JP6032528B2 - Transmission coil component and non-contact charging device - Google Patents

Transmission coil component and non-contact charging device Download PDF

Info

Publication number
JP6032528B2
JP6032528B2 JP2012068792A JP2012068792A JP6032528B2 JP 6032528 B2 JP6032528 B2 JP 6032528B2 JP 2012068792 A JP2012068792 A JP 2012068792A JP 2012068792 A JP2012068792 A JP 2012068792A JP 6032528 B2 JP6032528 B2 JP 6032528B2
Authority
JP
Japan
Prior art keywords
magnetic
soft magnetic
transmission coil
magnetic sheet
contact charging
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012068792A
Other languages
Japanese (ja)
Other versions
JP2013201296A (en
Inventor
森山 義幸
義幸 森山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Metals Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP2012068792A priority Critical patent/JP6032528B2/en
Publication of JP2013201296A publication Critical patent/JP2013201296A/en
Application granted granted Critical
Publication of JP6032528B2 publication Critical patent/JP6032528B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、コイルと、磁気シールド、磁気ヨーク等として機能する磁性シートとを有する伝送コイル部品に関する。さらにはそれを用いた非接触充電装置に関する。   The present invention relates to a transmission coil component having a coil and a magnetic sheet functioning as a magnetic shield, a magnetic yoke, or the like. Furthermore, it is related with the non-contact charging device using it.

近年、小型の電子機器、情報通信機器の高性能化、高機能化が進められており、特に、携帯電話、Web端末、ミュージックプレイヤー等は携帯機器としての利便性のため、長時間の連続使用が可能であることが求められている。これら小型情報通信機器では電源としてリチウムイオン電池などの二次電池が使用されている。この二次電池の充電方法には受電側の電極と給電側の電極とを直接接触させて充電を行う接触充電方式と、給電側と受電側の両方に伝送コイルを設け、電磁誘導を利用した電力伝送によって充電する非接触充電方式とがある。非接触充電方式は給電装置と受電装置を直接接触させるための電極が必要ないため、同じ給電装置を用いて異なる受電装置に充電することも可能である。   In recent years, small electronic devices and information communication devices have been improved in performance and functionality. In particular, mobile phones, web terminals, music players, etc. are used continuously for a long time for convenience as portable devices. Is required to be possible. In these small information communication devices, a secondary battery such as a lithium ion battery is used as a power source. This secondary battery charging method uses a contact charging method in which charging is performed by directly contacting the electrode on the power receiving side and the electrode on the power feeding side, and transmission coils are provided on both the power feeding side and the power receiving side, and electromagnetic induction is used. There is a non-contact charging method in which charging is performed by power transmission. Since the contactless charging method does not require an electrode for directly contacting the power feeding device and the power receiving device, it is possible to charge different power receiving devices using the same power feeding device.

高い電力伝送効率を得るためには、伝送コイルに対して、給電装置と受電装置の接触面とは反対側に磁性シートなどのコイルヨークが設置される。かかるコイルヨークには以下のような役割がある。第一の役割は、磁気シールド材としての役割である。非接触充電装置の充電作業中に発生した漏れ磁束が二次電池を構成する金属部材などの他の部品に流れると、これらの部品が渦電流によって発熱する。コイルヨークは、磁気シールド材としてこの発熱を抑制できる。コイルヨークの第二の役割は、充電中にコイルで発生した磁束を還流させるヨーク部材として作用することである。例えば、コイル間に生じる電磁誘導作用により非接触で電力を伝送するコードレスパワーステーションを開示する特許文献1には、コイルの外側に軟磁性材部として軟磁性フェライト板を配置した構成が開示されている。特許文献1では、かかる軟磁性フェライト板によって磁束漏れを防止している。 In order to obtain high power transmission efficiency, a coil yoke such as a magnetic sheet is installed on the opposite side of the transmission coil from the contact surface of the power feeding device and the power receiving device. The coil yoke has the following role. The first role is a role as a magnetic shield material. When leakage magnetic flux generated during the charging operation of the non-contact charging device flows to other components such as a metal member constituting the secondary battery, these components generate heat due to eddy current. The coil yoke can suppress this heat generation as a magnetic shield material. The second role of the coil yoke is to act as a yoke member for returning the magnetic flux generated in the coil during charging. For example, Patent Document 1 that discloses a cordless power station that transmits electric power in a non-contact manner by electromagnetic induction generated between coils discloses a configuration in which a soft magnetic ferrite plate is disposed as a soft magnetic material portion on the outside of the coil. Yes. In Patent Document 1, magnetic flux leakage is prevented by such a soft magnetic ferrite plate.

特開平7−231586号公報JP-A-7-231586

電子機器、情報通信機器の非接触充電装置に対しては、伝送効率等の特性向上はもちろんのこと、小型化、特に薄型化の要請が強い。特許文献1に記載された構成によれば、磁束漏れを防止し、伝送電力及び変換効率の向上することが期待されるものの、軟磁性材部を備え、かかる軟磁性材部として軟磁性フェライトを用いているため、小型化、薄型化の要請に十分応えられるものではなかった。   For non-contact charging devices for electronic devices and information communication devices, there is a strong demand for downsizing, in particular reduction in thickness, as well as improvement in characteristics such as transmission efficiency. According to the configuration described in Patent Document 1, although it is expected to prevent magnetic flux leakage and improve transmission power and conversion efficiency, the soft magnetic material portion is provided, and soft magnetic ferrite is used as the soft magnetic material portion. Because it is used, it has not been able to sufficiently meet the demand for miniaturization and thinning.

かかる点に鑑み、本発明は、コイルとそれに対向する磁性シートを備える、非接触充電装置用の伝送コイル部品において、インダクタンスと効率の低下を抑えて磁性シートの磁気ヨーク等としての機能を維持しつつ、薄型化が可能な構成を提供することを目的とする。さらには、かかる構成を用いて非接触充電装置の小型化を図ることを目的とする。   In view of this point, the present invention maintains a function of a magnetic sheet as a magnetic yoke or the like while suppressing a decrease in inductance and efficiency in a transmission coil component for a non-contact charging device including a coil and a magnetic sheet facing the coil. However, it aims at providing the structure which can be reduced in thickness. Furthermore, it aims at achieving size reduction of a non-contact charging device using this structure.

本発明の非接触充電装置用の伝送コイル部品は、コイルと、前記コイルに対向するように配置された磁性シートを備え、前記磁性シートはフェライト層と、前記フェライト層よりも大きな飽和磁束密度の軟磁性合金薄帯を二層以上有する軟磁性合金薄帯層を有し、前記フェライト層は、抵抗率が10 Ω・m以上のNi−Zn系フェライト焼結体であり、前記フェライト層が前記コイル側になるように配置されたことを特徴とする。かかる構成によって、インダクタンスと効率の低下を抑えつつ、伝送コイル部品の薄型化が可能になる。 A transmission coil component for a non-contact charging device according to the present invention includes a coil and a magnetic sheet disposed so as to face the coil, and the magnetic sheet has a ferrite layer and a saturation magnetic flux density larger than that of the ferrite layer. A soft magnetic alloy ribbon having two or more soft magnetic alloy ribbons, wherein the ferrite layer is a Ni-Zn ferrite sintered body having a resistivity of 10 5 Ω · m or more, and the ferrite layer is It arrange | positions so that it may become the said coil side. With this configuration, it is possible to reduce the thickness of the transmission coil component while suppressing a decrease in inductance and efficiency.

また、前記伝送コイル部品において、前記軟磁性合金薄帯層は軟磁性合金薄帯を二層以上有することが好ましい。磁性シートのフェライト層がコイル側になるように配置することで、効率低下の抑制効果が得られるが、軟磁性合金薄帯を二層以上有することで、その効果がよりいっそう高められる。また、前記軟磁性合金薄帯層の軟磁性合金薄帯が、1.2T以上の飽和磁束密度のナノ結晶軟磁性合金薄帯であるのが好ましい。 In the transmission coil component, it is preferable that the soft magnetic alloy ribbon layer has two or more soft magnetic alloy ribbons. By arranging the ferrite layer of the magnetic sheet so as to be on the coil side, an effect of suppressing the decrease in efficiency can be obtained, but the effect can be further enhanced by having two or more soft magnetic alloy ribbons. The soft magnetic alloy ribbon of the soft magnetic alloy ribbon layer is preferably a nanocrystalline soft magnetic alloy ribbon having a saturation magnetic flux density of 1.2 T or more.

また、本発明の非接触充電装置用の受電装置は、前記伝送コイル部品を備えたことを特徴とする。上述の伝送コイル部品を備えることで、非接触充電装置用の受電装置の小型化が可能である。   In addition, a power receiving device for a non-contact charging device according to the present invention includes the transmission coil component. By providing the above-described transmission coil component, it is possible to reduce the size of the power receiving device for the non-contact charging device.

また、本発明の非接触充電装置用の給電装置は、前記伝送コイル部品を備えたことを特徴とする。上述の伝送コイル部品を備えることで、非接触充電装置用の給電装置の小型化が可能である。   In addition, a power feeding device for a non-contact charging device according to the present invention includes the transmission coil component. By providing the transmission coil component described above, it is possible to reduce the size of the power feeding device for the non-contact charging device.

また、本発明の非接触充電装置は、互いに対置させて用いる給電装置および受電装置を有する非接触充電装置であって、前記給電装置および受電装置の少なくとも一方に前記伝送コイル部品を備えたことを特徴とする。   Further, the non-contact charging device of the present invention is a non-contact charging device having a power feeding device and a power receiving device that are used facing each other, wherein the transmission coil component is provided in at least one of the power feeding device and the power receiving device. Features.

本発明によれば、コイルとそれに対向する磁性シートを備える、非接触充電装置用の伝送コイル部品において、インダクタンスと効率の低下を抑えて、磁性シートの磁気ヨーク等としての機能を維持しつつ、薄型化が可能な構成を提供することができる。さらには、かかる構成を用いて非接触充電装置の小型化も可能となる。     According to the present invention, in a transmission coil component for a non-contact charging device including a coil and a magnetic sheet facing the coil, while suppressing a decrease in inductance and efficiency, while maintaining the function of the magnetic sheet as a magnetic yoke, A configuration capable of being thinned can be provided. Furthermore, it is possible to reduce the size of the non-contact charging device using such a configuration.

給電装置と受電装置を備えた非接触充電装置を示す図である。It is a figure which shows the non-contact charging device provided with the electric power feeder and the receiving device. 本発明に係る伝送コイル部品に用いる磁性シートの例を示す図である。It is a figure which shows the example of the magnetic sheet used for the transmission coil component which concerns on this invention. 本発明に係る伝送コイル部品の実施形態を示す図である。It is a figure which shows embodiment of the transmission coil component which concerns on this invention. 本発明に係る伝送コイル部品の他の実施形態を示す図である。It is a figure which shows other embodiment of the transmission coil component which concerns on this invention. 本発明に係る伝送コイル部品に用いる磁性シートの他の例を示す図である。It is a figure which shows the other example of the magnetic sheet used for the transmission coil component which concerns on this invention.

以下、本発明に係る伝送コイル部品および非接触充電装置の実施形態を、図を用いて具体的に説明するが、本発明はこれに限定されるものではない。また、各実施形態において説明する構成は、他の実施形態の趣旨を損なわない限りにおいて他の実施形態においても適用することが可能であり、その場合、重複する説明は適宜省略する。   Hereinafter, embodiments of the transmission coil component and the non-contact charging device according to the present invention will be specifically described with reference to the drawings. However, the present invention is not limited thereto. Moreover, the structure demonstrated in each embodiment is applicable also in other embodiment, unless the meaning of other embodiment is impaired, In that case, the overlapping description is abbreviate | omitted suitably.

図1は互いに対置させて用いる給電装置および受電装置を有する非接触充電装置を示す断面図である。給電装置および受電装置は、それぞれ伝送コイル部品を備え、これらの伝送コイル部品を対向させて伝送コイル部品間で電力伝送を行う。給電装置および受電装置の少なくとも一方に、本発明に係る伝送コイル部品を備える。各伝送コイル部品は、平面状のコイルと、前記コイルに対向するように配置された磁性シートを備える。非接触充電装置の具体例は、例えば携帯通信端末とその充電器である。受電装置には携帯端末など、受電機能を備えた電子機器本体の他、バッテリーユニット単体も含まれる。   FIG. 1 is a cross-sectional view showing a non-contact charging device having a power feeding device and a power receiving device that are used facing each other. Each of the power feeding device and the power receiving device includes transmission coil components, and transmits power between the transmission coil components with these transmission coil components facing each other. At least one of the power feeding device and the power receiving device includes the transmission coil component according to the present invention. Each transmission coil component includes a planar coil and a magnetic sheet disposed to face the coil. A specific example of the non-contact charging device is, for example, a mobile communication terminal and its charger. The power receiving device includes a battery unit alone in addition to an electronic device main body having a power receiving function such as a portable terminal.

交流電源10に接続される給電装置12は回路部11を有する。回路部11は、交流電流を整流する整流回路、整流された直流電流を所定の周波数の高周波電流に変換するスイッチング回路を備える。給電装置12は、平面状コイル7と、平面状コイル7の内側に配置された磁気吸着部材8とを有する。回路部11から出力された高周波電流は一次伝送コイルである平面状コイル7に流れる。平面状コイル7は共振用コンデンサ(図示せず)に接続され、スイッチング回路によって変換される所定周波数と同じ周波数で共振する。給電装置12にはスイッチング回路の動作を制御するための制御回路を設けても良い。   A power feeding device 12 connected to the AC power supply 10 includes a circuit unit 11. The circuit unit 11 includes a rectifier circuit that rectifies an alternating current and a switching circuit that converts the rectified direct current into a high-frequency current having a predetermined frequency. The power feeding device 12 includes a planar coil 7 and a magnetic attracting member 8 disposed inside the planar coil 7. The high-frequency current output from the circuit unit 11 flows through the planar coil 7 that is a primary transmission coil. The planar coil 7 is connected to a resonance capacitor (not shown) and resonates at the same frequency as the predetermined frequency converted by the switching circuit. The power feeding device 12 may be provided with a control circuit for controlling the operation of the switching circuit.

受電装置5は、二次伝送コイルである平面状コイル2と、コイルヨークとして前記平面状コイル2の後面側に配置された磁性シート1とを備える。なお、一次伝送コイルと対向する側を前面側、逆側を後面側と称することとする。二次伝送コイルである平面状コイル2に加えて共振用コンデンサを配置することで共振回路を構成できる。平面状コイル2には、整流回路(図示せず)を介して二次電池4が接続されており、電磁誘導によって平面状コイル2に誘起された誘導電流は整流回路で整流され、二次電池4が充電される。   The power receiving device 5 includes a planar coil 2 that is a secondary transmission coil, and a magnetic sheet 1 that is disposed on the rear surface side of the planar coil 2 as a coil yoke. The side facing the primary transmission coil is referred to as the front side, and the opposite side is referred to as the rear side. A resonance circuit can be configured by arranging a resonance capacitor in addition to the planar coil 2 as a secondary transmission coil. A secondary battery 4 is connected to the planar coil 2 via a rectifier circuit (not shown), and the induced current induced in the planar coil 2 by electromagnetic induction is rectified by the rectifier circuit. 4 is charged.

給電装置12および受電装置5は、例えば樹脂等の非磁性の筐体に収容される。かかる筐体はそれぞれ平坦面を有し、該平坦面同士を対向させて充電を行う。給電装置と受電装置とは、上述の磁気吸着部材8を用いて互いに位置決め、固定される。給電装置の磁気吸着部材と受電装置の磁気吸着部材の少なくとも一方が磁石を用いて構成される。例えば図1に示す構成では、給電装置の磁気吸着部材8が磁石または該磁石からの磁束を誘導する磁気ヨークである。受電装置側にも磁石を設けて位置決め、固定することができるが、図1に示す構成の受電装置側では、磁性シート1に磁気吸着部材としての機能を持たせている。すなわち、給電装置側の磁気吸着部材8と受電装置側の磁性シート1とが対向して配置されており、これらの間の磁気的な吸着力によって給電装置12と受電装置5とが位置決め、固定される。   The power feeding device 12 and the power receiving device 5 are accommodated in a nonmagnetic housing such as resin. Each of the casings has a flat surface, and charging is performed with the flat surfaces facing each other. The power feeding device and the power receiving device are positioned and fixed to each other using the magnetic adsorption member 8 described above. At least one of the magnetic attracting member of the power feeding device and the magnetic attracting member of the power receiving device is configured using a magnet. For example, in the configuration shown in FIG. 1, the magnetic attracting member 8 of the power feeding device is a magnet or a magnetic yoke that induces a magnetic flux from the magnet. A magnet can also be provided and positioned and fixed on the power receiving device side, but the magnetic sheet 1 has a function as a magnetic attracting member on the power receiving device side having the configuration shown in FIG. That is, the magnetic attracting member 8 on the power feeding device side and the magnetic sheet 1 on the power receiving device side are arranged to face each other, and the power feeding device 12 and the power receiving device 5 are positioned and fixed by the magnetic attracting force between them. Is done.

上記平面状コイル2、7は、その巻回軸が前記平坦面に垂直になるように(平面状のコイルの面が前記平坦面に平行になるように)筐体の内側に配置される。平面状コイル2、7の、前記平坦面の反対側(後面側)には、それぞれ磁性シート1、6が隣接して配置される。筐体内部には、例えば樹脂基板などの基板3、9が配置される。なお、磁性シートと磁気吸着部材の構成は、受電装置と給電装置とで互いに入れ替えて構成することも可能である。ただし、受電装置の小型化の要請が強いため、磁性シートとは別個の磁気吸着部材を備える構成は受電装置側では用いないことがより好ましい。給電装置側の磁性シート6は受電側の磁性シート1と同じ構成の磁性体を用いてもよいが、別の構成のものを用いてもよい。また、受電側の基板3を省略して、磁性シート1を二次電池4に直接貼付してもよい。磁性シート1、6は、二次電池4等を設置した基板3、9と平面状コイル2、7との間において、その主面が平面状コイル2、7と重なるように、または覆うように配置される。したがって、渦巻き状に巻回された平面状コイル7によって発生した磁束が磁性シート1、6に収束して通るようになり、磁性シートが磁気ヨークまたは磁気シールドとして機能する。平面状コイル2、7の巻回軸方向に対置された磁性シート1、6の部分について、以下具体的に説明する。   The planar coils 2 and 7 are arranged inside the casing so that the winding axis thereof is perpendicular to the flat surface (the surface of the planar coil is parallel to the flat surface). On the opposite side (rear surface side) of the planar coils 2 and 7 to the flat surface, magnetic sheets 1 and 6 are respectively disposed adjacent to each other. For example, substrates 3 and 9 such as a resin substrate are disposed inside the housing. Note that the configurations of the magnetic sheet and the magnetic adsorption member can be interchanged between the power receiving device and the power feeding device. However, since there is a strong demand for downsizing the power receiving device, it is more preferable not to use a configuration including a magnetic attracting member separate from the magnetic sheet on the power receiving device side. The magnetic sheet 6 on the power feeding device side may use a magnetic body having the same configuration as that of the magnetic sheet 1 on the power receiving side, but may have a different configuration. Further, the magnetic sheet 1 may be directly attached to the secondary battery 4 by omitting the power receiving side substrate 3. The magnetic sheets 1 and 6 are disposed so that the main surfaces thereof overlap or cover the planar coils 2 and 7 between the substrates 3 and 9 and the planar coils 2 and 7 on which the secondary battery 4 and the like are installed. Be placed. Accordingly, the magnetic flux generated by the planar coil 7 wound in a spiral shape converges and passes through the magnetic sheets 1 and 6, and the magnetic sheet functions as a magnetic yoke or a magnetic shield. The parts of the magnetic sheets 1 and 6 facing the winding axis direction of the planar coils 2 and 7 will be specifically described below.

(第1の実施形態)
本願発明に係る伝送コイル部品に用いる磁性シートの例を図2に、かかる磁性シートを用いた非接触充電装置用の伝送コイル部品の例を図3に示す。図3に示した伝送コイル部品は、図1に示す非接触充電装置の受電装置5に用いられる伝送コイル部品である。図2(a)は平面状の磁性シートを主面の法線方向から見た平面図である。図2に示す磁性シート1は外形が矩形であるが、外形はこれに限定されるものではない。例えば、長方形、正方形のような矩形以外に、円形、楕円形、異形、さらにはそれらに凹凸をつけた形状など種々の構成を取ることができる。また、図2に示す矩形の構成では四隅にアールが形成されているが、かかるアールは形成しなくてもよい。図2(b)は平面状の磁性シート1の、法線に垂直な方向から見た断面図である。磁性シート1はシート状のフェライト層1aと軟磁性合金薄帯層1bを有する積層シートである。フェライト層1aと軟磁性合金薄帯層1bとは接着層(図示せず)を介して貼り合わされている。図2に示す構成では、フェライト層1aと軟磁性合金薄帯層1bの外形を同じにして、外周を揃えて構成してあるが、これらの形状や大きさを異なるものとしてもよい。
(First embodiment)
An example of a magnetic sheet used for the transmission coil component according to the present invention is shown in FIG. 2, and an example of a transmission coil component for a non-contact charging device using such a magnetic sheet is shown in FIG. The transmission coil component shown in FIG. 3 is a transmission coil component used in the power receiving device 5 of the non-contact charging device shown in FIG. Fig.2 (a) is the top view which looked at the planar magnetic sheet from the normal line direction of the main surface. The magnetic sheet 1 shown in FIG. 2 has a rectangular outer shape, but the outer shape is not limited to this. For example, in addition to a rectangle such as a rectangle or a square, various configurations such as a circle, an ellipse, an irregular shape, and a shape with irregularities formed thereon can be employed. Further, in the rectangular configuration shown in FIG. 2, rounds are formed at the four corners, but such rounds may not be formed. FIG. 2B is a cross-sectional view of the planar magnetic sheet 1 viewed from a direction perpendicular to the normal line. The magnetic sheet 1 is a laminated sheet having a sheet-like ferrite layer 1a and a soft magnetic alloy ribbon 1b. The ferrite layer 1a and the soft magnetic alloy ribbon 1b are bonded together via an adhesive layer (not shown). In the configuration shown in FIG. 2, the outer shapes of the ferrite layer 1a and the soft magnetic alloy thin ribbon layer 1b are made the same and the outer periphery is made uniform, but these shapes and sizes may be different.

フェライト層1aは、Ni系フェライト焼結体、Mn系フェライト焼結体等各種のフェライト材料を用いて構成することができる。フェライト材料は、金属系の材料に比べて抵抗率が高く、うず電流損失の低減に有効である。フェライト材料のうち10Ω・m以上の抵抗率を有し、抵抗率の高いNi−Zn系フェライト焼結体がより好ましい。一方、軟磁性合金薄帯層1bは、ロール急冷により製造される磁性合金の薄帯を用いて構成される。軟磁性合金薄帯材料は、例えばFe系アモルファス薄帯、Co系アモルファス薄帯、Fe系ナノ結晶軟磁性合金薄帯、Co系ナノ結晶軟磁性合金薄帯などであり、0.5T以上の飽和磁束密度と3000以上の比透磁率(at 100kHz)を有し、フェライト層1aを構成するフェライト材料よりも、透磁率、飽和磁束密度に優れる。このうち、Fe系ナノ結晶軟磁性合金薄帯などの微結晶軟磁性合金薄帯は特に高い飽和磁束密度、透磁率を有することから、磁性シートを構成する磁性体として特に好ましい。例えば、1.2T以上の飽和磁束密度、10000以上の比透磁率(at 100kHz)を有するFe系ナノ結晶軟磁性合金薄帯が好適である。渦電流損失を低減し、充電の伝送効率を向上させるためには、軟磁性体を薄くすることが好ましいため、軟磁性合金薄帯の一層の厚さは50μm以下、より好ましくは30μm以下にするとよい。 The ferrite layer 1a can be configured using various ferrite materials such as a Ni-based ferrite sintered body and a Mn-based ferrite sintered body. Ferrite materials have a higher resistivity than metal materials and are effective in reducing eddy current loss. Of the ferrite materials, a Ni—Zn ferrite sintered body having a resistivity of 10 5 Ω · m or more and a high resistivity is more preferable. On the other hand, the soft magnetic alloy thin ribbon layer 1b is configured using a magnetic alloy thin ribbon manufactured by roll quenching. Soft magnetic alloy ribbon materials are, for example, Fe-based amorphous ribbons, Co-based amorphous ribbons, Fe-based nanocrystalline soft magnetic alloy ribbons, Co-based nanocrystalline soft magnetic alloy ribbons, etc., and saturation of 0.5 T or more It has a magnetic flux density and a relative magnetic permeability (at 100 kHz) of 3000 or more, and is more excellent in magnetic permeability and saturation magnetic flux density than the ferrite material constituting the ferrite layer 1a. Of these, microcrystalline soft magnetic alloy ribbons such as Fe-based nanocrystalline soft magnetic alloy ribbons are particularly preferred as magnetic materials constituting magnetic sheets because they have particularly high saturation magnetic flux density and magnetic permeability. For example, a Fe-based nanocrystalline soft magnetic alloy ribbon having a saturation magnetic flux density of 1.2 T or more and a relative magnetic permeability (at 100 kHz) of 10,000 or more is suitable. In order to reduce the eddy current loss and improve the charge transmission efficiency, it is preferable to make the soft magnetic material thin. Therefore, if the thickness of the soft magnetic alloy ribbon is 50 μm or less, more preferably 30 μm or less. Good.

フェライト層1aと軟磁性合金薄帯層1bを貼り合わせることによって、フェライト層だけで磁性シートを構成する場合に比べて、磁性シートを薄型化することが可能である。本願発明においては、単にフェライト層1aと軟磁性合金薄帯層1bを貼り合わせるだけでなく、図3に示すように、フェライト層1aが平面状コイル2側になるように配置する。軟磁性合金薄帯層1bは、伝送コイル部品が受電装置に用いられる場合は二次電池4側に配置されることになる。フェライト層1aが平面状コイル2側になるように配置することで、軟磁性合金薄帯層1bが平面状コイル2側になるように配置する場合に比べて、伝送コイル部品において高いQ値が得られるのである。   By bonding the ferrite layer 1a and the soft magnetic alloy thin ribbon layer 1b together, it is possible to make the magnetic sheet thinner as compared with the case where the magnetic sheet is constituted only by the ferrite layer. In the present invention, the ferrite layer 1a and the soft magnetic alloy thin ribbon layer 1b are not simply bonded together, but are arranged so that the ferrite layer 1a is on the planar coil 2 side as shown in FIG. The soft magnetic alloy ribbon 1b is disposed on the secondary battery 4 side when the transmission coil component is used in a power receiving device. By arranging the ferrite layer 1a so as to be on the planar coil 2 side, the transmission coil component has a higher Q value as compared with the case where the soft magnetic alloy ribbon layer 1b is located on the planar coil 2 side. It is obtained.

(第2の実施形態)
本願発明に係る伝送コイル部品の他の例を図4に示す。図4に示す実施形態では、軟磁性合金薄帯層1bを二層の軟磁性合金薄帯(1b(1)、1b(2))で構成している点が、図3に示す第1の実施形態と異なる。その他の構成は、図3に示す実施形態と同様であるので説明を省略する。軟磁性合金薄帯層1bを複層化にすることで、インダクタンスを高め、磁気飽和もしにくくなる。さらに、上述した、フェライト層1aが平面状コイル2側になるように配置することの効果がよりいっそう顕著になる。複数の軟磁性合金薄帯は接着層である樹脂(図示せず)を介して積層されている。軟磁性合金薄帯は二層に限らず、それ以上でもよい。軟磁性合金薄帯の層数が多くなるにしたがって、上記効果が顕著なる。軟磁性合金薄帯層の層数の上限はこれを特に限定するものではないが、軟磁性合金薄帯層の層数が多くなると工程が複雑となるので、例えば10層以下にすることが好ましい。また、薄型化を可能とする軟磁性合金薄帯の特徴やコストの観点からは、軟磁性合金薄帯層が占める部分が多くなりすぎないことが好ましい。例えば、接着層等の非磁性体部分を除いた軟磁性合金薄帯層1bの合計厚さは、フェライト層1aの厚さよりも小さいことが好ましい。なお、フェライト層1aを二層以上にすることも可能である。ただし、工程が煩雑になることから、フェライト層1aは一層であることが好ましい。
(Second Embodiment)
Another example of the transmission coil component according to the present invention is shown in FIG. In the embodiment shown in FIG. 4, the soft magnetic alloy ribbon 1b is composed of two layers of soft magnetic alloy ribbons (1b (1), 1b (2)). Different from the embodiment. Other configurations are the same as those of the embodiment shown in FIG. By making the soft magnetic alloy ribbon layer 1b into multiple layers, inductance is increased and magnetic saturation is difficult to occur. Furthermore, the above-described effect of arranging the ferrite layer 1a so as to be on the planar coil 2 side becomes even more remarkable. The plurality of soft magnetic alloy ribbons are laminated via a resin (not shown) as an adhesive layer. The soft magnetic alloy ribbon is not limited to two layers but may be more than that. As the number of soft magnetic alloy ribbons increases, the above effect becomes more prominent. The upper limit of the number of soft magnetic alloy ribbon layers is not particularly limited, but the process becomes complicated when the number of soft magnetic alloy ribbon layers increases. . Further, from the viewpoint of the characteristics and cost of the soft magnetic alloy ribbon capable of being thinned, it is preferable that the soft magnetic alloy ribbon layer does not have too many portions. For example, it is preferable that the total thickness of the soft magnetic alloy thin ribbon layer 1b excluding the nonmagnetic part such as the adhesive layer is smaller than the thickness of the ferrite layer 1a. It is possible to make the ferrite layer 1a into two or more layers. However, since the process becomes complicated, the ferrite layer 1a is preferably a single layer.

(第3の実施形態)
本願発明に係る伝送コイル部品に用いる磁性シートは図2に示すようなベタな単純な形状なものに限らず、開口部、切り欠き等があってもよい。本願発明に係る伝送コイル部品に用いる磁性シートの他の例を図5に示す。図5は平面状の磁性シートを主面の法線方向から見た平面図である。図2に示す実施形態とは、平面の形状が異なり、それ以外の構成は同じであるので、その説明は省略する。図5に示す磁性シート13は外形が略矩形であり、環状の開口部14を有する。さらに、磁性シート13が開口部14に囲まれた部分15を有する。以下、環状の開口部14に囲まれた部分15を第2の磁性シート部15、それ以外の部分を第1の磁性シート部ともいう。第1の磁性シート部と第2の磁性シート部とは一体で構成され、第2の磁性シート部15の一部と第1の磁性シート部の一部とを連結する連結部16を備えている。第2の磁性シート部は連結部16が形成された部分を除き、開口部14の縁から離間して配置され、全体として円形であり、開口部14の内形と相似となっている。磁性シートと平面状コイルとを用いて伝送コイル部品を構成するときに、第2の磁性シート部は、平面状コイルの巻回軸上に位置するように配置される。給電装置と受電装置は、それに含まれるコイルの巻回軸が一致するように配置される。したがって、給電装置のコイルの中心軸上に磁気吸着部材として永久磁石を備える場合、環状の開口部14に囲まれた部分15(第2の磁性シート部15)は、かかる永久磁石に対向配置される磁気吸着部材として機能させることができる。そのような場合でも、第2の磁性シート部15は開口部14の縁から離間して配置されているため、第2の磁性シート部15から第1の磁性シート部への磁束の流れやそれによる第1の磁性シート部の磁気飽和を抑制することができる。連結部16の幅は、その幅方向で見た第2の磁性シート部15の寸法よりも小さく、第2の磁性シート部15の外形が円形、矩形等と認識できる程度であることが必要である。さらに、図5に示す磁性シートは、開口部14と第1の磁性シート部の外縁側とを連通させる連通部17を有する。連通部17を形成しない構成でもよいが、連通部17が形成されていることで、開口部14を形成する際に、かかる部分の薄帯の除去が容易になる。なお、吸着機能の構成に応じて、第2の磁性シート部を設けず、円形や矩形の単純な開口部にすることも可能であるし、完全な開口にせず、凹部にすることも可能である。
(Third embodiment)
The magnetic sheet used for the transmission coil component according to the present invention is not limited to a solid simple shape as shown in FIG. 2, and may have an opening, a notch, or the like. Another example of the magnetic sheet used for the transmission coil component according to the present invention is shown in FIG. FIG. 5 is a plan view of a planar magnetic sheet as viewed from the normal direction of the main surface. Since the shape of a plane is different from the embodiment shown in FIG. 2 and other configurations are the same, the description thereof is omitted. The magnetic sheet 13 shown in FIG. 5 has a substantially rectangular outer shape and has an annular opening 14. Further, the magnetic sheet 13 has a portion 15 surrounded by the opening 14. Hereinafter, the part 15 surrounded by the annular opening 14 is also referred to as a second magnetic sheet part 15, and the other part is also referred to as a first magnetic sheet part. The first magnetic sheet part and the second magnetic sheet part are integrally formed, and include a connecting part 16 that connects a part of the second magnetic sheet part 15 and a part of the first magnetic sheet part. Yes. The second magnetic sheet portion is disposed apart from the edge of the opening 14 except for the portion where the connecting portion 16 is formed, and is circular as a whole, and is similar to the inner shape of the opening 14. When the transmission coil component is configured using the magnetic sheet and the planar coil, the second magnetic sheet portion is arranged so as to be positioned on the winding axis of the planar coil. The power feeding device and the power receiving device are arranged so that the winding axes of the coils included therein are coincident. Therefore, when a permanent magnet is provided as a magnetic attracting member on the central axis of the coil of the power feeding device, the portion 15 (second magnetic sheet portion 15) surrounded by the annular opening 14 is disposed opposite to the permanent magnet. It can function as a magnetic adsorption member. Even in such a case, since the second magnetic sheet portion 15 is disposed away from the edge of the opening 14, the flow of magnetic flux from the second magnetic sheet portion 15 to the first magnetic sheet portion and the The magnetic saturation of the first magnetic sheet portion due to can be suppressed. The width of the connecting portion 16 is smaller than the dimension of the second magnetic sheet portion 15 viewed in the width direction, and it is necessary that the outer shape of the second magnetic sheet portion 15 is recognizable as a circle, a rectangle, or the like. is there. Furthermore, the magnetic sheet shown in FIG. 5 has a communication portion 17 that allows the opening 14 to communicate with the outer edge side of the first magnetic sheet portion. Although the structure which does not form the communication part 17 may be sufficient, when the communication part 17 is formed, when forming the opening part 14, the removal of the thin strip of this part becomes easy. Depending on the configuration of the adsorption function, the second magnetic sheet portion may not be provided, and it may be a simple circular or rectangular opening, or may not be a complete opening but a recess. is there.

積層された磁性シートは、破損を防ぐために補強部材に固着されていることが好ましい。具体的には、樹脂シートなどで軟磁性合金薄帯等をラミネート加工した磁性シートを用いることが好ましい。表裏二つの主面の一方に樹脂シートを設けても良いし、両方に設けても良い。但し、強度の確保、破損時の破片の飛散防止等の観点からは、表裏二つの主面の両方に樹脂シートを設けることがより好ましい。また、フェライト層、軟磁性合金薄帯層は、樹脂シートに固着された状態で個片分割されたものでもよい。例えば、直交する二方向に所定間隔で形成された分割溝、凹部列、貫通孔列などを設け、樹脂シートの固着された状態で前記分割溝等に沿ってフェライト層を個片分割することによって、フェライト層に可撓性を付与することができる。また、軟磁性合金薄帯層を個片分割することによって、渦電流を抑制することができる。かかる観点からは、スリットも有効である。かかる分割溝等を形成する場合、その構成をフェライト層と軟磁性合金薄帯とで異なるものにすることができる。例えば、個片分割の間隔をフェライト層よりも軟磁性合金薄帯層で大きくしてもよいし、フェライト層のみ所定の間隔で規則的に個片分割し、軟磁性合金薄帯層はかかる規則的な個片分割はしないようにしてもよい。   The laminated magnetic sheets are preferably fixed to the reinforcing member in order to prevent breakage. Specifically, it is preferable to use a magnetic sheet obtained by laminating a soft magnetic alloy ribbon or the like with a resin sheet or the like. A resin sheet may be provided on one of the two main surfaces of the front and back, or may be provided on both. However, it is more preferable to provide resin sheets on both the front and back two main surfaces from the viewpoint of ensuring strength and preventing scattering of fragments at the time of breakage. Further, the ferrite layer and the soft magnetic alloy ribbon layer may be divided into pieces while being fixed to the resin sheet. For example, by providing split grooves, recess rows, through-hole rows, etc. formed at predetermined intervals in two orthogonal directions, and dividing the ferrite layer into pieces along the split grooves etc. in a state where the resin sheet is fixed Flexibility can be imparted to the ferrite layer. Further, eddy current can be suppressed by dividing the soft magnetic alloy ribbon layer into pieces. From this point of view, slits are also effective. In the case of forming such divided grooves and the like, the structure can be different between the ferrite layer and the soft magnetic alloy ribbon. For example, the interval between the individual pieces may be larger in the soft magnetic alloy ribbon layer than the ferrite layer, or only the ferrite layer is regularly divided into individual pieces at a predetermined interval, and the soft magnetic alloy ribbon layer is in accordance with such rules. It may be possible not to divide into individual pieces.

磁性シートをコイルに対向するように配置する際、フェライト層と軟磁性合金薄帯層とを一体としてから配置してもよいし、別体のフェライト層と軟磁性合金薄帯層とを順次配置してもよい。また、フェライト層をコイルに貼付し、軟磁性合金薄帯層を基板や二次電池に貼付して、これらを近接または密着させてもよい。   When arranging the magnetic sheet so as to face the coil, the ferrite layer and the soft magnetic alloy ribbon layer may be arranged as a single unit, or a separate ferrite layer and soft magnetic alloy ribbon layer may be arranged sequentially. May be. Alternatively, a ferrite layer may be attached to a coil, and a soft magnetic alloy ribbon layer may be attached to a substrate or a secondary battery, and these may be brought close to or in close contact with each other.

(実施例1)
図2に示す、矩形の磁性シートを用いて伝送コイル部品を構成した。磁性シートのうち、フェライト層にはNi−Zn系フェライト焼結体を、軟磁性合金薄帯層には微結晶軟磁性合金薄帯を用いた。Ni−Zn系フェライト焼結体は日立金属株式会社製のMS−NF材(厚さ100μm)を使用し、一方の面には厚さ10μmのPET樹脂、他方の面には厚さ10μmの両面接着シートを貼りつけた。また、微結晶軟磁性合金薄帯として日立金属株式会社製のファインメット(登録商標)(FT−3M材、厚さ18μm)を使用した。薄帯を複数層で形成する場合は、両面接着シート(厚さ10μm)を貼り付けて積層し、最上面に露出する薄帯には厚さ31μmのPET樹脂を貼り付けた。磁性シートの外形寸法は縦40mm、横45mmである。軟磁性合金薄帯の層数が異なる複数の磁性シートを用意した。磁性シートと平面状コイルを組み合わせて受電側(二次側)の伝送コイル部品を構成した。このとき、フェライト層をコイル側に配置する構成と軟磁性合金薄帯層をコイル側に配置する構成の二通りで評価した。平面状コイルは線径0.32mmの2パラ線を15ターン巻回して構成し、コイルの外形は40×20mmの矩形、内形は20mm×10mmの矩形とした。一方、給電側(一次側)の平面状コイルは、線径1mmのリッツ線を20ターン(10ターン、2段)巻回して構成し、コイルの外形は直径40mmの円形、内形は直径20mmの円形とした。なお、一次側の磁性シートにはフェライトを使用した。磁性シートと平面状コイルの中心を合わせて伝送コイル部品を構成し、給電側の伝送コイル部品と受電側の伝送コイル部品を図1と同様に配置して、120kHzでインダクタンスLsとQ値を測定した。結果を表1に示す。
Example 1
The transmission coil component was configured using a rectangular magnetic sheet shown in FIG. Among the magnetic sheets, a Ni—Zn ferrite sintered body was used for the ferrite layer, and a microcrystalline soft magnetic alloy ribbon was used for the soft magnetic alloy ribbon layer. The Ni-Zn ferrite sintered body uses an MS-NF material (thickness: 100 μm) manufactured by Hitachi Metals, with 10 μm thick PET resin on one side and 10 μm thick on the other side. An adhesive sheet was attached. Further, as a microcrystalline soft magnetic alloy ribbon, Finemet (registered trademark) (FT-3M material, thickness 18 μm) manufactured by Hitachi Metals, Ltd. was used. In the case where the ribbon is formed of a plurality of layers, a double-sided adhesive sheet (thickness 10 μm) was stuck and laminated, and a PET resin having a thickness of 31 μm was stuck to the ribbon exposed on the uppermost surface. The outer dimensions of the magnetic sheet are 40 mm long and 45 mm wide. A plurality of magnetic sheets having different numbers of soft magnetic alloy ribbons were prepared. A transmission coil component on the power receiving side (secondary side) was configured by combining a magnetic sheet and a planar coil. At this time, evaluation was made in two ways: a configuration in which the ferrite layer is disposed on the coil side and a configuration in which the soft magnetic alloy ribbon layer is disposed on the coil side. The planar coil was constructed by winding two parallel wires with a wire diameter of 0.32 mm for 15 turns, and the outer shape of the coil was a 40 × 20 mm rectangle, and the inner shape was a 20 mm × 10 mm rectangle. On the other hand, a planar coil on the power supply side (primary side) is formed by winding a litz wire with a wire diameter of 1 mm for 20 turns (10 turns, 2 stages), the outer shape of the coil is a circle with a diameter of 40 mm, and the inner shape is a diameter of 20 mm The round shape. Ferrite was used for the primary side magnetic sheet. The transmission coil part is configured by aligning the center of the magnetic sheet and the planar coil, and the transmission coil part on the power feeding side and the transmission coil part on the power receiving side are arranged in the same manner as in FIG. 1, and the inductance Ls and Q value are measured at 120 kHz. did. The results are shown in Table 1.

Figure 0006032528
Figure 0006032528

コイル側にフェライト層、逆側に軟磁性合金薄帯層が配置されたNo1、3、5および7の構成において得られたインダクタンスLsを磁性体としてフェライトだけを用いた磁性シートで得ようとすると、それぞれ215μm(磁性体総厚195μm)、275μm(磁性体総厚255μm)、315(磁性体総厚295μm)、375μm(磁性体総厚355μm)であり、表1に示した磁性シート総厚の方が小さいことがわかった。したがって、本願発明の構成を備えたNo1、3、5および7の実施例において、伝送コイル部品の小型化が図れることがわかる。また、軟磁性合金薄帯層の層数が1〜4のいずれの場合も、コイル側の磁性シート配置を変えてもインダクタンスLsに大きな違いは見られなかった。しかしながら、Q値は磁性シートとコイルとの位置関係を変えることで大きな違いが見られた。すなわち、フェライト層をコイル側に配置することで、軟磁性合金薄帯層をコイル側に配置する場合に比べて、Q値が高くなっており、磁性シートの配置の仕方が重要であることがわかった。特に、軟磁性合金薄帯を二層以上有するNo3、5および7の構成において、その効果が顕著になっていることがわかる。   When the inductance Ls obtained in the configurations of Nos. 1, 3, 5 and 7 in which the ferrite layer is disposed on the coil side and the soft magnetic alloy ribbon layer is disposed on the opposite side is obtained with a magnetic sheet using only ferrite as a magnetic body. 215 μm (total thickness of magnetic material 195 μm), 275 μm (total thickness of magnetic material 255 μm), 315 (total thickness of magnetic material 295 μm), 375 μm (total thickness of magnetic material 355 μm), and the total thickness of the magnetic sheet shown in Table 1 I found it smaller. Therefore, it can be seen that the transmission coil components can be downsized in the examples of Nos. 1, 3, 5 and 7 having the configuration of the present invention. Further, in any case where the number of soft magnetic alloy ribbon layers was 1 to 4, no significant difference was found in the inductance Ls even when the arrangement of the magnetic sheet on the coil side was changed. However, a large difference was seen in the Q value by changing the positional relationship between the magnetic sheet and the coil. That is, by arranging the ferrite layer on the coil side, the Q value is higher than in the case where the soft magnetic alloy ribbon layer is arranged on the coil side, and the manner of arrangement of the magnetic sheet is important. all right. In particular, it can be seen that the effect is remarkable in the configurations of Nos. 3, 5, and 7 having two or more soft magnetic alloy ribbons.

1、6:磁性シート
2、7:平面状コイル
3、9:基板
4:二次電池
5:受電装置
8:磁気吸着部材
10:交流電源
11:回路部
12:給電装置
13:磁性シート
14:開口部
15:環状の開口部43に囲まれた部分(第2の磁性シート部)
16:連結部
17:連通部
DESCRIPTION OF SYMBOLS 1, 6: Magnetic sheet 2, 7: Planar coil 3, 9: Board | substrate 4: Secondary battery 5: Power receiving apparatus 8: Magnetic adsorption member 10: AC power supply 11: Circuit part 12: Power supply apparatus 13: Magnetic sheet 14: Opening 15: a portion surrounded by an annular opening 43 (second magnetic sheet portion)
16: Connection part 17: Communication part

Claims (5)

コイルと、前記コイルに対向するように配置された磁性シートを備え、
前記磁性シートはフェライト層と、前記フェライト層よりも大きな飽和磁束密度の軟磁性合金薄帯を二層以上有する軟磁性合金薄帯層を有し、
前記フェライト層は、抵抗率が10 Ω・m以上のNi−Zn系フェライト焼結体であり、
前記フェライト層が前記コイル側になるように配置された非接触充電装置用の伝送コイル部品。
A coil, and a magnetic sheet disposed to face the coil,
The magnetic sheet has a ferrite layer and a soft magnetic alloy ribbon layer having two or more soft magnetic alloy ribbons having a saturation magnetic flux density larger than the ferrite layer ,
The ferrite layer is a Ni-Zn ferrite sintered body having a resistivity of 10 5 Ω · m or more,
A transmission coil component for a non-contact charging device arranged such that the ferrite layer is on the coil side.
前記軟磁性合金薄帯層軟磁性合金薄帯が、1.2T以上の飽和磁束密度のナノ結晶軟磁性合金薄帯であることを特徴とする請求項1に記載の伝送コイル部品。 The transmission coil component according to claim 1, wherein the soft magnetic alloy ribbon of the soft magnetic alloy ribbon layer is a nanocrystalline soft magnetic alloy ribbon having a saturation magnetic flux density of 1.2 T or more . 請求項1または2に記載の伝送コイル部品を備えたことを特徴とする非接触充電装置用の受電装置。   A power receiving device for a non-contact charging device, comprising the transmission coil component according to claim 1. 請求項1または2に記載の伝送コイル部品を備えたことを特徴とする非接触充電装置用の給電装置。   A power feeding device for a non-contact charging device, comprising the transmission coil component according to claim 1. 互いに対置させて用いる給電装置および受電装置を有する非接触充電装置であって、
前記給電装置および受電装置の少なくとも一方に請求項1または2に記載の伝送コイル部品を備えたことを特徴とする非接触充電装置。
A non-contact charging device having a power feeding device and a power receiving device that are used facing each other,
A non-contact charging device comprising the transmission coil component according to claim 1 or 2 in at least one of the power feeding device and the power receiving device.
JP2012068792A 2012-03-26 2012-03-26 Transmission coil component and non-contact charging device Active JP6032528B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012068792A JP6032528B2 (en) 2012-03-26 2012-03-26 Transmission coil component and non-contact charging device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012068792A JP6032528B2 (en) 2012-03-26 2012-03-26 Transmission coil component and non-contact charging device

Publications (2)

Publication Number Publication Date
JP2013201296A JP2013201296A (en) 2013-10-03
JP6032528B2 true JP6032528B2 (en) 2016-11-30

Family

ID=49521285

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012068792A Active JP6032528B2 (en) 2012-03-26 2012-03-26 Transmission coil component and non-contact charging device

Country Status (1)

Country Link
JP (1) JP6032528B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016073059A (en) * 2014-09-29 2016-05-09 セイコーインスツル株式会社 Non-contact power transmission device, electronic apparatus with non-contact power transmission device mounted thereon, and manufacturing method of non-contact power transmission device
US10673269B2 (en) 2015-07-20 2020-06-02 Amosense Co., Ltd. Magnetic field shielding unit
JP7082785B2 (en) * 2017-10-23 2022-06-09 国立大学法人信州大学 Transmission coil parts for non-contact power supply, their manufacturing method, and non-contact power supply equipment
CN108063044B (en) * 2017-11-30 2024-03-26 亿创智联(浙江)电子科技有限公司 Wireless charging coil and wireless charging system

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010041906A (en) * 2008-07-10 2010-02-18 Nec Tokin Corp Contactless power transmission apparatus, soft magnetic sheet, and module using the same
JP5477393B2 (en) * 2010-02-05 2014-04-23 日立金属株式会社 Magnetic circuit for non-contact charging device, power supply device, power receiving device, and non-contact charging device
JP5660310B2 (en) * 2011-01-14 2015-01-28 Tdk株式会社 Secondary coil unit for non-contact power feeding and non-contact power feeding device
JP4835796B1 (en) * 2011-01-26 2011-12-14 パナソニック株式会社 Receiving side non-contact charging module and receiving side non-contact charging device

Also Published As

Publication number Publication date
JP2013201296A (en) 2013-10-03

Similar Documents

Publication Publication Date Title
JP5839257B2 (en) Coil component and power supply device and charging device using the same
JP5721001B2 (en) Coil component and power supply device and charging device using the same
JP6025015B2 (en) Magnetic sheet, transmission coil component and non-contact charging device
JP4900528B1 (en) Non-contact charging module and non-contact charging device using the same
KR101890326B1 (en) Wireless power transfer module and portable auxiliary battery including the same
WO2012101729A1 (en) Non-contact charging module and non-contact charging instrument
JP5845405B2 (en) Receiving side non-contact charging module and receiving side non-contact charging device
JP2017077174A (en) Mobile terminal
WO2011111585A1 (en) Magnetic element for wireless power transmission and power supply device
JP4835795B1 (en) Receiving side non-contact charging module and receiving side non-contact charging device
JP5660310B2 (en) Secondary coil unit for non-contact power feeding and non-contact power feeding device
JP4835796B1 (en) Receiving side non-contact charging module and receiving side non-contact charging device
JP6061067B2 (en) Contactless power receiving device
JP6032528B2 (en) Transmission coil component and non-contact charging device
JP5700289B2 (en) Transmission coil device and power receiving device and power feeding device using the same
JP4900525B1 (en) Non-contact charging module, transmitting-side non-contact charging device and receiving-side non-contact charging device provided with the same
JP5445545B2 (en) Non-contact charging module, non-contact charger and electronic device
JP5709042B2 (en) Coil component and power receiving device and power feeding device using the same
JP5967467B2 (en) Magnetic sheet, transmission coil component and non-contact charging device
JP6066256B2 (en) Magnetic sheet, transmission coil component and non-contact charging device
JP6048787B2 (en) Magnetic sheet, transmission coil component and non-contact charging device
JP5845407B2 (en) Receiving side non-contact charging module and receiving side non-contact charging device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150216

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160219

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160304

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160427

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160930

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161013

R150 Certificate of patent or registration of utility model

Ref document number: 6032528

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350