JP2012099739A - Core segment, annular coil core and annular coil - Google Patents

Core segment, annular coil core and annular coil Download PDF

Info

Publication number
JP2012099739A
JP2012099739A JP2010247852A JP2010247852A JP2012099739A JP 2012099739 A JP2012099739 A JP 2012099739A JP 2010247852 A JP2010247852 A JP 2010247852A JP 2010247852 A JP2010247852 A JP 2010247852A JP 2012099739 A JP2012099739 A JP 2012099739A
Authority
JP
Japan
Prior art keywords
winding portion
winding
core
wound
annular coil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010247852A
Other languages
Japanese (ja)
Inventor
Etsuo Otsuki
悦夫 大槻
Kensuke Nagashima
建介 長嶋
Ayako Ando
綾子 安藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toho Zinc Co Ltd
Original Assignee
Toho Zinc Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toho Zinc Co Ltd filed Critical Toho Zinc Co Ltd
Priority to JP2010247852A priority Critical patent/JP2012099739A/en
Publication of JP2012099739A publication Critical patent/JP2012099739A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Coils Or Transformers For Communication (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a core segment, an annular coil core and an annular coil in which excellent heat dissipation is ensured while holding a desired magnetic performance, the number of turns of a conductor can be increased easily, and damage on the insulation coating of the conductor can be reduced when winding the conductor.SOLUTION: The core segment comprises winding parts 5a, 5b formed by binding metal magnetic powder with a nonmagnetic binder or by shaping a metal magnetic body and around which an insulation-coated conductor is wound, non-winding parts 6a, 6b formed respectively and continuously to both ends of the winding parts in the longitudinal direction and around which the conductor is not wound, and joint surfaces 7a, 7b formed at the ends of the non-winding parts to intersect the magnetic flux generated when the conductor wound around the winding parts is energized.

Description

本発明は、各種機器の電源回路などに用いられる環状コイルに係り、とくに環状コイルの製造に用いられる部品となるコアセグメントおよび環状コイルコアに関する。   The present invention relates to an annular coil used for power supply circuits of various devices, and more particularly to a core segment and an annular coil core that are parts used for manufacturing an annular coil.

トロイダルコイルは、スイッチング電源の昇圧や平滑あるいはノイズ防止用フィルタなどに用いられる部品として高インダクタンスが要求されており、インダクタンスの増大化を図るためにコアの形状が環状である。このような環状の部品に導線を巻きつける作業は、手作業で行なうとかなりの労力と時間を要し、製造コストを押し上げる原因となる。また、トロイダルコイルの環状コアは、その横断面形状が矩形であるため、巻線がコアのコーナー部分だけに当接して、巻線をコアの表面に密着させることが難しい。これらの問題を解消するために種々の巻線方法や巻線装置が提案されている。   A toroidal coil is required to have high inductance as a component used for boosting, smoothing, or preventing noise of a switching power source, and the core shape is annular in order to increase the inductance. Such an operation for winding a lead wire around an annular part requires a considerable amount of labor and time if it is carried out manually, which increases the manufacturing cost. In addition, since the toroidal coil annular core has a rectangular cross-sectional shape, it is difficult for the winding to come into contact with only the corner portion of the core and to bring the winding into close contact with the surface of the core. In order to solve these problems, various winding methods and winding devices have been proposed.

例えば特許文献1では、線径の太い導線をコアに巻回するトロイダルコイルの巻線方法を提案している。また、特許文献2では、巻線を自動的に行うための巻線装置を提案している。さらに、特許文献3では、環状コアを複数の部品に分割し、分割したコア部品をコイル形状に予め成形したコイル導線のなかに挿入するトロイダルコイルの製造方法を提案している。   For example, Patent Document 1 proposes a winding method of a toroidal coil in which a conducting wire having a large wire diameter is wound around a core. Patent Document 2 proposes a winding device for automatically performing winding. Further, Patent Document 3 proposes a toroidal coil manufacturing method in which an annular core is divided into a plurality of parts, and the divided core parts are inserted into coil conductors that are pre-shaped into a coil shape.

特開2010−103434号公報JP 2010-103434 A 特開2002−289455号公報JP 2002-289455 A 特開2001−68364号公報JP 2001-68364 A

しかしながら、従来のトロイダルコイルにおいては、手作業で導線を巻きつける場合あるいは特許文献1,2に記載された方法または装置を用いてコアに導線を巻きつける場合に、図8に示すように、コア103の内周側に導線104が集中するため、コアの中央スペース109が導線104により狭められてしまい、ある一定以上の巻き数になると導線104を巻きつけられなくなる。その対策としてコア内径を大きくすると、コイル外径が大きくなり、電子部品の小型化のユーザー要望に応えられない。   However, in the conventional toroidal coil, as shown in FIG. 8, when the conductor is wound manually or when the conductor is wound around the core using the method or apparatus described in Patent Documents 1 and 2, Since the conductive wire 104 is concentrated on the inner peripheral side of 103, the central space 109 of the core is narrowed by the conductive wire 104, and the conductive wire 104 cannot be wound when the number of turns exceeds a certain value. As a countermeasure, if the core inner diameter is increased, the outer diameter of the coil is increased, and the user's request for downsizing of electronic components cannot be met.

また、2層や3層の多層巻きされたトロイダルコイルでは、巻線が発熱して過熱状態になりやすいため、巻線から熱を逃がす必要がある。しかし、従来のトロイダルコイルは放熱性が悪く、とくにコイル内周側の放熱性が著しく悪いために、巻線の温度が上昇して正常に機能しなくなるおそれがある。すなわち、図9に示すように、トロイダルコイルの巻線104は、矩形断面コア103のコーナー部分のみに接触し、コア面108から離れた状態に巻かれやすいため、巻線104からコア103のほうに熱が逃げにくく、過熱状態になりやすい。   In addition, in a two-layer or three-layer wound toroidal coil, the winding tends to generate heat and become overheated, so it is necessary to release heat from the winding. However, the conventional toroidal coil has poor heat dissipation, and particularly the heat dissipation on the inner circumference side of the coil is remarkably poor, so that there is a risk that the temperature of the winding rises and does not function normally. That is, as shown in FIG. 9, the winding 104 of the toroidal coil is in contact with only the corner portion of the rectangular cross-section core 103 and is easily wound away from the core surface 108. It is difficult for heat to escape and overheated easily.

また、特許文献3のトロイダルコイルにおいては、分割コアと分割コアの間の継ぎ目またはギャップにも導線が巻かれているため、この継ぎ目またはギャップから磁束が漏れ出す。この漏れ磁束により導線に渦電流が誘導生成され、導線の電流損失を生じるため、コイルの発熱や鉄損の増大などが発生するおそれがある。   Moreover, in the toroidal coil of patent document 3, since the conducting wire is wound around the joint or gap between the split cores, the magnetic flux leaks from the joint or gap. This leakage magnetic flux induces and generates eddy currents in the conductors, causing current loss in the conductors, which may cause coil heat generation or increased iron loss.

本発明は上記の課題を解決するためになされたものであり、所望の磁気的性能を保持しながら放熱性に優れ、導線の巻きつけ数を容易に増やすことができ、巻きつけ時に導線の絶縁被膜が受ける損傷を軽減することができるコアセグメント、環状コイルコア及び環状コイルを提供することを目的とする。   The present invention has been made in order to solve the above-described problems, and has excellent heat dissipation while maintaining a desired magnetic performance, and can easily increase the number of windings of the conductive wire, and insulate the conductive wire at the time of winding. An object of the present invention is to provide a core segment, an annular coil core, and an annular coil that can reduce damage to the coating.

本発明に係るコアセグメントは、金属磁性粉末を非磁性バインダで結合して成形するか、または金属磁性体を成形して成り、絶縁被覆導線が巻きつけられる巻線部と、前記巻線部の長手方向両端にそれぞれ連続して形成され、前記導線が巻きつけられない非巻線部と、前記巻線部に巻きつけられた導線に通電したときに生成される磁束に交差する向きとなる、前記非巻線部の終端に形成された接合面と、を有することを特徴とする。   The core segment according to the present invention is formed by bonding metal magnetic powder with a non-magnetic binder, or by forming a metal magnetic body, and a winding portion around which an insulation coated conductor is wound, It is formed continuously at both ends in the longitudinal direction, and the non-winding portion where the conducting wire is not wound, and the direction that intersects the magnetic flux generated when the conducting wire wound around the winding portion is energized, And a joining surface formed at a terminal end of the non-winding portion.

本発明に係る環状コイルコアは、金属磁性粉末を非磁性バインダで結合して成形するか、または金属磁性体を成形して成り、絶縁被覆導線が巻きつけられる第1の巻線部と、前記第1の巻線部の長手方向両端にそれぞれ連続し、前記導線が巻きつけられない第1の非巻線部と、前記第1の巻線部に巻きつけられた導線に通電したときに生成される磁束に交差する向きとなる、前記第1の非巻線部の終端に形成された第1の接合面と、を有する第1のコアセグメントと、金属磁性粉末を非磁性バインダで結合して成形するか、または金属磁性体を成形して成り、絶縁被覆導線が巻きつけられる第2の巻線部と、前記第2の巻線部の長手方向両端にそれぞれ連続し、前記導線が巻きつけられない第2の非巻線部と、前記第1の接合面と対向して配置され、前記第2の巻線部に巻きつけられた導線に通電したときに生成される磁束に交差する向きとなる、前記第2の非巻線部の終端に形成された第2の接合面と、を有する第2のコアセグメントと、を有することを特徴とする。   The annular coil core according to the present invention is formed by combining metallic magnetic powder with a nonmagnetic binder or molding a metallic magnetic body, and the first winding portion around which the insulation coated conductor is wound, It is generated when energized to the first non-winding portion where the conducting wire is not wound and the conducting wire wound around the first winding portion, which are respectively continuous at both ends in the longitudinal direction of one winding portion. A first core segment having a first joint surface formed at a terminal end of the first non-winding portion, which is in a direction intersecting with a magnetic flux, and a metal magnetic powder coupled with a non-magnetic binder. Formed or formed by molding a metal magnetic body, the second winding portion around which the insulation-coated conductor wire is wound, and the longitudinal ends of the second winding portion, which are continuous with each other, and the conductor wire is wound around The second non-winding portion that is not provided and the first non-winding portion facing the first joint surface. And a second joint surface formed at the end of the second non-winding portion, which is in a direction intersecting with the magnetic flux generated when the conducting wire wound around the second winding portion is energized And a second core segment.

本発明に係る環状コイルは、絶縁被覆導線と、金属磁性粉末を非磁性バインダで結合して成形するか、または金属磁性体を成形して成り、前記絶縁被覆導線が巻きつけられる第1の巻線部と、前記第1の巻線部の長手方向両端にそれぞれ連続し、前記導線が巻きつけられない第1の非巻線部と、前記第1の巻線部に巻きつけられた導線に通電したときに生成される磁束に交差する向きとなる、前記第1の非巻線部の終端に形成された第1の接合面と、を有する第1のコアセグメントと、金属磁性粉末を非磁性バインダで結合して成形するか、または金属磁性体を成形して成り、前記絶縁被覆導線が巻きつけられる第2の巻線部と、前記第2の巻線部の長手方向両端にそれぞれ連続し、前記導線が巻きつけられない第2の非巻線部と、前記第1の接合面と対向して配置され、前記第2の巻線部に巻きつけられた導線に通電したときに生成される磁束に交差する向きとなる、前記第2の非巻線部の終端に形成された第2の接合面と、を有する第2のコアセグメントと、を有することを特徴とする。   The annular coil according to the present invention is formed by combining an insulation-coated conductor and a metal magnetic powder with a nonmagnetic binder, or by molding a metal magnetic body, and the first coil around which the insulation-coated conductor is wound. A wire portion, a first non-winding portion that is continuous to each longitudinal end of the first winding portion, and the conductive wire is not wound thereon, and a conductive wire wound around the first winding portion. A first core segment having a first joint surface formed at a terminal end of the first non-winding portion, which is in a direction intersecting with a magnetic flux generated when energized, and a non-metallic magnetic powder. It is formed by bonding with a magnetic binder or by molding a metal magnetic body, and is continuous to both ends in the longitudinal direction of the second winding portion around which the insulation-coated conductive wire is wound. A second non-winding portion around which the conducting wire is not wound, and the first Formed at the end of the second non-winding part, which is arranged opposite to the joint surface and is in a direction crossing the magnetic flux generated when the conducting wire wound around the second winding part is energized And a second core segment having a second joining surface.

本発明のコアセグメントは、導線を狭い間隙に通すことなくコア巻線部周囲の自由空間を利用してコア巻線部に巻きつけることができるため、線径が太い導線であってもコアの表面に密着した状態で導線を巻きつけることができる(図7)。このため、巻線に生じた熱がコアに伝わりやすくなり、コアを通して非巻線部から熱を外部に逃がすことができ、コイル全体としての放熱性能が大幅に向上する。   Since the core segment of the present invention can be wound around the core winding portion by utilizing the free space around the core winding portion without passing the conducting wire through a narrow gap, even if the lead wire has a large wire diameter, A conducting wire can be wound in close contact with the surface (FIG. 7). For this reason, heat generated in the winding is easily transmitted to the core, heat can be released from the non-winding portion through the core to the outside, and the heat dissipation performance of the entire coil is greatly improved.

本発明によれば、従来のトロイダルコイル中央スペースへの巻線の集中(図8)が解消され、コアに巻きつける導線の巻き数を増やすことができる(図2)ため、インダクタンスを増大化することが容易になる。また、同じ巻き数であれば、本発明品は従来品に比べてコイルの厚みを更に薄くすることができる。   According to the present invention, the concentration of windings in the conventional toroidal coil central space (FIG. 8) is eliminated, and the number of turns of the conductor wound around the core can be increased (FIG. 2), thereby increasing the inductance. It becomes easy. Further, if the number of turns is the same, the product of the present invention can further reduce the thickness of the coil as compared with the conventional product.

また、本発明によれば、導線を狭い間隙に通すことなくコア巻線部周囲の自由空間を利用してコア巻線部に巻きつけることができることから、導線に過大な繰返し屈曲力が負荷されなくなり、特別に剥離しにくい絶縁被膜で被覆された高価な導線の代わりに汎用の一般的な絶縁被膜で被覆された安価な導線を用いることができるようになるというメリットがある。   In addition, according to the present invention, since the conducting wire can be wound around the core winding portion using the free space around the core winding portion without passing through a narrow gap, an excessive repeated bending force is applied to the conducting wire. There is an advantage that an inexpensive conductive wire covered with a general-purpose general insulating coating can be used instead of an expensive conductive wire coated with an insulating coating that is not easily peeled off.

本発明の実施形態に係るコイルを示す斜視図。The perspective view which shows the coil which concerns on embodiment of this invention. 本発明の実施形態に係るコイルを示す平面図。The top view which shows the coil which concerns on embodiment of this invention. (a)〜(d)は他の実施形態のコイルコアをそれぞれ示す図。(A)-(d) is a figure which shows the coil core of other embodiment, respectively. (a)は実施形態のコアセグメントを示す図、(b)は実施形態のコアセグメントを示す断面図、(c)は他の実施形態のコアセグメントを示す断面図、(d)は他の実施形態のコアセグメントを示す断面図。(A) is a figure which shows the core segment of embodiment, (b) is sectional drawing which shows the core segment of embodiment, (c) is sectional drawing which shows the core segment of other embodiment, (d) is other implementation. Sectional drawing which shows the core segment of form. (a)は実施形態のコイルを示す図、(b)は他の実施形態のコイルを示す図、(c)は比較例のコイルを示す図。(A) is a figure which shows the coil of embodiment, (b) is a figure which shows the coil of other embodiment, (c) is a figure which shows the coil of a comparative example. コイル電流とインダクタンスとギャップGとの相関を示す特性線図。The characteristic diagram which shows the correlation with a coil electric current, an inductance, and the gap G. FIG. 本発明のコイルコアと巻線との接触状態を示す断面図。Sectional drawing which shows the contact state of the coil core and winding | winding of this invention. 従来のトロイダルコイルを示す図。The figure which shows the conventional toroidal coil. 従来のトロイダルコアと巻線との接触状態を示す断面図。Sectional drawing which shows the contact state of the conventional toroidal core and a coil | winding.

以下、本発明の種々の好ましい実施の形態について説明する。   Hereinafter, various preferred embodiments of the present invention will be described.

(1)本発明のコアセグメントは、金属磁性粉末を非磁性バインダで結合して成形するか、または金属磁性体を成形して成り、絶縁被覆導線が巻きつけられる巻線部と、前記巻線部の長手方向両端にそれぞれ連続して形成され、前記導線が巻きつけられない非巻線部と、前記巻線部に巻きつけられた導線に通電したときに生成される磁束に交差する向きとなる、前記非巻線部の終端に形成された接合面と、を有している。   (1) The core segment of the present invention is formed by combining metallic magnetic powder with a nonmagnetic binder or molding a metallic magnetic body, and a winding portion around which an insulation-coated conductive wire is wound, and the winding A non-winding portion that is continuously formed at both ends in the longitudinal direction of the portion, and on which the conducting wire is not wound, and a direction that intersects the magnetic flux generated when the conducting wire wound on the winding portion is energized And a joining surface formed at the end of the non-winding portion.

本発明によれば、導線を狭い間隙に通すことなくコア巻線部周囲の自由空間を利用して巻線部に巻きつけることができるため、太い導線であってもコアの表面に密着した状態で導線を巻きつけることができる(図7)。このため、巻線からコアに熱が伝わりやすくなり、コアを通して巻線から熱を外部に効率よく逃がすことができ、コイル全体の放熱性能が向上する。   According to the present invention, since the conductor can be wound around the winding portion using the free space around the core winding portion without passing through a narrow gap, even a thick conductor is in close contact with the surface of the core The conductor can be wound with (FIG. 7). For this reason, heat is easily transmitted from the winding to the core, heat can be efficiently released from the winding through the core to the outside, and the heat dissipation performance of the entire coil is improved.

また、本発明では、接合面を含む非巻線部に導線が巻きつけられないため、継ぎ目またはギャップから漏れ出した磁束が導線まで到達せず、磁束が渦電流を誘起することなく損失が発生しない。   Further, in the present invention, since the conducting wire is not wound around the non-winding portion including the joint surface, the magnetic flux leaking from the joint or gap does not reach the conducting wire, and the magnetic flux generates a loss without inducing eddy current. do not do.

金属磁性粉として、純鉄粉、Fe-Si合金粉(3-8質量%のSi含有)、Fe-Si-Al合金粉(センダスト)、Fe-Ni合金粉、Mn-Zn系フェライト粉、Ni-Zn系フェライト粉を用いることができる。またはこれらのアモルファス粉、またはこれらのナノ結晶粉を用いてもよい。また、金属磁性体として、珪素鋼板、または珪素鋼アモルファスリボンを用いることができる。   As metal magnetic powder, pure iron powder, Fe-Si alloy powder (containing 3-8 mass% Si), Fe-Si-Al alloy powder (Sendust), Fe-Ni alloy powder, Mn-Zn ferrite powder, Ni -Zn-based ferrite powder can be used. Alternatively, these amorphous powders or these nanocrystal powders may be used. Moreover, a silicon steel plate or a silicon steel amorphous ribbon can be used as the metal magnetic body.

(2)(1)において、非巻線部が巻線部に対して変曲していることが好ましい(図1、図2、図3(a)(b)、図4(a)、図5(a)(b))。このように非巻線部を変曲させた2つのコアセグメントにそれぞれ導線を巻きつけ、これらを向き合わせて互いの接合面を合わせて接合すると、コアの形状が環状に整い、従来のトロイダルコアと同様に環状の閉磁路をつくりだすことができる。接合面には導線が巻きつけられていないため、接合面から発生した漏れ磁束は導線まで到達せず、磁束が渦電流を誘起することなく損失が発生しない。   (2) In (1), it is preferable that the non-winding part is inflected with respect to the winding part (FIGS. 1, 2, 3A, 4B, 4A), FIG. 5 (a) (b)). When the conductors are wound around the two core segments whose non-winding portions are inflected in this way, facing each other and joining each other with the joint surfaces, the shape of the core is arranged in an annular shape, and the conventional toroidal core An annular closed magnetic circuit can be created in the same manner as in FIG. Since no conducting wire is wound around the joining surface, the leakage magnetic flux generated from the joining surface does not reach the conducting wire, and the magnetic flux does not induce an eddy current and no loss occurs.

(3)(1)において、巻線部を真っ直ぐにすることが好ましい(図1、図2、図3(a)、(c)(d)、図5(a))。このように巻線部を真っ直ぐにした2つのコアセグメントにそれぞれ導線を巻きつけることで、コアの表面への導線の密着度が高まる。このため、巻線に生じた熱がコアに伝わりやすくなり、コアを通して非巻線部から熱を外部に逃がすことができ、コイル全体としての放熱性能が大幅に向上する。   (3) In (1), it is preferable to make the winding portion straight (FIGS. 1, 2, 3A, 3C, 5D). Thus, the degree of adhesion of the conducting wire to the surface of the core is increased by winding the conducting wire around the two core segments each having the winding portion straightened. For this reason, heat generated in the winding is easily transmitted to the core, heat can be released from the non-winding portion through the core to the outside, and the heat dissipation performance of the entire coil is greatly improved.

(4)(1)において、巻線部を湾曲させるようにしてもよい(図3(b)、図5(b))。巻線部を湾曲させると、導線のコア表面への密着度は、巻線部が真っ直ぐなものと比較して劣り、それに伴いコイルの放熱性能も劣る。しかし、本発明では、コア巻線部周囲の自由空間を利用してコア巻線部に導線を巻きつけることができるため、従来品(トロイダルコイル)と比べて導線の巻き数の増加やコイル厚みの薄型化を実現することができる。   (4) In (1), the winding portion may be curved (FIG. 3 (b), FIG. 5 (b)). When the winding part is curved, the degree of adhesion of the conducting wire to the core surface is inferior to that of the straight winding part, and the heat dissipation performance of the coil is also inferior. However, in the present invention, since the conductive wire can be wound around the core winding portion using the free space around the core winding portion, the number of windings of the conductive wire and the coil thickness are increased compared to the conventional product (toroidal coil). Can be made thinner.

(5)(1)において、巻線部の長さL4を非巻線部の長さL3よりも長くすることが好ましい(図2)。巻線部の長さL4を長くすればするほど導線の巻き数が増えるため、インダクタンスLが増加する。   (5) In (1), it is preferable to make the length L4 of the winding part longer than the length L3 of the non-winding part (FIG. 2). As the length L4 of the winding portion is increased, the number of windings of the conducting wire is increased, so that the inductance L is increased.

(6)(1)において、巻線部を被覆して電気的に絶縁する電気絶縁被膜をさらに有することが望ましい(図2)。本発明では、巻線部の周面を電気絶縁被膜で被覆しているため、巻線部に導線を巻きつける時に万が一つに導線の絶縁被膜が損傷したとしても、コア磁性体と絶縁被膜が損傷した導線との接触によるレアショートを抑制することができる。巻線部を被覆する電気絶縁被膜を形成する電気絶縁体として、エポキシやウレタンのような樹脂を含む塗料、エポキシやポリエステルのような樹脂を含むテープ、シリコーン、ポリビニルアルコール、水ガラスのいずれかを塗布した塗布膜、ポリオレフィンやポリ塩化ビニル(PVC)のような熱収縮チューブ、PETのような樹脂を含むケースのいずれかを用いることができる。ただし、継ぎ目またはギャップを構成する接合面は、絶縁被膜で覆ってはならない。接合面に絶縁体が無いことで接合面で磁性体同士が接触するためにギャップ幅は抑制され、インダクタンスの低下を最小限に抑えることができる。換言すると、接合面を電気絶縁被膜で覆うと、接合面間に挟まれた電気絶縁被膜が実質的にギャップとなり、インダクタンスを低下させる。本発明では接合面に電気絶縁被膜が無いことから、意図的に環状コイルにギャップを形成することになる。すなわち、コイルの磁気特性をコントロールしたい場合にはギャップ長を細かく設定することができ、コイルのロット間の特性のばらつきを抑制することが可能になる。なお、非巻線部は電気絶縁被膜で覆わないほうが、放熱性が損なわれない。しかし、非巻線部を電気絶縁被膜で覆うようにしてもよい。   (6) In (1), it is desirable to further have an electrical insulating coating that covers and electrically insulates the winding portion (FIG. 2). In the present invention, since the peripheral surface of the winding portion is covered with the electrical insulation film, even if the insulation film of the conductive wire is damaged by any chance when the conductive wire is wound around the winding portion, the core magnetic body and the insulation coating are formed. Rare shorts due to contact with damaged conductors can be suppressed. As an electrical insulator that forms an electrical insulation film covering the winding part, either a paint containing a resin such as epoxy or urethane, a tape containing a resin such as epoxy or polyester, silicone, polyvinyl alcohol, or water glass is used. Any of a coated film, a heat shrinkable tube such as polyolefin or polyvinyl chloride (PVC), or a case containing a resin such as PET can be used. However, the joint surface constituting the joint or gap must not be covered with an insulating film. Since there is no insulator on the joint surface, the magnetic bodies come into contact with each other on the joint surface, so that the gap width is suppressed and a decrease in inductance can be minimized. In other words, when the bonding surface is covered with the electric insulating film, the electric insulating film sandwiched between the bonding surfaces substantially becomes a gap, and the inductance is reduced. In the present invention, since there is no electrical insulating coating on the joint surface, a gap is intentionally formed in the annular coil. That is, when it is desired to control the magnetic characteristics of the coil, the gap length can be set finely, and variations in characteristics between coil lots can be suppressed. Note that heat dissipation is not impaired unless the non-winding portion is covered with an electrically insulating coating. However, the non-winding portion may be covered with an electrical insulating coating.

(7)本発明の環状コイルコアは、金属磁性粉末を非磁性バインダで結合して成形するか、または金属磁性体を成形して成り、絶縁被覆導線が巻きつけられる第1の巻線部と、前記第1の巻線部の長手方向両端にそれぞれ連続して形成され、前記導線が巻きつけられない第1の非巻線部と、前記第1の巻線部に巻きつけられた導線に通電したときに生成される磁束に交差する向きとなる、前記第1の非巻線部の終端に形成された第1の接合面と、を有する第1のコアセグメントと、
金属磁性粉末を非磁性バインダで結合して成形するか、または金属磁性体を成形して成り、絶縁被覆導線が巻きつけられる第2の巻線部と、前記第2の巻線部の長手方向両端にそれぞれ連続して形成され、前記導線が巻きつけられない第2の非巻線部と、前記第1の接合面と対向して配置され、前記第2の巻線部に巻きつけられた導線に通電したときに生成される磁束に交差する向きとなる、前記第2の非巻線部の終端に形成された第2の接合面と、を有する第2のコアセグメントと、を有する。
(7) The annular coil core of the present invention is formed by combining metal magnetic powder with a nonmagnetic binder or molding a metal magnetic body, and a first winding portion around which an insulation coated conductor is wound, A first non-winding portion that is formed continuously at both ends in the longitudinal direction of the first winding portion and the conductive wire is not wound thereon, and a conductive wire wound around the first winding portion is energized. A first core segment having a first joint surface formed at a terminal end of the first non-winding portion, the first core segment being in a direction intersecting with the magnetic flux generated when
A metal magnetic powder is formed by bonding with a non-magnetic binder, or a metal magnetic material is formed, and a second winding portion around which an insulation coated conductor is wound, and a longitudinal direction of the second winding portion A second non-winding portion that is formed continuously at both ends, the conductive wire is not wound thereon, and is disposed to face the first joint surface, and is wound around the second winding portion. A second core segment having a second joint surface formed at a terminal end of the second non-winding portion, which has a direction intersecting with the magnetic flux generated when the conducting wire is energized.

(8)本発明の環状コイルは、絶縁被覆導線と、金属磁性粉末を非磁性バインダで結合して成形するか、または金属磁性体を成形して成り、前記絶縁被覆導線が巻きつけられる第1の巻線部と、前記第1の巻線部の長手方向両端にそれぞれ連続して形成され、前記導線が巻きつけられない第1の非巻線部と、前記第1の巻線部に巻きつけられた導線に通電したときに生成される磁束に交差する向きとなる、前記第1の非巻線部の終端に形成された第1の接合面と、を有する第1のコアセグメントと、
金属磁性粉末を非磁性バインダで結合して成形するか、または金属磁性体を成形して成り、前記絶縁被覆導線が巻きつけられる第2の巻線部と、前記第2の巻線部の長手方向両端にそれぞれ連続して形成され、前記導線が巻きつけられない第2の非巻線部と、前記第1の接合面と対向して配置され、前記第2の巻線部に巻きつけられた導線に通電したときに生成される磁束に交差する向きとなる、前記第2の非巻線部の終端に形成された第2の接合面と、を有する第2のコアセグメントと、を有する。
(8) The annular coil of the present invention is formed by combining an insulation-coated conductor and a metal magnetic powder with a nonmagnetic binder or molding a metal magnetic body, and the first coil around which the insulation-coated conductor is wound. Winding portions, a first non-winding portion that is continuously formed at both ends in the longitudinal direction of the first winding portion, and the conductive wire is not wound thereon, and is wound around the first winding portion. A first core segment having a first joint surface formed at a terminal end of the first non-winding portion, the first core surface being in a direction crossing a magnetic flux generated when the attached conductive wire is energized;
A metal magnetic powder is formed by bonding with a non-magnetic binder, or a metal magnetic material is formed, and a second winding portion around which the insulation-coated conductive wire is wound, and a length of the second winding portion A second non-winding portion that is formed continuously at both ends in the direction and on which the conductive wire is not wound, and is disposed to face the first joint surface, and is wound around the second winding portion. A second core segment having a second joint surface formed at the end of the second non-winding portion, the second core segment being in a direction intersecting with the magnetic flux generated when the conducting wire is energized. .

本発明によれば、上記(1)の発明と同様に、導線を狭い間隙に通すことなくコア巻線部周囲の自由空間を利用して巻線部に巻きつけることができるため、太い導線であってもコアの表面に密着した状態で導線を巻きつけることができる(図7)。このため、巻線からコアに熱が伝わりやすくなり、コアを通して非巻線部から熱を外部に効率よく逃がすことができ、コイル全体の放熱性能が向上する。   According to the present invention, similar to the invention of (1) above, since the conducting wire can be wound around the winding portion using the free space around the core winding portion without passing through a narrow gap, Even if it exists, a conducting wire can be wound in the state closely_contact | adhered to the surface of the core (FIG. 7). For this reason, heat is easily transferred from the winding to the core, heat can be efficiently released from the non-winding portion through the core to the outside, and the heat dissipation performance of the entire coil is improved.

(9)(8)において、第1の接合面と第2の接合面とが接着されていることが好ましい(図2)。第1及び第2の接合面を接着すると、磁気的には従来のトロイダルコイルに近似したものになり、インダクタンスなどの磁気特性の面では従来のトロイダルコイルと比べて遜色なく(図6の特性線AとB)、放熱性の面では従来のトロイダルコイルよりも優れたものとなる。   (9) In (8), it is preferable that the first bonding surface and the second bonding surface are bonded (FIG. 2). When the first and second joint surfaces are bonded, they are magnetically similar to a conventional toroidal coil, and in terms of magnetic characteristics such as inductance, are comparable to conventional toroidal coils (characteristic line in FIG. 6). A and B) are superior to conventional toroidal coils in terms of heat dissipation.

(10)(8)において、第1の接合面と第2の接合面との間にギャップGを設けるようにしてもよい(図1、図6)。コイルに直流電流を加え、ある電流値を超えると磁気飽和により透磁率μは小さくなる(図6の特性線A、B)。ギャップGを設けると磁気抵抗が大きくなるので磁気飽和を起こすまでには大きな電流を必要とすることから、電流値が大きくなっても透磁率μはほぼ一定の範囲内に安定する(図6の特性線C、D、E)。このため大電流が流れるスイッチング電源回路のノイズ防止用フィルタなどに適したものになる。   (10) In (8), a gap G may be provided between the first joint surface and the second joint surface (FIGS. 1 and 6). When a direct current is applied to the coil and exceeds a certain current value, the magnetic permeability μ decreases due to magnetic saturation (characteristic lines A and B in FIG. 6). When the gap G is provided, the magnetic resistance increases, and a large current is required until magnetic saturation occurs. Therefore, even if the current value increases, the magnetic permeability μ is stabilized within a substantially constant range (see FIG. 6). Characteristic lines C, D, E). Therefore, it becomes suitable for a noise prevention filter of a switching power supply circuit through which a large current flows.

(11)(8)において、非巻線部の長さL3と導線の直径d1,d2と導線の巻きつけ層数m1,m2との関係が下式(1)を満たすことが好ましい。   (11) In (8), it is preferable that the relationship between the length L3 of the non-winding portion, the diameters d1 and d2 of the conductive wire, and the number of layers m1 and m2 of the conductive wire satisfy the following formula (1).

L3>d1・m1+d2・m2 …(1)
但し、L3:前記第1及び第2の非巻線部の長さ
d1:前記第1の巻線部に巻きつけられた導線の直径
d2:前記第2の巻線部に巻きつけられた導線の直径
m1:前記第1の巻線部への導線の巻きつけ層数
m2:前記第2の巻線部への導線の巻きつけ層数
第1及び第2の巻線部への導線の巻きつけ層数m1,m2が増えると、式(1)の右項の巻線厚さ(d1・m1+d2・m2)が大きくなり、中央スペース9が狭まる。中央スペース9がゼロになると、第1及び第2の巻線部に巻かれた巻線の背中と背中が接触して放熱性能が阻害されるようになり、過熱状態を招来することとなる。
L3> d1 · m1 + d2 · m2 (1)
However, L3: Length of said 1st and 2nd non-winding part d1: Diameter of conducting wire wound around said 1st winding part d2: Conducting wire wound around said 2nd winding part Diameter m1: number of winding layers of the conductive wire around the first winding portion m2: number of winding layers of the conductive wire around the second winding portion Winding of the conductive wire around the first and second winding portions As the number of applied layers m1 and m2 increases, the winding thickness (d1 · m1 + d2 · m2) in the right term of the equation (1) increases and the central space 9 decreases. When the central space 9 becomes zero, the back and back of the windings wound around the first and second winding portions come into contact with each other and the heat dissipation performance is hindered, leading to an overheating state.

(12)(8)において、非巻線部が巻線部に対して変曲していることが好ましい(図1、図2、図3(a)(b)、図4(a)、図5(a)(b))。このように非巻線部を変曲させると、コアの形状が環状に整い、従来のトロイダルコアと同様に環状の閉磁路をつくりだすことができる。接合面には導線が巻きつけられていないため、接合面から発生した漏れ磁束は導線まで到達せず、磁束が渦電流を誘起することなく損失が発生しない。   (12) In (8), it is preferable that the non-winding part bends with respect to the winding part (FIGS. 1, 2, 3A, 4B, 4A), FIG. 5 (a) (b)). When the non-winding portion is bent in this manner, the shape of the core is arranged in an annular shape, and an annular closed magnetic circuit can be created as in the conventional toroidal core. Since no conducting wire is wound around the joining surface, the leakage magnetic flux generated from the joining surface does not reach the conducting wire, and the magnetic flux does not induce an eddy current and no loss occurs.

(13)(8)において、巻線部を真っ直ぐにすることが好ましい(図1、図2、図3(a)、(c)(d)、図5(a))。このように巻線部を真っ直ぐにした2つのコアセグメントにそれぞれ導線を巻きつけることで、コアの表面への導線の密着度が高まる。このため、巻線に生じた熱がコアに伝わりやすくなり、コアを通して非巻線部から熱を外部に逃がすことができ、コイル全体としての放熱性能が大幅に向上する。   (13) In (8), it is preferable to make the winding portion straight (FIGS. 1, 2, 3A, 3C, 5D). Thus, the degree of adhesion of the conducting wire to the surface of the core is increased by winding the conducting wire around the two core segments each having the winding portion straightened. For this reason, heat generated in the winding is easily transmitted to the core, heat can be released from the non-winding portion through the core to the outside, and the heat dissipation performance of the entire coil is greatly improved.

(14)(8)において、巻線部を湾曲させるようにしてもよい(図3(b)、図5(b))。巻線部を湾曲させると、導線のコア表面への密着度は、巻線部が真っ直ぐなものと比較して劣り、それに伴いコイルの放熱性能も劣る。しかし、本発明では、コア巻線部周囲の自由空間を利用してコア巻線部に導線を巻きつけることができるため、従来品(トロイダルコイル)と比べて導線の巻き数の増加やコイル厚みの薄型化を実現することができる。   (14) In (8), the winding portion may be curved (FIGS. 3B and 5B). When the winding part is curved, the degree of adhesion of the conducting wire to the core surface is inferior to that of the straight winding part, and the heat dissipation performance of the coil is also inferior. However, in the present invention, since the conductive wire can be wound around the core winding portion using the free space around the core winding portion, the number of windings of the conductive wire and the coil thickness are increased compared to the conventional product (toroidal coil). Can be made thinner.

(15)(8)において、巻線部の長さL4を非巻線部の長さL3よりも長くすることが好ましい(図2)。   (15) In (8), it is preferable that the length L4 of the winding portion is longer than the length L3 of the non-winding portion (FIG. 2).

巻線部の長さL4を長くすればするほど導線の巻き数が増えるので、インダクタンスLが増加する。電源回路にコイルを組み込む方式として台座支持方式がある。台座支持方式ではコイルの一端部を台座に保持させ、コイルが縦置き姿勢になるように台座を回路基板(ボード)上に取り付ける。しかし、最近のスイッチング電源回路では、大電流にも対応できるようにするために、台座支持方式の代わりに、コイルを回路基板上に横置きする設計が増えてきている。コイルを横置きすれば巻線部をいくらでも長くでき、インダクタンスLを好きなだけ大きくすることができるからである。   As the length L4 of the winding portion is increased, the number of windings of the conducting wire is increased, so that the inductance L is increased. There is a pedestal support method as a method of incorporating a coil in a power supply circuit. In the pedestal support method, one end of the coil is held on the pedestal, and the pedestal is mounted on a circuit board (board) so that the coil is in a vertically placed posture. However, in recent switching power supply circuits, in order to be able to cope with a large current, instead of the pedestal support system, a design in which a coil is placed on a circuit board is increasing. This is because if the coil is placed horizontally, the winding portion can be made as long as possible and the inductance L can be increased as much as desired.

ところで、コイルを横置きにすると、コイルから熱が逃げにくくなり、コイル温度が上昇しやすくなるという問題がある。とくに従来のトロイダルコイルは図8と図9に示したように放熱性が劣っているので、コイルが過熱状態となり、故障しやすい。しかし、本発明のコイルは、図2と図7に示したように放熱性を向上させているので、コイルを横置きにした場合であってもコイルが過熱状態にならず、故障しない。   By the way, when the coil is placed horizontally, it is difficult for heat to escape from the coil, and the coil temperature tends to rise. In particular, the conventional toroidal coil is inferior in heat dissipation as shown in FIG. 8 and FIG. 9, so that the coil becomes overheated and easily breaks down. However, since the coil of the present invention has improved heat dissipation as shown in FIGS. 2 and 7, even if the coil is placed horizontally, the coil is not overheated and does not fail.

(16)(8)において、巻線部を被覆して電気的に絶縁する絶縁被膜をさらに有することが望ましい(図2)。本発明では、巻線部の周面を絶縁被膜で被覆しているため、巻線部に導線を巻きつける時に万が一つに導線の絶縁被膜が損傷したとしても、コア磁性体と絶縁被膜が損傷した導線との接触によるレアショートを抑制することができる。   (16) In (8), it is desirable to further have an insulating film that covers and electrically insulates the winding portion (FIG. 2). In the present invention, since the peripheral surface of the winding part is covered with the insulating film, even if the insulating film of the conductive wire is damaged by any chance when the conductive wire is wound around the winding part, the core magnetic body and the insulating film are damaged. Rare short-circuiting due to contact with the conducting wire can be suppressed.

以下、添付の図面を参照して本発明を実施するための好ましい形態を説明する。   Hereinafter, preferred embodiments for carrying out the present invention will be described with reference to the accompanying drawings.

先ず図1と図2を参照して最も好ましい実施の形態の環状コイルを説明する。   First, the annular coil according to the most preferred embodiment will be described with reference to FIGS.

本実施形態の環状コイル2は、図中のZ軸に対してほぼ軸対称な1対のコイルアッセンブリ2a,2bを組み合わせて成るものである。一方側のコイルアッセンブリ2aは、X−Z平面視野内で略C字状の形状に成形されたコアセグメント3aと、このコアセグメント3aの巻線部5aにらせん状に巻きつけられた絶縁被覆導線4aとを備えている。他方側のコイルアッセンブリ2bは、X−Z平面視野内で逆C字状に形成されたコアセグメント3bと、このコアセグメント3bの巻線部5bに巻きつけられた絶縁被覆導線4bとを備えている。両コアセグメント3a,3bは、例えばFe-9% Si-5% Al合金粉(センダスト)のような軟磁性粉末を非磁性バインダで結合させ、成形して成るものである。   The annular coil 2 of this embodiment is formed by combining a pair of coil assemblies 2a and 2b that are substantially axisymmetric with respect to the Z axis in the drawing. The coil assembly 2a on one side is composed of a core segment 3a formed in a substantially C shape within an XZ plane field of view, and an insulation-coated conductor wire spirally wound around the winding portion 5a of the core segment 3a 4a. The coil assembly 2b on the other side includes a core segment 3b formed in an inverted C shape within the XZ plane field of view, and an insulation coated conductor 4b wound around the winding portion 5b of the core segment 3b. Yes. Both core segments 3a and 3b are formed by bonding soft magnetic powder such as Fe-9% Si-5% Al alloy powder (Sendust) with a nonmagnetic binder and molding.

絶縁被覆導線4a,4bは、絶縁性の被膜で覆われた純Cu線である。具体的には、導線の絶縁性被膜は、ポリウレタンやポリエステルなどからなる。本実施形態では、導線4a,4bを狭い間隙に通すことなくコア巻線部5a周囲の自由空間を利用して導線4a,4bを巻線部5aに巻きつけることができることから、絶縁性被膜の膜厚が薄いものを利用することができ、トロイダルコイルに巻回される従来の難剥離性被覆の導線に比べて安価である。   The insulation-coated conductive wires 4a and 4b are pure Cu wires covered with an insulating film. Specifically, the insulating film of the conductive wire is made of polyurethane, polyester, or the like. In this embodiment, since the conducting wires 4a and 4b can be wound around the winding portion 5a using the free space around the core winding portion 5a without passing the conducting wires 4a and 4b through a narrow gap, A thin film can be used, and is cheaper than a conventional non-peelable coating wire wound around a toroidal coil.

本実施形態において一方側のコアセグメント3aと他方側のコアセグメント3bとは実質的に同じ構成であるので、以下、両者を代表して一方側のコアセグメント3aのみを説明する。   In the present embodiment, the core segment 3a on one side and the core segment 3b on the other side have substantially the same configuration. Therefore, only the core segment 3a on one side will be described below as a representative of both.

コアセグメント3aは、Z軸方向に延び出す巻線部5aと、この巻線部5aの両端に連続して一体成形され、巻線部5aの長手軸(Z軸)に対してほぼ直交する向き(X軸方向)に変曲する非巻線部6aと、この非巻線部6aの端部を成す接合面7aと、を有する。非巻線部6aの長さは、巻線部5aの長さと比べて短い。例えば、巻線部5aの長さと非巻線部6aの長さの比は2:1〜10:1の範囲とすることが望ましい。両者の長さ比が2:1を下回ると、環状コイルの磁路長L7(図2中のコア中心線長さ)が長くなるためインダクタンスLが低下する。さらに非巻線部6a,6bの占める割合が大きくなることから、環状コイルの小型化の要請に反することになる。巻線部5aの長さの割合を大きくするほどコアセグメントの巻線部の長さは長くなり、巻線数を増加させてインダクタンスLを増加させることができるが、一方、この長さ比が10:1を超えると、インダクタンスLとコアロスとのバランスがとりにくくなる。   The core segment 3a is integrally formed with a winding portion 5a extending in the Z-axis direction and continuously at both ends of the winding portion 5a, and is substantially orthogonal to the longitudinal axis (Z-axis) of the winding portion 5a. A non-winding portion 6a that bends in the (X-axis direction) and a joint surface 7a that forms an end of the non-winding portion 6a. The length of the non-winding portion 6a is shorter than the length of the winding portion 5a. For example, it is desirable that the ratio of the length of the winding portion 5a and the length of the non-winding portion 6a be in the range of 2: 1 to 10: 1. If the length ratio between the two is less than 2: 1, the magnetic path length L7 of the annular coil (the length of the core center line in FIG. 2) becomes longer, and the inductance L decreases. Furthermore, since the ratio occupied by the non-winding portions 6a and 6b is increased, it is against the request for downsizing the annular coil. As the proportion of the length of the winding portion 5a is increased, the length of the winding portion of the core segment is increased, and the inductance L can be increased by increasing the number of windings. When it exceeds 10: 1, it becomes difficult to balance the inductance L and the core loss.

さらに、コアセグメントの巻線部5aの周面が電気絶縁被膜11で被覆されている。電気絶縁被膜11で巻線部5aと非巻線部6aを覆うことにより、巻線部5aに導線4aを巻きつける時に万が一つに導線4aの絶縁被膜が損傷したとしても、コア磁性体と絶縁被膜が損傷した導線4aとの接触によるレアショートが抑制される。電気絶縁被膜11を形成する電気絶縁体として、エポキシやウレタンのような樹脂を含む塗料、エポキシやポリエステルのような樹脂を含むテープ、シリコーン、ポリビニルアルコール、水ガラスのいずれかを塗布した塗布膜、ポリオレフィンやポリ塩化ビニル(PVC)のような熱収縮チューブ、PETのような樹脂を含むケースのいずれかを用いることができる。ただし、継ぎ目またはギャップを構成する接合面7a,7bは、電気絶縁被膜で覆ってはならない。接合面に絶縁体が無いことで接合面で磁性体同士が接触するためにギャップ幅は抑制され、インダクタンスの低下を最小限に抑えることができる。換言すると、接合面を電気絶縁被膜で覆うと、接合面間に挟まれた電気絶縁被膜が実質的にギャップとなり、インダクタンスを低下させる。本発明では接合面に電気絶縁被膜が無いことから、意図的に環状コイルにギャップを形成することになる。すなわち、コイルの磁気特性をコントロールしたい場合にはギャップ長を細かく設定することができ、コイルのロット間の特性のばらつきを抑制することが可能になる。   Further, the peripheral surface of the winding portion 5 a of the core segment is covered with the electrical insulating coating 11. By covering the winding portion 5a and the non-winding portion 6a with the electrical insulating coating 11, even if the insulating coating of the conducting wire 4a is damaged when the conducting wire 4a is wound around the winding portion 5a, it is insulated from the core magnetic body. Rare short-circuiting due to contact with the conductive wire 4a having a damaged coating is suppressed. As an electrical insulator for forming the electrical insulation film 11, a coating film containing a resin such as epoxy or urethane, a tape containing a resin such as epoxy or polyester, a coating film coated with any of silicone, polyvinyl alcohol, and water glass, Either a heat-shrinkable tube such as polyolefin or polyvinyl chloride (PVC) or a case containing a resin such as PET can be used. However, the joint surfaces 7a and 7b constituting the seam or gap must not be covered with an electrical insulating film. Since there is no insulator on the joint surface, the magnetic bodies come into contact with each other on the joint surface, so that the gap width is suppressed and a decrease in inductance can be minimized. In other words, when the bonding surface is covered with the electric insulating film, the electric insulating film sandwiched between the bonding surfaces substantially becomes a gap, and the inductance is reduced. In the present invention, since there is no electrical insulating coating on the joint surface, a gap is intentionally formed in the annular coil. That is, when it is desired to control the magnetic characteristics of the coil, the gap length can be set finely, and variations in characteristics between coil lots can be suppressed.

なお、本実施形態では、巻線部5a,5bのみを電気絶縁被膜11で覆い、非巻線部6a,6bのほうはコア磁性体が露出しているが、本発明はこれのみに限定されるものではなく巻線部5aと非巻線部6aの両方を電気絶縁被膜11で被覆する態様とすることもできる。   In the present embodiment, only the winding portions 5a and 5b are covered with the electric insulating film 11, and the core magnetic body is exposed in the non-winding portions 6a and 6b. However, the present invention is limited to this. It is also possible to adopt a mode in which both the winding portion 5a and the non-winding portion 6a are covered with the electrical insulating coating 11 instead of the one.

本実施形態の環状コイル2では、図1と図2に示すように環状コイルコア3a,3bの形状を矩形または略矩形状としている。しかし、本発明では環状コイルコアの形状をこれのみに限定するものではなく、例えば図3(a)に示す環状コイル3Aのように環状コイルコア3a,3bの形状を長円形状としてもよい。また、図3(b)に示す環状コイル3Bのように環状コイルコア3a,3bの形状を楕円形状としてもよい。   In the annular coil 2 of this embodiment, as shown in FIGS. 1 and 2, the annular coil cores 3a and 3b are rectangular or substantially rectangular. However, in the present invention, the shape of the annular coil core is not limited to this, and the shapes of the annular coil cores 3a and 3b may be oval, for example, as in the annular coil 3A shown in FIG. Further, like the annular coil 3B shown in FIG. 3B, the shapes of the annular coil cores 3a and 3b may be elliptical.

さらに、図3(c)に示す環状コイル3Cのように、一方のコアセグメント3aの形状と他方のコアセグメント3bの形状とを異ならせてもよい。すなわち、左右非対称のコアセグメント3aと3bを組み合わせて環状コイルコアを形成することができる。   Further, like the annular coil 3C shown in FIG. 3C, the shape of one core segment 3a may be different from the shape of the other core segment 3b. In other words, the annular coil core can be formed by combining the left and right asymmetric core segments 3a and 3b.

またさらに、図3(d)に示す環状コイル3Dのように、コアセグメント3a,3bは左右対称(軸対称)であるが、一方のコアセグメント3aの接合面71a,72aを非対称とし、他方のコアセグメント3bの接合面71b,72bをも非対称としてもよい。   Furthermore, as in the annular coil 3D shown in FIG. 3 (d), the core segments 3a and 3b are bilaterally symmetric (axisymmetric), but the joining surfaces 71a and 72a of one core segment 3a are asymmetric and the other The joint surfaces 71b and 72b of the core segment 3b may also be asymmetric.

本実施形態のコアセグメント3aでは、図4(b)に示すように接合面7aの形状を正方形に近い矩形状にしている。しかし、本発明では接合面の形状をこれのみに限定するものではなく、例えば図4(c)に示すように4つの角部に丸みを付けたコーナーR付け矩形としてもよいし、また、図4(d)に示すように楕円形状としてもよい。   In the core segment 3a of the present embodiment, as shown in FIG. 4B, the shape of the joint surface 7a is a rectangular shape close to a square. However, in the present invention, the shape of the joint surface is not limited to this. For example, as shown in FIG. 4 (c), it may be a rectangle with four corners with rounded corners. An elliptical shape may be used as shown in 4 (d).

本実施形態の環状コイル2では、図1と図2に示すように矩形状の環状コイルコア3a,3bにおいて両方の巻線部5a,5bに導線4a,4bを巻きつけている。しかし、本発明では巻線をこれのみに限定するものではなく、例えば図5(a)に示す環状コイル2Aでは、一方側のコアセグメント3aの巻線部5aのみに導線4aを巻きつけ、他方側のコアセグメント3bには巻線しない構造としてもよい。   In the annular coil 2 of this embodiment, as shown in FIG. 1 and FIG. 2, conducting wires 4a and 4b are wound around both winding portions 5a and 5b in rectangular annular coil cores 3a and 3b. However, in the present invention, the winding is not limited to this. For example, in the annular coil 2A shown in FIG. 5A, the conductive wire 4a is wound only on the winding portion 5a of the core segment 3a on one side, and the other The core segment 3b on the side may not be wound.

また、図5(b)に示す環状コイル2Bでは、図3(b)に示した楕円形状の環状コイルコアの両方の巻線部5a,5bに導線4a,4bを巻きつけている。   Further, in the annular coil 2B shown in FIG. 5B, the conducting wires 4a and 4b are wound around the winding portions 5a and 5b of the elliptical annular coil core shown in FIG. 3B.

なお、図5(c)に示す環状コイル2Cは、本発明に含まれない比較例であり、コアセグメント3a,3bの接合部7を含む部位に導線4a,4bを巻きつけている。このような環状コイル2Cは、上述した特許文献3のトロイダルコイルと同様に、接合部7において磁束が漏れ出し、漏れ出した磁束により導線に渦電流が誘起され、コイルからの発熱や鉄損の増大が引き起こされる。   An annular coil 2C shown in FIG. 5C is a comparative example not included in the present invention, and the conductive wires 4a and 4b are wound around a portion including the joint portion 7 of the core segments 3a and 3b. Similar to the toroidal coil of Patent Document 3 described above, such an annular coil 2C leaks magnetic flux at the joint 7, and eddy current is induced in the conductor by the leaked magnetic flux, and heat generation from the coil and iron loss are caused. An increase is caused.

図1に示す環状コイル2では、第1の接合面7aと第2の接合面7bとの間にギャップGを設けている。このようなギャップGを設けると、電流密度(磁化力H)に対する透磁率μの依存性が低くなり、電流密度(磁化力H)の変化にかかわりなく透磁率μがほぼ一定の範囲内に安定するようになる。   In the annular coil 2 shown in FIG. 1, a gap G is provided between the first joint surface 7a and the second joint surface 7b. When such a gap G is provided, the dependence of the magnetic permeability μ on the current density (magnetizing force H) is reduced, and the magnetic permeability μ is stable within a substantially constant range regardless of changes in the current density (magnetizing force H). To come.

図6は、横軸に電流NI(A/m)をとり、縦軸に透磁率μ(H/m)をとって、磁気特性について各種の実施例サンプルを比較例サンプルと対比して調べた結果を示す特性線図である。図中にて特性線Aは従来のトロイダルコイル、特性線Bは本発明の接合面を接着したギャップ無し(G=0)の環状コイル、特性線Cは本発明のギャップ1mmの環状コイル、特性線Dは本発明のギャップ2mmの環状コイル、特性線Eは本発明のギャップ3mmの環状コイルの結果をそれぞれ示す。   In FIG. 6, the horizontal axis represents current NI (A / m) and the vertical axis represents magnetic permeability μ (H / m), and the magnetic characteristics were examined by comparing various sample samples with the comparative sample. It is a characteristic diagram which shows a result. In the figure, characteristic line A is a conventional toroidal coil, characteristic line B is an annular coil without a gap (G = 0) to which the joining surface of the present invention is bonded, characteristic line C is an annular coil having a gap of 1 mm according to the present invention, and characteristics. Line D shows the result of the annular coil having a gap of 2 mm according to the present invention, and characteristic line E shows the result of the annular coil having a gap of 3 mm according to the present invention.

図の特性線Bから明らかなように、ギャップ無し(G=0)の実施例サンプルBでは、環状コイルの透磁率μは、電流Iの増加とともに急激に減少する(傾きが大きい)。このギャップ無しの実施例サンプルBは、従来のトロイダルコイルの比較例サンプルAと磁気特性が近似したものとなることが分かる。   As is clear from the characteristic line B in the figure, in the example sample B with no gap (G = 0), the magnetic permeability μ of the annular coil decreases rapidly with increasing current I (the slope is large). It can be seen that the example sample B without the gap is similar in magnetic characteristic to the comparative example sample A of the conventional toroidal coil.

これに対して同図の特性線C(ギャップ小)や特性線D(ギャップ中)や特性線E(ギャップ大)では、透磁率μが磁化力Hの増加に対して緩やかに減少する(傾きが小さい)か、またはほとんど変わらない(傾きがない)。   On the other hand, in the characteristic line C (small gap), characteristic line D (middle of the gap), and characteristic line E (large gap) in the same figure, the magnetic permeability μ gradually decreases as the magnetizing force H increases (inclination). Is small) or hardly changed (no tilt).

次に実施例を説明する。   Next, examples will be described.

(第1の実施の形態)
(コイルの製造)
実施例の環状コイル、比較例のトロイダルコイルそれぞれの製造方法の概要を説明する。
(First embodiment)
(Manufacture of coils)
The outline | summary of each manufacturing method of the annular coil of an Example and the toroidal coil of a comparative example is demonstrated.

(実施例1・2)
実施例1・2は、金属磁性粉末として組成Fe-9.5質量%Si-5.5質量%Alのいわゆるセンダスト粉末を用い、非磁性バインダ(シリコーン樹脂3重量%)で結合して成形することで、巻線部と前記巻線部の長手方向両端に連続して形成された非巻線部から構成され、さらに巻線部5a、5bの周面に電気絶縁体塗装としてエポキシ樹脂を塗布し、図2の3a、3bで示すようなコアセグメントを作製した。コアセグメント3a、3bはそれぞれ巻線部に1.0mmφの導線で、巻線部5aと5bを合わせて実施例1は30回、実施例2は80回巻線機で巻きつけられ、コアセグメント3a、3bのそれぞれの接合面を接着剤で接続することで、環状コイルを作製した。
(Examples 1 and 2)
In Examples 1 and 2, a so-called sendust powder having a composition of Fe-9.5 mass% Si-5.5 mass% Al was used as the metal magnetic powder, and was bonded and molded with a non-magnetic binder (silicone resin 3 wt%). 2 is composed of a wire portion and a non-winding portion formed continuously at both ends in the longitudinal direction of the winding portion, and further, an epoxy resin is applied as an electrical insulator coating to the peripheral surfaces of the winding portions 5a and 5b. The core segments as shown in 3a and 3b were prepared. Each of the core segments 3a and 3b is a conductor of 1.0 mmφ around the winding portion, and the winding portions 5a and 5b are combined to be wound 30 times in the first embodiment and 80 times in the second embodiment. An annular coil was produced by connecting the joint surfaces of 3a and 3b with an adhesive.

実施例1で用いた、コアセグメントを組合わせた環状コイルコアの各部サイズを示す。   Each part size of the annular coil core which combined the core segment used in Example 1 is shown.

1)コイルコアの短辺の長さL1;50mm
2)コイルコアの長辺の長さL2;30mm
3)非巻線部の長さ(巻線部の内周面間隔)L3;34mm
4)巻線部の長さ(非巻線部の内周面間隔)L4;14mm
5)コアセグメントの長辺の幅L5;8mm
6)コアセグメントの短辺の幅L6;8mm
7)磁路長L7;128mm
8)ギャップG;0.1mm
但し、非巻線部の長さL3とは、対向する巻線部の内周面8aの相互間隔のことをいい、これにはギャップGが含まれている。
1) Length L1 of the short side of the coil core; 50 mm
2) Long side length L2 of coil core; 30 mm
3) Length of non-winding part (interval of inner peripheral surface of winding part) L3; 34 mm
4) Length of winding part (inner peripheral surface interval of non-winding part) L4; 14 mm
5) Long width L5 of the core segment; 8 mm
6) Short side width L6 of the core segment: 8 mm
7) Magnetic path length L7; 128mm
8) Gap G: 0.1 mm
However, the length L3 of the non-winding portion refers to the mutual interval between the inner peripheral surfaces 8a of the opposing winding portions, and this includes the gap G.

また、巻線部の長さL4とは、非巻線部の内周面の相互間隔のことをいう。   The length L4 of the winding portion refers to the mutual interval between the inner peripheral surfaces of the non-winding portions.

(比較例1・2)
比較例1・2は、実施例と同様の金属磁性粉末−非磁性バインダ混合粉を成形、表面に電気絶縁体塗装としてエポキシ樹脂を塗布することで、トロイダルコア(外径45mm、内径37mm、高さ10mm)を作製した。トロイダルコアは1.0mmφの導線で比較例1は30回、比較例2は80回手巻きで巻きつけられることでトロイダルコイルを作製した。
(Comparative Examples 1 and 2)
In Comparative Examples 1 and 2, a metal magnetic powder-nonmagnetic binder mixed powder similar to that of the example was molded, and an epoxy resin was applied to the surface as an electrical insulator coating, thereby providing a toroidal core (outer diameter 45 mm, inner diameter 37 mm, high 10 mm). The toroidal core was a 1.0 mmφ wire, and Comparative Example 1 was wound 30 times, and Comparative Example 2 was wound 80 times by hand to produce a toroidal coil.

(コイルの耐圧試験)
実施例1・2、比較例1・2のコイルをそれぞれ20個作製し、絶縁耐圧試験器にかけて、不合格品が出た個数を表1に示す。耐圧試験の条件は、2kVの電圧を1分間かけた時にリーク電流が1mA未満であるものを合格とし、1mA以上であるものを不合格とした。なお、導線は絶縁性の被膜で覆われた純Cu線であり、被膜の厚みが厚いもの(1種:0.025mm)と、薄いもの(2種:0.017mm)でそれぞれ評価した。

Figure 2012099739
(Coil pressure resistance test)
Table 1 shows the number of rejected products produced by preparing 20 coils for each of Examples 1 and 2 and Comparative Examples 1 and 2 and using an insulation withstand voltage tester. The conditions of the withstand voltage test were that a leakage current of less than 1 mA when a voltage of 2 kV was applied for 1 minute passed, and a failure of 1 mA or more was rejected. In addition, a conducting wire is a pure Cu wire covered with an insulating film, and the thick film (1 type: 0.025 mm) and the thin film (2 types: 0.017 mm) were evaluated.
Figure 2012099739

被膜が厚い1種の導線では実施例、比較例ともに耐圧試験での差は見られなかったが、2種と被膜が薄くなると、比較例のトロイダルコアに手巻きで巻きつけられたコイルでは、巻線工程での被膜損傷により耐圧試験の不合格品の個数が増加した。実施例では導線を狭い間隙に通すことなくコア巻線部周囲の自由空間を利用して巻線部に巻きつけることができるため、絶縁性被膜の膜厚が薄いものを利用することができる。   No difference was found in the pressure resistance test for one type of conductive wire with a thick coating, but when the coating was thin with two types, the coil wound by hand on the toroidal core of the comparative example, The number of unacceptable products in the pressure test increased due to coating damage in the winding process. In the embodiment, since the conductive wire can be wound around the winding portion using the free space around the core winding portion without passing through a narrow gap, it is possible to use a thin insulating coating.

(第2の実施の形態)
実施例3として、実施例1と同様に作製したコアセグメント3a、3bにそれぞれ巻線部に1.4mmφの導線で、巻線部5aと5bを合わせて60回巻きつけられ、コアセグメント3a、3bのそれぞれの接合面を接着剤で接続することで、環状コイルを作製した。環状コイルコアの各部サイズは実施例1と同様である。また比較例3として、比較例1と同様に作製したトロイダルコアに1.4mmφの導線で60回巻きつけられることでトロイダルコイルを作製した。更に比較例4として、図5(c)に示すように、コアセグメント3a、3bの接合部7を含む部位に導線を、実施例3と同一条件で巻きつけて作製した環状コイルも作製した。
(Second Embodiment)
As Example 3, the core segments 3a and 3b produced in the same manner as in Example 1 were wound around the winding part with a 1.4 mmφ conductor wire, and the winding parts 5a and 5b were wound 60 times, and the core segment 3a, An annular coil was produced by connecting each joint surface of 3b with an adhesive. The size of each part of the annular coil core is the same as in the first embodiment. Further, as Comparative Example 3, a toroidal coil was manufactured by winding a toroidal core manufactured in the same manner as in Comparative Example 1 60 times with a 1.4 mmφ conductor. Further, as Comparative Example 4, as shown in FIG. 5C, an annular coil was also produced which was produced by winding a conducting wire around the part including the joint 7 of the core segments 3 a and 3 b under the same conditions as in Example 3.

(コイルの放熱性能試験)
実施例3、比較例3・4のコイルそれぞれに200V、15Aで通電し、赤外線温度計を用いて通電1分後と通電5分後での温度を測定した。測定点1は巻線部の導線上、測定点2は非巻線部、測定点3は巻線部導線上(接合部7の近傍)、測定点4は非巻線部、測定点5と6はトロイダルコイルの任意の側面である。

Figure 2012099739
(Coil heat dissipation performance test)
Each of the coils of Example 3 and Comparative Examples 3 and 4 was energized at 200 V and 15 A, and the temperature after 1 minute of energization and after 5 minutes of energization was measured using an infrared thermometer. Measurement point 1 is on the conductor of the winding part, measurement point 2 is on the non-winding part, measurement point 3 is on the conductor of the winding part (near the joint 7), measurement point 4 is on the non-winding part, and measurement point 5 6 is an arbitrary side surface of the toroidal coil.
Figure 2012099739

実施例3、比較例3では通電とともに特にコイルの巻線部分での温度上昇が高くなったが、比較例3の測定点3では、導線が接合部7を含む部位に巻きつけているため、接合部の磁束漏れによる導線の渦電流発生に起因する発熱により、実施例3の測定点1と比較して温度が高くなった。   In Example 3 and Comparative Example 3, the temperature rise in the coil winding portion was particularly high with energization, but at the measurement point 3 of Comparative Example 3, because the conducting wire is wound around the portion including the joint portion 7, Due to heat generation due to the generation of eddy currents in the conducting wire due to magnetic flux leakage at the joint, the temperature was higher than that at the measurement point 1 of Example 3.

5分通電することにより巻線から発生した熱のコアへの伝導が進行するが、実施例3・比較例3では環状コイル中に非巻線部が存在するため、放熱性に優れ、コイルの温度が特に非巻線部(測定点2、4)で低下した。しかし比較例4のトロイダルコイルでは図9に示すように巻線104がコア面108から離れた状態に巻かれやすいため、巻線104からコア103の方に熱が逃げにくく、過熱状態になる。よって通電時間が長くなると更に温度上昇が進行した。   Although conduction to the core of the heat generated from the winding proceeds by energizing for 5 minutes, in Example 3 and Comparative Example 3, since there is a non-winding portion in the annular coil, the heat dissipation is excellent, The temperature decreased particularly at the non-winding part (measurement points 2 and 4). However, in the toroidal coil of Comparative Example 4, since the winding 104 is easily wound away from the core surface 108 as shown in FIG. 9, heat does not easily escape from the winding 104 toward the core 103, resulting in an overheated state. Therefore, the temperature rose further as the energization time increased.

本発明の環状コイルは、各種機器の電源回路に適用されるインダクタや、スイッチング電源のノイズ防止用フィルタとしてのチョークコイルに用いられる。   The annular coil of the present invention is used for an inductor applied to a power supply circuit of various devices and a choke coil as a noise prevention filter for a switching power supply.

2,2A,2B,2C…環状コイル、2a,2b…コイルアッセンブリ、
3,3A,3B,3C,3D…環状コイルコア、3a,3b…コアセグメント、
4,4a,4b…絶縁被覆導線(巻線)、
5a,5b…巻線部(長辺部)、
6a,6b…非巻線部(短辺部)、
7…接合部、7a,7b…接合面、
8a,8b…内周面、9…中央スペース、11…電気絶縁被膜、
103…コア、104…導線、108…コア面、109…中央スペース、
G…ギャップ、L7…磁路長。
2, 2A, 2B, 2C ... annular coil, 2a, 2b ... coil assembly,
3, 3A, 3B, 3C, 3D ... annular coil core, 3a, 3b ... core segment,
4, 4 a, 4 b ..insulated coated conductor (winding),
5a, 5b ... Winding part (long side part),
6a, 6b ... non-winding part (short side part),
7 ... Junction part, 7a, 7b ... Joint surface,
8a, 8b ... inner peripheral surface, 9 ... central space, 11 ... electrical insulation coating,
103 ... core, 104 ... conductor, 108 ... core surface, 109 ... central space,
G: Gap, L7: Magnetic path length.

Claims (16)

金属磁性粉末を非磁性バインダで結合して成形するか、または金属磁性体を成形して成り、絶縁被覆導線が巻きつけられる巻線部と、
前記巻線部の長手方向両端にそれぞれ連続して形成され、前記導線が巻きつけられない非巻線部と、
前記巻線部に巻きつけられた導線に通電したときに生成される磁束に交差する向きとなる、前記非巻線部の終端に形成された接合面と、
を有することを特徴とするコアセグメント。
A metal magnetic powder is combined with a non-magnetic binder and molded, or a metal magnetic material is molded, and a winding portion around which an insulation coated conductor is wound,
A non-winding portion that is continuously formed on both ends in the longitudinal direction of the winding portion, and on which the conductive wire is not wound,
A joining surface formed at the end of the non-winding portion, which is in a direction intersecting with the magnetic flux generated when the conducting wire wound around the winding portion is energized;
A core segment characterized by comprising:
前記非巻線部が前記巻線部に対して変曲していることを特徴とする請求項1記載のコアセグメント。   The core segment according to claim 1, wherein the non-winding portion is bent with respect to the winding portion. 前記巻線部が真っ直ぐであることを特徴とする請求項1記載のコアセグメント。   The core segment according to claim 1, wherein the winding portion is straight. 前記巻線部が湾曲していることを特徴とする請求項1記載のコアセグメント。   The core segment according to claim 1, wherein the winding portion is curved. 前記巻線部の長さL4を前記非巻線部の長さL3よりも長くすることを特徴とする請求項1記載のコアセグメント。   The core segment according to claim 1, wherein a length L4 of the winding portion is longer than a length L3 of the non-winding portion. 前記巻線部を被覆して電気的に絶縁する電気絶縁被膜をさらに有することを特徴とする請求項1記載のコアセグメント。   The core segment according to claim 1, further comprising an electrical insulating coating that covers and electrically insulates the winding portion. 金属磁性粉末を非磁性バインダで結合して成形するか、または金属磁性体を成形して成り、絶縁被覆導線が巻きつけられる第1の巻線部と、前記第1の巻線部の長手方向両端にそれぞれ連続して形成され、前記導線が巻きつけられない第1の非巻線部と、前記第1の巻線部に巻きつけられた導線に通電したときに生成される磁束に交差する向きとなる、前記第1の非巻線部の終端に形成された第1の接合面と、を有する第1のコアセグメントと、
金属磁性粉末を非磁性バインダで結合して成形するか、または金属磁性体を成形して成り、絶縁被覆導線が巻きつけられる第2の巻線部と、前記第2の巻線部の長手方向両端にそれぞれ連続して形成され、前記導線が巻きつけられない第2の非巻線部と、前記第1の接合面と対向して配置され、前記第2の巻線部に巻きつけられた導線に通電したときに生成される磁束に交差する向きとなる、前記第2の非巻線部の終端に形成された第2の接合面と、を有する第2のコアセグメントと、
を有することを特徴とする環状コイルコア。
A metal magnetic powder is formed by bonding with a non-magnetic binder, or a metal magnetic material is formed, and a first winding portion around which an insulation coated conductor is wound, and a longitudinal direction of the first winding portion A first non-winding portion that is formed continuously at both ends and does not wind the conductive wire, and intersects the magnetic flux generated when the conductive wire wound around the first winding portion is energized. A first core segment having a first joint surface formed at a terminal end of the first non-winding portion that is oriented;
A metal magnetic powder is formed by bonding with a non-magnetic binder, or a metal magnetic material is formed, and a second winding portion around which an insulation coated conductor is wound, and a longitudinal direction of the second winding portion A second non-winding portion that is formed continuously at both ends, the conductive wire is not wound thereon, and is disposed to face the first joint surface, and is wound around the second winding portion. A second core segment having a second joint surface formed at the end of the second non-winding portion, the second core surface being in a direction intersecting with the magnetic flux generated when the conducting wire is energized;
An annular coil core comprising:
絶縁被覆導線と、
金属磁性粉末を非磁性バインダで結合して成形するか、または金属磁性体を成形して成り、前記絶縁被覆導線が巻きつけられる第1の巻線部と、前記第1の巻線部の長手方向両端にそれぞれ連続して形成され、前記導線が巻きつけられない第1の非巻線部と、前記第1の巻線部に巻きつけられた導線に通電したときに生成される磁束に交差する向きとなる、前記第1の非巻線部の終端に形成された第1の接合面と、を有する第1のコアセグメントと、
金属磁性粉末を非磁性バインダで結合して成形するか、または金属磁性体を成形して成り、前記絶縁被覆導線が巻きつけられる第2の巻線部と、前記第2の巻線部の長手方向両端にそれぞれ連続して形成され、前記導線が巻きつけられない第2の非巻線部と、前記第1の接合面と対向して配置され、前記第2の巻線部に巻きつけられた導線に通電したときに生成される磁束に交差する向きとなる、前記第2の非巻線部の終端に形成された第2の接合面と、を有する第2のコアセグメントと、
を有することを特徴とする環状コイル。
Insulated conductors;
A metal magnetic powder is formed by bonding with a non-magnetic binder, or a metal magnetic material is formed, and a first winding portion around which the insulation-coated conductive wire is wound, and a length of the first winding portion The first non-winding portion that is formed continuously at both ends in the direction and does not wind the conductive wire, and intersects the magnetic flux generated when the conductive wire wound around the first winding portion is energized. A first core segment having a first joint surface formed at a terminal end of the first non-winding portion,
A metal magnetic powder is formed by bonding with a non-magnetic binder, or a metal magnetic material is formed, and a second winding portion around which the insulation-coated conductive wire is wound, and a length of the second winding portion A second non-winding portion that is formed continuously at both ends in the direction and on which the conductive wire is not wound, and is disposed to face the first joint surface, and is wound around the second winding portion. A second core segment having a second joint surface formed at a terminal end of the second non-winding portion, the second core surface being in a direction intersecting with a magnetic flux generated when the conductive wire is energized.
An annular coil comprising:
前記第1の接合面と前記第2の接合面とが接着されていることを特徴とする請求項8記載の環状コイル。   The annular coil according to claim 8, wherein the first joint surface and the second joint surface are bonded to each other. 前記第1の接合面と前記第2の接合面との間にギャップが設けられていることを特徴とする請求項8記載の環状コイル。   The annular coil according to claim 8, wherein a gap is provided between the first joint surface and the second joint surface. 非巻線部の長さL3と導線の直径d1,d2と巻きつけ数m1,m2との関係が下式を満たすことを特徴とする請求項8記載の環状コイル。
L3>d1・m1+d2・m2
但し、L3:前記第1及び第2の非巻線部の長さ
d1:前記第1の巻線部に巻きつけられた導線の直径
d2:前記第2の巻線部に巻きつけられた導線の直径
m1:前記第1の巻線部への導線の巻きつけ層数
m2:前記第2の巻線部への導線の巻きつけ層数
The annular coil according to claim 8, wherein the relationship between the length L3 of the non-winding portion, the diameters d1 and d2 of the conducting wire, and the winding numbers m1 and m2 satisfies the following expression.
L3> d1 · m1 + d2 · m2
However, L3: Length of said 1st and 2nd non-winding part d1: Diameter of conducting wire wound around said 1st winding part d2: Conducting wire wound around said 2nd winding part Diameter m1: number of winding layers of the conductive wire around the first winding portion m2: number of winding layers of the conductive wire around the second winding portion
前記非巻線部が前記巻線部に対して変曲していることを特徴とする請求項8記載の環状コイル。   The annular coil according to claim 8, wherein the non-winding portion is bent with respect to the winding portion. 前記巻線部が真っ直ぐであることを特徴とする請求項8記載の環状コイル。   The annular coil according to claim 8, wherein the winding portion is straight. 前記巻線部が湾曲していることを特徴とする請求項8記載の環状コイル。   The annular coil according to claim 8, wherein the winding portion is curved. 前記巻線部の長手軸の長さのほうが前記非巻線部の長手軸の長さよりも長いことを特徴とする請求項8記載の環状コイル。   The annular coil according to claim 8, wherein the length of the longitudinal axis of the winding portion is longer than the length of the longitudinal axis of the non-winding portion. 前記巻線部を被覆して電気的に絶縁する電気絶縁被膜をさらに有することを特徴とする請求項8記載の環状コイル。   The annular coil according to claim 8, further comprising an electrical insulating coating that covers and electrically insulates the winding portion.
JP2010247852A 2010-11-04 2010-11-04 Core segment, annular coil core and annular coil Pending JP2012099739A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010247852A JP2012099739A (en) 2010-11-04 2010-11-04 Core segment, annular coil core and annular coil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010247852A JP2012099739A (en) 2010-11-04 2010-11-04 Core segment, annular coil core and annular coil

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2015082027A Division JP6060206B2 (en) 2015-04-13 2015-04-13 Annular coil

Publications (1)

Publication Number Publication Date
JP2012099739A true JP2012099739A (en) 2012-05-24

Family

ID=46391289

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010247852A Pending JP2012099739A (en) 2010-11-04 2010-11-04 Core segment, annular coil core and annular coil

Country Status (1)

Country Link
JP (1) JP2012099739A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015103588A (en) * 2013-11-22 2015-06-04 悦夫 大槻 Inductor and method for manufacturing the same
JP2015115448A (en) * 2013-12-11 2015-06-22 アイシン精機株式会社 Inductor
JP2016096315A (en) * 2014-11-17 2016-05-26 株式会社豊田自動織機 Induction apparatus
JP2016219839A (en) * 2016-08-26 2016-12-22 悦夫 大槻 Inductor
JP2018018902A (en) * 2016-07-26 2018-02-01 株式会社オートネットワーク技術研究所 Reactor
JP2019016703A (en) * 2017-07-07 2019-01-31 矢崎総業株式会社 Surge voltage reduction member
JP2019033110A (en) * 2017-08-04 2019-02-28 矢崎総業株式会社 Surge voltage reduction member
KR20190037864A (en) * 2017-09-29 2019-04-08 엘지이노텍 주식회사 Inductor and emi filter including the same
CN110828134A (en) * 2019-11-14 2020-02-21 田村(中国)企业管理有限公司 Inductor and method for manufacturing inductor

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4879212U (en) * 1971-12-29 1973-09-28
JPS6333613U (en) * 1986-08-21 1988-03-04
JPH01143112U (en) * 1988-03-27 1989-10-02
JP2000036423A (en) * 1998-07-16 2000-02-02 Hanshin Electric Co Ltd Ignition coil for internal combustion engine
JP2003086437A (en) * 2001-06-29 2003-03-20 Tabuchi Electric Co Ltd Electromagnetic inductor
JP2005064002A (en) * 2003-08-08 2005-03-10 Daido Steel Co Ltd Reactor
US20050258926A1 (en) * 2004-05-21 2005-11-24 Robert Weger Coil arrangement and method for its manufacture
JP2009033055A (en) * 2007-07-30 2009-02-12 Sumitomo Electric Ind Ltd Core for reactor
JP2009158501A (en) * 2007-12-25 2009-07-16 Oki Power Tech Co Ltd Magnetic device and manufacturing method thereof
WO2009139368A1 (en) * 2008-05-16 2009-11-19 日立金属株式会社 Powder magnetic core and choke

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4879212U (en) * 1971-12-29 1973-09-28
JPS6333613U (en) * 1986-08-21 1988-03-04
JPH01143112U (en) * 1988-03-27 1989-10-02
JP2000036423A (en) * 1998-07-16 2000-02-02 Hanshin Electric Co Ltd Ignition coil for internal combustion engine
JP2003086437A (en) * 2001-06-29 2003-03-20 Tabuchi Electric Co Ltd Electromagnetic inductor
JP2005064002A (en) * 2003-08-08 2005-03-10 Daido Steel Co Ltd Reactor
US20050258926A1 (en) * 2004-05-21 2005-11-24 Robert Weger Coil arrangement and method for its manufacture
JP2005340812A (en) * 2004-05-21 2005-12-08 Minebea Co Ltd Coil structure and method of manufacturing the same
JP2009033055A (en) * 2007-07-30 2009-02-12 Sumitomo Electric Ind Ltd Core for reactor
JP2009158501A (en) * 2007-12-25 2009-07-16 Oki Power Tech Co Ltd Magnetic device and manufacturing method thereof
WO2009139368A1 (en) * 2008-05-16 2009-11-19 日立金属株式会社 Powder magnetic core and choke

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015103588A (en) * 2013-11-22 2015-06-04 悦夫 大槻 Inductor and method for manufacturing the same
JP2015115448A (en) * 2013-12-11 2015-06-22 アイシン精機株式会社 Inductor
JP2016096315A (en) * 2014-11-17 2016-05-26 株式会社豊田自動織機 Induction apparatus
JP2018018902A (en) * 2016-07-26 2018-02-01 株式会社オートネットワーク技術研究所 Reactor
CN109564815A (en) * 2016-07-26 2019-04-02 株式会社自动网络技术研究所 Reactor
US11699547B2 (en) 2016-07-26 2023-07-11 Autonetworks Technologies, Ltd. Reactor
JP2016219839A (en) * 2016-08-26 2016-12-22 悦夫 大槻 Inductor
US11004594B2 (en) 2017-07-07 2021-05-11 Yazaki Corporation Surge voltage reduction member
JP2019016703A (en) * 2017-07-07 2019-01-31 矢崎総業株式会社 Surge voltage reduction member
JP2019033110A (en) * 2017-08-04 2019-02-28 矢崎総業株式会社 Surge voltage reduction member
US10958064B2 (en) 2017-08-04 2021-03-23 Yazaki Corporation Surge voltage reducing member with reduced size
KR102451092B1 (en) * 2017-09-29 2022-10-05 엘지이노텍 주식회사 Inductor and emi filter including the same
KR20190037864A (en) * 2017-09-29 2019-04-08 엘지이노텍 주식회사 Inductor and emi filter including the same
CN110828134A (en) * 2019-11-14 2020-02-21 田村(中国)企业管理有限公司 Inductor and method for manufacturing inductor

Similar Documents

Publication Publication Date Title
JP2012099739A (en) Core segment, annular coil core and annular coil
US8686820B2 (en) Reactor
US20140292467A1 (en) Transformer
NL7904379A (en) TRANSFORMER.
EP2787515B1 (en) Inductor gap spacer
JP6060206B2 (en) Annular coil
KR100299893B1 (en) Transformer
JP5918020B2 (en) Non-contact power supply coil
US6486763B1 (en) Inductive component and method for making same
JP6684451B2 (en) Reactor
JP5189637B2 (en) Coil parts and power supply circuit using the same
JP6436016B2 (en) Composite material molded body and reactor
JP6539024B2 (en) Coil and coil component
JP6809440B2 (en) Reactor
JP6809439B2 (en) Reactor
JP7491441B2 (en) Bobbin
JP5010672B2 (en) Transformers and transformer systems
JP7144835B2 (en) inductor
WO2006070357A2 (en) Inductive electro-communication component core from ferro-magnetic wire
KR101938480B1 (en) Flat laminating type reactor apparatus, and manufacturing method thereof
JP2017073486A (en) Coil component
JP6409765B2 (en) Surface mount inductor
JP2023102930A (en) Coil component
US20220139612A1 (en) Stationary Induction Apparatus
JP2011138940A (en) Reactor

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20130920

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130925

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140515

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140603

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140730

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150210

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20150707