JP2012156281A - Air-core coil - Google Patents

Air-core coil Download PDF

Info

Publication number
JP2012156281A
JP2012156281A JP2011013624A JP2011013624A JP2012156281A JP 2012156281 A JP2012156281 A JP 2012156281A JP 2011013624 A JP2011013624 A JP 2011013624A JP 2011013624 A JP2011013624 A JP 2011013624A JP 2012156281 A JP2012156281 A JP 2012156281A
Authority
JP
Japan
Prior art keywords
coil
air
coils
core
core coil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
JP2011013624A
Other languages
Japanese (ja)
Inventor
Yuta Nakagawa
雄太 中川
Shingo Tanaka
信吾 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yazaki Corp
Original Assignee
Yazaki Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yazaki Corp filed Critical Yazaki Corp
Priority to JP2011013624A priority Critical patent/JP2012156281A/en
Publication of JP2012156281A publication Critical patent/JP2012156281A/en
Abandoned legal-status Critical Current

Links

Images

Landscapes

  • Coils Or Transformers For Communication (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an air-core coil which can reduce the resonance frequency while the pitch and the area of a coil and the diameter of a lead wire used for the coil are fixed.SOLUTION: An upper coil 3 and a lower coil 4 are placed to overlap each other and electrically connected in series, where the upper coil 3 and the lower coil 4 are wound in the same direction when placed to overlap each other.

Description

本発明は、平面上で導体を渦巻状に構成したコイルを備えた空芯コイルに関する。   The present invention relates to an air-core coil provided with a coil having a conductor spirally formed on a plane.

非接触で配置した1次側コイルと2次側コイルとを磁気的に結合し、電磁誘導を利用して電力を伝送する電力伝送装置が、様々な機器に使用されることが多くなっている。この種の電力伝送装置は、送信側に一次コイルが、受信側に二次コイルがそれぞれ設けられ、一次コイルから発生する交流磁力線が二次コイルを貫通して、二次コイルに交流の起電力が発生させるようになっている。この起電力は、直流の電力に変換され、受信側の機器に電力が伝送される。   A power transmission device that magnetically couples a primary coil and a secondary coil arranged in a non-contact manner and transmits power using electromagnetic induction is often used in various devices. . In this type of power transmission device, a primary coil is provided on the transmission side, and a secondary coil is provided on the reception side. AC magnetic field lines generated from the primary coil penetrate the secondary coil, and an AC electromotive force is generated in the secondary coil. Is supposed to occur. This electromotive force is converted into DC power, and the power is transmitted to the receiving device.

上述した電力伝送装置に使用されるコイル(非接触電力伝送コイルともいう)は、平面上で導線を渦巻状に構成した空芯コイルが使用される(例えば特許文献1、2を参照)。   As a coil (also referred to as a non-contact power transmission coil) used in the above-described power transmission device, an air-core coil having a conductive wire spirally formed on a plane is used (see, for example, Patent Documents 1 and 2).

特開2007−317914号公報JP 2007-317914 A 特開2009−158598号公報JP 2009-158598 A

非接触電力伝送コイルは、一般にコイルの導線長を長くすることで、電力伝送に使用する共振周波数が低下することが知られている。そのため導線長が長くなるようにコイルを多巻きにし、共振周波数を低下させることにより、電力伝送装置を作製する際にコストダウンを図ることができる。しかしながら、コイルの面積を固定すると、コイルに使用する導線の太さとピッチの制約から導線長(巻き数)に制限が生じ、これが共振周波数の下限となっていた。   It is known that a non-contact power transmission coil generally has a reduced resonance frequency used for power transmission by increasing the coil wire length. Therefore, by reducing the resonance frequency by increasing the number of coils to increase the length of the conducting wire, the cost can be reduced when manufacturing the power transmission device. However, when the area of the coil is fixed, the conductor length (number of turns) is restricted due to the restrictions on the thickness and pitch of the conductor used in the coil, and this is the lower limit of the resonance frequency.

そこで、本発明は、コイルの面積、コイルに使用する導線の太さやピッチを固定したまま、共振周波数を低下することができる空芯コイルを提供することを課題とする。   Therefore, an object of the present invention is to provide an air-core coil capable of lowering the resonance frequency while fixing the area of the coil and the thickness and pitch of the conductive wire used for the coil.

上記課題を解決するためになされた請求項1に記載の発明は、平面上で導体を渦巻状に構成したコイルを備えた空芯コイルにおいて、複数の前記コイルが前記渦巻の中心軸方向に互いに重ねられるように配置されているとともに、複数の前記コイルが電気的に直列接続されていることを特徴とする空芯コイルである。   The invention according to claim 1, which has been made in order to solve the above problem, is an air-core coil including a coil having a conductor formed in a spiral shape on a plane, wherein the plurality of coils are mutually connected in the direction of the central axis of the spiral. The air-core coil is characterized in that it is arranged so as to be overlapped, and the plurality of coils are electrically connected in series.

請求項2に記載の発明は、請求項1に記載の発明において、複数の前記コイルが重ねられて配置された際に、各々の前記コイルの前記渦巻は互いに同じ方向に巻かれていることを特徴とするものである。   According to a second aspect of the present invention, in the first aspect of the invention, when the plurality of coils are arranged in a stacked manner, the spirals of the coils are wound in the same direction. It is a feature.

請求項1に記載の発明によれば、複数のコイルが渦巻の中心軸方向に互いに重ねられるように配置されているとともに、複数のコイルが電気的に直列接続されているので、コイルの面積、コイルに使用する導線の太さやピッチを固定したままで導線長を延ばすことができるため、共振周波数を低下させることができる。したがって、共振周波数を維持する場合であれば面積を小型化することができる。   According to the invention described in claim 1, since the plurality of coils are arranged so as to overlap each other in the direction of the central axis of the spiral, the plurality of coils are electrically connected in series. Since the conducting wire length can be extended while fixing the thickness and pitch of the conducting wire used for the coil, the resonance frequency can be lowered. Therefore, the area can be reduced if the resonance frequency is maintained.

請求項2に記載の発明によれば、複数のコイルは重ねられて配置された際に同じ方向に渦巻が巻かれているので、コイルに電流が流れた際に発生する磁界の向きが揃うため強い磁界が発生し電力の伝送特性を向上させることができる。   According to the second aspect of the present invention, since the plurality of coils are spirally wound in the same direction when arranged in a stacked manner, the direction of the magnetic field generated when a current flows through the coils is aligned. A strong magnetic field is generated and power transmission characteristics can be improved.

本発明の一実施形態にかかる空芯コイルの斜視図である。It is a perspective view of the air-core coil concerning one Embodiment of this invention. 図1に示された空芯コイルの上側コイルと下側コイルの接続部を示した説明図である。It is explanatory drawing which showed the connection part of the upper side coil and lower side coil of the air-core coil shown by FIG. 図1に示された空芯コイルと従来の平面コイルとのSパラメータを比較したグラフである。It is the graph which compared the S parameter of the air-core coil shown by FIG. 1, and the conventional planar coil. 図1に示された空芯コイルと上側コイルと下側コイルとの巻かれている方向が逆方向である場合とのSパラメータを比較したグラフである。It is the graph which compared S parameter with the case where the winding direction of the air-core coil shown in FIG. 1, the upper coil, and the lower coil is a reverse direction. 本発明の他の実施形態にかかる空芯コイルの斜視図である。It is a perspective view of the air-core coil concerning other embodiment of this invention. 図1に示された空芯コイルと図5に示しされた空芯コイルとのパラメータを比較したグラフである。It is the graph which compared the parameter of the air core coil shown in FIG. 1, and the air core coil shown in FIG.

次に、本発明の一実施形態を図1ないし図4を参照して説明する。本発明の一実施形態にかかる空芯コイル1は図1に示したように、コイルとしての上側コイル3および下側コイル4と、を備えている。   Next, an embodiment of the present invention will be described with reference to FIGS. The air-core coil 1 according to one embodiment of the present invention includes an upper coil 3 and a lower coil 4 as coils as shown in FIG.

上側コイル3は、銅等の金属(導体)が絶縁皮膜で覆われている導線2が渦巻状に巻かれて構成されている。また、上側コイル3の巻き数は図1で10程度であるが、設定したい共振周波数に合わせて任意に設定すればよい。   The upper coil 3 is configured by winding a conductive wire 2 in which a metal (conductor) such as copper is covered with an insulating film in a spiral shape. Further, the number of turns of the upper coil 3 is about 10 in FIG. 1, but it may be arbitrarily set according to the resonance frequency to be set.

下側コイル4は、上側コイル3と同様に導線2が渦巻状に巻かれて構成されている。また、下側コイル4の巻き数は図1では上側コイル3と同じ巻き数であるが異なっても良い。また、上側コイル3と下側コイル4とは、それぞれの渦巻きの中心軸が同軸になるように重ねられて配置されている。   The lower coil 4 is configured by winding the conducting wire 2 in a spiral shape in the same manner as the upper coil 3. Further, the number of turns of the lower coil 4 is the same as that of the upper coil 3 in FIG. Further, the upper coil 3 and the lower coil 4 are arranged so that the central axes of the spirals are coaxial.

また、上側コイル3と下側コイル4とは、渦巻きの最内周側で、図2に示したように、上側コイル3の他方の端部3bから下側コイル4に向かって折り曲げられ下側コイル4の一方の端部4aに接続される接続部2aによって電気的に接続されており、さらに、上側コイル3と下側コイル4とは、互いに同じ方向に渦巻きが形成されるように導線2が巻かれている。   Further, the upper coil 3 and the lower coil 4 are bent at the innermost circumferential side of the spiral, as shown in FIG. 2, and are bent toward the lower coil 4 from the other end 3 b of the upper coil 3. The coil 2 is electrically connected by a connecting portion 2a connected to one end 4a of the coil 4, and the upper coil 3 and the lower coil 4 are connected to each other so that spirals are formed in the same direction. Is wound.

このように構成された空芯コイル1は、例えば、電力伝送装置の一次側コイルとして使用することができ、その場合、上側コイル3の一方の端部3a側から電流を流すと、上側コイル3の他方の端部3b、接続部2a、下側コイル4の一方の端部4a、下側コイル4の他方の端部4bと電流が流れる。つまり、2つのコイルは電気的に直列接続されている。そして空芯コイル1に電流が流れると、上側コイル3と下側コイル4を構成する導線2の周囲に磁界が発生し、その磁界により図示しない二次側コイルに誘導電流が流れ電力を伝送することができる。即ち、重ねられたコイルのうちの一方側のコイル(上側コイル3)の他方の端部3bと他方側のコイル(下側コイル4)の一方の端部4aとが電気的に接続されている。   The air-core coil 1 configured in this way can be used as, for example, a primary coil of a power transmission device. In that case, when a current is passed from one end 3a side of the upper coil 3, the upper coil 3 Current flows through the other end 3b, the connecting portion 2a, one end 4a of the lower coil 4, and the other end 4b of the lower coil 4. That is, the two coils are electrically connected in series. When a current flows through the air-core coil 1, a magnetic field is generated around the conducting wire 2 constituting the upper coil 3 and the lower coil 4, and an induced current flows to a secondary coil (not shown) by the magnetic field to transmit power. be able to. That is, the other end 3b of one of the stacked coils (upper coil 3) is electrically connected to one end 4a of the other coil (lower coil 4). .

次に、本発明者らは、従来の平面コイル(複数のコイルが重ねられていない)と図1に示した空芯コイル1との電力伝送特性を電磁界シミュレーションにて検証し、本発明の効果を確認した。その結果を図3に示す。また、この電磁界シミュレーションに用いたコイルの設定値としては、従来の平面コイルは、コイルの直径を60mm、導線2の直径を2mm、導線2間のピッチを2.5mm(導線2の周りに厚さ0.25mmの被覆を想定)とし、図1に示した空芯コイル1(図3では2重構造と表記)は、上側コイル3と下側コイル4ともに従来の平面コイルと同じコイル直径、導線直径、導線間ピッチとし(つまり従来の平面コイルを2つ重ねて直列接続した)、上側コイル3と下側コイル4との間隔を3mmとした。   Next, the present inventors verified the power transmission characteristics between the conventional planar coil (a plurality of coils are not stacked) and the air-core coil 1 shown in FIG. The effect was confirmed. The result is shown in FIG. The coil set values used in this electromagnetic field simulation are as follows: the conventional planar coil has a coil diameter of 60 mm, a conductor 2 diameter of 2 mm, and a pitch between the conductors 2 of 2.5 mm (around the conductor 2). The air core coil 1 shown in FIG. 1 (indicated as a double structure in FIG. 3) has the same coil diameter as that of a conventional planar coil in both the upper coil 3 and the lower coil 4. The diameter of the conductive wire and the pitch between the conductive wires (that is, two conventional planar coils were stacked and connected in series), and the distance between the upper coil 3 and the lower coil 4 was 3 mm.

図3は、従来の平面コイルと図1に示した空芯コイル1とのSパラメータのうち、S11(反射損失)とS21(挿入損失)を示したグラフである。図3の縦軸はS11およびS21の値、横軸は周波数を示し、図3の細線は2重構造(空芯コイル1)のS11、太線は2重構造(空芯コイル1)のS21、点線は従来の平面コイルのS11、一点鎖線は従来の平面コイルのS21をそれぞれ示している。   FIG. 3 is a graph showing S11 (reflection loss) and S21 (insertion loss) among S parameters of the conventional planar coil and the air-core coil 1 shown in FIG. The vertical axis of FIG. 3 shows the values of S11 and S21, the horizontal axis shows the frequency, the thin line in FIG. 3 is S11 of the double structure (air-core coil 1), the thick line is S21 of the double structure (air-core coil 1), The dotted line indicates S11 of the conventional planar coil, and the alternate long and short dash line indicates S21 of the conventional planar coil.

図3によれば、空芯コイル1は従来の平面コイルと同等のコイル面積、導線の太さ、ピッチであるにも関わらず、導線長が2倍になったため共振周波数が1/2以下に低下していることが明らかとなった。   According to FIG. 3, the air-core coil 1 has a coil area equivalent to that of a conventional planar coil, the thickness of the conductor, and the pitch. It became clear that it was decreasing.

次に、上側コイル3と下側コイル4との渦の巻く方向の違いによる電力伝送特性を電磁界シミュレーションで検証した。その結果を図4に示す。図4は、図1に示したように上側コイル3、下側コイル4ともに渦巻きが同じ方向である(順巻:例えば、上側コイル3、下側コイル4ともに同じ方向から見て渦巻きが右巻き或いは左巻きで一致している)場合と、上側コイル3、下側コイル4が互いに渦巻きが逆方向である(逆巻:例えば、同じ方向から見て上側コイル3の渦巻きが右巻きで上側コイル3の渦巻きが左巻きである)場合と、を比較したSパラメータのグラフである。また、図4の縦軸はS11およびS21の値、横軸は周波数を示し、図4の細線は順巻(図1の空芯コイル1)のS11、太線は順巻(図1の空芯コイル1)のS21、点線は逆巻のS11、一点鎖線は逆巻のS21をそれぞれ示している。   Next, the power transmission characteristics due to the difference in the vortex winding direction between the upper coil 3 and the lower coil 4 were verified by electromagnetic field simulation. The result is shown in FIG. FIG. 4 shows that the upper coil 3 and the lower coil 4 have the same direction of spiral as shown in FIG. 1 (forward winding: for example, the upper coil 3 and the lower coil 4 have the right direction when viewed from the same direction. Or the upper coil 3 and the lower coil 4 have opposite spirals (reverse winding: for example, when viewed from the same direction, the upper coil 3 has a right spiral and the upper coil 3 has a right winding). Is a graph of S parameters comparing the case where the spiral is left-handed). Also, the vertical axis in FIG. 4 indicates the values of S11 and S21, the horizontal axis indicates the frequency, the thin line in FIG. 4 indicates the forward winding (air core coil 1 in FIG. 1), and the thick line indicates the forward winding (air core in FIG. 1). In the coil 1), S21, the dotted line indicates the reverse winding S11, and the alternate long and short dash line indicates the reverse winding S21.

図4によれば、順巻、つまり上側コイル3、下側コイル4ともに渦巻きが同じ方向に巻かれている場合の方が、逆巻、つまり上側コイル3、下側コイル4が互いに渦巻きが逆方向に巻かれている場合よりも共振周波数が低下することが明らかとなった。これは、順巻の場合は、上側コイル3と下側コイル4に流れる電流の向きが揃うため、その電流によって導線2の周りに発生する磁界の向きも揃うが、逆巻の場合は、上側コイル3と下側コイル4に流れる電流の向きが逆向きになるため、その電流によって導線2の周りに発生する発生する磁界の向きも逆向きになり互いに打ち消しあってしまい周波数特性に悪影響を及ぼしているためである。したがって、複数のコイルを重ねて配置した場合に、複数のコイルは順巻とした方が、より共振周波数を低下させることができる。換言すれば、共振周波数を変化させずにより面積を小さくすることができる。   According to FIG. 4, the forward winding, that is, the case where the upper coil 3 and the lower coil 4 are wound in the same direction is the reverse winding, that is, the upper coil 3 and the lower coil 4 have the opposite spirals. It became clear that the resonance frequency was lower than that in the case of winding in the direction. This is because the direction of the current flowing through the upper coil 3 and the lower coil 4 is aligned in the case of forward winding, and the direction of the magnetic field generated around the conductor 2 is also aligned by the current. Since the direction of the current flowing through the coil 3 and the lower coil 4 is reversed, the direction of the magnetic field generated around the conducting wire 2 is also reversed due to the current and cancels each other, which adversely affects the frequency characteristics. This is because. Therefore, when a plurality of coils are arranged in an overlapping manner, the resonance frequency can be further reduced by forward winding the plurality of coils. In other words, the area can be reduced without changing the resonance frequency.

本実施形態によれば、上側コイル3と下側コイル4とが互いに重ねられるように配置されているとともに、上側コイル3と下側コイル4とが電気的に直列接続されているので、コイルの面積、コイルに使用する導線の太さやピッチを固定したままで導線長を延ばすことができるため、共振周波数を低下させることができる。したがって、共振周波数を維持するのであれば、1つの平面コイルを上側コイル3と下側コイル4とに分けて重ねて配置すればよく、コイルの面積を小型化することができる。また、上側コイル3と下側コイル4とは重ねて配置された際に同じ方向に巻かれているので、コイルに電流が流れた際に発生する磁界の向きが揃うため強い磁界が発生し電力の伝送特性を向上させることができる。また、上側コイルと下側コイルとが直列接続されているので、一つの導線から2つのコイルを容易に加工することができる。   According to the present embodiment, the upper coil 3 and the lower coil 4 are disposed so as to overlap each other, and the upper coil 3 and the lower coil 4 are electrically connected in series. Since the conductor length can be extended while fixing the area and the thickness and pitch of the conductor used for the coil, the resonance frequency can be lowered. Therefore, as long as the resonance frequency is maintained, one planar coil may be divided and placed on the upper coil 3 and the lower coil 4 and the area of the coil can be reduced. In addition, since the upper coil 3 and the lower coil 4 are wound in the same direction when they are arranged in an overlapping manner, the direction of the magnetic field generated when a current flows through the coil is aligned, so that a strong magnetic field is generated and electric power is generated. The transmission characteristics can be improved. Moreover, since the upper coil and the lower coil are connected in series, two coils can be easily processed from one conductor.

なお、上述した実施形態では、空芯コイル1は上側コイル3と下側コイル4の2重構造であったが3重以上としてもよい。つまり、コイルを3つ以上重ねて配置してもよい。3重構造の場合を図5に示す。図5に示した空芯コイル10は、第1コイル11と、第1コイル11の下側に配置された第2コイル12と、第2コイル12の下側に配置された第3コイル13と、を備え、各コイルは渦巻きの中心軸が同軸になるように重ねられて配置されている。図5に示した空芯コイル10は、例えば、第1コイル11の一方の端部から電流を流した場合、第1コイル11の他方の端部、第2コイル12の一方の端部、第2コイル12の他方の端部、第3コイル13の一方の端部、第3コイル13の他方の端部と電流が流れるように各コイルが接続されている。つまり、3つのコイルが直列接続されている。そして、第1コイル11、第2コイル12、第3コイル13の渦巻きの方向は同じ方向となっている。   In the above-described embodiment, the air-core coil 1 has a double structure of the upper coil 3 and the lower coil 4, but may be triple or more. That is, three or more coils may be stacked. A case of a triple structure is shown in FIG. The air-core coil 10 shown in FIG. 5 includes a first coil 11, a second coil 12 disposed below the first coil 11, and a third coil 13 disposed below the second coil 12. The coils are arranged so that the central axis of the spiral is coaxial. The air-core coil 10 shown in FIG. 5 has, for example, a current flowing from one end of the first coil 11, the other end of the first coil 11, one end of the second coil 12, Each coil is connected to the other end of the two coils 12, one end of the third coil 13, and the other end of the third coil 13 so that current flows. That is, three coils are connected in series. And the direction of the spiral of the 1st coil 11, the 2nd coil 12, and the 3rd coil 13 is the same direction.

図6に、2重構造と3重構造を比較した電磁界シミュレーション結果のグラフを示す。図6における空芯コイル10の設定値は、図1に示したコイルとコイルの直径、導線2の直径、導線2間のピッチを同じで3重にしたものである(コイル間の間隔も同じ)。また、図6の縦軸はS11およびS21の値、横軸は周波数を示し、図6の細線は3重構造のS11、太線は3重構造のS21、点線は2重構造のS11、一点鎖線は2重構造のS21をそれぞれ示している。   FIG. 6 shows a graph of electromagnetic field simulation results comparing the double structure and the triple structure. The set values of the air-core coil 10 in FIG. 6 are the same as shown in FIG. 1, the diameter of the coil, the diameter of the conductor 2, and the pitch between the conductors 2 are tripled (the spacing between the coils is also the same). ). In addition, the vertical axis in FIG. 6 indicates the values of S11 and S21, the horizontal axis indicates the frequency, the thin line in FIG. 6 indicates the triple structure S11, the thick line indicates the triple structure S21, the dotted line indicates the double structure S11, and the alternate long and short dash line Indicates S21 having a double structure.

図6によれば、3重構造は2重構造よりも共振周波数が低下していることが明らかとなった。したがって、多重構造(多重巻き)にすることにより同面積で共振周波数を低下させることができることが明らかとなった。   FIG. 6 shows that the resonance frequency of the triple structure is lower than that of the double structure. Therefore, it has been clarified that the resonance frequency can be lowered with the same area by using a multiple structure (multiple winding).

また、上述した実施形態では導体に絶縁皮膜で被覆した導線2を用いた構造であったが、それに限らず、プリント基板上にパターン化された導体で形成されたコイルであっても、プリント基板を多層構造にして各層をスルーホール・ビアなどで接続することで同様の効果を得ることができる。   In the above-described embodiment, the conductor 2 has a structure in which the conductor is covered with an insulating film. However, the present invention is not limited to this, and the printed circuit board may be a coil formed of a conductor patterned on the printed circuit board. The same effect can be obtained by forming a multi-layer structure and connecting each layer with a through-hole via.

なお、上述した実施形態は本発明の代表的な形態を示したに過ぎず、本発明は、実施の形態に限定されるものではない。すなわち、本発明の骨子を逸脱しない範囲で種々変形して実施することができる。   In addition, embodiment mentioned above only showed the typical form of this invention, and this invention is not limited to embodiment. That is, various modifications can be made without departing from the scope of the present invention.

1 空芯コイル
2 導線
3 上側コイル
4 下側コイル
1 Air-core coil 2 Conductor 3 Upper coil 4 Lower coil

Claims (2)

平面上で導体を渦巻状に構成したコイルを備えた空芯コイルにおいて、
複数の前記コイルが前記渦巻の中心軸方向に互いに重ねられるように配置されているとともに、複数の前記コイルが電気的に直列接続されていることを特徴とする空芯コイル。
In an air-core coil provided with a coil having a conductor spirally formed on a plane,
An air-core coil, wherein the plurality of coils are arranged so as to overlap each other in the central axis direction of the spiral, and the plurality of coils are electrically connected in series.
複数の前記コイルが重ねられて配置された際に、各々の前記コイルの前記渦巻は互いに同じ方向に巻かれていることを特徴とする請求項1に記載の空芯コイル。   2. The air-core coil according to claim 1, wherein when the plurality of coils are stacked and arranged, the spirals of the coils are wound in the same direction.
JP2011013624A 2011-01-26 2011-01-26 Air-core coil Abandoned JP2012156281A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011013624A JP2012156281A (en) 2011-01-26 2011-01-26 Air-core coil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011013624A JP2012156281A (en) 2011-01-26 2011-01-26 Air-core coil

Publications (1)

Publication Number Publication Date
JP2012156281A true JP2012156281A (en) 2012-08-16

Family

ID=46837712

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011013624A Abandoned JP2012156281A (en) 2011-01-26 2011-01-26 Air-core coil

Country Status (1)

Country Link
JP (1) JP2012156281A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9800062B2 (en) 2013-04-30 2017-10-24 Yazaki Corporation Power supply system and resonance circuit
JP2017531982A (en) * 2014-09-30 2017-10-26 エルジー イノテック カンパニー リミテッド Wireless power transmitter {WIRELESS POWER TRANSMISSION APPARATUS}
KR20200095576A (en) * 2017-12-29 2020-08-10 램 리써치 코포레이션 High Power RF Spiral Coil Filter

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58124918U (en) * 1982-02-17 1983-08-25 オリンパス光学工業株式会社 Laminated printed coil board
JP2008205216A (en) * 2007-02-20 2008-09-04 Seiko Epson Corp Laminated coil unit and electronic apparatus having the same, and charger
JP2008205215A (en) * 2007-02-20 2008-09-04 Seiko Epson Corp Laminated coil unit and electronic apparatus having the same, and charger
JP2010122012A (en) * 2008-11-18 2010-06-03 Jtekt Corp Substrate type double layer coil and displacement sensor apparatus

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58124918U (en) * 1982-02-17 1983-08-25 オリンパス光学工業株式会社 Laminated printed coil board
JP2008205216A (en) * 2007-02-20 2008-09-04 Seiko Epson Corp Laminated coil unit and electronic apparatus having the same, and charger
JP2008205215A (en) * 2007-02-20 2008-09-04 Seiko Epson Corp Laminated coil unit and electronic apparatus having the same, and charger
JP2010122012A (en) * 2008-11-18 2010-06-03 Jtekt Corp Substrate type double layer coil and displacement sensor apparatus

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9800062B2 (en) 2013-04-30 2017-10-24 Yazaki Corporation Power supply system and resonance circuit
JP2017531982A (en) * 2014-09-30 2017-10-26 エルジー イノテック カンパニー リミテッド Wireless power transmitter {WIRELESS POWER TRANSMISSION APPARATUS}
US10193352B2 (en) 2014-09-30 2019-01-29 Lg Innotek Co., Ltd. Wireless power transmission apparatus
US10483769B1 (en) 2014-09-30 2019-11-19 Lg Innotek Co., Ltd. Wireless power transmission apparatus
US11050264B2 (en) 2014-09-30 2021-06-29 Lg Innotek Co., Ltd. Wireless power transmission apparatus
KR20200095576A (en) * 2017-12-29 2020-08-10 램 리써치 코포레이션 High Power RF Spiral Coil Filter
JP2021509557A (en) * 2017-12-29 2021-03-25 ラム リサーチ コーポレーションLam Research Corporation High power radio frequency spiral coil filter
KR102610976B1 (en) * 2017-12-29 2023-12-06 램 리써치 코포레이션 High Power RF Spiral Coil Filter
JP7422077B2 (en) 2017-12-29 2024-01-25 ラム リサーチ コーポレーション High power radio frequency helical coil filter

Similar Documents

Publication Publication Date Title
KR101248499B1 (en) Plane coil
CN108140478B (en) Coil device
US20180175645A1 (en) Wireless charging module having a wireless charging coil and a magnetic sheet
TWI573152B (en) A wireless charging coil pcb structure
JP2014075533A (en) Common mode filter
JP5646688B2 (en) Contactless power supply system
JP2008130970A (en) Laminated inductor
WO2012094354A2 (en) Flatwire planar transformer
JP2019041273A (en) Coil antenna and electronic device
WO2013018268A1 (en) Power transmission coil and contactless power feeding apparatus using same
JP2012156281A (en) Air-core coil
CN103747627A (en) Method for manufacturing inductance device by using printed circuit board
JP6971062B2 (en) Manufacturing method of coil for non-contact power supply device and coil for non-contact power supply device
JP2011229202A (en) Wireless power transmission coil
JP2016527807A (en) Non-contact pickup of signal
JP2017085180A (en) Common mode filter
JP2009021325A (en) Winding type common mode choke coil
JPWO2017086083A1 (en) Antenna device for power transmission, electronic device and power transmission system
JP2014075535A (en) Induction apparatus
JPWO2017010009A1 (en) Semiconductor element
US20220189687A1 (en) Leakage transformer
KR101629890B1 (en) Coil component and power supply unit including the same
CN113363060A (en) Coil device
JP2012191704A (en) Non contact charging module and non contact charger
CN112216481A (en) Magnetic induction coil

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131218

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140922

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141014

A762 Written abandonment of application

Free format text: JAPANESE INTERMEDIATE CODE: A762

Effective date: 20141125