイル間ギャップと結合係数とを求めた。その結果を図7に示す。   Electric power having a frequency of 20 kHz and an output of 10 kW was supplied to such a power transmission coil, and an inter-coil gap and a coupling coefficient were obtained. The result is shown in FIG.

この結果から、送電部のコイルとして、導電テープと絶縁テープからなる普通巻きコイルを用いた場合よりも、導電テープと磁性テープとを共巻きにした共巻きコイル(低電流密度領域なし)を用いた場合の方が、コイル間ギャップにかかわらず結合係数が大きくなることが確認できた。また、送電部の送電用コイルとして、共巻きコイル(低電流密度領域なし)を用いた場合よりも、上記実施形態の送電用コイル(導電テープと磁性テープとの共巻き、且つ、低電流密度領域有り)を用いた場合の方が、コイル間ギャップにかかわらず結合係数が大きくなることも確認できた。   From this result, a coil with a conductive tape and a magnetic tape (coiled with a conductive tape and a magnetic tape) (no low current density region) is used as a coil for the power transmission unit, rather than using a normal coil made of conductive tape and insulating tape. It was confirmed that the coupling coefficient was larger in the case where the coil was present regardless of the gap between the coils. In addition, the power transmission coil of the above embodiment (co-winding of conductive tape and magnetic tape and lower current density than the case of using a co-winding coil (no low current density region) as the power transmission coil of the power transmission unit. It was also confirmed that the coupling coefficient was larger when the area was used, regardless of the gap between the coils.

次に、半径方向断面における半径300mm〜400mmの領域の電流密度の分布が図8に示すような分布となる3種類の非接触給電装置、具体的には、i)実施例1と同様の第1の給電装置と、ii)低電流密度領域における電流密度の分布(谷型の分布)が上記実施形態の送電用コイルよりも浅い谷型の分布となる送電用コイルを用いた非接触給電装置(第4の給電装置)と、iii)実施例1と同様の第3の給電装置と、を用い、各非接触給電装置の送電用コイル内(詳しくは、コイル軸方向の中央位置)における半径方向の各位置での磁束密度の分布を求めた。その結果を図9(A)及び図9(B)に示す。   Next, three types of non-contact power feeding devices in which the current density distribution in a region having a radius of 300 mm to 400 mm in the radial cross section becomes a distribution as shown in FIG. 8, specifically, i) the same as the first embodiment. 1, and ii) a non-contact power feeding apparatus using a power transmission coil in which a current density distribution (valley distribution) in a low current density region is shallower than the power transmission coil of the above embodiment (Fourth power supply device) and iii) a third power supply device similar to that of the first embodiment, and each non-contact power supply device has a radius within a power transmission coil (specifically, a central position in the coil axis direction). The distribution of magnetic flux density at each position in the direction was obtained. The results are shown in FIGS. 9 (A) and 9 (B).

図9(A)は、磁束密度のコイル軸C方向成分(Bz)の半径方向における分布を示し、図9(B)は、磁束密度のコイル半径方向成分(Br)の半径方向における分布を示す。 9A shows the distribution of the magnetic flux density in the radial direction of the coil axis C 1 direction component (Bz), and FIG. 9B shows the distribution of the magnetic flux density in the radial direction of the coil radial component (Br). Show.

これらの結果から、低電流密度領域が設けられた送電用コイルを用いた第3及び第4の給電装置の方が、低電流密度領域の無い共巻きコイルを送電用コイルとして用いた第2の給電装置に比べ、半径方向外側の端部を除いて磁束密度のコイル軸C方向成分(Bz)が大きくなることが確認できた。これにより、前記半径方向外側の端部を除いた範囲において、低電流密度領域が設けられた送電用コイルの方が、低電流密度領域が無い送電用コイルに比べて送電用コイルが形成する磁場の強度が大きくなっており、この範囲において受電用コイルとの結合係数が向上することが確認できた。 From these results, the third and fourth power feeding devices using the power transmission coil provided with the low current density region are the second using the co-winding coil without the low current density region as the power transmission coil. compared to the power supply apparatus, the coil axis C 1 direction component of the magnetic flux density (Bz) that increase was confirmed except for the end portion of the radially outer. Thus, in the range excluding the radially outer end, the power transmission coil provided with the low current density region forms a magnetic field formed by the power transmission coil compared to the power transmission coil without the low current density region. It was confirmed that the coupling coefficient with the power receiving coil was improved in this range.

一方、前記半径方向外側の端部では、低電流密度領域が設けられた送電用コイルを用いた第3及び第4の給電装置の方が、低電流密度領域の無い送電用コイルを用いた第2の給電装置に比べ、磁束密度の半径方向成分(Br)の絶対値が小さくなる(0に近くなる)ことが確認できた。導電テープが巻回されたコイルでは、この半径方向成分(Br)の絶対値の大きさに比例して渦電流が大きくなるため、低電流密度領域が設けられた送電用コイルの方が、低電流密度領域が無い送電用コイルに比べて、前記径方向外側の端部に生じる渦電流が抑えられ、これにより、この範囲においても受電用コイルとの結合係数が向上することが確認できた。   On the other hand, at the end portion on the outer side in the radial direction, the third and fourth power feeding devices using the power transmission coil provided with the low current density region are the first using the power transmission coil without the low current density region. It was confirmed that the absolute value of the radial direction component (Br) of the magnetic flux density was smaller (closer to 0) than that of the power feeding device 2. In a coil wound with a conductive tape, an eddy current increases in proportion to the magnitude of the absolute value of the radial component (Br). Therefore, a power transmission coil provided with a low current density region is lower. Compared with a power transmission coil having no current density region, eddy currents generated at the radially outer end were suppressed, and it was confirmed that the coupling coefficient with the power reception coil was improved even in this range.

以上より、低電流密度領域が設けられた送電用コイルの方が、低電流密度領域の無い一様な電流密度の送電用コイルに比べて、半径方向の全域に亘って結合係数が向上することが確認できた。   From the above, the coupling coefficient of the power transmission coil provided with the low current density region is improved over the entire radial direction compared to the power transmission coil of uniform current density without the low current density region. Was confirmed.

次に、i)実施例1と同様の第2の給電装置と、ii)送電用コイル及び受電用コイルの両方が導電テープと絶縁テープとによって構成される普通巻きコイルである非接触給電装置(第5の給電装置)とを用い、送電用コイル内と受電用コイル内の半径方向における磁束密度の分布を求めた。その結果を図10(A)〜図11(B)に示す。   Next, i) a second power feeding device similar to that in the first embodiment, and ii) a non-contact power feeding device in which both of the power transmission coil and the power receiving coil are normal winding coils formed of a conductive tape and an insulating tape ( The distribution of the magnetic flux density in the radial direction in the power transmission coil and the power reception coil was determined using a fifth power supply device). The results are shown in FIGS. 10 (A) to 11 (B).

図10(A)は、各非接触給電装置の送電用コイルにおける半径方向の各位置での磁束密度のコイル軸C方向成分(Bz)と半径方向成分(Br)との分布をそれぞれ示し、図10(B)は、各非接触給電装置の受電用コイルにおける半径方向の各位置での磁束密度のコイル軸C方向成分(Bz)と半径方向成分(Br)との分布をそれぞれ示す。図11(A)は、第2の給電装置の送電用コイルによって形成された磁場における磁力線の分布を示し、図11(B)は、第5の給電装置の送電用コイルによって形成された磁場における磁力線の分布を示す。 FIG. 10 (A) shows the distribution of the coil axis C 1 direction component of the magnetic flux density at each position in the radial direction (Bz) and radial component (Br) in the power transmission coil of each non-contact power feeding device, respectively, Figure 10 (B) shows the non-contact radial direction of the coil axis C 2 direction component of the magnetic flux density at each position in the power receiving coil of the power feeding device and (Bz) the distribution of the radial component (Br), respectively. FIG. 11A shows the distribution of the lines of magnetic force in the magnetic field formed by the power transmission coil of the second power supply device, and FIG. 11B shows the magnetic field formed by the power transmission coil of the fifth power supply device. The distribution of magnetic field lines is shown.

これらの結果から、送電用コイルと受電用コイルとの両コイルを共巻きコイルとすることにより、両コイルを普通巻きコイルとする場合に比べ、コイル内の半径方向の全域において磁力線が立つ(即ち、磁束密度のコイル軸C方向成分(Bz)が増大すると共に、半径方向成分(Br)が減少する)ことが確認できた。 From these results, when both the coil for power transmission and the coil for power reception are co-wound, the lines of magnetic force stand up in the entire radial direction in the coil as compared with the case where both coils are normally wound (that is, , together with the coil axis C 1 direction component of the magnetic flux density (Bz) increases, the radial component (Br) is reduced) it was confirmed.

以上より、送電用コイルと受電用コイルとの両コイルを共巻きコイルとすることにより、両コイルを普通巻きコイルとする場合に比べ、半径方向の全域に亘って結合係数が向上することが確認できた。   From the above, it is confirmed that the coupling coefficient is improved over the entire radial direction by using both the coil for power transmission and the coil for power reception as a co-coiled coil, compared with the case where both coils are used as a normal coil. did it.

本発明を表現するために、上述において図面を参照しながら実施形態を通して本発明を適切且つ十分に説明したが、当業者であれば上述の実施形態を変更および/または改良することは容易に為し得ることであると認識すべきである。したがって、当業者が実施する変更形態または改良形態が、請求の範囲に記載された請求項の権利範囲を離脱するレベルのものでない限り、当該変更形態または当該改良形態は、当該請求項の権利範囲に包括されると解釈される。   In order to express the present invention, the present invention has been properly and fully described through the embodiments with reference to the drawings. However, those skilled in the art can easily change and / or improve the above-described embodiments. It should be recognized that this is possible. Therefore, unless the modifications or improvements implemented by those skilled in the art are at a level that departs from the scope of the claims recited in the claims, the modifications or improvements are not covered by the claims. To be construed as inclusive.

10 非接触給電装置
12 送電部
14 受電部
16 コア部材
18 モールド部
20 送電用コイル(非接触給電用コイル)
22 コイル線材
22a 導電テープ(テープ状導電部材)
22b 磁性テープ(テープ状磁性部材)
22c 絶縁性テープ(絶縁層)
24 低電流密度領域
30 受電用コイル(非接触給電用コイル)
送電用コイルのコイル軸
受電用コイルのコイル軸
DESCRIPTION OF SYMBOLS 10 Non-contact electric power feeder 12 Power transmission part 14 Power receiving part 16 Core member 18 Mold part 20 Coil for power transmission (coil for non-contact electric power feeding)
22 Coil wire 22a Conductive tape (tape-shaped conductive member)
22b Magnetic tape (tape-like magnetic member)
22c Insulating tape (insulating layer)
24 Low current density region 30 Power receiving coil (coil for non-contact power feeding)
C 1 Coil axis of power transmission coil C 2 Coil axis of power reception coil

Claims (5)

間隔をおいて配置された相手側コイルに相互誘導によって電力を供給可能な非接触給電用コイルであって、
導体によって形成され、且つ幅寸法が厚さ寸法よりも大きなテープ状導電部材を備え、
前記テープ状導電部材は、その幅方向がコイル軸方向と平行で且つ当該非接触給電用コイルの径方向において隣り合うテープ状導電部材間に絶縁層が位置するよう巻回されて主コイル部を構成し
前記主コイル部における前記相手側コイルと反対側の面と平行な対向面を有し、且つ磁性体によって形成されるコア部材を備え、
前記主コイル部をその径方向の外側から囲う副コイル部を備え、
前記コア部材は、前記対向面を有するコア本体と、前記コア本体の対向面から前記主コイル部側に突出し、前記主コイル部をその径方向外側から囲む外周部と、を有し、
前記副コイル部は、前記主コイル部と同形状のテープ状導電部材を、その幅方向が主コイル部のコイル軸方向と平行で且つ前記主コイル部の径方向において隣り合うテープ状導電部材間に絶縁層が位置するよう巻回することで構成され、且つ、前記外周部の外側に配置されて前記主コイル部を流れる電流と逆向きの電流が流れる非接触給電用コイル。
A non-contact power supply coil capable of supplying power to a counterpart coil arranged at an interval by mutual induction,
A tape-like conductive member formed of a conductor and having a width dimension larger than a thickness dimension;
The tape-shaped conductive member is wound so that the insulating layer is located between the tape-shaped conductive members whose width direction is parallel to the coil axial direction and adjacent to each other in the radial direction of the non-contact power supply coil. configured,
A core member having a facing surface parallel to a surface opposite to the counterpart coil in the main coil portion and formed of a magnetic material;
A sub-coil portion surrounding the main coil portion from the outside in the radial direction;
The core member has a core body having the facing surface, and an outer peripheral portion that protrudes from the facing surface of the core body to the main coil portion side and surrounds the main coil portion from the radially outer side,
The sub-coil part is a tape-like conductive member having the same shape as the main coil part, and the width direction is parallel to the coil axis direction of the main coil part and between the tape-like conductive members adjacent in the radial direction of the main coil part. A coil for non-contact power feeding that is configured to be wound so that an insulating layer is positioned on the outer periphery of the coil and that is disposed outside the outer peripheral portion and flows a current in a direction opposite to the current flowing through the main coil portion .
磁性体によって形成され且つ幅寸法が厚さ寸法よりも大きなテープ状磁性部材を備え、
前記テープ状磁性部材は、前記テープ状導電部材と共巻きされる請求項1に記載の非接触給電用コイル。
A tape-like magnetic member formed of a magnetic material and having a width dimension larger than a thickness dimension;
The non-contact power supply coil according to claim 1, wherein the tape-shaped magnetic member is wound together with the tape-shaped conductive member.
前記径方向に沿った断面において、電流密度が当該径方向における他の領域より小さい低電流密度領域が形成されるような構造を有する請求項1又は2に記載の非接触給電用コイル。   The non-contact power supply coil according to claim 1 or 2, wherein a cross section along the radial direction has a structure in which a low current density region having a smaller current density than other regions in the radial direction is formed. 前記低電流密度領域は、前記径方向に沿った断面における径方向外側端部を含む位置に形成される請求項3に記載の非接触給電用コイル。   The non-contact power supply coil according to claim 3, wherein the low current density region is formed at a position including a radially outer end portion in a cross section along the radial direction. 前記低電流密度領域において前記径方向に隣接するテープ状導電部材同士の間隔が、前記他の領域において前記径方向に隣接するテープ状導電部材同士の間隔より大きい請求項3又は4に記載の非接触給電用コイル。   The non-conductive region according to claim 3 or 4, wherein an interval between the tape-like conductive members adjacent in the radial direction in the low current density region is larger than an interval between the tape-like conductive members adjacent in the radial direction in the other region. Coil for contact power supply.
JP2012115420A 2012-05-21 2012-05-21 Non-contact power supply coil Active JP5918020B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012115420A JP5918020B2 (en) 2012-05-21 2012-05-21 Non-contact power supply coil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012115420A JP5918020B2 (en) 2012-05-21 2012-05-21 Non-contact power supply coil

Publications (2)

Publication Number Publication Date
JP2013243250A JP2013243250A (en) 2013-12-05
JP5918020B2 true JP5918020B2 (en) 2016-05-18

Family

ID=49843861

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012115420A Active JP5918020B2 (en) 2012-05-21 2012-05-21 Non-contact power supply coil

Country Status (1)

Country Link
JP (1) JP5918020B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3028824B1 (en) * 2014-11-20 2016-12-30 Valeo Systemes Dessuyage WIPING DEVICE FOR MOTOR VEHICLE
JP2017063567A (en) 2015-09-25 2017-03-30 アイシン精機株式会社 No-contact power feeding apparatus
WO2017195581A1 (en) * 2016-05-09 2017-11-16 有限会社アール・シー・エス Non-contact power supply device and non-contact power supply system
KR102098242B1 (en) * 2018-08-24 2020-04-07 에스케이씨 주식회사 Magnetic block, preparation method thereof and antenna device comprising same

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5880753U (en) * 1981-11-27 1983-06-01 工業技術院長 charging device
JPH09205024A (en) * 1996-01-24 1997-08-05 Meidensha Corp Electromagnetic induction machine
JPH1197263A (en) * 1997-09-22 1999-04-09 Tokin Corp Non-contact power transmitter and spiral coil used therefor
JPH11186086A (en) * 1997-12-17 1999-07-09 Tokin Corp Manufacture of spiral coil for noncontact power transmitter
JP2011142177A (en) * 2010-01-06 2011-07-21 Kobe Steel Ltd Contactless power transmission device, and coil unit for contactless power transmission device
WO2011111585A1 (en) * 2010-03-09 2011-09-15 日東電工株式会社 Magnetic element for wireless power transmission and power supply device

Also Published As

Publication number Publication date
JP2013243250A (en) 2013-12-05

Similar Documents

Publication Publication Date Title
EP2576274B1 (en) A wireless power receiving unit, a wireless power transferring unit, a wireless power transferring device and use of a wireless power transferring device
US20220123593A1 (en) Wireless Power Transfer Based on Magnetic Induction
KR100976061B1 (en) Non-contact electric power supply device
US9390849B2 (en) Magnetic element for wireless power transmission and power supply device
JP2011142177A (en) Contactless power transmission device, and coil unit for contactless power transmission device
JP5662255B2 (en) Reactor
WO2012132535A1 (en) Power-receiving coil, power-reception device, and contactless power-transmission system
JP4997330B2 (en) Multiphase transformer and transformer system
JP6179160B2 (en) Wireless power transmission equipment
JP5918020B2 (en) Non-contact power supply coil
JP2012099739A (en) Core segment, annular coil core and annular coil
JP6061067B2 (en) Contactless power receiving device
JP6032528B2 (en) Transmission coil component and non-contact charging device
US20140300440A1 (en) Inductor gap spacer
JP5709042B2 (en) Coil component and power receiving device and power feeding device using the same
KR102348415B1 (en) wireless power transfer module
JP6048787B2 (en) Magnetic sheet, transmission coil component and non-contact charging device
KR20180112007A (en) Electromagnetic induction apparatus and manufacturing method thereof
JP7082785B2 (en) Transmission coil parts for non-contact power supply, their manufacturing method, and non-contact power supply equipment
CN105390226A (en) A core and a coil device using the core
KR102503650B1 (en) wireless power transmission module
JP2008172116A (en) Reactor magnetic core and reactor
JP5010672B2 (en) Transformers and transformer systems
JP2008186973A (en) Reactor core and reactor
CN118648071A (en) Power transmission coil structure and power transmission device provided with same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140901

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150716

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150728

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150924

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160322

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160407

R150 Certificate of patent or registration of utility model

Ref document number: 5918020

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150