JP5445545B2 - Non-contact charging module, non-contact charger and electronic device - Google Patents

Non-contact charging module, non-contact charger and electronic device Download PDF

Info

Publication number
JP5445545B2
JP5445545B2 JP2011206906A JP2011206906A JP5445545B2 JP 5445545 B2 JP5445545 B2 JP 5445545B2 JP 2011206906 A JP2011206906 A JP 2011206906A JP 2011206906 A JP2011206906 A JP 2011206906A JP 5445545 B2 JP5445545 B2 JP 5445545B2
Authority
JP
Japan
Prior art keywords
coil
magnetic sheet
charging module
thickness
contact charging
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2011206906A
Other languages
Japanese (ja)
Other versions
JP2012119662A (en
JP2012119662A5 (en
Inventor
健一郎 田畑
晃男 日高
徳次 西野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2011206906A priority Critical patent/JP5445545B2/en
Publication of JP2012119662A publication Critical patent/JP2012119662A/en
Publication of JP2012119662A5 publication Critical patent/JP2012119662A5/en
Application granted granted Critical
Publication of JP5445545B2 publication Critical patent/JP5445545B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Description

本発明は、平面コイル部と磁性シートとを有する非接触充電モジュール及び非接触充電機器と電子機器に関する。 The present invention relates to a non-contact charging module, a non-contact charging device and an electronic device having a planar coil portion and a magnetic sheet.

近年、本体機器を充電器で非接触充電することのできるものが多く利用されている。これは、充電器側に送電用コイル、本体機器側に受電用コイルを配し、両コイル間に電磁誘導を生じさせることにより充電器側から本体機器側に電力を伝送するものである。そして、上記本体機器として携帯端末機器等を適用することも提案されている。   In recent years, many devices that can charge the main device in a non-contact manner with a charger have been used. In this method, a power transmission coil is arranged on the charger side, a power reception coil is arranged on the main device side, and electromagnetic induction is generated between the two coils to transmit power from the charger side to the main device side. It has also been proposed to apply a mobile terminal device or the like as the main device.

この携帯端末機器等の本体機器や充電器は、薄型化や小型化が要望されるものである。この要望に応えるため、(特許文献1)のように、送電用コイルや受電用コイルとしての平面コイル部と、磁性シートとを備えることが考えられる。   The main device such as the portable terminal device and the charger are required to be thin and small. In order to meet this demand, it is conceivable to provide a planar coil portion as a power transmission coil or a power reception coil and a magnetic sheet as in (Patent Document 1).

特開2006−42519号公報JP 2006-42519 A

しかしながら、(特許文献1)のように1本の導線の平面コイル部と全面が平面状の磁性シートとを備えた非接触充電モジュールでは、接触充電モジュールの薄型化をすることができなくなってしまう。 However, in the non-contact charging module including the planar coil portion of one conductor and the magnetic sheet having a flat surface as in (Patent Document 1), the non- contact charging module cannot be thinned. End up.

そこで、本発明は、上記の問題に鑑み、非接触充電モジュールの電力伝送効率を維持した状態で、薄型化を達成することを目的とする。   In view of the above problems, an object of the present invention is to achieve a reduction in thickness while maintaining the power transmission efficiency of a contactless charging module.

上記課題を解決するために本発明は、導線が巻回された平面コイルと、前記平面コイルを載置する面を有する磁性シートと、前記磁性シートに設けられ、前記面から突出した凸部と、を備え、前記平面コイルの中空部内に前記凸部が配置され、前記磁性シートの厚みは、前記凸部が前記面から突出した高さよりも大きいことを特徴とする非接触充電モジュールとした。 In order to solve the above-described problems, the present invention provides a planar coil around which a conducting wire is wound, a magnetic sheet having a surface on which the planar coil is placed, a convex portion provided on the magnetic sheet and protruding from the surface, The projecting portion is disposed in the hollow portion of the planar coil, and the thickness of the magnetic sheet is larger than the height at which the projecting portion protrudes from the surface .

本発明によれば、非接触充電モジュールの電力伝送効率を維持した状態で、薄型化を達成することができる。   According to the present invention, it is possible to reduce the thickness while maintaining the power transmission efficiency of the contactless charging module.

本発明の実施例における非接触充電モジュールの組立図Assembly drawing of contactless charging module in an embodiment of the present invention 本発明の実施例における非接触充電モジュールの概念図The conceptual diagram of the non-contact charge module in the Example of this invention 本発明の実施例における非接触充電モジュールのコイルの巻き方を示す概念図The conceptual diagram which shows how to wind the coil of the non-contact charge module in the Example of this invention 本発明の実施例における非接触充電モジュールの磁性シートの概念図The conceptual diagram of the magnetic sheet of the non-contact charge module in the Example of this invention 本発明の実施例における非接触充電モジュールのフェライトシートの厚みとコイルのL値との関係を示す図The figure which shows the relationship between the thickness of the ferrite sheet of the non-contact charging module in Example of this invention, and the L value of a coil 本発明の実施例における非接触充電モジュールのコイルの内径とL値との関係を示す図The figure which shows the relationship between the internal diameter and L value of the coil of the non-contact charge module in the Example of this invention. 本発明の実施例における非接触充電モジュールのコイルのターン数とL値との関係を示す図The figure which shows the relationship between the number of turns of the coil of the non-contact charge module in an Example of this invention, and L value 本発明の実施例におけるコイルが1段構造の非接触充電モジュールの概念図The conceptual diagram of the non-contact charge module in which the coil in the Example of this invention has a one-stage structure. 本発明の実施例におけるコイルが1段構造の非接触充電モジュールの磁性シートの概念図The conceptual diagram of the magnetic sheet | seat of the non-contact charge module in which the coil in the Example of this invention has one step structure 本発明の実施例におけるコイルが1段構造の非接触充電モジュールの磁性シートの概念図The conceptual diagram of the magnetic sheet | seat of the non-contact charge module in which the coil in the Example of this invention has one step structure

本発明は、導線が巻回された平面コイルと、前記平面コイルを載置する面を有する磁性シートと、前記磁性シートに設けられ、前記面から突出した凸部と、を備え、前記平面コイルの中空部内に前記凸部が配置され、前記磁性シートの厚みは、前記凸部が前記面から突出した高さよりも大きいことを特徴とする非接触充電モジュールであって、非接触充電モジュールの電力伝送効率を向上させることができる。 The present invention comprises: a planar coil around which a conductive wire is wound; a magnetic sheet having a surface on which the planar coil is placed; and a convex portion provided on the magnetic sheet and projecting from the surface. The non-contact charging module is characterized in that the convex portion is disposed in the hollow portion of the magnetic sheet, and the thickness of the magnetic sheet is larger than the height at which the convex portion protrudes from the surface. Transmission efficiency can be improved.

以下、本発明の実施例について図面を用いて説明する。図1は、本発明の実施例における非接触充電モジュールの組立図、図2は、本発明の実施例における非接触充電モジュールの概念図であって(a)は上面図、(b)は図2(a)のA方向から見た断面図、(c)及び(d)は図2(a)のB方向から見た断面図である。図3は、本発明の実施例における非接触充電モジュールのコイルの巻き方を示す概念図、図4は、本発明の実施例における非接触充電モジュールの磁性シートの概念図であり、(a)は上面図、(b)は図4(a)のA方向から見た断面図、(c)及び(d)は図4(a)のB方向から見た断面図である。   Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is an assembly diagram of a contactless charging module according to an embodiment of the present invention, FIG. 2 is a conceptual diagram of the contactless charging module according to an embodiment of the present invention, (a) is a top view, and (b) is a diagram. 2A are cross-sectional views viewed from the A direction, and FIGS. 2C and 2D are cross-sectional views viewed from the B direction of FIG. FIG. 3 is a conceptual diagram showing how to wind the coil of the non-contact charging module in the embodiment of the present invention, FIG. 4 is a conceptual diagram of the magnetic sheet of the non-contact charging module in the embodiment of the present invention, (a) FIG. 5B is a top view, FIG. 4B is a cross-sectional view seen from the A direction in FIG. 4A, and FIGS. 5C and 5D are cross-sectional views seen from the B direction in FIG.

本願発明の非接触充電モジュール1は、導線が渦巻き状に巻回された平面コイル部2と、コイル21面に対向するように設けられた磁性シート3と、を備え、磁性シート3に、コイル21面の内周円の円周の接線に垂直であって、コイル21面の巻き始めもしくは巻き終わりの点から磁性シート3の端部にまで最短距離で伸びる凹部33またはスリット34を設けたことを特徴とする非接触充電モジュール1である。   The non-contact charging module 1 of the present invention includes a planar coil portion 2 in which a conductive wire is wound in a spiral shape, and a magnetic sheet 3 provided so as to face the coil 21 surface. A recess 33 or a slit 34 that is perpendicular to the circumference of the inner circumference of the 21 surface and extends at the shortest distance from the start or end of winding of the coil 21 surface to the end of the magnetic sheet 3 is provided. This is a non-contact charging module 1 characterized by the following.

図1、2に示すとおり、平面コイル部2は、面上で渦を描くように径方向に向けて導電体を巻いたコイル21と、コイル21の両端に設けられた端子22、23を備える。コイ
ル21は2本の導線を平面上で平行に巻きまわしたものである。また、コイルによって形成された渦巻き状の面をコイル面と呼ぶ。また、端子22、23部分において2本の導線が半田などによって電気的に接続されているので、2本の導線が1本の太い導線のようになる。すなわち、2本の導線は平面状で同一の中心を軸に巻きまわされており、半径方向において一方の導線が他方の導線に挟まれるようになる。このように2本の導線を端子22、23部分で電気的に接合して1本の導線のように機能させることによって、同じ断面積であっても厚みを抑えることができる。すなわち、例えば、直径が0.25mmの導線の断面積を、直径が0.18mmの導線を2本準備することによって得ることができる。従って、直径が0.25mmの導線1本であると、コイル21の1ターンの厚みは0.25mm、コイル21の半径方向の幅は0.25mmであるが、直径が0.18mmの導線2本であると、コイル21の1ターンの厚みは0.18mm、半径方向の幅は0.36mmとなる。なお、厚み方向とは、平面コイル部2と磁性シート3との積層方向である。
As shown in FIGS. 1 and 2, the planar coil unit 2 includes a coil 21 in which a conductor is wound in a radial direction so as to draw a vortex on the surface, and terminals 22 and 23 provided at both ends of the coil 21. . The coil 21 is obtained by winding two conductive wires in parallel on a plane. A spiral surface formed by the coil is called a coil surface. Further, since the two conductors are electrically connected by solder or the like at the terminals 22 and 23, the two conductors become one thick conductor. That is, the two conducting wires are planar and are wound around the same center, and one conducting wire is sandwiched between the other conducting wires in the radial direction. Thus, even if it is the same cross-sectional area, thickness can be restrained by electrically joining two conducting wires in the terminal 22 and 23 part, and making it function like one conducting wire. That is, for example, the cross-sectional area of a conducting wire having a diameter of 0.25 mm can be obtained by preparing two conducting wires having a diameter of 0.18 mm. Therefore, if the diameter of one conducting wire is 0.25 mm, the thickness of one turn of the coil 21 is 0.25 mm, the radial width of the coil 21 is 0.25 mm, but the conducting wire 2 having a diameter of 0.18 mm. In the case of a book, the thickness of one turn of the coil 21 is 0.18 mm, and the width in the radial direction is 0.36 mm. The thickness direction is the direction in which the planar coil portion 2 and the magnetic sheet 3 are laminated.

また、コイル21は中心側の一部分のみ、厚さ方向に2段に重なっており、残りの外側の部分は1段である。このとき、コイル21の中心側の一部分は図3(a)または図3(b)のように重なるように巻回される。図3(a)のように上段の導線と下段の導線どうしがお互いに空間を空けるように巻回されることによって、上段の導線と下段の導線との間の浮遊容量が小さくなり、コイル21の交流抵抗を小さく抑えることができる。   In addition, the coil 21 is overlapped in two stages in the thickness direction only at a part on the center side, and the remaining outer part is one stage. At this time, a part of the coil 21 on the center side is wound so as to overlap as shown in FIG. 3 (a) or FIG. 3 (b). As shown in FIG. 3 (a), the upper conductor and the lower conductor are wound so as to leave a space between each other, thereby reducing the stray capacitance between the upper conductor and the lower conductor, and the coil 21. The AC resistance can be kept small.

また、図3(b)のように上段の導線と下段の導線どうしがお互いに空間を詰めるように巻回されることによって、コイル21の厚みを抑えることができる。   Further, as shown in FIG. 3B, the upper conductor and the lower conductor are wound so as to close each other, whereby the thickness of the coil 21 can be suppressed.

また、図3のように本実施例においては、断面積が円形状の導線としているが、方形形状などの導線でも良い。ただし、断面積が方形状の導線と比較して円形状の導線とでは、隣り合う導線どうしの間に隙間が生じるため、導線間の浮遊容量が小さくなり、コイル21の交流抵抗を小さく抑えることができる。   Further, in the present embodiment as shown in FIG. 3, the cross-sectional area is a conducting wire having a circular shape, but a conducting wire having a square shape or the like may be used. However, in the case of a circular conductor compared with a rectangular conductor, a gap is formed between adjacent conductors, so that the stray capacitance between the conductors is reduced, and the AC resistance of the coil 21 is reduced. Can do.

また、コイル21は厚さ方向に2段で巻回するよりも1段で巻回した方がコイル21の交流抵抗が低くなり、伝送効率を高くすることができる。これは、2段で導線を巻回すると、上段の導線と下段の導線との間に浮遊容量が発生するためである。従って、コイル21は全体を2段で巻回するよりも、なるべく多くの部分を1段によって巻回した方が良い。また、1段で巻回することによって、非接触充電モジュール1として薄型化することができる。なお、コイル21の交流抵抗が低いことでコイル21における損失を防ぎ、L値を向上させることによって、L値に依存する非接触充電モジュール1の電力伝送効率を向上させることができる。   In addition, the coil 21 is wound in one stage rather than being wound in two stages in the thickness direction, so that the alternating current resistance of the coil 21 is lowered and transmission efficiency can be increased. This is because when a conducting wire is wound in two stages, stray capacitance is generated between the upper conducting wire and the lower conducting wire. Therefore, it is better to wind as many portions as possible in one stage rather than winding the entire coil 21 in two stages. Moreover, it can reduce in thickness as the non-contact charge module 1 by winding in 1 step | paragraph. In addition, the loss in the coil 21 is prevented because the alternating current resistance of the coil 21 is low, and the power transmission efficiency of the contactless charging module 1 depending on the L value can be improved by improving the L value.

また、本実施例においては、図1に示すコイル21の内側の内径xは10mm〜20mmであり、外径は約30mmである。内径xが小さいほど、同じ大きさの非接触充電モジュール1においてコイル21のターン数を増やすことができ、L値を向上させることができる。   In this embodiment, the inner diameter x inside the coil 21 shown in FIG. 1 is 10 mm to 20 mm, and the outer diameter is about 30 mm. As the inner diameter x is smaller, the number of turns of the coil 21 can be increased in the contactless charging module 1 of the same size, and the L value can be improved.

なお、端子22、23はお互いに近接してもよく、離れて配置されてもよいが、離れて配置された方が非接触充電モジュール1を実装しやすい。   In addition, although the terminals 22 and 23 may be close to each other or may be arranged apart from each other, the non-contact charging module 1 is easier to mount if they are arranged apart.

磁性シート3は電磁誘導作用を利用した非接触充電の電力伝送効率を向上させるために設けたものであって、図4に示す通り、平坦部31と、中心の凸部32と、凹部33とを備える。凹部33はスリット34であっても良い。また、本実施例においては、磁性シート3としてNi−Zn系のフェライトシート、Mn−Zn系のフェライトシート、Mg−Zn系のフェライトシートなどを使うことができる。フェライトシートは、アモルファス金属の磁性シートに比較してコイル21の交流抵抗を低下させることができる。なお、中
心の凸部32は必ずしも必要ではない。また、磁性シート3は飽和磁束密度が350mT以上であって、厚みを300μm以上とするとよい。
The magnetic sheet 3 is provided in order to improve the power transmission efficiency of the non-contact charging using the electromagnetic induction action. As shown in FIG. 4, the flat part 31, the central convex part 32, the concave part 33, Is provided. The recess 33 may be a slit 34. In this embodiment, a Ni—Zn ferrite sheet, a Mn—Zn ferrite sheet, a Mg—Zn ferrite sheet, or the like can be used as the magnetic sheet 3. The ferrite sheet can reduce the AC resistance of the coil 21 as compared with the amorphous metal magnetic sheet. In addition, the center convex part 32 is not necessarily required. The magnetic sheet 3 may have a saturation magnetic flux density of 350 mT or more and a thickness of 300 μm or more.

本実施例において磁性シート3は約33mm×33mmである。図4(b)に示すd1は0.2mm、d2は0.2mm、d3は0.4mmとなるように、平坦部31、凸部32、凹部33それぞれの厚みを設定している。磁性シート3が厚いほど非接触充電モジュールとしては電力伝送効率が向上するので、凸部32の高さd1は大きければ大きいほど非接触充電モジュール1の伝送効率を向上させる。しかしながら、凸部32を導線の直径よりも大きくした分だけ非接触充電モジュール1としての厚みが増加してしまうため、コイル21を構成する導線の直径とほぼ同一にしている。また、凸部32の径は、コイル21の内径とほぼ同一である。すなわち、コイル21の軸の中心と凸部32の中心はほぼ一致し、コイル21が凸部32を中心に巻回されているようになる。また、d2もコイル21を構成する導線の直径とほぼ同一とし、最低限の深さでしか凹部33を形成しない。これは、凹部33が深くなるほど磁性シート3が薄くなるため、非接触充電モジュール1の伝送効率を下げてしまうからである。   In this embodiment, the magnetic sheet 3 is about 33 mm × 33 mm. The thicknesses of the flat portion 31, the convex portion 32, and the concave portion 33 are set so that d1 shown in FIG. 4B is 0.2 mm, d2 is 0.2 mm, and d3 is 0.4 mm. As the magnetic sheet 3 is thicker, the power transmission efficiency of the contactless charging module is improved. Therefore, the larger the height d1 of the convex portion 32 is, the higher the transmission efficiency of the contactless charging module 1 is. However, since the thickness of the non-contact charging module 1 increases by an amount corresponding to the convex portion 32 being made larger than the diameter of the conducting wire, the diameter of the conducting wire constituting the coil 21 is made substantially the same. Further, the diameter of the convex portion 32 is substantially the same as the inner diameter of the coil 21. That is, the center of the axis of the coil 21 and the center of the convex part 32 substantially coincide, and the coil 21 is wound around the convex part 32. Further, d2 is also substantially the same as the diameter of the conducting wire constituting the coil 21, and the concave portion 33 is formed only with a minimum depth. This is because the magnetic sheet 3 becomes thinner as the concave portion 33 becomes deeper, so that the transmission efficiency of the non-contact charging module 1 is lowered.

凹部33は、凸部32の周りを囲むように形成された円形部33aと、円形部33aから磁性シート3の端部までのびる直線部33bとを備える。円形部33aの幅は約1mm〜2mmであり、直線部33bの幅は0.4mm〜1mm程度(導線の径+約0.1mm)である。直線部33bは磁性シート3の端部とほぼ垂直であり、円形部の外周の接線と重なるように形成される。このように直線部33bを形成することによって、導線を折り曲げることなく端子22、23を形成することができる。なお、この場合、直線部33bの長さは約15mm〜20mmである。また、直線部33bは、磁性シート3の端部と円形部33aの外周が最も近づく部分に形成しても良い。これによって、凹部33の形成面積を最低限に抑えることができ、非接触充電モジュール1の伝送効率を向上させることができる。なお、この場合、直線部33bの長さは約5mm〜10mmである。どちらの配置であっても、直線部33bの内側端部は円形部33aに接続している。また、直線部33bは、他の配置にしてもよい。すなわち、コイル21はなるべく1段構造であることが望ましく、その場合、コイル21の半径方向のすべてのターンを1段構造とするか、一部を1段構造として他の部分を2段構造とすることが考えられる。従って、端子22、23のうち一方はコイル21外周から引き出すことができるが、他方は内側から引き出さなくてはならない。従って、コイル21が巻回されている部分と、コイル21の巻き終わりから端子22または23までの部分とが、必ず厚さ方向において重なってしまう。従って、その重なる部分に直線部33bを設ければよい。   The concave portion 33 includes a circular portion 33 a formed so as to surround the convex portion 32 and a linear portion 33 b extending from the circular portion 33 a to the end of the magnetic sheet 3. The width of the circular portion 33a is about 1 mm to 2 mm, and the width of the straight portion 33b is about 0.4 mm to 1 mm (the diameter of the conducting wire + about 0.1 mm). The straight portion 33b is substantially perpendicular to the end portion of the magnetic sheet 3, and is formed so as to overlap the tangent line on the outer periphery of the circular portion. By forming the straight portion 33b in this way, the terminals 22 and 23 can be formed without bending the conducting wire. In this case, the length of the straight portion 33b is about 15 mm to 20 mm. Moreover, you may form the linear part 33b in the part which the outer periphery of the edge part of the magnetic sheet 3 and the circular part 33a approaches most. Thereby, the formation area of the recessed part 33 can be suppressed to the minimum, and the transmission efficiency of the non-contact charge module 1 can be improved. In this case, the length of the straight portion 33b is about 5 mm to 10 mm. In either arrangement, the inner end portion of the straight portion 33b is connected to the circular portion 33a. Moreover, you may make the linear part 33b other arrangement | positioning. That is, it is desirable that the coil 21 has a one-stage structure as much as possible. In that case, all the turns in the radial direction of the coil 21 have a one-stage structure, or a part has a one-stage structure and the other part has a two-stage structure. It is possible to do. Accordingly, one of the terminals 22 and 23 can be pulled out from the outer periphery of the coil 21, but the other must be pulled out from the inside. Accordingly, the portion around which the coil 21 is wound and the portion from the end of winding of the coil 21 to the terminal 22 or 23 always overlap in the thickness direction. Therefore, the straight portion 33b may be provided in the overlapping portion.

また、直線部33bは図4(c)に示すように凹部33であっても良いし、図4(d)に示すようにスリット34であっても良い。すなわち、凹部33であれば磁性シート3に貫通孔やスリットを設けないので磁束が漏れることを防ぎ、非接触充電モジュール1の電力伝送効率を向上させることができる。対して、スリット34の場合は、磁性シート3の形成が容易となる。凹部33である場合、図4(c)に示すように断面形状が方形状となるような凹部33に限定されず、円弧状であったり、丸みを帯びてもよい。   Further, the straight portion 33b may be a recess 33 as shown in FIG. 4C, or may be a slit 34 as shown in FIG. 4D. That is, if it is the recessed part 33, since a through-hole and a slit are not provided in the magnetic sheet 3, it can prevent that a magnetic flux leaks and can improve the power transmission efficiency of the non-contact charge module 1. FIG. On the other hand, in the case of the slit 34, the magnetic sheet 3 can be easily formed. When it is the recessed part 33, as shown in FIG.4 (c), it is not limited to the recessed part 33 whose cross-sectional shape becomes a square shape, It may be circular arc shape or roundish.

なお、前述したd1、d2、円形部33aの幅などは、導線の直径に依存するため、上記の値に限定されるものではない。また、d1とd2は必ずしも同一である必要もない。なぜならば、円形部33aの部分ではコイルが3段以上に巻かれることもあるからである。   Note that the above-described d1, d2, the width of the circular portion 33a, and the like depend on the diameter of the conducting wire, and are not limited to the above values. Moreover, d1 and d2 do not necessarily need to be the same. This is because the coil may be wound in three or more stages in the circular portion 33a.

図5は、本発明の実施例における非接触充電モジュールのフェライトシートの厚みとコイル21のL値との関係を示す図である。ここで言うフェライトシートの厚みとは、図4(b)におけるd2とd3を合わせたものを言い、凸部32は関係ない。従って、本実施
例においてはフェライトシートの厚みは0.6mmである。また、このとき、コイル21の巻き数は30ターン、コイル21の内径は10mmである。図6に示すとおり、約0.6mm程度においてコイル21のL値が34μHを越える。これによって初めて、非接触充電モジュール1の規格であるWPC規格を満足させることができる。また、0.6mm以上厚くすると非接触充電モジュール1の全体の厚みが増してしまうため、本実施例では0.6mmとしている。なお、厚みが0.6mmで最適値であるのは上記のフェライトシートであるからであって、アモルファス金属の磁性シートを使用した場合は別の値となる。
FIG. 5 is a diagram showing the relationship between the thickness of the ferrite sheet of the contactless charging module and the L value of the coil 21 in the embodiment of the present invention. The thickness of the ferrite sheet referred to here is the sum of d2 and d3 in FIG. 4B, and the protrusion 32 is not relevant. Therefore, in this embodiment, the thickness of the ferrite sheet is 0.6 mm. At this time, the number of turns of the coil 21 is 30 turns, and the inner diameter of the coil 21 is 10 mm. As shown in FIG. 6, the L value of the coil 21 exceeds 34 μH at about 0.6 mm. For the first time, the WPC standard, which is the standard for the non-contact charging module 1, can be satisfied. Moreover, since the whole thickness of the non-contact charging module 1 will increase if it is 0.6 mm or more thick, it is set to 0.6 mm in this embodiment. The optimum value when the thickness is 0.6 mm is because the above-described ferrite sheet is used. When an amorphous metal magnetic sheet is used, the value is different.

次に、コイル21の内径とL値との関係、及びコイル21のターン数とL値との関係について説明する。図6は、本発明の実施例における非接触充電モジュールのコイル21の内径とL値との関係を示す図、図7は、本発明の実施例における非接触充電モジュールのコイル21のターン数とL値との関係を示す図である。なお、図8においてコイル21の巻き数は30ターンであり、図8においてコイル21の内径は10mmである。   Next, the relationship between the inner diameter of the coil 21 and the L value and the relationship between the number of turns of the coil 21 and the L value will be described. FIG. 6 is a diagram showing the relationship between the inner diameter and L value of the coil 21 of the contactless charging module in the embodiment of the present invention, and FIG. 7 shows the number of turns of the coil 21 of the contactless charging module in the embodiment of the present invention. It is a figure which shows the relationship with L value. In FIG. 8, the number of turns of the coil 21 is 30 turns, and in FIG. 8, the inner diameter of the coil 21 is 10 mm.

コイル21のL値が高いほど非接触充電モジュール1の伝送効率は向上し、前述したWPC規格を満足させるためにも、L値は30μH程度必要となる。従って、図7、図8から明らかなとおり、コイル21の巻き数は少なくとも約30ターン、コイル21の内径は少なくとも約10mmが必要である。しかしながら、非接触充電モジュール1の厚み、大きさは非接触充電モジュール1を搭載する例えば携帯電話の電池パックの大きさなどに規制されるため、小型化、薄型化が必要となる。   As the L value of the coil 21 is higher, the transmission efficiency of the contactless charging module 1 is improved, and the L value is required to be about 30 μH in order to satisfy the WPC standard described above. Therefore, as apparent from FIGS. 7 and 8, the coil 21 needs to have at least about 30 turns and the coil 21 has an inner diameter of at least about 10 mm. However, since the thickness and size of the non-contact charging module 1 are regulated by, for example, the size of the battery pack of the mobile phone on which the non-contact charging module 1 is mounted, it is necessary to reduce the size and thickness.

従って、本願発明は、2本の導線を端子22、23部分において電気的に接続することで直径の大きな導線1本のようにし、同程度の導線の断面積を確保した上で薄型化を実現する。また、2本の導線とすることで、コイル21の半径方向における幅が1本の導線分よりも大きくなってしまうため、最も内側の部分を一部だけ2段構造とする。これによって、限られた大きさの磁性シート3であっても、コイル21の巻き数を十分に確保することができる。また、2段構造とするのを内側とすることによって、凹部33の面積を最小限に抑えることができるので、非接触充電モジュール1の電力伝送効率を保つことができる。また、2段構造とするのを内側としてコイル21のうちなるべく多くの部分を1段構造とすることで、交流抵抗を低く抑え、L値を高くすることができる。また、磁性シートの、平面コイル部2の複数段に重ねて巻回されている部分に対向する部分に、磁性シート3を薄くするような環状の凹部33を設けたことによって、コイルの複数段に重ねられた部分と一段の部分との厚みの違いを相殺し、より薄型化させることができる。   Accordingly, in the present invention, two conductors are electrically connected at the terminals 22 and 23 so that one conductor having a large diameter is obtained, and the thinning is realized while ensuring the same cross-sectional area of the conductor. To do. In addition, since the width of the coil 21 in the radial direction is larger than that of one conductor by using two conductors, only a part of the innermost part has a two-stage structure. Thereby, even if it is the magnetic sheet 3 of a limited magnitude | size, the winding number of the coil 21 can fully be ensured. Moreover, since the area of the recess 33 can be minimized by setting the two-stage structure to the inside, the power transmission efficiency of the non-contact charging module 1 can be maintained. Further, by setting the two-stage structure as an inner side and as many portions of the coil 21 as possible as a single-stage structure, the AC resistance can be suppressed low and the L value can be increased. Further, by providing an annular recess 33 for thinning the magnetic sheet 3 in a portion of the magnetic sheet that faces the portion of the planar coil portion 2 that is wound on the plurality of steps of the planar coil portion 2, a plurality of steps of the coil are provided. It is possible to offset the difference in thickness between the portion overlapped with the one-step portion and the one-step portion, thereby further reducing the thickness.

また、図5に示すように磁性シート3の四隅であって、平坦部31上のコイル21が配置されていない領域に凸部32aを形成しても良い。すなわち、磁性シート3の四隅であって平坦部31上のコイル21の外周よりも外側は、磁性シート3の上に何も載せられていない。従って、そこに凸部32aを形成することによって磁性シート3の厚みを増加させ、非接触充電モジュールの電力伝送効率を向上させることができる。凸部32aの厚みは厚ければ厚いほうが良いが、薄型化のため、中央の凸部32と同様導線の厚みとほぼ同一とする。   Further, as shown in FIG. 5, convex portions 32 a may be formed at the four corners of the magnetic sheet 3 and in the region where the coil 21 on the flat portion 31 is not disposed. That is, nothing is placed on the magnetic sheet 3 at the four corners of the magnetic sheet 3 and outside the outer periphery of the coil 21 on the flat portion 31. Therefore, the thickness of the magnetic sheet 3 can be increased by forming the convex portion 32a there, and the power transmission efficiency of the non-contact charging module can be improved. The thickness of the convex portion 32a is preferably as thick as possible, but for the purpose of thinning, the thickness of the conductive wire is almost the same as that of the central convex portion 32.

また、コイル21は環状に巻回されることに限定されず、方形状や多角形状に巻回される場合もある。更に、内側を3段構造とし、外側を2段構造とするように、内側を複数段に重ねて巻回し、外側を内側で巻回した段数よりも少ない段数で巻回することでも、本願の効果を得ることができる。   Further, the coil 21 is not limited to being annularly wound, and may be wound in a square shape or a polygonal shape. Furthermore, the inner side has a three-stage structure, the outer side has a two-stage structure, the inner side is wound in multiple stages, and the outer side is wound with a number of stages smaller than the number of stages wound on the inner side. An effect can be obtained.

次に、円形部33aが設けられない場合の凸部32、凹部33、スリット34について詳細に説明する。図8〜10では、コイル21は1本の導線を巻回して形成されているこ
とを前提としているが、本願発明はそれに限定されるものではない。その他の点においては、図1〜4とほぼ同一である。図8は、本発明の実施例におけるコイルが1段構造の非接触充電モジュールの概念図であり、(a)は上面図、(b)は図8(a)のA方向から見た断面図、(c)及び(d)は図8(a)のB方向から見た断面図である。図9は、本発明の実施例におけるコイルが1段構造の非接触充電モジュールの磁性シートの概念図であり、(a)は上面図、(b)は図9(a)のA方向から見た断面図、(c)及び(d)は図9(a)のB方向から見た断面図である。図10は、本発明の実施例におけるコイルが1段構造の非接触充電モジュールの磁性シートの概念図であって、(a)は上面図、(b)は図10(a)のA方向から見た断面図である。なお、図8から図10には円形部33aを設けておらず、コイル21も単線の銅線によって形成している。
Next, the convex part 32, the recessed part 33, and the slit 34 when the circular part 33a is not provided will be described in detail. 8 to 10, it is assumed that the coil 21 is formed by winding one conductive wire, but the present invention is not limited to this. The other points are almost the same as those in FIGS. 8A and 8B are conceptual diagrams of a non-contact charging module having a single-stage coil according to an embodiment of the present invention, where FIG. 8A is a top view and FIG. 8B is a cross-sectional view as viewed from the direction A in FIG. (C) And (d) is sectional drawing seen from the B direction of Fig.8 (a). FIGS. 9A and 9B are conceptual diagrams of a magnetic sheet of a non-contact charging module having a single-stage coil according to an embodiment of the present invention, where FIG. 9A is a top view and FIG. 9B is a view from direction A in FIG. Sectional views (c) and (d) are sectional views as seen from the direction B of FIG. 9 (a). FIG. 10 is a conceptual diagram of a magnetic sheet of a contactless charging module having a single-stage coil according to an embodiment of the present invention, where (a) is a top view and (b) is from direction A in FIG. 10 (a). FIG. Note that the circular portion 33a is not provided in FIGS. 8 to 10, and the coil 21 is also formed of a single copper wire.

前述したとおり、コイル21はなるべく1段構造であることが望ましく、その場合、コイルの半径方向のすべてのターンを1段構造とするか、一部を1段構造として他の部分を2段構造とすることが考えられる。従って、端子22、23のうち一方はコイル21の外周から引き出すことができるが、他方は内側から引き出さなくてはならない。従って、コイル21が巻回されている部分と、コイル21の巻き終わりから端子22または23までの部分とが、必ず厚さ方向において重なってしまう。   As described above, it is desirable that the coil 21 has a one-stage structure as much as possible. In that case, all the turns in the radial direction of the coil have a one-stage structure, or one part has a one-stage structure and the other part has a two-stage structure. It can be considered. Therefore, one of the terminals 22 and 23 can be pulled out from the outer periphery of the coil 21, but the other must be pulled out from the inside. Accordingly, the portion around which the coil 21 is wound and the portion from the end of winding of the coil 21 to the terminal 22 or 23 always overlap in the thickness direction.

従って、本願発明はその重なる部分において直線状に凹部33またはスリット34を設ける。特に、図9は、コイル21面の内周円の円周の接線に平行であって、コイル面の巻き始めもしくは巻き終わりの点から磁性シート3の端部にまで最短距離で伸びる直線状の凹部33またはスリット34である。なお、コイル21面の内周円の円周の接線とは、凹部33またはスリット34はコイル21面の内周円の外周付近から伸びており、凹部33またはスリット34がコイル21面の内周円の外周に近づく場所における内周円の円周の接線である。このように直線部33bを形成することによって、磁性シート3上で導線を折り曲げることなく端子22、23を形成することができる。すなわち、凹部33またはスリット34を設け、凹部33またはスリット34に導線をはめ込むため、平坦部31から凹部33またはスリット34に向かって導線を厚み方向に屈折させなくてはならない。従って、導線が平坦部31から凹部33またはスリット34に向かってはめ込まれる部分において、磁性シート3上で導線を折り曲げることがないため、導線の強度を維持したまま薄型化を達成することができる。なお、この場合、直線部33bの長さは約15mm〜20mmである。   Accordingly, in the present invention, the concave portion 33 or the slit 34 is provided linearly in the overlapping portion. In particular, FIG. 9 is a straight line extending in the shortest distance from the winding start point or winding end point of the coil surface to the end of the magnetic sheet 3, which is parallel to the circumferential tangent of the inner circumferential circle of the coil 21 surface. The recess 33 or the slit 34. The concave tangent 33 or the slit 34 extends from the vicinity of the outer periphery of the inner peripheral circle of the coil 21 surface, and the concave portion 33 or the slit 34 is the inner periphery of the coil 21 surface. It is the tangent of the circumference of the inner circumference circle at a location approaching the outer circumference of the circle. By forming the straight portion 33b in this way, the terminals 22 and 23 can be formed without bending the conducting wire on the magnetic sheet 3. That is, in order to provide the concave portion 33 or the slit 34 and insert the conductive wire into the concave portion 33 or the slit 34, the conductive wire must be refracted in the thickness direction from the flat portion 31 toward the concave portion 33 or the slit 34. Therefore, since the conducting wire is not bent on the magnetic sheet 3 in the portion where the conducting wire is fitted from the flat portion 31 toward the recess 33 or the slit 34, it is possible to achieve a reduction in thickness while maintaining the strength of the conducting wire. In this case, the length of the straight portion 33b is about 15 mm to 20 mm.

また、直線部33bは、図10に示すように磁性シート3に、コイル21面の内周円の円周の接線に垂直であって、コイル面の巻き始めもしくは巻き終わりの点から磁性シート3の端部にまで最短距離で伸びる凹部33またはスリット34である。これによって、凹部33の形成面積を最低限に抑えることができ、非接触充電モジュール1の伝送効率を向上させることができる。すなわち、凹部33またはスリット34を設けることで、磁性シート3の一部分が欠落、または薄くなってしまう。従って、凹部33またはスリット34から磁束が漏れ、非接触充電モジュールの電力伝送効率が多少であるが低下する恐れがある。従って、凹部33の形成面積を最低限に抑えることで磁束の漏れを最小限に抑えて非接触充電装置の電力伝送効率を維持したまま、薄型化を達成することができる。なお、この場合、直線部33bの長さは約5mm〜10mmである。なお、図10においては、凸部32の外周の接線上であって、磁性シート3の端部に最短距離となるように設けるため、磁性シート3の端部3aと平行な形状である。以上から、円形部33aがない場合も同様の直線部33bを形成するが、円形部33aがない分だけ直線部33bを延ばすと良い。また、図8などでは直線部33bは上面から見て長方形形状となっているが、それに限られるものではない。すなわち、導線を入れやすいように内側端部に丸みを持たせたり、多角形にするとなお良い。   Further, as shown in FIG. 10, the linear portion 33b is perpendicular to the tangent to the circumference of the inner circumference of the coil 21 surface as shown in FIG. It is the recessed part 33 or the slit 34 extended in the shortest distance to the edge part. Thereby, the formation area of the recessed part 33 can be suppressed to the minimum, and the transmission efficiency of the non-contact charge module 1 can be improved. That is, by providing the concave portion 33 or the slit 34, a part of the magnetic sheet 3 is missing or thinned. Therefore, the magnetic flux leaks from the recess 33 or the slit 34, and the power transmission efficiency of the non-contact charging module may be somewhat reduced. Therefore, by reducing the formation area of the recess 33 to the minimum, it is possible to reduce the thickness while minimizing the leakage of magnetic flux and maintaining the power transmission efficiency of the non-contact charging device. In this case, the length of the straight portion 33b is about 5 mm to 10 mm. In FIG. 10, the shape is parallel to the end portion 3 a of the magnetic sheet 3 because it is provided on the tangent line of the outer periphery of the convex portion 32 so as to be the shortest distance from the end portion of the magnetic sheet 3. From the above, the same straight line portion 33b is formed even when there is no circular portion 33a, but it is preferable to extend the straight portion 33b by the amount without the circular portion 33a. In addition, in FIG. 8 and the like, the straight portion 33b has a rectangular shape when viewed from above, but is not limited thereto. In other words, it is more preferable that the inner end is rounded or polygonal so that the conductor can be easily inserted.

また、図9及び図10どちらも、方形の磁性シート3の一方の一対の対向する端部の辺に平行であり、他方の一対の対向する端部の辺には垂直である。これは、本実施例の磁性シート3が方形であるからである。しかしながら、磁性シート3の形状は方形に限定されず、円形、多角形など様々な形状が考えられる。従って、例えば磁性シート3の形状は多角形であり、凹部33またはスリット34は、凹部33またはスリット34の一端が突き当たる辺に対して垂直であることによって、利用しやすい多角形の磁性シートにおいて凹部33またはスリット34の面積を最小限に抑えることができる。特に、磁性シート3の形状は方形であり、磁性シート3の一方の一対の対向する端部の辺に平行であり、他方の一対の対向する端部の辺には垂直であることによって、最も利用しやすい方形形状の磁性シートにおいて凹部33またはスリット34の面積を最小限に抑えることができる。   9 and 10 are both parallel to one pair of opposing end sides of the rectangular magnetic sheet 3 and perpendicular to the other pair of opposing end sides. This is because the magnetic sheet 3 of this example is square. However, the shape of the magnetic sheet 3 is not limited to a square, and various shapes such as a circle and a polygon can be considered. Therefore, for example, the shape of the magnetic sheet 3 is polygonal, and the concave portion 33 or the slit 34 is perpendicular to the side against which one end of the concave portion 33 or the slit 34 abuts. The area of 33 or the slit 34 can be minimized. In particular, the shape of the magnetic sheet 3 is square, parallel to one pair of opposing end sides of the magnetic sheet 3 and perpendicular to the other pair of opposing end sides, In the rectangular magnetic sheet that is easy to use, the area of the recess 33 or the slit 34 can be minimized.

以上のことから、凹部33またはスリット34は、コイル21とコイル21の巻き終わりから端子22または23までの部分とが重なりあう部分に設け、平坦部31上にはコイル21面が備えられる。なお、凹部33またはスリット34は、多少長くまたは短く設けられても良いが、少なくともコイル21とコイル21の巻き終わりから端子22または23までの部分とが重なりあう部分の80%以上はカバーできるようにしたほうが良い。   From the above, the concave portion 33 or the slit 34 is provided in a portion where the coil 21 and the portion from the winding end of the coil 21 to the terminal 22 or 23 overlap each other, and the surface of the coil 21 is provided on the flat portion 31. The recess 33 or the slit 34 may be slightly longer or shorter, but at least 80% or more of the portion where the coil 21 and the portion from the winding end of the coil 21 to the terminal 22 or 23 overlap can be covered. Should be better.

また、図10に示すように磁性シート3の四隅であって、平坦部31上のコイル21が配置されていない領域に凸部32aを形成しても良い。すなわち、磁性シート3の四隅であって平坦部31上のコイル21の外周よりも外側は、磁性シート3の上に何も載せられていない。従って、そこに凸部32aを形成することによって磁性シート3の厚みを増加させ、非接触充電モジュールの電力伝送効率を向上させることができる。凸部32aの厚みは厚ければ厚いほうが良いが、薄型化のため、中央の凸部32と同様導線の厚みとほぼ同一とする。   Further, as shown in FIG. 10, convex portions 32 a may be formed at the four corners of the magnetic sheet 3 and in the region where the coil 21 on the flat portion 31 is not disposed. That is, nothing is placed on the magnetic sheet 3 at the four corners of the magnetic sheet 3 and outside the outer periphery of the coil 21 on the flat portion 31. Therefore, the thickness of the magnetic sheet 3 can be increased by forming the convex portion 32a there, and the power transmission efficiency of the non-contact charging module can be improved. The thickness of the convex portion 32a is preferably as thick as possible, but for the purpose of thinning, the thickness of the conductive wire is almost the same as that of the central convex portion 32.

このように、磁性シート3に円形の凸部32を設け、磁性シート3に、凸部32の円周の接線に垂直であって、凸部32の円周から磁性シート3の端部にまで伸びる凹部33またはスリット34を設けたことによって、凹部33またはスリット34の形成により磁束が漏れてしまうことがありえるが、凸部32を形成することによって磁性シート3の一部の厚みを増加させるので、磁束の漏れを抑えることができる。   In this manner, the magnetic sheet 3 is provided with a circular convex portion 32, and the magnetic sheet 3 is perpendicular to the circumference of the convex portion 32 and extends from the circumference of the convex portion 32 to the end of the magnetic sheet 3. By providing the extending recess 33 or slit 34, magnetic flux may leak due to the formation of the recess 33 or slit 34, but by forming the protrusion 32, the thickness of a part of the magnetic sheet 3 is increased. , Magnetic flux leakage can be suppressed.

また、コイル21は環状に巻回されることに限定されず、方形状や多角形状に巻回される場合もある。更に、内側を3段構造とし、外側を2段構造とするように、内側を複数段に重ねて巻回し、外側を内側で巻回した段数よりも少ない段数で巻回することでも、本願の効果を得ることができる。   Further, the coil 21 is not limited to being annularly wound, and may be wound in a square shape or a polygonal shape. Furthermore, the inner side has a three-stage structure, the outer side has a two-stage structure, the inner side is wound in multiple stages, and the outer side is wound with a number of stages smaller than the number of stages wound on the inner side. An effect can be obtained.

次に、本発明の非接触充電モジュール1を備えた非接触充電機器について説明する。非接触電力伝送機器は、送電用コイルおよび磁性シートを備える充電器と、受電用コイルおよび磁性シートを備える本体機器とから成るものであり、本体機器が携帯電話などの電子機器となっている。充電器側の回路は、整流平滑回路部と、電圧変換回路部と、発振回路部と、表示回路部と、制御回路部と、上記送電用コイルとで構成されている。また本体機器側の回路は、上記受電用コイルと、整流回路部と、制御回路部と、主として二次電池から成る負荷Lとで構成されている。   Next, the non-contact charging device provided with the non-contact charging module 1 of the present invention will be described. The non-contact power transmission device includes a charger including a power transmission coil and a magnetic sheet, and a main device including a power receiving coil and a magnetic sheet. The main device is an electronic device such as a mobile phone. The circuit on the charger side includes a rectifying / smoothing circuit unit, a voltage conversion circuit unit, an oscillation circuit unit, a display circuit unit, a control circuit unit, and the power transmission coil. The circuit on the main device side includes the power receiving coil, a rectifier circuit unit, a control circuit unit, and a load L mainly composed of a secondary battery.

この充電器から本体機器への電力伝送は、1次側である充電器の送電用コイルと、2次側である本体機器の受電用コイルとの間の電磁誘導作用を利用して行われる。   The power transmission from the charger to the main device is performed using an electromagnetic induction action between the power transmission coil of the charger on the primary side and the power receiving coil of the main device on the secondary side.

本実施例の非接触充電機器は、上記で説明した非接触充電モジュールを備えるため、平面コイル部の断面積を十分に確保して電力伝送効率を向上させた状態で、非接触充電機器を小型化及び薄型化することができる。   Since the non-contact charging device of the present embodiment includes the non-contact charging module described above, the non-contact charging device is reduced in size in a state where the cross-sectional area of the planar coil portion is sufficiently secured to improve the power transmission efficiency. And thinning.

本発明の非接触充電モジュールによれば、平面コイル部の断面積を十分に確保した状態で、非接触モジュールを薄型化することができるため、携帯電話、携帯用のコンピュータなどの携帯端末、ビデオカメラなどの携帯機器などの様々な電子機器の非接触充電モジュールとして有用である。   According to the non-contact charging module of the present invention, the non-contact module can be thinned in a state in which the cross-sectional area of the planar coil portion is sufficiently secured, so that the mobile terminal such as a mobile phone or a portable computer, video It is useful as a non-contact charging module for various electronic devices such as portable devices such as cameras.

1 非接触充電モジュール
2 平面コイル部
21 コイル
22、23 端子
3 磁性シート
31 平坦部
32 凸部
33 凹部
34 スリット
DESCRIPTION OF SYMBOLS 1 Non-contact charge module 2 Planar coil part 21 Coil 22,23 Terminal 3 Magnetic sheet 31 Flat part 32 Convex part 33 Concave part 34 Slit

Claims (6)

導線が巻回された平面コイルと、
前記平面コイルを載置する面を有する磁性シートと、
前記磁性シートに設けられ、前記面から突出した凸部と、を備え、
前記平面コイルの中空部内に前記凸部が配置され、
前記磁性シートの厚みは、前記凸部が前記面から突出した高さよりも大きく、
前記凸部の厚みは、前記平面コイルの厚みよりも大きいことを特徴とする非接触充電モジュール。
A planar coil wound with a conducting wire;
A magnetic sheet having a surface on which the planar coil is placed;
A convex portion provided on the magnetic sheet and projecting from the surface;
The convex portion is disposed in the hollow portion of the planar coil,
The thickness of the magnetic sheet is greater than the height at which the convex portion protrudes from the surface,
The non-contact charging module, wherein the thickness of the convex portion is larger than the thickness of the planar coil.
前記凸部の中心は、前記平面コイルの軸と、ほぼ同一であることを特徴とする請求項に記載の非接触充電モジュール。 Non-contact charging module according to claim 1, wherein the center of said convex portion, and the axis of the flat coil, is substantially identical. 前記凸部は、前記平面コイルの中空部とほぼ同一の大きさであることを特徴とする請求項1または2に記載の非接触充電モジュール。 Non-contact charging module according to claim 1 or 2, wherein the convex portion is approximately the same size as the hollow portion of the planar coil. 前記平面コイルの外側であって、前記面上のコイルが配置されていない領域に、更に他の凸部を備えたことを特徴とする請求項1〜3のいずれかひとつに記載の非接触充電モジュール。 The contactless charging according to any one of claims 1 to 3 , further comprising another convex portion in an area outside the planar coil and in which the coil on the surface is not disposed. module. 請求項1〜4のいずれかひとつに記載の送電側の非接触充電モジュールを備えたことを特徴とする非接触充電器。 The non-contact charger provided with the non-contact charge module by the side of power transmission as described in any one of Claims 1-4 . 請求項1〜4のいずれかひとつに記載の受電側の非接触充電モジュールを備えたことを特徴とする電子機器。 An electronic apparatus comprising the non-contact charging module of the power receiving side according to any one of claims 1 to 4.
JP2011206906A 2011-09-22 2011-09-22 Non-contact charging module, non-contact charger and electronic device Expired - Fee Related JP5445545B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011206906A JP5445545B2 (en) 2011-09-22 2011-09-22 Non-contact charging module, non-contact charger and electronic device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011206906A JP5445545B2 (en) 2011-09-22 2011-09-22 Non-contact charging module, non-contact charger and electronic device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2010267986A Division JP4835787B1 (en) 2010-12-01 2010-12-01 Non-contact charging module and non-contact charging device

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2013231870A Division JP2014027880A (en) 2013-11-08 2013-11-08 Noncontact charging module and noncontact charger

Publications (3)

Publication Number Publication Date
JP2012119662A JP2012119662A (en) 2012-06-21
JP2012119662A5 JP2012119662A5 (en) 2013-05-16
JP5445545B2 true JP5445545B2 (en) 2014-03-19

Family

ID=46502127

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011206906A Expired - Fee Related JP5445545B2 (en) 2011-09-22 2011-09-22 Non-contact charging module, non-contact charger and electronic device

Country Status (1)

Country Link
JP (1) JP5445545B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012101729A1 (en) 2011-01-26 2012-08-02 パナソニック株式会社 Non-contact charging module and non-contact charging instrument
EP3425651A3 (en) 2011-06-14 2019-01-16 Panasonic Corporation Communication apparatus
EP2775632A4 (en) 2011-11-02 2015-07-01 Panasonic Corp Non-contact wireless communication coil, transmission coil, and portable wireless terminal
US10204734B2 (en) 2011-11-02 2019-02-12 Panasonic Corporation Electronic device including non-contact charging module and near field communication antenna
JP2013169122A (en) 2012-02-17 2013-08-29 Panasonic Corp Non-contact charge module and portable terminal having the same
JP6112383B2 (en) * 2012-06-28 2017-04-12 パナソニックIpマネジメント株式会社 Mobile device

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2529436B2 (en) * 1989-11-28 1996-08-28 三菱電機株式会社 Non-contact IC card system
JPH06105486A (en) * 1992-08-05 1994-04-15 Toyota Autom Loom Works Ltd Electromagnetic power supply
JPH07231586A (en) * 1993-09-08 1995-08-29 Tokin Corp Cordless power station
JP3815626B2 (en) * 1994-06-29 2006-08-30 神鋼電機株式会社 Cold body melting furnace tilting device with non-contact power supply
JPH1075538A (en) * 1996-06-27 1998-03-17 Sumitomo Wiring Syst Ltd Charging connector
JPH11265814A (en) * 1998-03-17 1999-09-28 Matsushita Electric Ind Co Ltd Coil component and electronic equipment using the same
JP2004047701A (en) * 2002-07-11 2004-02-12 Jfe Steel Kk Planar magnetic element for noncontact charger
JP2008294385A (en) * 2007-04-24 2008-12-04 Panasonic Electric Works Co Ltd Contactless power transmitting device, and manufacturing method of its coil block for electric power receiving
JP5118394B2 (en) * 2007-06-20 2013-01-16 パナソニック株式会社 Non-contact power transmission equipment
JP5112439B2 (en) * 2007-08-21 2013-01-09 株式会社東芝 Non-contact type power receiving device, electronic device using the same, and charging system
JP5363719B2 (en) * 2007-11-12 2013-12-11 リコーエレメックス株式会社 Non-contact transmission device and core

Also Published As

Publication number Publication date
JP2012119662A (en) 2012-06-21

Similar Documents

Publication Publication Date Title
US20180175645A1 (en) Wireless charging module having a wireless charging coil and a magnetic sheet
JP4835787B1 (en) Non-contact charging module and non-contact charging device
JP4835786B1 (en) Non-contact charging module and non-contact charging device
JP5845404B2 (en) Receiving side non-contact charging module and receiving side non-contact charging device
US8729855B2 (en) Non-contact charging module and non-contact charger
JP5845406B2 (en) Receiving side non-contact charging module and receiving side non-contact charging device
JP4835796B1 (en) Receiving side non-contact charging module and receiving side non-contact charging device
JP5445545B2 (en) Non-contact charging module, non-contact charger and electronic device
JP4835800B1 (en) Non-contact charging module and non-contact charging device
JP4900525B1 (en) Non-contact charging module, transmitting-side non-contact charging device and receiving-side non-contact charging device provided with the same
JP4962634B1 (en) Method for manufacturing contactless charging module
JP2014027880A (en) Noncontact charging module and noncontact charger
JP4835801B1 (en) Non-contact charging module and non-contact charging device
JP5003835B1 (en) Non-contact charging module and non-contact charging device using the same
JP4900524B1 (en) Non-contact charging module and non-contact charging device
JP4835797B1 (en) Non-contact charging module and non-contact charging device
JP5845407B2 (en) Receiving side non-contact charging module and receiving side non-contact charging device
JP5903568B2 (en) Non-contact charging module and non-contact charging device
JP5031911B2 (en) Non-contact charging module and non-contact charging device
JP2012209997A (en) Non-contact charging module and non-contact charger

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130402

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130402

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20130402

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20130417

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130507

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20130514

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130627

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130723

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130823

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130924

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131108

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131126

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131209

R151 Written notification of patent or utility model registration

Ref document number: 5445545

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees