JP3542025B2 - Thin electromagnetic inductor - Google Patents

Thin electromagnetic inductor Download PDF

Info

Publication number
JP3542025B2
JP3542025B2 JP2000092276A JP2000092276A JP3542025B2 JP 3542025 B2 JP3542025 B2 JP 3542025B2 JP 2000092276 A JP2000092276 A JP 2000092276A JP 2000092276 A JP2000092276 A JP 2000092276A JP 3542025 B2 JP3542025 B2 JP 3542025B2
Authority
JP
Japan
Prior art keywords
bobbin
winding
pieces
core
piece
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000092276A
Other languages
Japanese (ja)
Other versions
JP2001284137A (en
Inventor
忍 宮崎
文昭 山形
英明 相馬
愼一 増田
豊 高茂
誠士 神原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tabuchi Electric Co Ltd
Original Assignee
Tabuchi Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tabuchi Electric Co Ltd filed Critical Tabuchi Electric Co Ltd
Priority to JP2000092276A priority Critical patent/JP3542025B2/en
Priority to CN01111913.6A priority patent/CN1216387C/en
Priority to US09/814,936 priority patent/US6587023B2/en
Priority to EP01106468A priority patent/EP1152640B1/en
Priority to DE60135949T priority patent/DE60135949D1/en
Publication of JP2001284137A publication Critical patent/JP2001284137A/en
Application granted granted Critical
Publication of JP3542025B2 publication Critical patent/JP3542025B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F38/00Adaptations of transformers or inductances for specific applications or functions
    • H01F2038/003High frequency transformer for microwave oven

Landscapes

  • Control Of High-Frequency Heating Circuits (AREA)
  • Coils Or Transformers For Communication (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、主としてインバータを用いてマグネトロンを駆動する用途などに用いられるトランスのような薄型電磁誘導器の構成に関するものである。
【0002】
【従来の技術】
図11は特公平7−40465号公報に開示されているインバータ方式の高周波加熱装置(電子レンジ)を示すもので、商用電源61は整流回路62で整流平滑され、インバータ63で20kHz以上の高周波交流電流に変換されてギャップ付コアを備えたトランス64の1次巻線64pに供給される。トランス64の2次巻線64sの高周波出力電圧は、半波整流回路65で整流平滑されて、直流高電圧としてマグネトロン66に供給される。トランス64のヒータ巻線64hでヒータが駆動されるマグネトロン66は、直流高電圧の供給を受けてマイクロ波を発生する。
【0003】
図13は前記トランス64の構成を示す断面図で、ボビン70には、1次巻線64pと2次巻線64sおよびヒータ巻線64hが軸方向に離間して巻回されている。コの字型のコア71,71は、各々の一方の磁脚を上記ボビン70の円筒部70s内に挿入するとともに、円筒部70s内に形成されている厚さGのスペーサ70gを介して対向させることにより、各々の両磁脚の相対向する先端面の各間にそれぞれギャップ73,74を有するロの字形状コア75を形成している。
【0004】
【発明が解決しようとする課題】
前記トランス64は、1次および2次巻線64p,64sの一側方に、ロの字形コア75の巻線を施さない磁脚が存在するために、トランス64の横寸法が大きくなる。このトランス64を偏平形状にするために、両巻線64p,64sの巻幅(軸方向長さ)を小さくすると、所定の電圧などを得るのに必要な巻数を確保するために、両巻線64p,64sの巻厚さ(径方向厚さ)が大きくなるので、トランス64の横寸法がさらに大きくなる。
【0005】
また、上記トランス64では、1次および2次巻線64p,64sの一側方(図の左側方)にのみ磁気回路Cが形成されるだけであるから、磁気損失が大きくなって、強い磁束を形成することができない。そのため、所要の電圧を得るためには、1次および2次巻線64p,64sの巻数を少なくできない。したがって、上記トランス64は、偏平形状にするために、両巻線64p,64sの巻幅を小さくした場合、所定の電圧を得るのに必要な巻数を確保するために、両巻線64p,64sの巻厚さが大きくなるので、トランス64の横寸法が大きくなる。結局、上記構成のトランス64は、小型化することができないので、配線基板への装着面積が大きくなる。
【0006】
また、ヒータ巻線64hは、ボビン70にコア71,72を組付けた状態としたのちに、巻回するのが困難であるため、予め手作業でボビン70に巻回しておく必要があり、製造工程が煩雑化する。さらに、上記トランス64の組み立てに際しては、ボビン70にコア71,72を組付けたのちに、コアバンドなどの固定具を用いてコア71,72をボビン70に固定する工程を必要とし、工数および部品点数が多くなってコスト高となる。
【0007】
さらに、上記トランス64は、1次巻線64pで取り囲まれる位置に、ギャップ73を形成するためのスペーサ70gを設け、磁脚の長さの異なるコの字形コア71,72を使用して、各コア71,72の一方の磁脚をボビン70の円筒部70sに挿入している。したがって、上記トランス64では、形状の異なる2種類のコアが必要となるので、コアの種類が増し、製造コストが上がる。
【0008】
本発明は、前記従来のトランスの課題を解決して、横寸法が大きくなることなく薄型化できるとともに、組立工数および部品点数を削減してコストダウンを図ることのできる薄型電磁誘導器を提供することを目的とするものである。
【0009】
【課題を解決するための手段】
上記目的を達成するために、本発明の第1構成に係る薄型電磁誘導器は、軸方向の寸法が径方向の寸法よりも短い偏平な形状の樹脂製のボビンに巻線が装着され、このボビンの中心孔に、一対のT字形のコア片の脚部が挿入され、両コア片のアーム部が前記巻線の径方向に延びて互いに平行に対向しており、前記ボビンは軸方向に分割された複数のボビン片を有し、前記各コア片が対応する前記各ボビン片にインサート成形で装着されている。ここで、T字形とは、立体視でT字形を呈するものをいい、円盤の中央部に軸方向に突出する脚を設けて側面視のみがT字形となるものを含まない。
【0010】
この薄型電磁誘導器では、巻線の側方にコア片も、コア片に接続されて磁路を形成する磁性体からなるヨークも存在しないので、巻線の軸方向と直交する径方向の寸法が小さくなる。しかも、ボビンが偏平な薄型であるから、一対のT字形のコア片のアーム部同士の間隔が小さくなって、強い磁束が発生するので、優れた磁気特性が確保される。また、各コア片は、対応する各ボビン片にインサート成形により装着されてボビン片と一体になっているので、コアをボビンに組付けたのちにコアバンドなどで固定する工程が不要となり、その分だけ工数および部品点数を削減してコストダウンできる。
【0011】
また、本発明の第2構成に係る薄型電磁誘導器は、軸方向の寸法が径方向の寸法よりも短い偏平な形状の樹脂製のボビンに巻線が装着され、このボビンの中心孔に、一対のL字形のコア片の脚部が挿入され、両コア片のアーム部が前記巻線の径方向に延びて互いに平行に対向しており、前記ボビンは軸方向に分割された複数のボビン片を有し、前記各コア片が対応する前記各ボビン片にインサート成形で装着されている。ここで、L字形とは、立体視でL字形を呈するものをいい、円盤の周縁部に軸方向に突出する脚を設けて側面視のみがL字形となるものを含まない。
【0012】
この薄型電子誘導器では、巻線の側方にコアも、コアに接続されて磁路を形成する磁性体からなるヨークも存在しないので、巻線の軸方向と直交する径方向の寸法が小さくなる。しかも、ボビンが偏平な薄型であるから、一対のL字形のコア片のアーム部同士の間隔が小さくなって、強い磁束が発生するので、優れた磁気特性が確保される。また、各コア片は、対応する各ボビン片にインサート成形により装着されてボビン片と一体になっているので、コアをボビンに組付けたのちにコアバンドなどで固定する工程が不要となり、その分だけ工数および部品点数を削減してコストダウンできる。
【0013】
また、本発明の第3構成に係る薄型電磁誘導器は、軸方向の寸法が径方向の寸法よりも短い偏平な形状の樹脂製のボビンに巻線が装着され、このボビンの中心孔に、一対のF字形のコア片の中脚部が挿入されるとともに、外脚部が前記ボビンの外方で前記巻線の径方向の外側に位置し、前記両コアのアーム部が前記巻線の径方向に延びて互いに平行に対向しており、前記ボビンは軸方向に分割された複数のボビン片を有し、前記各コア片が対応する前記各ボビン片にインサート成形で装着されている。ここで、F字形とは、立体視でF字形を呈するものいい、円盤の中央部と周縁部に軸方向に突出する脚を設けて側面視のみがF字形となるものを含まない。
【0014】
この薄型電磁誘導器では、両コア片の中脚部、アーム部および外脚部を通る磁気回路に加えて、両コア片の中脚部、アーム部および両アーム部の先端間の空隙を通る磁気回路が形成されるため、磁気損失が従来のロの字形コアよりも少なくなり、二つの磁気回路によって強い磁束が発生する。さらに、ボビンは、径方向の寸法よりも軸方向の寸法が短い偏平な形状であるから、一対のコア片のアーム部同士の間隔が小さくなるので、磁気回路に発生する磁束が一層強くなる。その結果、この薄型電磁誘導器は、優れた磁気特性が確保されるので、1次および2次巻線の巻幅(軸方向長さ)が小さい薄型であるにも拘わらず、所定の電圧を得るのに必要な1次および2付巻線の巻数を少なくすることができ、その分だけ横寸法、つまりボビンの径方向に沿った寸法が小さくなって小型化でき、配線基板に装着するときの装着面積の増大を抑制できる。また、各コア片は、対応する各ボビン片にインサート成形により装着されてボビン片と一体になっているので、コア片をボビンに組付けたのちにコアバンドなどで固定する工程が不要となり、その分だけ工数および部品点数を削減してコストダウンできる。
【0015】
また、本発明の好ましい実施形態においては、前記コア片のアーム部における脚部が形成されていない頂面の少なくとも一部分が外部に露出している。これにより、インサート成形によってボビン片に埋設されているコア片の発生熱を良好に放散させることができる。
【0016】
さらに、本発明の好ましい実施形態においては、前記巻線として、1次巻線と2次巻線が軸方向に離間してボビンに取り付けられ、前記一対のコア片の脚部の対向する先端面の間にギャップが形成されている。この構成によれば、ギャップの存在により、磁気飽和しにくい特性の薄型電磁誘導器が得られる。
【0017】
好ましくは、前記1次巻線と2次巻線の結合係数が0.6から0.8の間に設定されている。この構成の薄型電磁誘導器をインバータ方式の高周波加熱装置に適用することにより、2次側の高周波チョークが不要となる。
【0018】
【発明の実施の形態】
以下、本発明の好ましい実施形態について図面に基づいて説明する。
図1は、第1実施形態に係るマグネトロン駆動用の薄型トランスの平面図、図2はその正面図、図3は縦断面図、図4(A)(B)はコアの正面図および底面図、図5はトランスの一部の平面図、図6は分解正面図である。図3に示すように、樹脂製のボビン1は、軸方向に2分割された樹脂製の第1のボビン片2と第2のボビン片3とにより構成されている。第1のボビン片2には、円筒形の筒部14の外周面に円盤状の三つのつば4,7,8が互いに平行な配置で一体形成されている。第1のつば4と第2のつば7との間に形成された1次巻枠9には、1次巻線11が円筒状に巻き付けられているとともに、第2のつば7と第3のつば8との間に形成されたヒータ巻枠10には、ヒータ巻線13が1〜2ターン巻き付けられている。
【0019】
一方、第2のボビン片3には、中央の筒部17の外周面に円盤状のつば18が一体形成されている。第1のボビン片2の筒部14内部の中心孔29と、第2のボビン片3の筒部17内部の中心孔30とは、同一径であって、両ボビン片2,3が後述のように連結されたときに、ボビン1としての一つの中心孔となる。また、第2のボビン片3の筒部17は、第1のボビン片2の筒部14の先端開口側に形成された大径内周面15の内径とほぼ同じ外径を有している。したがって、第2のボビン片3は、筒部17を第1のボビン片2の筒部14の大径内周面15に嵌入して接着剤で接着することにより、第1のボビン片2に連結されるとともに、つば18と第1のボビン片2の第3のつば8との間に、2次巻線12が巻き付けられる2次巻枠19が形成される。
【0020】
2次巻線12は、芯線である電線に熱融着材を被覆した融着線を予め円筒状に整列巻きし、加熱融着して固定化したものである。なお、組み立てに際しては、第2のボビン片3を第1のボビン片2に連結するのに先立って、第2のボビン片3の筒部17の外周面に2次巻線12が予め装着され、この状態で筒部17が第1のボビン片2の筒部14の外周面に嵌め込み接着される。なお、2次巻線12は、前記融着線を加熱融着して固定化したものを用いる代わりに、ボビン1を組み立てたのち、2次側巻線溝19に巻き付けてもよい。
【0021】
図2に示すように、ボビン1は、軸方向の寸法D1が径方向の寸法D2よりも短く、偏平な薄型形状になっている。ここで、前記軸方向の寸法D1は、ボビン1の両端のつば4,18を含む各巻線11〜12が装着される部分の軸方向長さであり、径方向の寸法D2は、複数のつば4,7,8,18の最大外径である。
【0022】
図3に示すように、コアCRを構成する一対の同一形状および同一寸法のT字形のコア片20,20は、それぞれインサート成形によって第1および第2のボビン片2,3内に埋設されている。すなわち、各コア片20,20は、各々のアーム部21,21が、対応するボビン片2,3の外側となる中空円盤状の端枠部23,24内に埋設され、各々の脚部22,22が、対応するボビン片2,3の筒部14,17内に埋設されている。
【0023】
各コア片20は、図4に示すように、直方体形状のアーム部21の中央部に、アーム部21の幅とほぼ同一の外径を持つ円柱状の脚部22を形成してT字形としたものである。両コア片20,20のアーム部21,21は、図3に示す各巻線11〜13の径方向に延在して互いに平行に対向している。第1のボビン片2に埋設されたコア片20は、その脚部22の先端が大径内周面15の始端部に一致している。第2のボビン片3の筒部17には、図5に示すように、その先端開口縁部から径方向内方に向け突出した突片からなる四つのスペーサ27が90°の等間隔の配置で一体形成されており、この筒部17の長さとスペーサ27の厚みとの和は、第1のボビン片の大径内周面15の軸方向の長さに一致するよう設定されている。
【0024】
したがって、第2のボビン片3の筒部17が第1のボビン片2の筒部14の大径内周面15内に完全に嵌入されたときには、図3に示すように、各スペーサ27が両コア片20,20の各々の脚部22,22の先端面間に介在して、スペーサ27の厚みによって設定されたギャップGが形成される。こうして、1次巻線と2次巻線12の結合係数は0.6〜0.8に設定されており、これにより、2次巻線12側にリーケージインダクタンスを持たせ、従前のマグネトロン用インバータ回路に必要であった2次側の高周波チョークを不要としている。上記ギャップGは、両ボビン片2,3における1次および2次巻線11,12が施されている筒部14,17の内方に位置している。なお、ギャップGの大きさは適宜設定されるが、ゼロ、つまり脚部22,22の先端面同士を接触させてもよい。
【0025】
また、各ボビン片2,3の各々の端枠部23,24における外端面には、複数個の放熱用孔28が形成されて、コア片20の一部、すなわち、アーム部21における脚部22が形成されていない頂面21aの一部分が、放熱用孔28を通じて外部に露出している。トランス100の駆動時には、各コア片20,20の発生熱が放熱用孔28を通じてボビン片2,3の外部に良好に放散されるようになっている。
【0026】
図2に示す1次巻線11は、図1に2点鎖線で示す巻き始めの引出し線11aが、第1のボビン片2における径方向に延びた切欠溝からなる引出し部31から引き出されて、第1のボビン片2に一体形成された係止部32に係止されているとともに、巻き終わりの引出し線11bが、上記引出し部31から引き出されて、第1のボビン片2に一体形成された係止部33に係止されている。巻き始めの引出し線11aの端末には旗形端子34が取り付けられ、巻き終わりの引出し線11bの端末には丸形端子37が取り付けられている。なお、上記とは逆に、丸形端子37を巻き始めの引出し線11aの端末に、且つ旗形端子34を巻き終わりの引出し線11bの端末に、それぞれ取り付けてもよい。
【0027】
一方、図2に示すように、2次巻線12の引出し線12a,12bは、第2のボビン片3に差込み固定されて軸方向に突出する一対のピン端子38,39に巻き付けられて、半田付けにより接続されている。また、ヒータ巻線13は、両端末にそれぞれピン端子40,41が取り付けられて、図3のヒータ巻枠19に1ターン巻き付けられている。
【0028】
このトランス100の組み立てに際しては、図6に示すように、インサート成形によってコア片20,20が埋設された一対のボビン片2,3にそれぞれ1次巻線11および2次巻線12を巻装したのちに、上述したように、第2のボビン片3の筒部17を第1のボビン片2の筒部14の大径内周面15に嵌入して接着する手順で行われる。したがって、従来トランスのようにコアをボビンに組み付ける工程およびコアバンドなどの固定具を用いてコアをボビンに固定する工程が不要となるので、工数を削減できるとともに組立作業が容易となり、固定具などの部品点数を削減できる。
【0029】
上述のように組立てられたトランス100は、例えば、図11に示した高周波加熱装置におけるマグネトロン66の駆動用に用いられるが、その場合、以下のような手順て高周波加熱装置に組み込まれる。すなわち、トランス100は、図11に示すような回路パターンが形成された配線基板に設けられている接続孔に、図2のピン端子38,39を挿入して半田付けし、旗形端子34と丸形端子37とを上記配線基板に設けられている接続台にそれぞれ差込みおよびねじ止めにより接続し、ピン端子40,41を上記配線基板に設けられている接続端子に差込み接続することで、インバータ回路の配線基板に接続状態に取り付けられる。なお、上記配線基板には、図11の半波整流回路65に代えて、図12の全波整流回路42が形成されていても、上記トランス100を接続状態に取り付けることができる。
【0030】
上記構成によれば、図2に示す各巻線11〜13の側方にコアも、コアに接続されて磁路を形成する磁性体からなるヨークも存在しないので、その分だけトランス100の横方向の寸法,つまりボビン1の径方向に沿った寸法D2が小さくなる。
【0031】
しかも、ボビン1が偏平な形状で、1次および2次巻線11,12の巻幅が小さく、薄型であるために、一対のT字形のコア片20,20のアーム部21,21同士の間隔が小さくなるので、図3に示す脚部22,22とアーム部21,21を通る磁気回路C1,C2に発生する磁束が強くなる。しかも、二つの磁気回路C1,C2が形成されるので、この点からも強い磁束が発生する。したがって、巻線11,12の巻数の増加が抑制され、トランス100を小形化できる。また、両コア片20,20は同一形状および同一寸法であるから、共通の成形型を用いて成形できる。ただし、両コア片20,20は互いに異なる形状または寸法としてもよく、特に、脚部22,22の長さを互いに異ならせて、ギャップGの位置を調整してもよい。
【0032】
また、このトランス100は、上述のように巻線11〜13の側方にコアもヨークも存在しないので、両ボビン片2,3を連結してボビン1を組み立てたのちに、ヒータ巻線13をヒータ巻枠19に巻き付けて取りつけることができる。このように、ヒータ巻線13は、自動巻きされる1次および2次巻線11,12とは別工程において巻き付けできるので、組み立てが容易となる。
【0033】
さらに、通常太い導線で形成されている1次巻線11は、通常太い導線で形成されるので、ボビン1に固定されたピン端子にからげることは容易でないが、本発明の実施形態では、1次巻線11のリード線(端線)は、その先端に取り付けた端子34,37を配線基板に装着した端子台にねじ止めまたは差し込むことにより、配線基板に容易に取り付けることができる。また、通常細い導線で形成される2次巻線12の端部は、ボビン1に固定されたピン端子38,39に接続されているので、高電圧となる2次巻線12の端部が配線基板への取り付け時に不測に揺れ動いて、周囲の導体に接触するおそれがなくなる。
【0034】
図7は本発明の第2実施形態に係るトランス200を示す縦断面図であり、同図において、図3と同一もしくは同等のものには同一の符号付して、その説明を省略する。このトランス200では、第1実施形態のトランス100に用いたT字形のコア片20に代えて、一対のL字形のコア片43を用いてコアCRを構成しており、その他の構成は第1実施形態とほぼ同様である。このコア片43は、図8(A),(B)に示すように、円柱状の脚部45を、平面長方形、つまり直方体形状を持つアーム部44の基端部に形成したものであり、前記T字型コア片20のアーム部21の半分を割愛したものに相当する。脚部45の外径とアーム部44の幅はほぼ同一である。これらコア片43,43のアーム部44,44が、図7に示すように、インサート成形によってボビン片2,3の各々の端枠部48,49内に埋設され、脚部45が筒部14内に埋設されている。
【0035】
コア43のアーム部44の先端は、各巻線11〜13の外径部よりも径方向外方に位置している。このトランス200も、1次巻線11と2次巻線12の結合係数は0.6〜0.8に設定されている。また、両コア片43,43は、やはり同一形状および同一寸法とされているが、互いに異なる形状または寸法としてもよく、特に脚部45,45の長さを互いに異ならせてもよい。
【0036】
このL字形のコア片43,43を用いたトランス200によっても、1次および2次巻線11,12の側方にコアもヨークも存在しないが、コア片43,43の脚部45,45、アーム部44,44および両アーム部44,44の先端間の空隙を通る磁気回路C1によって比較的強い磁束が発生し、第1実施形態で説明したと同様の効果が得られる。
【0037】
図9は本発明の第3実施形態に係るトランス300を示す縦断面図であり、同図において、図3およひ図7と同一もしくは同等のものには同一の符号付して、その説明を省略する。このトランス300では、一対のF字形のコア片50,50を用いてコアCRを構成し、1次巻線11として、2次巻線12と同様に、芯線である電線に熱融着材を被覆した融着線を予め円筒状に整列巻きし、加熱融着して固定化したものを使用している。その他の構成は第1および第2実施形態とほぼ同様である。このコア片50は、図10に示すように、直方体形状のアーム部51のほぼ中央部に円柱状の中脚部52が、一端部に四角以上の多角柱状または円柱状の外脚部53が、それぞれ同一方向に平行に延びるように突設されたF字形状になっており、中脚部52の外径および外脚部53の幅は、アーム部51の幅とほぼ同一である。
【0038】
これらコア片50,50のアーム部51,51が、図9に示すように、インサート成形によってボビン片2,3の各々の端枠部54,57内に埋設され、中脚部52が筒部14内に埋設され、外脚部53が、端枠部54,57の一端部から軸方向に突設された被覆部58,59内に埋設されている。第2のボビン片3の被覆部59の先端部には、筒部17と同様に四つの突片からなるスペーサ60が形成されている。両被覆部58,59の各々の先端部は互いに突き合わされて、その間に介在するスペーサ60によって、中脚部52,52の間に形成されるのと同様のギャップGが形成される。
【0039】
上記トランス300は、両コア片50,50の中脚部52,52、アーム部51,51および外脚部53,53を通る磁気損失の少ない磁気回路C1に加えて、両コア50の中脚部52,52、アーム部51,51および両アーム部51,51の他端間の空隙を通る磁気回路C2が形成される。そのため、このトランス300は、二つの磁気回路C1,C2が形成されることによって、磁気損失が少なくなり、それだけ中脚部52を通る磁束、つまり両巻線11,12の内側を通る磁束か強くなる。これに加えて、上記トランス300は、そのボビン1が偏平な形状であるから、一対のコア片50,50のアーム部51,51同士の間隔が小さくなるので、磁気回路C1,C2に発生する磁束がさらに強くなる。
【0040】
その結果、上記トランス300は、優れた磁気特性が確保されるので、1次および2次巻線11,12の巻幅を小さくして薄型とした場合においても、所定の電圧を得るのに必要な1次および2次巻線11,12の巻数を少なくすることができ、その分だけトランス300の横寸法、つまりボビン1の径方向に沿った寸法が小さくなって小形化できる。したがって、このトランス300は、配線基板に装着するときの装着面積の増大を抑制できる。さらに、このトランス300は、第1および第2実施形態と同様に、コア片50をボビン片2,3にインサート成形で装着したことによる組立作業性の向上とコストダウンとの効果を得ることかできる。
【0041】
なお、本発明はトランスのほか、チョークコイル、リアクトルなど、他の電磁誘導器にも適用できる。
【0042】
【発明の効果】
本発明に係る薄型電磁誘導器は、一対のT字形、L字形またはF字形のコア片を用いてコアを構成したので、巻線の側方にコア片も、コア片に接続されて磁路を形成する磁性体からなるヨークも存在しないので、巻線の軸方向と直交する径方向の寸法が小さくなる。しかも、ボビンが偏平な薄型であるから、一対のコア片のアーム部同士の間隔が小さくなって、強い磁束が発生するので、優れた磁気特性が確保される。また、一対のコア片が対応する各ボビン片にインサート成形で装着されている構成としたので、コア片をボビンに組付けたのちにコアバンドなどで固定する工程が不要となり、その分だけ工数および部品点数を削減してコストダウンできる。
【図面の簡単な説明】
【図1】本発明の第1実施形態に係る薄型電磁誘導器を示す平面図である。
【図2】同実施形態の正面図である。
【図3】同実施形態の縦断面図である。
【図4】(A)は同実施形態のコアを示す正面図、(B)は同底面図である。
【図5】同実施形態の一部の平面図である。
【図6】同実施形態の分解正面図である。
【図7】本発明の第2実施形態に係る薄型電磁磁誘導器を示す縦断面図である。
【図8】(A)は同実施形態のコアを示す正面図、(B)は同底面図である。
【図9】本発明の第3実施形態係る薄型電磁誘導器を示す縦断面図である。
【図10】(A)は同実施形態のコアを示す正面図、(B)は同底面図である。
【図11】本発明の薄型電磁誘導器を適用できる高周波加熱装置を示す回路図である。
【図12】他の高周波加熱装置を示す要部の電気回路図である。
【図13】従来のトランスを示す断面図である。
【符号の説明】
1…樹脂製のボビン、2,3…ボビン片、11…1次巻線、11a,11b…引出し線(リード線)、12…2次巻線、20…T字形のコア片、21…T字形のコア片のアーム部、22…T字形のコア片の脚部、29,30…ボビンの中心孔、34…旗形端子(端子)、37…丸形端子(端子)、38,39…ピン端子、43…L字形のコア片、44…L字形のコア片のアーム部、45…L字形のコア片の脚部、50…F字形のコア片、51…F字形のコア片のアーム部、52…F字形のコア片の中脚部、53…F字形のコア片の外脚部、G…ギャップ、D1…軸方向の寸法、D2…径方向の寸法。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a configuration of a thin electromagnetic inductor such as a transformer mainly used for driving a magnetron using an inverter.
[0002]
[Prior art]
FIG. 11 shows an inverter-type high-frequency heating device (microwave oven) disclosed in Japanese Patent Publication No. 7-40465, in which a commercial power supply 61 is rectified and smoothed by a rectifier circuit 62, and a high-frequency AC of 20 kHz or more is output by an inverter 63. The current is converted into a current and supplied to a primary winding 64p of a transformer 64 having a core with a gap. The high-frequency output voltage of the secondary winding 64s of the transformer 64 is rectified and smoothed by the half-wave rectifier circuit 65, and supplied to the magnetron 66 as a DC high voltage. The magnetron 66 whose heater is driven by the heater winding 64h of the transformer 64 receives a high DC voltage and generates a microwave.
[0003]
FIG. 13 is a sectional view showing the configuration of the transformer 64. A primary winding 64p, a secondary winding 64s, and a heater winding 64h are wound around the bobbin 70 so as to be spaced apart in the axial direction. The U-shaped cores 71, 71 insert one magnetic leg into the cylindrical portion 70s of the bobbin 70, and face each other via a spacer 70g having a thickness G formed in the cylindrical portion 70s. By doing so, a square-shaped core 75 having gaps 73 and 74 between the opposing tip surfaces of both magnetic legs is formed.
[0004]
[Problems to be solved by the invention]
In the transformer 64, the lateral dimension of the transformer 64 is increased because a magnetic leg on which the winding of the square-shaped core 75 is not provided exists on one side of the primary and secondary windings 64p and 64s. If the winding width (length in the axial direction) of the two windings 64p and 64s is reduced in order to make the transformer 64 flat, the windings necessary to obtain a predetermined voltage or the like are secured. Since the winding thickness (thickness in the radial direction) of the 64p and 64s increases, the lateral dimension of the transformer 64 further increases.
[0005]
In the transformer 64, the magnetic circuit C is formed only on one side (left side in the figure) of the primary and secondary windings 64p and 64s. Cannot be formed. Therefore, in order to obtain a required voltage, the number of turns of the primary and secondary windings 64p and 64s cannot be reduced. Therefore, when the winding width of both windings 64p and 64s is reduced in order to make the transformer 64 flat, the windings 64p and 64s are used to secure the number of windings necessary to obtain a predetermined voltage. , The transverse dimension of the transformer 64 increases. As a result, the transformer 64 having the above configuration cannot be reduced in size, so that the mounting area on the wiring board increases.
[0006]
Further, since it is difficult to wind the heater winding 64h after the cores 71 and 72 are assembled on the bobbin 70, it is necessary to manually wind the heater winding 64h on the bobbin 70 in advance. The manufacturing process becomes complicated. Further, when assembling the transformer 64, a step of attaching the cores 71 and 72 to the bobbin 70 and then fixing the cores 71 and 72 to the bobbin 70 using a fixing tool such as a core band is required. The number of parts increases and the cost increases.
[0007]
Further, in the transformer 64, a spacer 70g for forming a gap 73 is provided at a position surrounded by the primary winding 64p, and each U-shaped core 71, 72 having a different magnetic leg length is used. One of the magnetic legs of the cores 71 and 72 is inserted into the cylindrical portion 70s of the bobbin 70. Therefore, in the transformer 64, two types of cores having different shapes are required, so that the types of cores are increased and the manufacturing cost is increased.
[0008]
The present invention solves the above-mentioned problems of the conventional transformer, and provides a thin electromagnetic inductor that can be reduced in thickness without increasing the lateral dimension and that can reduce the number of assembly steps and the number of parts to reduce the cost. It is intended for that purpose.
[0009]
[Means for Solving the Problems]
In order to achieve the above object, in the thin electromagnetic inductor according to the first configuration of the present invention, a winding is mounted on a flat-shaped resin bobbin having an axial dimension shorter than a radial dimension. The legs of a pair of T-shaped core pieces are inserted into the center hole of the bobbin, the arms of both core pieces extend in the radial direction of the winding and face each other in parallel, and the bobbin is axially oriented. It has a plurality of divided bobbin pieces, and each of the core pieces is mounted on the corresponding one of the bobbin pieces by insert molding. Here, the T-shape refers to a shape that presents a T-shape in a stereoscopic view, and does not include a shape in which a leg that protrudes in the axial direction is provided at the center of the disk and the T-shape is formed only in side view.
[0010]
In this thin electromagnetic induction device, there is neither a core piece nor a yoke made of a magnetic material connected to the core piece to form a magnetic path on the side of the winding, so that a radial dimension orthogonal to the axial direction of the winding is provided. Becomes smaller. In addition, since the bobbin is flat and thin, the interval between the arms of the pair of T-shaped core pieces is reduced, and a strong magnetic flux is generated, so that excellent magnetic properties are secured. Also, since each core piece is attached to each corresponding bobbin piece by insert molding and integrated with the bobbin piece, a step of fixing the core to the bobbin and fixing it with a core band or the like becomes unnecessary, and The man-hour and the number of parts can be reduced by that much, and the cost can be reduced.
[0011]
Further, in the thin electromagnetic induction device according to the second configuration of the present invention, the winding is mounted on a flat resin bobbin whose axial dimension is shorter than the radial dimension, and a center hole of this bobbin is The legs of a pair of L-shaped core pieces are inserted, the arm portions of both core pieces extend in the radial direction of the winding and face each other in parallel, and the bobbin is a plurality of bobbins divided in the axial direction. And the core pieces are mounted on the corresponding bobbin pieces by insert molding. Here, the L-shape refers to a shape that presents an L-shape in a stereoscopic view, and does not include a shape in which a leg that protrudes in the axial direction is provided at a peripheral portion of the disk and only the side view becomes an L-shape.
[0012]
In this thin electronic inductor, neither the core nor the yoke made of a magnetic material connected to the core to form a magnetic path exists on the side of the winding, so that the radial dimension orthogonal to the axial direction of the winding is small. Become. Moreover, since the bobbin is flat and thin, the distance between the arms of the pair of L-shaped core pieces is reduced, and a strong magnetic flux is generated, so that excellent magnetic properties are secured. Also, since each core piece is attached to each corresponding bobbin piece by insert molding and integrated with the bobbin piece, a step of fixing the core to the bobbin and fixing it with a core band or the like becomes unnecessary, and The man-hour and the number of parts can be reduced by that much, and the cost can be reduced.
[0013]
Further, in the thin electromagnetic inductor according to the third configuration of the present invention, the winding is mounted on a flat resin bobbin whose axial dimension is shorter than the radial dimension, and a center hole of the bobbin is The middle legs of the pair of F-shaped core pieces are inserted, the outer legs are located outside the bobbin in the radial direction of the winding, and the arms of the two cores are The bobbins extend in the radial direction and face each other in parallel. The bobbin has a plurality of axially divided bobbin pieces, and the core pieces are mounted on the corresponding bobbin pieces by insert molding. Here, the F-shape refers to a shape that presents an F-shape in a stereoscopic view, and does not include a shape in which a leg that protrudes in the axial direction is provided at a central portion and a peripheral edge portion of the disk so that only the side view becomes an F-shape.
[0014]
In this thin electromagnetic inductor, in addition to the magnetic circuit passing through the middle leg, the arm and the outer leg of both core pieces, it passes through the gap between the middle leg, the arm and the tip of both arms of both core pieces. Since the magnetic circuit is formed, the magnetic loss is smaller than that of the conventional square core, and a strong magnetic flux is generated by the two magnetic circuits. Further, since the bobbin has a flat shape in which the dimension in the axial direction is shorter than the dimension in the radial direction, the interval between the arm portions of the pair of core pieces is reduced, so that the magnetic flux generated in the magnetic circuit is further increased. As a result, the thin electromagnetic inductor has excellent magnetic characteristics, and therefore has a predetermined voltage despite the small winding width (length in the axial direction) of the primary and secondary windings. It is possible to reduce the number of turns of the primary and secondary windings required to obtain the same, and the lateral dimension, that is, the dimension along the radial direction of the bobbin, is reduced by that amount, so that the bobbin can be downsized. Can be prevented from increasing. In addition, since each core piece is mounted on the corresponding bobbin piece by insert molding and integrated with the bobbin piece, there is no need to fix the core piece to the bobbin and then fix it with a core band or the like, The man-hour and the number of parts can be reduced by that much, and the cost can be reduced.
[0015]
In a preferred embodiment of the present invention, at least a part of a top surface of the arm portion of the core piece where the leg is not formed is exposed to the outside. Thereby, the heat generated by the core piece embedded in the bobbin piece by insert molding can be satisfactorily dissipated.
[0016]
Further, in a preferred embodiment of the present invention, as the winding, a primary winding and a secondary winding are mounted on a bobbin so as to be axially separated from each other, and opposed end faces of legs of the pair of core pieces. A gap is formed between them. According to this configuration, a thin electromagnetic inductor having characteristics that are hardly magnetically saturated due to the presence of the gap can be obtained.
[0017]
Preferably, a coupling coefficient between the primary winding and the secondary winding is set between 0.6 and 0.8. By applying the thin electromagnetic inductor having this configuration to an inverter-type high-frequency heating device, a high-frequency choke on the secondary side becomes unnecessary.
[0018]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is a plan view of a thin transformer for driving a magnetron according to a first embodiment, FIG. 2 is a front view thereof, FIG. 3 is a longitudinal sectional view, and FIGS. 4A and 4B are front and bottom views of a core. FIG. 5 is a plan view of a part of the transformer, and FIG. 6 is an exploded front view. As shown in FIG. 3, the resin bobbin 1 is composed of a resin first bobbin piece 2 and a second bobbin piece 3 divided into two parts in the axial direction. In the first bobbin piece 2, three disc-shaped flanges 4, 7, and 8 are integrally formed on the outer peripheral surface of a cylindrical tube portion 14 in parallel with each other. A primary winding 11 is wound around a primary winding frame 9 formed between the first collar 4 and the second collar 7 in a cylindrical shape. A heater winding 13 is wound around the heater winding frame 10 formed between the flange 8 and the flange 8 for one to two turns.
[0019]
On the other hand, the second bobbin piece 3 is formed integrally with a disk-shaped flange 18 on the outer peripheral surface of the central cylindrical portion 17. The center hole 29 inside the cylindrical portion 14 of the first bobbin piece 2 and the center hole 30 inside the cylindrical portion 17 of the second bobbin piece 3 have the same diameter. When it is connected as described above, it becomes one central hole as the bobbin 1. Further, the cylindrical portion 17 of the second bobbin piece 3 has an outer diameter that is substantially the same as the inner diameter of the large-diameter inner peripheral surface 15 formed on the distal end opening side of the cylindrical portion 14 of the first bobbin piece 2. . Therefore, the second bobbin piece 3 is attached to the first bobbin piece 2 by fitting the tubular portion 17 into the large-diameter inner peripheral surface 15 of the tubular portion 14 of the first bobbin piece 2 and bonding the same with an adhesive. A secondary winding frame 19 around which the secondary winding 12 is wound is formed between the collar 18 and the third collar 8 of the first bobbin piece 2 while being connected.
[0020]
The secondary winding 12 is formed by aligning and winding a fusion wire in which a heat fusion material is coated on an electric wire as a core wire in a cylindrical shape in advance, and fixing the fusion wire by heat fusion. Prior to connecting the second bobbin piece 3 to the first bobbin piece 2, the secondary winding 12 is mounted on the outer peripheral surface of the cylindrical portion 17 of the second bobbin piece 3 before assembling. In this state, the cylindrical portion 17 is fitted and adhered to the outer peripheral surface of the cylindrical portion 14 of the first bobbin piece 2. The secondary winding 12 may be wound around the secondary winding groove 19 after assembling the bobbin 1 instead of using the fusion wire fixed by heat fusion.
[0021]
As shown in FIG. 2, the bobbin 1 has an axial dimension D1 shorter than the radial dimension D2, and has a flat and thin shape. Here, the axial dimension D1 is the axial length of a portion where each of the windings 11 to 12 including the flanges 4 and 18 at both ends of the bobbin 1 is mounted, and the radial dimension D2 is a plurality of flanges. 4, 7, 8, 18 are the maximum outer diameters.
[0022]
As shown in FIG. 3, a pair of T-shaped core pieces 20, 20 of the same shape and the same size that constitute the core CR are respectively embedded in the first and second bobbin pieces 2, 3 by insert molding. I have. That is, each of the core pieces 20, 20 is such that each of the arm portions 21, 21 is embedded in a hollow disk-shaped end frame portion 23, 24 outside the corresponding bobbin piece 2, 3, and each leg portion 22. , 22 are embedded in the cylindrical portions 14, 17 of the corresponding bobbin pieces 2, 3, respectively.
[0023]
As shown in FIG. 4, each of the core pieces 20 has a T-shape by forming a columnar leg 22 having an outer diameter substantially equal to the width of the arm 21 at the center of the arm 21 having a rectangular parallelepiped shape. It was done. The arm portions 21 and 21 of the core pieces 20 and 20 extend in the radial direction of the windings 11 to 13 shown in FIG. The core piece 20 embedded in the first bobbin piece 2 has the tip of the leg 22 coincident with the start end of the large-diameter inner peripheral surface 15. As shown in FIG. 5, four cylindrical members 27, which are projecting pieces projecting inward in the radial direction from the edge of the opening at the distal end thereof, are arranged in the cylindrical portion 17 of the second bobbin piece 3 at equal intervals of 90 °. The sum of the length of the cylindrical portion 17 and the thickness of the spacer 27 is set to match the axial length of the large-diameter inner peripheral surface 15 of the first bobbin piece.
[0024]
Therefore, when the cylindrical portion 17 of the second bobbin piece 3 is completely fitted into the large-diameter inner peripheral surface 15 of the cylindrical portion 14 of the first bobbin piece 2, as shown in FIG. A gap G defined by the thickness of the spacer 27 is formed between the tip surfaces of the legs 22, 22 of the core pieces 20, 20, respectively. In this way, the coupling coefficient between the primary winding and the secondary winding 12 is set to 0.6 to 0.8, thereby providing the secondary winding 12 with leakage inductance, and the conventional magnetron inverter. The secondary side high frequency choke required for the circuit is not required. The gap G is located inside the cylindrical portions 14 and 17 of the bobbin pieces 2 and 3 where the primary and secondary windings 11 and 12 are provided. The size of the gap G is appropriately set, but may be zero, that is, the tip surfaces of the legs 22 may be brought into contact with each other.
[0025]
Further, a plurality of heat dissipation holes 28 are formed in the outer end surfaces of the end frame portions 23 and 24 of the bobbin pieces 2 and 3, respectively, so that a part of the core piece 20, that is, a leg portion of the arm portion 21 is formed. A part of the top surface 21 a where the 22 is not formed is exposed to the outside through the heat dissipation hole 28. When the transformer 100 is driven, the heat generated by each of the core pieces 20, 20 is satisfactorily radiated to the outside of the bobbin pieces 2, 3 through the heat dissipation holes 28.
[0026]
In the primary winding 11 shown in FIG. 2, a lead wire 11 a at the beginning of winding shown by a two-dot chain line in FIG. 1 is drawn from a lead portion 31 formed of a cutout groove extending in a radial direction of the first bobbin piece 2. The lead wire 11b at the end of winding is pulled out from the lead portion 31 while being locked by the locking portion 32 formed integrally with the first bobbin piece 2, and is formed integrally with the first bobbin piece 2. Locked by the locking portion 33 that has been set. A flag terminal 34 is attached to the end of the leading wire 11a at the beginning of winding, and a round terminal 37 is attached to a terminal of the leading wire 11b at the end of winding. Conversely, the round terminal 37 may be attached to the end of the leading wire 11a at the beginning of winding, and the flag terminal 34 may be attached to the terminal of the leading wire 11b at the end of winding.
[0027]
On the other hand, as shown in FIG. 2, the lead wires 12a and 12b of the secondary winding 12 are wound around a pair of pin terminals 38 and 39 which are inserted and fixed to the second bobbin piece 3 and project in the axial direction. They are connected by soldering. The heater winding 13 has pin terminals 40 and 41 attached to both terminals, respectively, and is wound around the heater winding frame 19 of FIG. 3 for one turn.
[0028]
In assembling the transformer 100, as shown in FIG. 6, a primary winding 11 and a secondary winding 12 are wound around a pair of bobbin pieces 2, 3 in which core pieces 20, 20 are embedded by insert molding, respectively. After that, as described above, the procedure is performed by fitting the cylindrical portion 17 of the second bobbin piece 3 into the large-diameter inner peripheral surface 15 of the cylindrical portion 14 of the first bobbin piece 2 and bonding the same. This eliminates the need for the step of attaching the core to the bobbin and the step of fixing the core to the bobbin using a fixture such as a core band as in a conventional transformer, thus reducing man-hours and facilitating assembly work. Parts can be reduced.
[0029]
The transformer 100 assembled as described above is used, for example, for driving the magnetron 66 in the high-frequency heating device shown in FIG. 11, and in that case, it is incorporated into the high-frequency heating device in the following procedure. That is, the transformer 100 inserts the pin terminals 38 and 39 of FIG. 2 into the connection holes provided in the wiring board on which the circuit pattern as shown in FIG. The round terminals 37 are connected to the connection bases provided on the wiring board by plugging and screwing, respectively, and the pin terminals 40 and 41 are plugged and connected to the connection terminals provided on the wiring board, thereby providing an inverter. It is attached to the wiring board of the circuit in a connected state. Note that the transformer 100 can be mounted in a connected state even if the full-wave rectifier circuit 42 in FIG. 12 is formed on the wiring board in place of the half-wave rectifier circuit 65 in FIG.
[0030]
According to the above configuration, there is neither a core nor a yoke made of a magnetic material connected to the core to form a magnetic path on the side of each of the windings 11 to 13 shown in FIG. , That is, the dimension D2 along the radial direction of the bobbin 1 is reduced.
[0031]
Moreover, since the bobbin 1 is flat and the winding widths of the primary and secondary windings 11 and 12 are small and thin, the pair of T-shaped core pieces 20 and 20 have a pair of arm portions 21 and 21 connected to each other. Since the distance is reduced, the magnetic flux generated in the magnetic circuits C1 and C2 passing through the legs 22, 22 and the arms 21, 21 shown in FIG. Moreover, since two magnetic circuits C1 and C2 are formed, a strong magnetic flux is generated from this point as well. Therefore, an increase in the number of windings of the windings 11 and 12 is suppressed, and the transformer 100 can be downsized. Further, since both core pieces 20, 20 have the same shape and the same dimensions, they can be molded using a common molding die. However, the two core pieces 20, 20 may have different shapes or dimensions. In particular, the positions of the gaps G may be adjusted by making the lengths of the legs 22, 22 different from each other.
[0032]
Further, since the transformer 100 has neither the core nor the yoke on the side of the windings 11 to 13 as described above, the bobbin 1 is assembled by connecting the bobbin pieces 2 and 3 and then the heater winding 13 Can be wound around the heater winding frame 19 and attached. In this way, the heater winding 13 can be wound in a process different from the primary and secondary windings 11 and 12 that are automatically wound, so that assembly is easy.
[0033]
Further, since the primary winding 11 usually formed of a thick conductor is usually formed of a thick conductor, it is not easy to wrap around the pin terminal fixed to the bobbin 1, but in the embodiment of the present invention. The lead wires (end wires) of the primary winding 11 can be easily attached to the wiring board by screwing or inserting the terminals 34 and 37 attached to the tips into terminal blocks attached to the wiring board. The ends of the secondary winding 12, which are usually formed of thin wires, are connected to the pin terminals 38, 39 fixed to the bobbin 1. When mounted on the wiring board, it does not swing unexpectedly and does not have a risk of contacting the surrounding conductor.
[0034]
FIG. 7 is a longitudinal sectional view showing a transformer 200 according to the second embodiment of the present invention. In FIG. 7, the same or equivalent components as those in FIG. 3 are denoted by the same reference numerals, and description thereof will be omitted. In this transformer 200, a core CR is formed by using a pair of L-shaped core pieces 43 instead of the T-shaped core piece 20 used in the transformer 100 of the first embodiment. It is almost the same as the embodiment. As shown in FIGS. 8A and 8B, the core piece 43 has a columnar leg 45 formed at the base end of an arm 44 having a flat rectangular shape, that is, a rectangular parallelepiped shape. This corresponds to a half of the arm portion 21 of the T-shaped core piece 20 omitted. The outer diameter of the leg 45 and the width of the arm 44 are substantially the same. As shown in FIG. 7, the arm portions 44, 44 of the core pieces 43, 43 are embedded in the end frame portions 48, 49 of the bobbin pieces 2, 3 by insert molding, and the leg 45 is Buried inside.
[0035]
The tip of the arm portion 44 of the core 43 is located radially outward of the outer diameter portion of each of the windings 11 to 13. Also in this transformer 200, the coupling coefficient between the primary winding 11 and the secondary winding 12 is set to 0.6 to 0.8. Further, the two core pieces 43, 43 also have the same shape and the same size, but may have different shapes or sizes, and in particular, the lengths of the legs 45, 45 may be different from each other.
[0036]
According to the transformer 200 using the L-shaped core pieces 43, 43, neither the core nor the yoke exists on the sides of the primary and secondary windings 11, 12, but the legs 45, 45 of the core pieces 43, 43. A relatively strong magnetic flux is generated by the magnetic circuit C1 passing through the gap between the arms 44, 44 and the ends of the arms 44, 44, and the same effect as described in the first embodiment can be obtained.
[0037]
FIG. 9 is a longitudinal sectional view showing a transformer 300 according to the third embodiment of the present invention. In FIG. 9, the same or equivalent components as those in FIGS. Is omitted. In this transformer 300, a core CR is formed by using a pair of F-shaped core pieces 50, 50, and as with the primary winding 11, a heat-sealing material is applied to the core wire, similarly to the secondary winding 12. The coated fusion wire is wound in a cylindrical shape in advance and fixed by heat fusion. Other configurations are almost the same as those of the first and second embodiments. As shown in FIG. 10, the core piece 50 has a cylindrical middle leg 52 substantially at the center of a rectangular parallelepiped arm 51, and a quadrangular or larger polygonal or cylindrical outer leg 53 at one end. The outer diameter of the middle leg portion 52 and the width of the outer leg portion 53 are substantially the same as the width of the arm portion 51.
[0038]
As shown in FIG. 9, the arm portions 51, 51 of the core pieces 50, 50 are embedded in the end frame portions 54, 57 of the bobbin pieces 2, 3 by insert molding, and the middle leg portion 52 is formed into a cylindrical portion. The outer leg portion 53 is embedded in coating portions 58, 59 projecting in the axial direction from one end portions of the end frame portions 54, 57. At the tip of the covering portion 59 of the second bobbin piece 3, a spacer 60 composed of four projecting pieces is formed similarly to the cylindrical portion 17. The distal ends of the two covering portions 58 and 59 are butted against each other, and a gap G similar to that formed between the middle legs 52 is formed by the spacer 60 interposed therebetween.
[0039]
The transformer 300 includes a magnetic circuit C1 having a small magnetic loss passing through the middle legs 52, 52, the arms 51, 51 and the outer legs 53, 53 of the two core pieces 50, 50, and the middle leg of the both cores 50, 50. The magnetic circuit C2 is formed through the gaps between the ends 52, 52, the arms 51, 51 and the other ends of the arms 51, 51. Therefore, the transformer 300 has two magnetic circuits C1 and C2 formed therein, so that the magnetic loss is reduced, and the magnetic flux passing through the middle leg 52, that is, the magnetic flux passing inside the both windings 11 and 12, is stronger. Become. In addition, in the transformer 300, since the bobbin 1 has a flat shape, the interval between the arm portions 51, 51 of the pair of core pieces 50, 50 is reduced, so that the transformer 300 is generated in the magnetic circuits C1, C2. The magnetic flux becomes stronger.
[0040]
As a result, the transformer 300 assures excellent magnetic characteristics. Therefore, even when the winding width of the primary and secondary windings 11 and 12 is reduced and the transformer 300 is made thin, it is necessary to obtain a predetermined voltage. The number of turns of the primary and secondary windings 11 and 12 can be reduced, and the transverse dimension of the transformer 300, that is, the dimension along the radial direction of the bobbin 1, can be reduced by that much, and the size can be reduced. Therefore, this transformer 300 can suppress an increase in the mounting area when mounting on the wiring board. Further, in the transformer 300, as in the first and second embodiments, the core piece 50 is mounted on the bobbin pieces 2 and 3 by insert molding. it can.
[0041]
The present invention can be applied to other electromagnetic inductors such as a choke coil and a reactor in addition to a transformer.
[0042]
【The invention's effect】
In the thin electromagnetic inductor according to the present invention, the core is formed by using a pair of T-shaped, L-shaped, or F-shaped core pieces. Since there is no yoke made of a magnetic material, the dimension in the radial direction orthogonal to the axial direction of the winding is reduced. In addition, since the bobbin is flat and thin, the interval between the arm portions of the pair of core pieces is reduced, and a strong magnetic flux is generated, so that excellent magnetic characteristics are secured. In addition, since a pair of core pieces is configured to be mounted on the corresponding bobbin pieces by insert molding, a step of assembling the core pieces on the bobbin and then fixing the core pieces with a core band or the like is unnecessary, and the man-hour is reduced accordingly. In addition, costs can be reduced by reducing the number of parts.
[Brief description of the drawings]
FIG. 1 is a plan view showing a thin electromagnetic inductor according to a first embodiment of the present invention.
FIG. 2 is a front view of the embodiment.
FIG. 3 is a longitudinal sectional view of the embodiment.
FIG. 4A is a front view showing the core of the embodiment, and FIG. 4B is a bottom view of the same.
FIG. 5 is a plan view of a part of the embodiment.
FIG. 6 is an exploded front view of the same embodiment.
FIG. 7 is a longitudinal sectional view showing a thin electromagnetic magnetic inductor according to a second embodiment of the present invention.
FIG. 8A is a front view showing the core of the embodiment, and FIG. 8B is a bottom view thereof.
FIG. 9 is a longitudinal sectional view showing a thin electromagnetic inductor according to a third embodiment of the present invention.
FIG. 10A is a front view showing the core of the embodiment, and FIG. 10B is a bottom view of the core.
FIG. 11 is a circuit diagram showing a high-frequency heating device to which the thin electromagnetic induction device of the present invention can be applied.
FIG. 12 is an electric circuit diagram of a main part showing another high-frequency heating device.
FIG. 13 is a sectional view showing a conventional transformer.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Resin bobbin, 2, 3 ... Bobbin piece, 11 ... Primary winding, 11a, 11b ... Lead wire, 12 ... Secondary winding, 20 ... T-shaped core piece, 21 ... T Arm portion of a core member in the shape of a letter, 22: leg portion of a core piece in a T shape, 29, 30: center hole of a bobbin, 34: flag terminal (terminal), 37: round terminal (terminal), 38, 39 ... Pin terminals, 43: L-shaped core piece, 44: L-shaped core piece arm, 45: L-shaped core piece leg, 50: F-shaped core piece, 51: F-shaped core piece arm 52, middle leg of F-shaped core piece, 53: outer leg of F-shaped core piece, G: gap, D1: axial dimension, D2: radial dimension.

Claims (6)

軸方向の寸法が径方向の寸法よりも短い偏平な形状の樹脂製のボビンに巻線が装着され、このボビンの中心孔に、一対のT字形のコア片の脚部が挿入され、両コア片のアーム部が前記巻線の径方向に延びて互いに平行に対向しており、前記ボビンは軸方向に分割された複数のボビン片を有し、前記各コア片が対応する前記各ボビン片にインサート成形で装着されている薄型電磁誘導器。The winding is mounted on a flat-shaped resin bobbin whose axial dimension is shorter than the radial dimension, and the leg of a pair of T-shaped core pieces is inserted into the center hole of this bobbin. The arm portions extend in the radial direction of the winding and are opposed to each other in parallel with each other. The bobbin has a plurality of bobbin pieces divided in the axial direction, and the bobbin pieces correspond to the core pieces. A thin electromagnetic inductor mounted on an insert molding machine. 軸方向の寸法が径方向の寸法よりも短い偏平な形状の樹脂製のボビンに巻線が装着され、このボビンの中心孔に、一対のL字形のコア片の脚部が挿入され、両コア片のアーム部が前記巻線の径方向に延びて互いに平行に対向しており、前記ボビンは軸方向に分割された複数のボビン片を有し、前記各コア片が対応する前記各ボビン片にインサート成形で装着されている薄型電磁誘導器。A winding is mounted on a flat-shaped resin bobbin whose axial dimension is shorter than the radial dimension, and a pair of L-shaped core pieces are inserted into the center hole of the bobbin. The arm portions extend in the radial direction of the winding and are opposed to each other in parallel with each other. The bobbin has a plurality of bobbin pieces divided in the axial direction, and the bobbin pieces correspond to the core pieces. A thin electromagnetic inductor mounted on an insert molding machine. 軸方向の寸法が径方向の寸法よりも短い偏平な形状の樹脂製のボビンに巻線が装着され、このボビンの中心孔に、一対のF字形のコア片の中脚部が挿入されるとともに、外脚部が前記ボビンの外方で前記巻線の径方向の外側に位置し、前記両コアのアーム部が前記巻線の径方向に延びて互いに平行に対向しており、前記ボビンは軸方向に分割された複数のボビン片を有し、前記各コア片が対応する前記各ボビン片にインサート成形で装着されている薄型電磁誘導器。The winding is mounted on a flat-shaped resin bobbin whose axial dimension is shorter than the radial dimension, and a pair of F-shaped core piece middle legs is inserted into the center hole of this bobbin. The outer leg portion is located outside the bobbin in the radial direction of the winding, the arm portions of the two cores extend in the radial direction of the winding and face each other in parallel, and the bobbin is A thin electromagnetic inductor having a plurality of bobbin pieces divided in an axial direction, wherein each of the core pieces is mounted on the corresponding one of the bobbin pieces by insert molding. 請求項1から3のいずれかにおいて、前記コア片のアーム部における脚部が形成されていない頂面の少なくとも一部分が外部に露出している薄型電磁誘導器。The thin electromagnetic inductor according to any one of claims 1 to 3, wherein at least a part of a top surface of the arm portion of the core piece where the leg is not formed is exposed to the outside. 請求項1から4のいずれかにおいて、前記巻線として、1次巻線と2次巻線が軸方向に離間してボビンに取り付けられ、前記一対のコア片の脚部の対向する先端面の間にギャップが形成されている薄型電磁誘導器。The winding according to any one of claims 1 to 4, wherein a primary winding and a secondary winding are attached to the bobbin so as to be axially separated from each other, and the leg portions of the pair of core pieces face each other. A thin electromagnetic inductor with a gap between them. 請求項5において、前記1次巻線と2次巻線の結合係数が0.6から0.8の間に設定されている薄型電磁誘導器。6. The thin electromagnetic inductor according to claim 5, wherein a coupling coefficient between the primary winding and the secondary winding is set between 0.6 and 0.8.
JP2000092276A 2000-03-24 2000-03-29 Thin electromagnetic inductor Expired - Lifetime JP3542025B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2000092276A JP3542025B2 (en) 2000-03-29 2000-03-29 Thin electromagnetic inductor
CN01111913.6A CN1216387C (en) 2000-03-24 2001-03-23 Electromagnetic sensor
US09/814,936 US6587023B2 (en) 2000-03-24 2001-03-23 Electromagnetic induction device
EP01106468A EP1152640B1 (en) 2000-03-24 2001-03-23 Electromagnetic induction device
DE60135949T DE60135949D1 (en) 2000-03-24 2001-03-23 Electromagnetic induction device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000092276A JP3542025B2 (en) 2000-03-29 2000-03-29 Thin electromagnetic inductor

Publications (2)

Publication Number Publication Date
JP2001284137A JP2001284137A (en) 2001-10-12
JP3542025B2 true JP3542025B2 (en) 2004-07-14

Family

ID=18607632

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000092276A Expired - Lifetime JP3542025B2 (en) 2000-03-24 2000-03-29 Thin electromagnetic inductor

Country Status (1)

Country Link
JP (1) JP3542025B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5098409B2 (en) * 2007-04-16 2012-12-12 株式会社村田製作所 Wound-type electronic component core, manufacturing method thereof, and wound-type electronic component

Also Published As

Publication number Publication date
JP2001284137A (en) 2001-10-12

Similar Documents

Publication Publication Date Title
JP2005340812A (en) Coil structure and method of manufacturing the same
KR20010079643A (en) Magnetron drive step-up transformer and transformer of magnetron drive power supply
TW201007785A (en) Conductive winding structure and magnetic device using same
JP2020178122A (en) Choke coil and manufacturing method thereof
JP2002093635A (en) Magnetic device and high-voltage generating device
JP3542025B2 (en) Thin electromagnetic inductor
JPH10163029A (en) Common mode choke coil
US7852188B2 (en) Transformer
JP2004071584A (en) Electromagnetic induction apparatus
JP3735061B2 (en) Electromagnetic induction
JP2001274026A (en) Electromagnetic inductor
JP2002075748A (en) Coil
JP2002075755A (en) Electromagnetic inductor
JP3531812B2 (en) Electromagnetic inductor
JP2003086431A (en) Electromagnetic inductor
JP2005057150A (en) Thin electromagnetic induction machine
JP2003086434A (en) Electromagnetic inductor
JP2001274027A (en) Electromagnetic inductor
JPH06124844A (en) Magnetism leakage transformer
JP2003086433A (en) Electromagnetic inductor
JP7302236B2 (en) Trance
JPH0349381Y2 (en)
JP3069979U (en) Step-up transformer for magnetron drive
JPH075617Y2 (en) Electromagnetic device
JP3664534B2 (en) Surface mount type choke coil

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040316

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040323

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040325

R150 Certificate of patent or registration of utility model

Ref document number: 3542025

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090409

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090409

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100409

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110409

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110409

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120409

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130409

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130409

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140409

Year of fee payment: 10

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313114

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term