JP2003086437A - Electromagnetic inductor - Google Patents
Electromagnetic inductorInfo
- Publication number
- JP2003086437A JP2003086437A JP2001344262A JP2001344262A JP2003086437A JP 2003086437 A JP2003086437 A JP 2003086437A JP 2001344262 A JP2001344262 A JP 2001344262A JP 2001344262 A JP2001344262 A JP 2001344262A JP 2003086437 A JP2003086437 A JP 2003086437A
- Authority
- JP
- Japan
- Prior art keywords
- secondary winding
- bobbin
- winding
- lead wire
- transformer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Control Of High-Frequency Heating Circuits (AREA)
- Insulating Of Coils (AREA)
Abstract
Description
【発明の詳細な説明】
【0001】
【発明の属する技術分野】本発明は、トランスのような
電磁誘導器に関する。
【0002】
【従来の技術】図7は特公平7−40465号公報に開
示されているインバータ方式の高周波加熱装置(電子レ
ンジ)を示すもので、商用電源61は整流回路62で整
流平滑され、インバータ63で20kHz以上の高周波
交流電流に変換されてギャップ付コアを備えたトランス
64の1次巻線64pに供給される。トランス64の2
次巻線64sの高周波出力電圧は、半波整流回路65で
整流平滑されて、直流高電圧としてマグネトロン66に
供給される。トランス64のヒータ巻線64hでヒータ
が駆動されるマグネトロン66は、直流高電圧の供給を
受けてマイクロ波を発生する。
【0003】図9は上記トランス64の構成を示す断面
図で、ボビン70には、1次巻線64p、2次巻線64
sおよびヒータ巻線64hが、互いに軸方向に離間して
巻回されている。コの字形コア片71,72は、各々の
一方の磁脚を上記ボビン70の円筒部70s内に挿入す
るとともに、円筒部70s内に形成されている厚さGの
スペーサ70gを介在して対向させることにより、各々
の両磁脚の相対向する先端面の間にそれぞれギャップ7
3,74を有するロの字形コア75を形成し、1次巻線
64pと2次巻線64sの結合係数を0.6〜0.8に
構成することで、2次巻線側にリーケージインダクタン
スを持たせ、従前のマグネトロン用インバータ回路に必
要であった2次側の高周波チョークコイルを不要として
いる。
【0004】
【発明が解決しようとする課題】しかし、上記トランス
64では、2次巻線64sとその引出線との間の絶縁距
離をかせいで絶縁性を向上させるために、2次巻線64
sの軸方向に隣接して引出線を通すためのジャンピング
溝を設ける必要があり、このため、ボビン70の軸方向
寸法が大きくなる。
【0005】本発明は、上記従来の課題に鑑みてなされ
たもので、ボビンの軸方向寸法を大きくすることなく、
2次巻線とその引出線との間の絶縁性を向上できる電磁
誘導器を提供することを目的とする。
【0006】
【課題を解決するための手段】上記目的を達成するため
に、本発明に係る電磁誘導器は、コアが挿入されるボビ
ンに、1次巻線と2次巻線が軸方向に離間して装着さ
れ、前記2次巻線の内径側の引出線が、前記2次巻線の
内周面よりも径方向内側へ寄せられて軸方向に引き出さ
れ、外径側の引出線が、前記2次巻線の外周面よりも径
方向外側へ寄せられて引き出されている。
【0007】上記構成によれば、2次巻線とその引出線
との間の絶縁性が向上するので、従来のように、2次巻
線とその引出線との間の絶縁距離をかせぐために、2次
巻線の軸方向に隣接して引出線を通すためのジャンピン
グ溝を設ける必要がなくなる。このため、ボビンの軸方
向寸法を大きくすることなく、2次巻線の巻き始めの引
出線および巻き終わりの引出線と2次巻線との間の絶縁
特性を向上させることができる。
【0008】
【発明の実施の形態】以下、本発明の実施形態を図面に
基づいて説明する。図1は、本発明の第1実施形態に係
るマグネトロン駆動用のトランス50Tを示す正面図、
図2はその側面図、図3(A)は横断面図、図3(B)
はT字形コアCRの平面図、図3(C)は図3(B)中
のC−C線矢視側面図、図4は背面図である。先ず、樹
脂製のボビン1Tは、図2に明示するように、第1のボ
ビン部1aTと第2のボビン部1bTとにより一体形成
されており、円筒状の筒部14を有する。第1のボビン
部1aTには、筒部14の外周面に円盤状の三つのつば
4,7,8が互いに平行な配置で一体形成されている。
両端に第1のつば4と第2のつば7とを有する1次巻枠
9(図3)には、1次巻線11が円筒状に巻き付けられ
ているとともに、両端に第2のつば7と第3のつば8と
を有するヒータ巻枠10(図3)には、ヒータ巻線13
が1ターン巻き付けられている。
【0009】一方、第2のボビン部1bTには、中央の
筒部14の外周面に円盤状のつば18が一体形成されて
おり、両端につば18と第1のボビン部1aTの第3の
つば8とを有する2次巻枠19(図3)が形成され、こ
れに2次巻線12が整列巻きで巻き付けられている。こ
の2次巻線12と、1次巻線11と、ヒータ巻線13と
は、ボビン1Tの軸方向に変位して位置している。
【0010】図2に示すように、このトランス50Tの
ボビン1Tは、軸方向の寸法D1が径方向の寸法D2よ
りも短く、偏平な薄型形状になっている。ここで、上記
軸方向の寸法D1は、ボビン1Tの両端のつばを含まな
い各巻線11〜13が装着される部分の軸方向長さであ
り、径方向の寸法D2は、複数のつば4,7,8,18
の最大外径である。
【0011】図3に示すように、ボビン1Tには中心孔
20が設けられており、また、第1のボビン部1aTの
中心孔20の内面には、図1に示すように、90°間隔
で径方向内方に突出する4個のガイドリブ21が形成さ
れている。
【0012】図3(B),(C)に示すように、T字形
コア片23Tは、アーム部25Tのほぼ中央に円柱状の
脚部24Tが突設されて、T字形を呈している。コアC
Rを構成する一対の同一形状および同一寸法のT字形コ
ア片23T,23Tは、各々の脚部24T,24Tがボ
ビン1Tの両側から上記ガイドリブ21に沿って中心孔
20に挿入される。
【0013】上記一対のT字形コア片23T,23Tが
ボビン1Tに取り付けられたとき、各コア片23T,2
3Tの各々の脚部24T,24Tの先端面同士が相対向
し、その先端面の間にスペーサ27が介在し、スペーサ
27の厚みによって設定されたギャップ29が形成され
る。ギャップ29の存在により、磁気飽和しにくい特性
の電磁誘導器が得られる。例えば、脚部24T,24T
の先端面同士は接着剤で接着されて、ボビン1Tから各
コア片23T,23Tが脱落するのが防止される。この
ギャップ29の大きさを、1次巻線11と2次巻線12
の結合係数が0.5〜0.9となるように設定する。こ
の場合、図2の1次巻線11と2次巻線12の軸方向の
間隔W1を2〜10mmに設定する。こうして、2次巻
線12側にリーケージインダクタンスを持たせ、従前の
マグネトロン用インバータ回路に必要であった2次側の
高周波チョークコイルを不要としている。前記ギャップ
29は、両ボビン片2T,3Tにおける1次および2次
巻線11,12が施される筒部14の内方に位置してい
る。なお、ギャップ29の大きさは、ゼロ、つまり脚部
24T,24Tの先端面同士をそれぞれ接触させてもよ
い。
【0014】前記1次巻線11は、図1に示す巻き始め
の引出線(リード線)11aが、第1のボビン部1aT
における径方向に延びた切欠溝からなる引出部34から
引き出されて係止部37aに係止されているとともに、
巻き終りの引出線(リード線)11bが、上記引出部3
4から引き出されて係止部37bに係止されている。例
えば、引出線11a,11bの端末が半田で固められて
巻線の径方向(下方向)に延びる接続用端子39a,3
9bが形成され、この接続用端子39a,39bがトラ
ンス50Tが装着される配線基板Kに直接半田付けで接
続される。
【0015】本発明において、前記2次巻線12の内径
側の巻き始めの引出線12aは、図4に示すように、第
2のボビン部1bTにおける径方向に延びた切欠溝から
なる引出部35から、2次巻線12の内周面12cより
も径方向内側へ寄せられて引き出され、第2のボビン部
1bTの外端面、すなわち、最外側のつば18の外面に
突設されたリブ36に沿って曲がり、径方向外側に延び
て、第2のボビン部1bTに差込み固定された一対のピ
ン端子41a,41bのうち、一方のピン端子41aに
巻き付けられて、半田付けにより接続される。前記ピン
端子41a,41bは、巻線の径方向(下方向)に突出
しており、配線基板Kに接続される。
【0016】他方、2次巻線12の外径側の巻き終りの
引出線12bは、引出部35から、2次巻線12の外周
面12dよりも径方向外側へ寄せられてリブ38の切欠
部から引き出され、他方のピン端子41bに巻き付けら
れて、半田付けにより接続される。ヒータ巻線13の引
出線13a,13bも、第2のボビン部1bTに差込み
固定されて巻線の径方向(下方向)に突出する一対のピ
ン端子43a,43bにそれぞれ巻き付けられて、半田
付けにより接続される。
【0017】図1に示すように、第1のボビン部1aT
(図2のつば4)には、複数の1次巻線冷却孔28が形
成されており、1次巻線11に対する冷却効果を高めて
いる。アース線45は、ボビン1Tの中心孔20内側を
挿通して、2つのT字コア片23T,23Tに接触し、
その端子が配線基板Kに接続されて、2つのT字コア片
23T,23Tを一挙にアースしている。従来のように
コアバンドでアースしていないので、幅が小さくなると
ともにコストが低下する。アース線45には非磁性体で
ばね性が要求されることから、りん青銅が好ましく用い
られる。
【0018】このように構成されたトランス50Tは、
例えば、図7に示した高周波加熱装置におけるマグネト
ロン66の駆動用に用いられるが、その場合、以下のよ
うな手順で高周波加熱装置に組み込まれる。すなわち、
トランス50Tは、図7に示すような回路パターンが形
成された配線基板Kに設けられている接続孔にピン端子
41a,41bを挿入して半田付けし、端子39a,3
9bを上記配線基板Kに設けられている接続孔に直接半
田付けにより接続し、上記ピン端子43a,43bを上
記配線基板Kに設けられている接続端子に差込み接続す
ることで、インバータ回路の配線基板Kに接続状態に取
り付けられる。なお、上記回路基板には、図7の半波整
流回路65に代えて、図8の全波整流回路67が形成さ
れていても、同じ組み込み手順で、上記トランス50T
を接続状態に取り付けることができる。
【0019】上記構成によれば、図3に示すように、巻
線11,12,13の側方にコア体が存在しないので、
その分だけトランスの横寸法、つまりボビン1Tの径方
向に沿った寸法が小さくなる。しかも、ボビン1Tが偏
平な形状で、1次および2次巻線11,12の巻幅が小
さく、薄型であるために、一対のT字形コア片23T,
23Tのアーム部25T,25T同士の間隔が小さくな
る。また、両コア片23T,23Tの脚部24T,24
Tとアーム部25T,25Tを通る二つの磁気回路C
1,C2が形成される。そのため、このトランス50T
は、図9に示したコの字形コア片71,72を用いたこ
とによって磁気回路Cを一つしか形成できないトランス
64と比較して、磁気損失が少なくなり、脚部24T,
24Tを通る磁束、つまり両巻線11,12と鎖交する
磁束が強くなる。これに加えて、上記トランス50T
は、そのボビン1Tが径方向の寸法D2よりも軸方向の
寸法D1が短い偏平な形状であるから、一対のT字形コ
ア片23T,23Tのアーム部25T,25T同士の間
隔が小さくなるので、磁気回路C1,C2の磁束がさら
に強くなる。
【0020】その結果、上記トランス50Tは、優れた
磁気特性が確保されるので、1次および2次巻線11,
12の巻幅を小さくして薄型とした場合においても、所
定の電圧を得るのに必要な1次および2次巻線11,1
2の巻き数を少なくすることができ、その分だけトラン
ス50Tの横寸法、つまりボビン1Tの径方向に沿った
寸法が小さくなって小型化できる。しかも、配線基板K
の接続用端子は巻線の径方向に延びて形成されている。
したがって、このトランス50Tは、配線基板Kに装着
するときの装着面積の増大を抑制できる。また、両T字
形コア片23T,23Tは同一形状および同一寸法であ
るから、共通の成形型を用いて成形できる。ただし、両
コア片23T,23Tは、互いに異なる形状または寸法
としてもよい。特に、脚部24T,24Tの長さを互い
に異ならせて、ギャップ29の位置および結合係数を調
整してもよい。
【0021】また、通常細い導線で形成される2次巻線
12の端部は、ボビン1Tに固定されたピン端子41
a,41bに接続されているので、高電圧となる2次巻
線12の端部が配線基板Kへの取り付け時に不測に揺れ
動いて、周囲の導体に接触するおそれがなくなる。
【0022】本発明では、ボビン部1bTに径方向に延
びた切欠溝からなる引出部35を設け、この引出部35
から巻き始めの引出線12aを2次巻線12の内周面1
2cよりも径方向内側に引き出し、巻き終りの引出線1
2bを2次巻線12の外周面12dよりも径方向外側に
引き出してピン端子41a,41bに接続したので、引
出線12a,12bと2次巻線12との間の巻線クロス
が防止されて、その間の絶縁性が向上する。したがっ
て、従来のように、絶縁性向上のために、2次巻線12
の軸方向に隣接して引出線12a,12bを通すための
ジャンピング溝を設ける必要がなくなる。このため、ボ
ビン1Tの軸方向寸法を大きくすることなく、2次巻線
12の巻き始めの引出線12aおよび巻き終わりの引出
線12bと2次巻線12との間の絶縁特性を向上させる
ことができる。
【0023】本発明の第2実施形態を図5に示す。図5
において、図3と同一符号はそれぞれ同一または相当部
分を示している。図5(A)は横断面図、図5(B)は
L字形コアCRの平面図、図5(C)は図5(B)中の
C−C線矢視側面図である。この実施形態のトランス5
0Lは、図5(B),(C)に示す一対のL字形コア片
23L,23Lを使用しており、これに合わせて、ボビ
ン1Lに一体形成された第1,第2のボビン部1aL,
1bLのコア収納部32,33の形状が異なる。その他
の構成は、前記第1実施形態と同様であるので、図示を
省略する。
【0024】図5(B),(C)に示すように、L字形
コア片23Lは、アーム部25Lの基端部に円柱状の脚
部24Lを突設したものである。コアCRを構成する一
対の同一形状および同一寸法のL字形コア片23L,2
3Lは、各々の脚部24L,24Lがボビン1Lの両側
からガイドリブ21に沿って中心孔20に挿入されて、
ボビン1Lに取り付けられている。
【0025】上記の一対のL字形コア片23L,23L
がボビン1Lに取り付けられたとき、各コア片23L,
23Lの各々の脚部24L,24L同士が相対向して、
その先端面の間に、ギャップ29が形成される。こうし
て、1次巻線11と2次巻線12の結合係数は0.5〜
0.9に設定されていることにより、2次巻線12側に
リーケージインダクタンスを持たせ、従前のマグネトロ
ン用インバータ回路に必要であった2次側の高周波チョ
ークコイルを不要としている。上記ギャップ29は、両
ボビン部1aL,1bLにおける1次および2次巻線1
1,12が施される筒部14の内方に位置している。な
お、ギャップ29の大きさは適宜設定されるが、ゼロ、
つまり脚部24L,24Lの先端面同士をそれぞれ接触
させてもよい。
【0026】このL字形コア片23Lを用いたトランス
50Lによっても、コア片23Lの脚部24Lとアーム
部を通る磁気回路C2によって比較的強い磁界が発生
し、前記第1実施形態と同様の効果が得られる。
【0027】この第2実施形態において、図4と同様
に、ボビン部1bLに径方向に延びた切欠溝からなる引
出部35を設け、この引出部35から巻き始めの引出線
12aを2次巻線12の内周面12cよりも径方向内側
に引き出し、巻き終りの引出線12bを2次巻線12の
外周面12dよりも径方向外側に引き出してピン端子4
1a,41bに接続している。従って、第1実施形態と
同様に、ボビン1Lの軸方向寸法を大きくすることな
く、2次巻線12の巻き始めの引出線12aおよび巻き
終わりの引出線12bと2次巻線12との間の絶縁特性
を向上させることができる。
【0028】本発明の第3実施形態を図6に示す。図6
において、図3と同一符号はそれぞれ同一または相当部
分を示している。図6(A)は横断面図、図6(B)は
F字形コアCRの平面図、図6(C)は図6(B)中の
C−C線矢視側面図である。この実施形態のトランス5
0Fは、図6(B),(C)に示す一対のF字形コア片
23F,23Fを使用しており、これに合わせて、ボビ
ン1Fに一体形成された第1,第2のボビン部1aF,
1bFのコア収納部32,33の形状が異なる。その他
の構成は、前記第1実施形態と同様であるので、図示を
省略する。
【0029】図6(B),(C)に示すように、F字形
コア片23Fは、アーム部25Fのほぼ中央に円柱状の
中脚部24Fが、一端部に四角以上の多角柱または円柱
状の外脚部26Fが、それぞれ同一方向に平行に延びる
ように突設されて、F字形を呈している。コアCRを構
成する一対の同一形状および同一寸法のF字形コア片2
3F,23Fは、各々の中脚部24F,24Fがボビン
1Fの両側からガイドリブ21に沿って中心孔20に挿
入され、かつ、各々の外脚部26F、26Fがボビン1
Fの外方で相対向して1次および2次巻線11、12の
径方向の外側に位置するように配置される。上記の一対
のF字形コア片23F,23Fがボビン1Fに取り付け
られたとき、各コア片23F,23Fの各々の中脚部2
4F,24F同士が相対向して、その先端面の間および
各々の外脚部26F、26Fの先端面の間には、それぞ
れギャップ29,30が形成される。
【0030】このF字形コア片23Fを用いたトランス
50Fによっても、コア片23Fの脚部24Fとアーム
部を通る磁気回路C3によって第1実施形態と比較して
より強い磁界が発生し、さらに優れた磁気特性が確保さ
れる。
【0031】この第3実施形態において、図4と同様
に、ボビン部1bFに径方向に延びた切欠溝からなる引
出部35を設け、この引出部35から巻き始めの引出線
12aを2次巻線12の内周面12cよりも径方向内側
に引き出し、巻き終りの引出線12bを2次巻線12の
外周面12dよりも径方向外側に引き出してピン端子4
1a,41bに接続している。従って、第1実施形態と
同様に、ボビン1Fの軸方向寸法を大きくすることな
く、2次巻線12の巻き始めの引出線12aおよび巻き
終わりの引出線12bと2次巻線12との間の絶縁特性
を向上させることができる。
【0032】なお、本発明はマグネトロン駆動用のトラ
ンスのほか、チョークコイル、リアクトルなど、他の電
磁誘導器にも適用できる。
【0033】
【発明の効果】本発明によれば、2次巻線とその引出線
との間の絶縁性が向上するので、従来のように、2次巻
線とその引出線との間の絶縁距離をかせぐために、2次
巻線の軸方向に隣接して引出線を通すためのジャンピン
グ溝を設ける必要がなくなる。このため、ボビンの幅を
大きくすることなく、2次巻線の巻き始めの引出線およ
び巻き終わりの引出線と2次巻線との間の絶縁特性を向
上させることができる。Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electromagnetic inductor such as a transformer. 2. Description of the Related Art FIG. 7 shows an inverter type high frequency heating apparatus (microwave oven) disclosed in Japanese Patent Publication No. 7-40465. A commercial power supply 61 is rectified and smoothed by a rectifier circuit 62. The inverter 63 converts the current into a high-frequency AC current of 20 kHz or more and supplies the AC current to a primary winding 64p of a transformer 64 having a core with a gap. Transformer 64-2
The high-frequency output voltage of the next winding 64 s is rectified and smoothed by the half-wave rectifier circuit 65 and supplied to the magnetron 66 as a DC high voltage. The magnetron 66 whose heater is driven by the heater winding 64h of the transformer 64 receives a high DC voltage and generates a microwave. FIG. 9 is a sectional view showing the structure of the transformer 64. A bobbin 70 has a primary winding 64p and a secondary winding 64.
s and the heater winding 64h are wound while being spaced apart from each other in the axial direction. The U-shaped core pieces 71 and 72 have one magnetic leg inserted into the cylindrical portion 70s of the bobbin 70, and face each other through a spacer 70g having a thickness G formed in the cylindrical portion 70s. By doing so, a gap 7 is formed between the opposing tip surfaces of the two magnetic legs.
A square-shaped core 75 having 3,74 is formed, and a coupling coefficient between the primary winding 64p and the secondary winding 64s is set to 0.6 to 0.8, so that a leakage inductance is provided on the secondary winding side. And eliminates the need for a secondary-side high-frequency choke coil that was required for the conventional magnetron inverter circuit. [0004] However, in the transformer 64, the secondary winding 64 is used in order to improve insulation by increasing the insulation distance between the secondary winding 64s and its lead wire.
It is necessary to provide a jumping groove adjacent to the s in the axial direction for passing the lead wire, so that the axial dimension of the bobbin 70 increases. The present invention has been made in view of the above-mentioned conventional problems, and without increasing the axial dimension of the bobbin.
It is an object of the present invention to provide an electromagnetic inductor capable of improving insulation between a secondary winding and a lead wire thereof. [0006] In order to achieve the above object, an electromagnetic inductor according to the present invention comprises a bobbin in which a core is inserted, a primary winding and a secondary winding being arranged in an axial direction. The lead wire on the inner diameter side of the secondary winding is mounted radially away from the inner peripheral surface of the secondary winding in the radial direction and is drawn out in the axial direction. , Are drawn radially outward from the outer peripheral surface of the secondary winding. [0007] According to the above configuration, the insulation between the secondary winding and the lead wire is improved, so as to increase the insulation distance between the secondary winding and the lead wire as in the related art. In addition, there is no need to provide a jumping groove for passing the lead wire adjacent to the secondary winding in the axial direction. Therefore, it is possible to improve insulation properties between the secondary winding and the lead wire at the beginning and end of winding of the secondary winding without increasing the axial dimension of the bobbin. An embodiment of the present invention will be described below with reference to the drawings. FIG. 1 is a front view showing a magnetron driving transformer 50T according to a first embodiment of the present invention,
FIG. 2 is a side view, FIG. 3A is a cross-sectional view, and FIG.
3 is a plan view of the T-shaped core CR, FIG. 3C is a side view taken along line CC in FIG. 3B, and FIG. 4 is a rear view. First, as clearly shown in FIG. 2, the resin bobbin 1T is formed integrally with a first bobbin portion 1aT and a second bobbin portion 1bT, and has a cylindrical tube portion 14. In the first bobbin portion 1aT, three disk-shaped flanges 4, 7, and 8 are integrally formed on the outer peripheral surface of the cylindrical portion 14 in parallel with each other.
A primary winding 11 is wound on a primary winding frame 9 (FIG. 3) having a first collar 4 and a second collar 7 at both ends in a cylindrical shape, and a second collar 7 is provided at both ends. The heater winding 10 (FIG. 3) having the
Is wound one turn. On the other hand, in the second bobbin portion 1bT, a disc-shaped flange 18 is integrally formed on the outer peripheral surface of the central cylindrical portion 14, and the flange 18 and the third bobbin portion 1aT of the first bobbin portion 1aT are formed at both ends. A secondary winding frame 19 (FIG. 3) having a collar 8 is formed, around which the secondary winding 12 is wound in an aligned winding. The secondary winding 12, the primary winding 11, and the heater winding 13 are displaced in the axial direction of the bobbin 1T. As shown in FIG. 2, the bobbin 1T of the transformer 50T has an axial dimension D1 shorter than the radial dimension D2, and has a flat and thin shape. Here, the axial dimension D1 is the axial length of the portion where each of the windings 11 to 13 is not included, including the flanges at both ends of the bobbin 1T, and the radial dimension D2 is 7, 8, 18
Is the maximum outside diameter. As shown in FIG. 3, the bobbin 1T is provided with a center hole 20, and the inner surface of the center hole 20 of the first bobbin portion 1aT has 90 ° intervals as shown in FIG. , Four guide ribs 21 projecting radially inward are formed. As shown in FIGS. 3 (B) and 3 (C), the T-shaped core piece 23T has a T-shape with a columnar leg 24T protruding substantially at the center of the arm 25T. Core C
The leg portions 24T, 24T of the pair of T-shaped core pieces 23T, 23T of the same shape and the same size constituting the R are inserted into the center hole 20 along the guide ribs 21 from both sides of the bobbin 1T. When the pair of T-shaped core pieces 23T, 23T are attached to the bobbin 1T, each of the core pieces 23T, 2T
The tip surfaces of the legs 24T, 24T of the 3T face each other, and a spacer 27 is interposed between the tip surfaces to form a gap 29 set by the thickness of the spacer 27. Due to the existence of the gap 29, an electromagnetic inductor having characteristics that are hardly magnetically saturated can be obtained. For example, legs 24T, 24T
Of the core pieces 23T, 23T are prevented from falling off from the bobbin 1T. The size of the gap 29 is determined by the primary winding 11 and the secondary winding 12.
Are set to be 0.5 to 0.9. In this case, the axial distance W1 between the primary winding 11 and the secondary winding 12 in FIG. 2 is set to 2 to 10 mm. Thus, the secondary winding 12 is provided with leakage inductance, and the high frequency choke coil on the secondary side, which is required for the conventional magnetron inverter circuit, is not required. The gap 29 is located inside the cylindrical portion 14 where the primary and secondary windings 11 and 12 of both the bobbin pieces 2T and 3T are applied. The size of the gap 29 may be zero, that is, the tip surfaces of the legs 24T may be in contact with each other. The primary winding 11 has a lead wire (lead wire) 11a at the beginning of winding shown in FIG.
Is pulled out from the drawer portion 34 formed of a radially extending notch groove, and is locked by the locking portion 37a.
The lead wire (lead wire) 11b at the end of the winding is
4 and is locked by the locking portion 37b. For example, the terminals of the lead wires 11a and 11b are fixed with solder and the connection terminals 39a and 3 extend in the radial direction (downward) of the winding.
9b are formed, and the connection terminals 39a and 39b are directly soldered to the wiring board K on which the transformer 50T is mounted. In the present invention, the lead wire 12a at the beginning of winding on the inner diameter side of the secondary winding 12, as shown in FIG. 4, is a lead portion formed of a radially extending cutout groove in the second bobbin portion 1bT. A rib protruding from 35 is drawn radially inward from the inner peripheral surface 12c of the secondary winding 12 and is provided on the outer end surface of the second bobbin portion 1bT, that is, the outer surface of the outermost flange 18. It is bent along 36, extends radially outward, is wound around one of the pair of pin terminals 41a, 41b inserted and fixed to the second bobbin portion 1bT, and is connected by soldering. . The pin terminals 41a and 41b protrude in the radial direction (downward) of the winding and are connected to the wiring board K. On the other hand, the lead wire 12b at the end of the winding on the outer diameter side of the secondary winding 12 is brought closer to the outside in the radial direction than the outer peripheral surface 12d of the secondary winding 12 from the drawing portion 35, and the notch It is pulled out from the portion, wound around the other pin terminal 41b, and connected by soldering. The lead wires 13a, 13b of the heater winding 13 are also wound around a pair of pin terminals 43a, 43b which are inserted and fixed to the second bobbin portion 1bT and project in the radial direction (downward) of the winding, respectively, and are soldered. Connected by As shown in FIG. 1, the first bobbin portion 1aT
A plurality of primary winding cooling holes 28 are formed in the collar 4 in FIG. 2 to enhance the cooling effect on the primary winding 11. The ground wire 45 passes through the inside of the center hole 20 of the bobbin 1T, and comes into contact with the two T-shaped core pieces 23T, 23T,
The terminal is connected to the wiring board K, and the two T-shaped core pieces 23T, 23T are grounded at once. Since the core band is not grounded as in the related art, the width is reduced and the cost is reduced. Phosphor bronze is preferably used for the ground wire 45 because it is a non-magnetic material and requires spring properties. The transformer 50T thus configured is
For example, it is used for driving the magnetron 66 in the high-frequency heating device shown in FIG. 7, and in that case, it is incorporated into the high-frequency heating device in the following procedure. That is,
The transformer 50T is soldered by inserting the pin terminals 41a and 41b into connection holes provided in the wiring board K on which the circuit pattern as shown in FIG. 7 is formed, and soldering the terminals 39a and 3b.
9b is directly connected to a connection hole provided on the wiring board K by soldering, and the pin terminals 43a and 43b are inserted and connected to connection terminals provided on the wiring board K, thereby connecting the wiring of the inverter circuit. It is attached to the substrate K in a connected state. It should be noted that even if the full-wave rectifier circuit 67 of FIG. 8 is formed on the circuit board in place of the half-wave rectifier circuit 65 of FIG.
Can be attached in a connected state. According to the above configuration, as shown in FIG. 3, no core body exists on the side of the windings 11, 12, and 13.
The transverse dimension of the transformer, that is, the dimension along the radial direction of the bobbin 1T is reduced accordingly. Moreover, since the bobbin 1T has a flat shape, the winding widths of the primary and secondary windings 11 and 12 are small and thin, the pair of T-shaped core pieces 23T,
The space between the 23T arms 25T, 25T is reduced. Also, legs 24T, 24 of both core pieces 23T, 23T.
T and two magnetic circuits C passing through the arm portions 25T, 25T
1 and C2 are formed. Therefore, this transformer 50T
The magnetic loss is smaller than that of the transformer 64 in which only one magnetic circuit C can be formed by using the U-shaped core pieces 71 and 72 shown in FIG.
The magnetic flux passing through 24T, that is, the magnetic flux linked to both windings 11 and 12 becomes stronger. In addition, the transformer 50T
Since the bobbin 1T has a flat shape in which the dimension D1 in the axial direction is shorter than the dimension D2 in the radial direction, the interval between the arm portions 25T of the pair of T-shaped core pieces 23T, 23T becomes smaller. The magnetic flux of the magnetic circuits C1 and C2 is further increased. As a result, the transformer 50T has excellent magnetic characteristics, so that the primary and secondary windings 11,
12, the primary and secondary windings 11, 1 necessary to obtain a predetermined voltage even when the winding width is reduced.
2, the number of turns can be reduced, and the transverse dimension of the transformer 50T, that is, the dimension along the radial direction of the bobbin 1T, is reduced by that much, and the size can be reduced. Moreover, the wiring board K
Are formed to extend in the radial direction of the winding.
Therefore, this transformer 50T can suppress an increase in the mounting area when mounting on the wiring board K. Also, since both T-shaped core pieces 23T, 23T have the same shape and the same dimensions, they can be formed using a common forming die. However, the two core pieces 23T, 23T may have shapes or dimensions different from each other. In particular, the position of the gap 29 and the coupling coefficient may be adjusted by making the lengths of the legs 24T, 24T different from each other. An end of the secondary winding 12, which is usually formed of a thin conductor, is connected to a pin terminal 41 fixed to the bobbin 1T.
Since they are connected to the terminals 41a and 41b, the end of the secondary winding 12, which is at a high voltage, does not unexpectedly swing at the time of attachment to the wiring board K, so that there is no possibility of contact with the surrounding conductor. In the present invention, the bobbin portion 1bT is provided with a draw-out portion 35 formed of a cutout groove extending in the radial direction.
From the inner peripheral surface 1 of the secondary winding 12
Pull out radially inward from 2c and draw out 1 at the end of winding
Since 2b is drawn radially outward from the outer peripheral surface 12d of the secondary winding 12 and connected to the pin terminals 41a and 41b, a winding cross between the lead wires 12a and 12b and the secondary winding 12 is prevented. As a result, the insulation between them is improved. Therefore, as in the conventional case, the secondary winding 12
It is not necessary to provide a jumping groove for passing the lead wires 12a and 12b adjacent to each other in the axial direction. For this reason, without increasing the axial dimension of the bobbin 1T, the insulation characteristics between the lead wire 12a at the start of winding of the secondary winding 12 and the lead wire 12b at the end of winding and the secondary winding 12 are improved. Can be. FIG. 5 shows a second embodiment of the present invention. FIG.
3, the same reference numerals as those in FIG. 3 indicate the same or corresponding parts. 5A is a cross-sectional view, FIG. 5B is a plan view of the L-shaped core CR, and FIG. 5C is a side view taken along line CC in FIG. 5B. Transformer 5 of this embodiment
0L uses a pair of L-shaped core pieces 23L, 23L shown in FIGS. 5 (B) and 5 (C), and the first and second bobbin portions 1aL integrally formed on the bobbin 1L accordingly. ,
The shapes of the core storage portions 32 and 33 of 1 bL are different. Other configurations are the same as those of the first embodiment, so that the illustration is omitted. As shown in FIGS. 5B and 5C, the L-shaped core piece 23L has a columnar leg 24L protruding from the base end of the arm 25L. A pair of L-shaped core pieces 23L, 2 having the same shape and the same size constituting the core CR.
3L, each leg 24L, 24L is inserted into the center hole 20 along the guide rib 21 from both sides of the bobbin 1L,
It is attached to bobbin 1L. The above pair of L-shaped core pieces 23L, 23L
Is attached to the bobbin 1L, each core piece 23L,
The legs 24L, 24L of the 23L face each other,
A gap 29 is formed between the tip surfaces. Thus, the coupling coefficient between the primary winding 11 and the secondary winding 12 is 0.5 to
By setting the ratio to 0.9, leakage inductance is provided on the secondary winding 12 side, and the secondary-side high-frequency choke coil required for the conventional magnetron inverter circuit is not required. The gap 29 is provided between the primary and secondary windings 1 in both bobbin portions 1aL and 1bL.
It is located inside the cylindrical portion 14 to which the components 1 and 12 are applied. Note that the size of the gap 29 is appropriately set.
That is, the tip surfaces of the legs 24L may be brought into contact with each other. Also with the transformer 50L using the L-shaped core piece 23L, a relatively strong magnetic field is generated by the magnetic circuit C2 passing through the legs 24L and the arms of the core piece 23L, and the same effect as in the first embodiment is obtained. Is obtained. In the second embodiment, similarly to FIG. 4, the bobbin portion 1bL is provided with a lead-out portion 35 formed of a cutout groove extending in the radial direction, and the lead-out wire 12a which starts winding from the lead-out portion 35 is secondary-wound. The wire 12 is drawn radially inward from the inner peripheral surface 12 c of the wire 12, and the lead wire 12 b at the end of winding is drawn radially outward from the outer peripheral surface 12 d of the secondary winding 12, so that the pin terminal 4
1a, 41b. Therefore, similarly to the first embodiment, the secondary winding 12 can be connected between the secondary winding 12 and the lead wire 12a at the beginning and end of winding without increasing the axial dimension of the bobbin 1L. Can be improved in insulating properties. FIG. 6 shows a third embodiment of the present invention. FIG.
3, the same reference numerals as those in FIG. 3 indicate the same or corresponding parts. 6A is a cross-sectional view, FIG. 6B is a plan view of the F-shaped core CR, and FIG. 6C is a side view taken along line CC in FIG. 6B. Transformer 5 of this embodiment
0F uses a pair of F-shaped core pieces 23F, 23F shown in FIGS. 6B and 6C, and in accordance with this, the first and second bobbin portions 1aF integrally formed on the bobbin 1F. ,
The shapes of the core storage portions 32 and 33 of 1 bF are different. Other configurations are the same as those of the first embodiment, so that the illustration is omitted. As shown in FIGS. 6 (B) and 6 (C), the F-shaped core piece 23F has a cylindrical middle leg 24F substantially at the center of the arm 25F, and a quadrangular or larger polygonal pillar or circle at one end. The column-shaped outer leg portions 26F are provided so as to protrude so as to extend in parallel in the same direction, and have an F-shape. A pair of F-shaped core pieces 2 of the same shape and the same size constituting the core CR
3F and 23F, each of the middle legs 24F and 24F is inserted into the center hole 20 along the guide rib 21 from both sides of the bobbin 1F, and each of the outer legs 26F and 26F is connected to the bobbin 1F.
They are arranged so as to be opposed to each other outside of F and radially outside the primary and secondary windings 11 and 12. When the above-mentioned pair of F-shaped core pieces 23F, 23F are attached to the bobbin 1F, each of the middle legs 2 of each of the core pieces 23F, 23F.
4F and 24F are opposed to each other, and gaps 29 and 30 are formed between the distal end surfaces and between the distal end surfaces of the outer leg portions 26F and 26F, respectively. Also with the transformer 50F using the F-shaped core piece 23F, a stronger magnetic field is generated as compared with the first embodiment by the magnetic circuit C3 passing through the leg 24F and the arm of the core piece 23F, which is more excellent. Magnetic properties are ensured. In the third embodiment, similarly to FIG. 4, the bobbin portion 1bF is provided with a lead-out portion 35 formed of a cutout groove extending in the radial direction, and the lead-out wire 12a which starts winding from the lead-out portion 35 is secondary-wound. The wire 12 is drawn radially inward from the inner peripheral surface 12 c of the wire 12, and the lead wire 12 b at the end of winding is drawn radially outward from the outer peripheral surface 12 d of the secondary winding 12, so that the pin terminal 4
1a, 41b. Therefore, similarly to the first embodiment, the secondary winding 12 is connected between the secondary winding 12 and the lead wire 12a at the beginning and end of winding without increasing the axial dimension of the bobbin 1F. Can be improved in insulating properties. The present invention is applicable not only to a transformer for driving a magnetron but also to other electromagnetic inductors such as a choke coil and a reactor. According to the present invention, the insulation between the secondary winding and the lead wire is improved, so that the connection between the secondary winding and the lead wire is improved as in the prior art. In order to increase the insulation distance, it is not necessary to provide a jumping groove for passing the lead wire adjacent to the secondary winding in the axial direction. For this reason, without increasing the width of the bobbin, the insulation characteristics between the lead wire at the start of winding of the secondary winding and the lead wire at the end of winding and the secondary winding can be improved.
【図面の簡単な説明】
【図1】本発明の第1実施形態に係る電磁誘導器の正面
図である。
【図2】同実施形態の側面図である。
【図3】(A)は図2のIII-III線で切断した断面図、
(B)はT字形コアCRの平面図、(C)は(B)中の
C−C線矢視側面図である。
【図4】同実施形態の背面図である。
【図5】(A)は本発明の第2実施形態に係る電磁誘導
器の横断面図、(B)はL字形コアCRの平面図、
(C)は(B)中のC−C線矢視側面図である。
【図6】(A)は本発明の第3実施形態に係る電磁誘導
器の横断面図、(B)はF字形コアCRの平面図、
(C)は(B)中のC−C線矢視側面図である。
【図7】本発明の電磁誘導器を適用できる高周波加熱装
置を示す電気回路図である。
【図8】他の高周波加熱装置を示す要部の電気回路図で
ある。
【図9】従来のトランス(電磁誘導器)を示す断面図で
ある。
【符号の説明】
1T…ボビン、1aT,1bT…ボビン部、4,7,
8,18…つば、9…1次巻枠、10…ヒータ巻枠、1
1…1次巻線、12…2次巻線、11a,11b,12
a,12b…引出線(リード線)、12c…2次巻線の
内周面、12d…2次巻線の外周面、13…ヒータ巻
線、14…筒部、19…2次巻枠、20…ボビンの中心
孔、23T…T字形コア片、29,30…ギャップ、3
2…コア収納部、34,35…引出部、39a,39b
…端子、41a,41b…ピン端子、43a,43b…
ピン端子、50T…トランス、C1,C2…磁気回路、
D1…軸方向の寸法、D2…径方向の寸法、K…配線基
板。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a front view of an electromagnetic inductor according to a first embodiment of the present invention. FIG. 2 is a side view of the embodiment. FIG. 3A is a sectional view taken along line III-III in FIG.
(B) is a plan view of the T-shaped core CR, and (C) is a side view taken along line CC in (B). FIG. 4 is a rear view of the embodiment. FIG. 5A is a cross-sectional view of an electromagnetic inductor according to a second embodiment of the present invention, FIG. 5B is a plan view of an L-shaped core CR,
(C) is a side view taken along line CC in (B). FIG. 6A is a cross-sectional view of an electromagnetic inductor according to a third embodiment of the present invention, FIG. 6B is a plan view of an F-shaped core CR,
(C) is a side view taken along line CC in (B). FIG. 7 is an electric circuit diagram showing a high-frequency heating device to which the electromagnetic induction device of the present invention can be applied. FIG. 8 is an electric circuit diagram of a main part showing another high-frequency heating device. FIG. 9 is a cross-sectional view showing a conventional transformer (electromagnetic inductor). [Description of Signs] 1T: bobbin, 1aT, 1bT: bobbin part, 4, 7,
8, 18 ... collar, 9 ... primary reel, 10 ... heater reel, 1
1 ... primary winding, 12 ... secondary winding, 11a, 11b, 12
a, 12b: lead wire (lead wire), 12c: inner peripheral surface of secondary winding, 12d: outer peripheral surface of secondary winding, 13: heater winding, 14: cylindrical portion, 19: secondary winding frame, 20: center hole of bobbin, 23T: T-shaped core piece, 29, 30: gap, 3
2: Core storage part, 34, 35 ... Drawer part, 39a, 39b
... Terminals, 41a, 41b ... Pin terminals, 43a, 43b ...
Pin terminal, 50T transformer, C1, C2 magnetic circuit,
D1: axial dimension, D2: radial dimension, K: wiring board.
───────────────────────────────────────────────────── フロントページの続き (72)発明者 山形 文昭 兵庫県三田市テクノパーク5番地4 田淵 電機株式会社内 ────────────────────────────────────────────────── ─── Continuation of front page (72) Inventor Fumiaki Yamagata 5-5 Techno Park, Sanda City, Hyogo Prefecture Tabuchi Electric Co., Ltd.
Claims (1)
2次巻線が軸方向に離間して装着され、前記2次巻線の
内径側の引出線が、前記2次巻線の内周面よりも径方向
内側へ寄せられて軸方向に引き出され、外径側の引出線
が、前記2次巻線の外周面よりも径方向外側へ寄せられ
て引き出されている電磁誘導器。Claims 1. A primary winding and a secondary winding are mounted on a bobbin into which a core is inserted while being spaced apart in the axial direction, and a lead wire on the inner diameter side of the secondary winding is provided. The radially inner side surface of the secondary winding is moved radially inward and is drawn out in the axial direction, and the lead wire on the outer diameter side is radially outwardly moved from the outer peripheral surface of the secondary winding. The electromagnetic inductor being drawn out.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001344262A JP3735061B2 (en) | 2001-06-29 | 2001-11-09 | Electromagnetic induction |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001199521 | 2001-06-29 | ||
JP2001-199521 | 2001-06-29 | ||
JP2001344262A JP3735061B2 (en) | 2001-06-29 | 2001-11-09 | Electromagnetic induction |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2003086437A true JP2003086437A (en) | 2003-03-20 |
JP3735061B2 JP3735061B2 (en) | 2006-01-11 |
Family
ID=26617913
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2001344262A Expired - Lifetime JP3735061B2 (en) | 2001-06-29 | 2001-11-09 | Electromagnetic induction |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3735061B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012099739A (en) * | 2010-11-04 | 2012-05-24 | Toho Zinc Co Ltd | Core segment, annular coil core and annular coil |
JP2021520179A (en) * | 2018-04-26 | 2021-08-12 | 広東美的厨房電器制造有限公司 | Electronic transformer and microwave cooker |
-
2001
- 2001-11-09 JP JP2001344262A patent/JP3735061B2/en not_active Expired - Lifetime
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012099739A (en) * | 2010-11-04 | 2012-05-24 | Toho Zinc Co Ltd | Core segment, annular coil core and annular coil |
JP2021520179A (en) * | 2018-04-26 | 2021-08-12 | 広東美的厨房電器制造有限公司 | Electronic transformer and microwave cooker |
JP7089057B2 (en) | 2018-04-26 | 2022-06-21 | 広東美的厨房電器制造有限公司 | Electronic transformers and microwave cookers |
US12027987B2 (en) | 2018-04-26 | 2024-07-02 | Guangdong Midea Kitchen Appliances Manufacturing Co., Ltd. | Electronic transformer and a microwave cooking appliance |
Also Published As
Publication number | Publication date |
---|---|
JP3735061B2 (en) | 2006-01-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1106036B1 (en) | Magnetron drive step-up transformer and transformer of magnetron drive power supply | |
US5559486A (en) | Bobbin for high frequency core | |
US6861938B2 (en) | High-frequency power inductance element | |
JP2003086437A (en) | Electromagnetic inductor | |
JP2004071584A (en) | Electromagnetic induction apparatus | |
JP2003086431A (en) | Electromagnetic inductor | |
JP2003086434A (en) | Electromagnetic inductor | |
JP3542025B2 (en) | Thin electromagnetic inductor | |
JP2001189221A (en) | Transformer having core with gap | |
JP2001274026A (en) | Electromagnetic inductor | |
JP3531812B2 (en) | Electromagnetic inductor | |
JP2002075755A (en) | Electromagnetic inductor | |
JP2000036416A (en) | Coil part | |
WO1992017892A1 (en) | Inductor | |
US4851629A (en) | High-frequency heating device | |
JP2003086433A (en) | Electromagnetic inductor | |
JP2001274027A (en) | Electromagnetic inductor | |
JP2000357614A (en) | Chamber type transformer and coil bobbin thereof | |
JPH06124844A (en) | Magnetism leakage transformer | |
US10679784B1 (en) | Method of forming a transformer winding | |
JP2001284147A (en) | Electromagnetic induction device having bobbin with variable winding width | |
JP2003224012A (en) | Winding-type coil | |
JP2005057150A (en) | Thin electromagnetic induction machine | |
JPH10144528A (en) | Inductor and transformer using the inductor | |
JPH0536538A (en) | Line filter transformer |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20050125 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20050208 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20050411 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20050712 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20050912 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20051018 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20051020 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 3735061 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081028 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091028 Year of fee payment: 4 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101028 Year of fee payment: 5 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101028 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111028 Year of fee payment: 6 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111028 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121028 Year of fee payment: 7 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131028 Year of fee payment: 8 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
EXPY | Cancellation because of completion of term |