JP2011229202A - Wireless power transmission coil - Google Patents

Wireless power transmission coil Download PDF

Info

Publication number
JP2011229202A
JP2011229202A JP2010093824A JP2010093824A JP2011229202A JP 2011229202 A JP2011229202 A JP 2011229202A JP 2010093824 A JP2010093824 A JP 2010093824A JP 2010093824 A JP2010093824 A JP 2010093824A JP 2011229202 A JP2011229202 A JP 2011229202A
Authority
JP
Japan
Prior art keywords
power transmission
coil
short
coils
wireless power
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010093824A
Other languages
Japanese (ja)
Inventor
Morihiro Miyashita
功寛 宮下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Original Assignee
Panasonic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp filed Critical Panasonic Corp
Priority to JP2010093824A priority Critical patent/JP2011229202A/en
Publication of JP2011229202A publication Critical patent/JP2011229202A/en
Pending legal-status Critical Current

Links

Landscapes

  • Waveguide Connection Structure (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a wireless power transmission coil with which a coil of high inductance can be obtained without incurring insulation breakdown by extending a transmission distance, achieving high transmission efficiency and reducing influences of displacement.SOLUTION: The present invention relates to a wireless power transmission coil formed by winding a twisted wire conductor, in which a plurality of short-circuiting elements are provided in the middle of the twisted wire conductor. The plurality of short-circuiting elements are provided in such a way that a voltage generated between the short-circuiting elements becomes lower than an insulation breakdown voltage of the twisted wire conductor.

Description

本発明は、無線による電力伝送用コイルに関するものである。   The present invention relates to a wireless power transmission coil.

近年、電気自動車などへのワイヤレス充電装置が開発されている。非接触で高い伝送効率にて大電力を送電できることが求められる。   In recent years, wireless charging devices for electric vehicles and the like have been developed. It is required to transmit large electric power with high transmission efficiency without contact.

従来、送電側、受電側にコイルを設け、電磁誘導方式を用いることにより高効率の伝送効率を実現してきた(特許文献1、特許文献2、特許文献3参照)。また大電力の伝送には主に100kHz以下の周波数帯が用いられてきており、コイル線には低損失を実現できるリッツ線などの撚り線が用いられてきた   Conventionally, high efficiency of transmission efficiency has been realized by providing coils on the power transmission side and the power reception side and using an electromagnetic induction method (see Patent Document 1, Patent Document 2, and Patent Document 3). In addition, a frequency band of 100 kHz or less has been mainly used for transmission of high power, and a twisted wire such as a litz wire that can realize low loss has been used for the coil wire.

特開2008−087733号公報JP 2008-087733 A 特開2008−288889号公報JP 2008-288889 A 特開2006−345588号公報JP 2006-345588 A

しかしながら上記従来特許文献1、2、3の方法では、伝送距離が非常に短いため送電コイルと受電コイル間の位置ずれが生じると効率が劣化するという課題があり、位置ずれ検出手段を用いた位置合わせが必要であった。伝送距離を伸ばし、位置ずれの影響を改善するためには、送電、受電に使用されるコイルの巻き数やコイル径を大きくし、高いインダクタンスのコイルを用いればよい。しかし、コイルの両端に発生する電圧がインダクタンスに比例して非常に高くなるといった問題がある。コイルに高い電圧がかかると、コイルのターン間にかかる電圧が高くなり絶縁破壊が生じる。また撚り線をコイル線に用いた場合、コイルの途中で単線が一部でも断線すると高い電圧が単線同士に発生し、絶縁破壊が生じる。   However, in the methods of the above-mentioned conventional patent documents 1, 2, and 3, since the transmission distance is very short, there is a problem that the efficiency deteriorates when a positional deviation occurs between the power transmission coil and the power receiving coil. Matching was necessary. In order to extend the transmission distance and improve the influence of the position shift, the number of turns and the coil diameter of the coil used for power transmission and reception may be increased and a coil with high inductance may be used. However, there is a problem that the voltage generated at both ends of the coil becomes very high in proportion to the inductance. When a high voltage is applied to the coil, the voltage applied between the turns of the coil increases, resulting in dielectric breakdown. Moreover, when a stranded wire is used for the coil wire, if even a part of the single wire is broken in the middle of the coil, a high voltage is generated between the single wires, resulting in dielectric breakdown.

本発明は、上記従来の課題に鑑み、伝送距離が長く、高い伝送効率を実現し、位置ずれの影響が低減するため、高いインダクタンスのコイルを、絶縁破壊を生じることなく実現できる無線電力伝送用コイルを提供することを目的とする。   In view of the above-described conventional problems, the present invention provides a long transmission distance, high transmission efficiency, and reduced influence of misalignment, so that a high-inductance coil can be realized without causing dielectric breakdown. An object is to provide a coil.

上記課題を解決するために、本発明の無線電力伝送用コイルは、撚り線状の導体を巻くことで形成される無線電力伝送用コイルであって、前記撚り線状の導体の途中に短絡素子を複数設け、前記短絡素子同士間に発生する電圧が前記撚り線状の導体の絶縁破壊電圧より低くなるように前記複数の短絡素子を設けた無線電力伝送用コイルである。   In order to solve the above problems, a coil for wireless power transmission according to the present invention is a coil for wireless power transmission formed by winding a stranded wire conductor, and a short-circuit element in the middle of the stranded wire conductor And a coil for wireless power transmission in which the plurality of short-circuit elements are provided such that a voltage generated between the short-circuit elements is lower than a dielectric breakdown voltage of the stranded conductor.

以上のように、本発明は伝送距離が長く、高い伝送効率を実現し、位置ずれの影響が低減するため、高いインダクタンスのコイルを、絶縁破壊を生じることなく実現できる無線電力伝送用コイルを実現できる。   As described above, the present invention realizes a wireless power transmission coil that can realize a high inductance coil without causing dielectric breakdown because the transmission distance is long, high transmission efficiency is realized, and the influence of misalignment is reduced. it can.

本発明の実施の形態1における無線電力伝送装置の構成を示す図The figure which shows the structure of the wireless power transmission apparatus in Embodiment 1 of this invention. 本発明の実施の形態1におけるスパイラル形状をした送電コイル部201の構造を示す図The figure which shows the structure of the power transmission coil part 201 which made the spiral shape in Embodiment 1 of this invention. 本発明の実施の形態1におけるヘリカル形状をした送電コイル部201の構造を示す図The figure which shows the structure of the power transmission coil part 201 which carried out the helical shape in Embodiment 1 of this invention. 本発明の実施の形態1におけるスパイラル形状をした7つの送電コイル102a、102b、102c、102d、102e、102f、102gを縦に積み重ねて構成した送電コイル部201の構造を示す図The figure which shows the structure of the power transmission coil part 201 comprised by vertically stacking the seven power transmission coils 102a, 102b, 102c, 102d, 102e, 102f, and 102g in the spiral shape in Embodiment 1 of this invention. 本発明の実施の形態1におけるスパイラル形状をした7つの送電コイル102a、102b、102c、102d、102e、102f、102gを縦に積み重ねて構成した送電コイル部201の内周部分の構造を示す図The figure which shows the structure of the inner peripheral part of the power transmission coil part 201 comprised by vertically stacking the seven power transmission coils 102a, 102b, 102c, 102d, 102e, 102f, and 102g in the spiral shape in Embodiment 1 of this invention. 本発明の実施の形態1におけるスパイラル形状をした7つの送電コイル102a、102b、102c、102d、102e、102f、102gを縦に積み重ねて構成した送電コイル部201の断面構造を示す図The figure which shows the cross-section of the power transmission coil part 201 which comprised seven power transmission coils 102a, 102b, 102c, 102d, 102e, 102f, and 102g with the spiral shape in Embodiment 1 of this invention vertically stacked | stacked 本発明の実施の形態1におけるコイル径の異なるヘリカル形状をした7つの送電コイル102a、102b、102c、102d、102e、102f、102gを軸方向がほぼ等しくなるように配置して構成した送電コイル部201の構造を示す図Seven power transmission coils 102a, 102b, 102c, 102d, 102e, 102f, and 102g having helical shapes with different coil diameters according to the first embodiment of the present invention are arranged so that their axial directions are substantially equal. The figure which shows the structure of 201 本発明の実施の形態1におけるコイル径の異なるヘリカル形状をした7つの送電コイル102a、102b、102c、102d、102e、102f、102gを軸方向がほぼ等しくなるように配置して構成した送電コイル部201の下部の構造を示す図Seven power transmission coils 102a, 102b, 102c, 102d, 102e, 102f, and 102g having helical shapes with different coil diameters according to the first embodiment of the present invention are arranged so that their axial directions are substantially equal. The figure which shows the structure of the lower part of 201 本発明の実施の形態1におけるコイル径の異なるヘリカル形状をした7つの送電コイル102a、102b、102c、102d、102e、102f、102gを軸方向がほぼ等しくなるように配置して構成した送電コイル部201の断面構造を示す図Seven power transmission coils 102a, 102b, 102c, 102d, 102e, 102f, and 102g having helical shapes with different coil diameters according to the first embodiment of the present invention are arranged so that their axial directions are substantially equal. The figure which shows the cross-section of 201

第1の発明は、撚り線状の導体を巻くことで形成される無線電力伝送用コイルであって、前記撚り線状の導体の途中に短絡素子を複数設け、前記短絡素子同士間に発生する電圧が前記撚り線状の導体の絶縁破壊電圧より低くなるように前記複数の短絡素子を設けた無線電力伝送用コイルである。   The first invention is a wireless power transmission coil formed by winding a stranded wire conductor, wherein a plurality of short-circuit elements are provided in the middle of the stranded wire conductor, and are generated between the short-circuit elements. The wireless power transmission coil is provided with the plurality of short-circuit elements so that a voltage is lower than a dielectric breakdown voltage of the stranded conductor.

この構成により、撚り線状の導体を構成する単線が一部断線した場合においても絶縁破壊を防止できる。   With this configuration, dielectric breakdown can be prevented even when a part of the single wire constituting the stranded wire conductor is broken.

第2の発明は、第1の発明の無線電力伝送用コイルにおいて、前記撚り線状の導体を巻くことで形成される複数のコイルを軸方向がほぼ等しくなるように配置し、前記複数のコイル間には空隙が設けられた無線電力伝送用コイルである。   According to a second invention, in the wireless power transmission coil according to the first invention, a plurality of coils formed by winding the stranded wire conductor are arranged so that axial directions thereof are substantially equal, and the plurality of coils A wireless power transmission coil is provided with a gap between them.

この構成により、ターン間での絶縁破壊を防止できる。   With this configuration, it is possible to prevent dielectric breakdown between turns.

第3の発明は、第2の発明の無線電力伝送用コイルにおいて、前記複数のコイルを隣り合うコイルの巻き方向が互いに反対となるように配置した無線電力伝送用コイルである。   A third invention is a wireless power transmission coil according to the second invention, wherein the plurality of coils are arranged such that winding directions of adjacent coils are opposite to each other.

この構成により、コイル間を短絡素子で接続する際の接続距離を短くすることができる。   With this configuration, it is possible to shorten the connection distance when the coils are connected by the short-circuit element.

以下、本発明の無線電力伝送用コイルを実施するための最良の形態について、図面に沿って説明する。なお、この実施の形態によって本発明が限定されるものではない。   The best mode for carrying out the wireless power transmission coil of the present invention will be described below with reference to the drawings. Note that the present invention is not limited to the embodiments.

(実施の形態1)
以下に、本発明の無線電力伝送用コイルの実施の形態1の詳細について説明する。
(Embodiment 1)
Details of the first embodiment of the wireless power transmission coil of the present invention will be described below.

図1は、本発明の無線電力伝送装置の構成を示す図である。図1において、高周波発振源101は高周波電力を生成し、出力する発振源である。送電コイル102a、102b、102cは短絡素子103a、103bにより直列に接続されてひとつの送電コイルである送電コイル部201を構成し、その両端が給電端301a、301bを介して高周波発振源101に接続され、高周波の磁界を発生する。   FIG. 1 is a diagram illustrating a configuration of a wireless power transmission apparatus according to the present invention. In FIG. 1, a high frequency oscillation source 101 is an oscillation source that generates and outputs high frequency power. The power transmission coils 102a, 102b, and 102c are connected in series by the short-circuit elements 103a and 103b to form a power transmission coil unit 201 that is one power transmission coil, and both ends thereof are connected to the high-frequency oscillation source 101 via the power supply terminals 301a and 301b. And generate a high-frequency magnetic field.

受電コイル104a、104b、104cは短絡素子105a、105bにより直列に接続されてひとつの受電コイルである受電コイル部202を構成し、その両端が給電端302a、302bを介して負荷106に接続され、送電コイル部201から発生した高周波の磁界をうけて電力を得る。負荷106は、受電コイル部202から得られた電力を供給する負荷である。   The power receiving coils 104a, 104b, and 104c are connected in series by the short-circuit elements 105a and 105b to form a power receiving coil unit 202 that is one power receiving coil, and both ends thereof are connected to the load 106 through the power feeding ends 302a and 302b. Electric power is obtained by receiving a high-frequency magnetic field generated from the power transmission coil unit 201. The load 106 is a load that supplies electric power obtained from the power receiving coil unit 202.

次に図2から図9を用いてさまざまな送電コイル部201の構成例を示す。図2はスパイラル形状をした送電コイル部201の構造を示す図である。図3はヘリカル形状をした送電コイル部201の構造を示す図である。送電コイル102a、102b、102cは、軸方向がほぼ等しくなるようにして配置され、短絡素子103a、103bを介して各々接続される。   Next, configuration examples of various power transmission coil units 201 will be described with reference to FIGS. FIG. 2 is a diagram illustrating a structure of the power transmission coil unit 201 having a spiral shape. FIG. 3 is a diagram illustrating the structure of the helically shaped power transmission coil unit 201. The power transmission coils 102a, 102b, and 102c are arranged so that the axial directions thereof are substantially equal, and are connected to each other via the short-circuit elements 103a and 103b.

図4はスパイラル形状をした7つの送電コイル102a、102b、102c、102d、102e、102f、102gを縦に積み重ねて構成した送電コイル部201の構造を示す図、図5はその内周部分の構造を示す図、図6はその断面構造を示す図である。送電コイル102a、102c、102e、102gと送電コイル102b、102d、102fのコイルの巻き方向は互いに逆方向であり、隣り合う送電コイルの巻き方向が互いに反対となるように構成されている。   FIG. 4 is a diagram showing a structure of a power transmission coil unit 201 configured by vertically stacking seven spiral power transmission coils 102a, 102b, 102c, 102d, 102e, 102f, and 102g, and FIG. 5 is a structure of an inner peripheral portion thereof. FIG. 6 is a diagram showing a cross-sectional structure thereof. The winding directions of the power transmission coils 102a, 102c, 102e, 102g and the power transmission coils 102b, 102d, 102f are opposite to each other, and the winding directions of adjacent power transmission coils are opposite to each other.

送電コイル102aと102b、102cと102d、102eと102fはコイル外周部分、送電コイル102bと102c、102dと102e、102fと102gはコイル内周部分にて短絡素子にて接続される。すわなち、コイル外周部分にて送電コイル102aの一端4A−1と送電コイル102bの一端4B−1が短絡素子にて接続され、送電コイル102cの一端4C−1と送電コイル102dの一端4D−1が短絡素子にて接続され、送電コイル102eの一端4E−1と送電コイル102fの一端4F−1が短絡素子にて接続される。また、コイル内周部分にて送電コイル102bの他端4B−2と送電コイル102cの他端4C−2が短絡素子にて接続され、送電コイル102dの他端4D−2と送電コイル102eの他端4E−2が短絡素子にて接続され、送電コイル102fの他端4F−2と送電コイル102gの他端4G−2が短絡素子にて接続される。   The power transmission coils 102a and 102b, 102c and 102d, 102e and 102f are connected by a short-circuit element at the outer periphery of the coil, the power transmission coils 102b and 102c, 102d and 102e, and 102f and 102g at the inner periphery of the coil. That is, one end 4A-1 of the power transmission coil 102a and one end 4B-1 of the power transmission coil 102b are connected by a short-circuit element at the outer periphery of the coil, and one end 4C-1 of the power transmission coil 102c and one end 4D- of the power transmission coil 102d. 1 is connected by a short-circuit element, and one end 4E-1 of the power transmission coil 102e and one end 4F-1 of the power transmission coil 102f are connected by a short-circuit element. In addition, the other end 4B-2 of the power transmission coil 102b and the other end 4C-2 of the power transmission coil 102c are connected by a short-circuit element at the inner peripheral portion of the coil, and the other end 4D-2 of the power transmission coil 102d and the power transmission coil 102e. The end 4E-2 is connected by a short-circuit element, and the other end 4F-2 of the power transmission coil 102f and the other end 4G-2 of the power transmission coil 102g are connected by a short-circuit element.

これにより、コイル間を短絡素子で接続する際の接続距離を短くすることができる。それぞれのコイル間に空隙(図6以降ではSとして示す)を設けるようにして配置される。   Thereby, the connection distance at the time of connecting between coils by a short circuit element can be shortened. It arrange | positions so that a space | gap (it shows as S from FIG. 6 onward) may be provided between each coil.

図7はコイル径の異なるヘリカル形状をした7つの送電コイル102a、102b、102c、102d、102e、102f、102gを軸方向がほぼ等しくなるように配置して構成した送電コイル部201の構造を示す図、図8はその下部の構造を示す図、図9はその断面構造を示す図である。送電コイル102a、102c、102e、102gと送電コイル102b、102d、102fのコイルの巻き方向は互いに逆方向であり、隣り合う送電コイルの巻き方向が互いに反対となるように構成されている。送電コイル102aと102b、102cと102d、102eと102fはコイル下部、送電コイル102bと102c、102dと102e、102fと102gはコイル上部にて短絡素子にて接続される。すなわち、コイル下部にて送電コイル102aの一端7A−1と送電コイル102bの一端7B−1が短絡素子にて接続され、送電コイル102cの一端7C−
1と送電コイル102dの一端7D−1が短絡素子にて接続され、送電コイル102eの一端7E−1と送電コイル102fの一端7F−1が短絡素子にて接続される。また、コイル上部にて送電コイル102bの他端7B−2と送電コイル102cの他端7C−2が短絡素子にて接続され、送電コイル102dの他端7D−2と送電コイル102eの他端7E−2が短絡素子にて接続され、送電コイル102fの他端7F−2と送電コイル102gの他端7G−2が短絡素子にて接続される。
FIG. 7 shows the structure of a power transmission coil unit 201 configured by arranging seven power transmission coils 102a, 102b, 102c, 102d, 102e, 102f, and 102g having helical shapes with different coil diameters so that their axial directions are substantially equal. FIG. 8 is a diagram showing the structure of the lower part, and FIG. 9 is a diagram showing the sectional structure thereof. The winding directions of the power transmission coils 102a, 102c, 102e, 102g and the power transmission coils 102b, 102d, 102f are opposite to each other, and the winding directions of adjacent power transmission coils are opposite to each other. The power transmission coils 102a and 102b, 102c and 102d, 102e and 102f are connected by a short-circuit element at the lower part of the coil, the power transmission coils 102b and 102c, 102d and 102e, and 102f and 102g at the upper part of the coil. That is, one end 7A-1 of the power transmission coil 102a and one end 7B-1 of the power transmission coil 102b are connected by a short-circuit element at the lower part of the coil, and one end 7C- of the power transmission coil 102c is connected.
1 and one end 7D-1 of the power transmission coil 102d are connected by a short-circuit element, and one end 7E-1 of the power transmission coil 102e and one end 7F-1 of the power transmission coil 102f are connected by a short-circuit element. In addition, the other end 7B-2 of the power transmission coil 102b and the other end 7C-2 of the power transmission coil 102c are connected by a short-circuit element at the upper part of the coil, and the other end 7D-2 of the power transmission coil 102d and the other end 7E of the power transmission coil 102e. -2 is connected by a short-circuit element, and the other end 7F-2 of the power transmission coil 102f and the other end 7G-2 of the power transmission coil 102g are connected by a short-circuit element.

これにより、コイル間を短絡素子で接続する際の接続距離を短くすることができる。それぞれのコイル間に空隙を設けるようにして配置される。   Thereby, the connection distance at the time of connecting between coils by a short circuit element can be shortened. It arrange | positions so that a space | gap may be provided between each coil.

コイル形状が円形形状について記載しているが、方形形状であってもよい。コイルの巻き数や送電コイルの数はいくらであってもよい。空隙には樹脂などの非金属物を挿入してそれぞれのコイル間の距離を維持しつつ、コイルを保持する構成であってもよい。受電コイル部202についても送電コイル部201と同様の構成である。   Although the coil shape is described as a circular shape, it may be a square shape. Any number of coil turns or power transmission coils may be used. A configuration may be adopted in which a coil is held while a non-metallic material such as a resin is inserted into the gap to maintain the distance between the coils. The power reception coil unit 202 has the same configuration as that of the power transmission coil unit 201.

以上のように構成された無線電力伝送装置について、その動作を説明する。送電、受電に使用されるコイルのインダクタンスLは巻き数が大きいほど増加する。無線電力伝送においてインダクタンスLが大きいほど伝送距離が長くなるが、コイルの両端に発生する電圧Vsはコイルに流れる電流をI、角周波数をωとするとき、ω×L×Iとなり、インダクタンスLに比例して非常に高くなるといった問題がある。   The operation of the wireless power transmission apparatus configured as described above will be described. The inductance L of the coil used for power transmission and reception increases as the number of turns increases. In wireless power transmission, the larger the inductance L, the longer the transmission distance. However, the voltage Vs generated at both ends of the coil is ω × L × I when the current flowing through the coil is I and the angular frequency is ω. There is a problem that it becomes very high in proportion.

コイルに高い電圧がかかると、コイルのターン間にかかる電圧が高くなり絶縁破壊が生じる。   When a high voltage is applied to the coil, the voltage applied between the turns of the coil increases, resulting in dielectric breakdown.

また複数の単線を束ねることで表皮効果を軽減し、低損失を実現できるリッツ線などの撚り線をコイル線に用いると伝送効率が向上する。しかし、コイルの途中で単線が一部でも断線すると高い電圧が単線同士に発生し、絶縁破壊が生じる。   In addition, the bundling of a plurality of single wires reduces the skin effect, and the use of twisted wires such as litz wires that can realize low loss for the coil wire improves transmission efficiency. However, if even a part of the single wire is broken in the middle of the coil, a high voltage is generated between the single wires, causing dielectric breakdown.

本発明の無線電力伝送用コイルは複数のコイルを短絡素子を介して直列接続することにより、インダクタンスの大きな一つのコイルを形成する。   The wireless power transmission coil of the present invention forms a single coil having a large inductance by connecting a plurality of coils in series via a short-circuit element.

コイルの短絡素子間にかかる電圧Vtは短絡素子間のインダクタンスをLtとするとき、ω×Lt×Iとなる。コイルの短絡素子間にかかる電圧Vtが撚り線の絶縁破壊電圧Vdより小さくなるように短絡素子間隔を設定する。短絡素子間隔を短くするほど、短絡素子間のインダクタンスLtが小さくなり、短絡素子間にかかる電圧Vtが低下する。   The voltage Vt applied between the short-circuit elements of the coil is ω × Lt × I, where Lt is the inductance between the short-circuit elements. The short-circuit element interval is set so that the voltage Vt applied between the short-circuit elements of the coil is smaller than the dielectric breakdown voltage Vd of the stranded wire. The shorter the short-circuit element interval, the smaller the inductance Lt between the short-circuit elements, and the voltage Vt applied between the short-circuit elements decreases.

撚り線を用いた場合、短絡素子を介して接続されているため、単線が一部断線しても単線同士に発生する最大電圧はVtとなる。これは、絶縁破壊電圧Vdより低いため、絶縁破壊を防止できる。つまり、短絡素子は単に複数のコイルを接続するだけでなく、絶縁破壊を防ぐためのものでもある。短絡素子間隔を短くし、VtをVdに対して十分低くし、できるだけ多くのインダクタンスの低いコイルを直列接続したほうが絶縁破壊の防止効果が大きい。また複数のコイルからなるコイル構成の適用は送電側、受電側のうちどちらか一方であってもよい。さらに図6、図9に示すコイル構造では、それぞれのコイル間に空隙を設けるようにして配置されるため、ターン間での絶縁破壊を防止できる。   When a stranded wire is used, since it is connected via a short-circuit element, the maximum voltage generated between the single wires is Vt even if the single wires are partially broken. Since this is lower than the dielectric breakdown voltage Vd, dielectric breakdown can be prevented. That is, the short circuit element is not only for connecting a plurality of coils but also for preventing dielectric breakdown. The effect of preventing dielectric breakdown is greater when the distance between the short-circuit elements is shortened, Vt is sufficiently lower than Vd, and as many coils with low inductance as possible are connected in series. The application of the coil configuration composed of a plurality of coils may be applied to either the power transmission side or the power reception side. Further, in the coil structures shown in FIGS. 6 and 9, since the gaps are provided between the coils, insulation breakdown between turns can be prevented.

以上により、本発明のコイル構成により絶縁破壊を生じることなくインダクタンスを増加させ、低損失のコイル線を実現できる。よって、伝送距離が長く、高い伝送効率を実現し、位置ずれの影響が低減できる無線電力伝送用コイルを実現できる。   As described above, the coil configuration of the present invention can increase the inductance without causing dielectric breakdown and realize a low-loss coil wire. Therefore, it is possible to realize a coil for wireless power transmission that has a long transmission distance, realizes high transmission efficiency, and can reduce the influence of displacement.

本発明の無線電力伝送用コイルは、伝送距離が長く、高い伝送効率をえることができる。よって、本発明の無線電力伝送用コイルを、例えば、携帯機器、電気自動車などの非接触充電器、誘導加熱装置として適用できる。   The coil for wireless power transmission according to the present invention has a long transmission distance and high transmission efficiency. Therefore, the coil for wireless power transmission of the present invention can be applied as, for example, a non-contact charger such as a portable device or an electric vehicle, or an induction heating device.

101 高周波発振源
102a、102b、102c、102d、102e、102f、102g 送電コイル
103a、103b 短絡素子
104a、104b、104c 受電コイル
105a、105b 短絡素子
106 負荷
201 送電コイル部
202 受電コイル部
101 High-frequency oscillation source 102a, 102b, 102c, 102d, 102e, 102f, 102g Power transmission coil 103a, 103b Short-circuit element 104a, 104b, 104c Power reception coil 105a, 105b Short-circuit element 106 Load 201 Power transmission coil section 202 Power reception coil section

Claims (3)

撚り線状の導体を巻くことで形成される無線電力伝送用コイルであって、
前記撚り線状の導体の途中に短絡素子を複数設け、
前記短絡素子同士間に発生する電圧が前記撚り線状の導体の絶縁破壊電圧より低くなるように前記複数の短絡素子を設けた無線電力伝送用コイル。
A coil for wireless power transmission formed by winding a stranded wire conductor,
A plurality of short-circuit elements are provided in the middle of the stranded conductor,
A coil for wireless power transmission in which the plurality of short-circuit elements are provided so that a voltage generated between the short-circuit elements is lower than a dielectric breakdown voltage of the stranded conductor.
前記撚り線状の導体を巻くことで形成される複数のコイルを軸方向がほぼ等しくなるように配置し、
前記複数のコイル間には空隙が設けられた、
請求項1記載の無線電力伝送用コイル。
A plurality of coils formed by winding the stranded wire conductor are arranged so that the axial directions are substantially equal,
A gap is provided between the plurality of coils.
The wireless power transmission coil according to claim 1.
前記複数のコイルを隣り合うコイルの巻き方向が互いに反対となるように配置した、
請求項2記載の無線電力伝送用コイル。
The plurality of coils are arranged so that the winding directions of adjacent coils are opposite to each other,
The coil for wireless power transmission according to claim 2.
JP2010093824A 2010-04-15 2010-04-15 Wireless power transmission coil Pending JP2011229202A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010093824A JP2011229202A (en) 2010-04-15 2010-04-15 Wireless power transmission coil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010093824A JP2011229202A (en) 2010-04-15 2010-04-15 Wireless power transmission coil

Publications (1)

Publication Number Publication Date
JP2011229202A true JP2011229202A (en) 2011-11-10

Family

ID=45043961

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010093824A Pending JP2011229202A (en) 2010-04-15 2010-04-15 Wireless power transmission coil

Country Status (1)

Country Link
JP (1) JP2011229202A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013099221A1 (en) * 2011-12-27 2013-07-04 パナソニック株式会社 Non-contact charging device
WO2013150785A1 (en) * 2012-04-02 2013-10-10 パナソニック株式会社 Coil unit, and power transmission device equipped with coil unit
JP2015136287A (en) * 2013-03-06 2015-07-27 株式会社ヘッズ Non-contact power supply device
US9431166B2 (en) 2013-03-06 2016-08-30 Kabushiki Kaisha Toshiba Inductor and method of manufacturing the same
WO2018062117A1 (en) * 2016-09-28 2018-04-05 日本電産株式会社 Contactless power feeding coil unit

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62244108A (en) * 1986-04-16 1987-10-24 Konika Corp Coil
JP2000182863A (en) * 1998-12-11 2000-06-30 Tsubakimoto Chain Co Noncontact feeder
JP2007317914A (en) * 2006-05-26 2007-12-06 Asuka Electron Kk Air core coil and electric circuit unit using the same
JP2008172872A (en) * 2007-01-09 2008-07-24 Sony Ericsson Mobilecommunications Japan Inc Contactless power transmission coil, portable terminal and terminal charger
JP2008205215A (en) * 2007-02-20 2008-09-04 Seiko Epson Corp Laminated coil unit and electronic apparatus having the same, and charger

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62244108A (en) * 1986-04-16 1987-10-24 Konika Corp Coil
JP2000182863A (en) * 1998-12-11 2000-06-30 Tsubakimoto Chain Co Noncontact feeder
JP2007317914A (en) * 2006-05-26 2007-12-06 Asuka Electron Kk Air core coil and electric circuit unit using the same
JP2008172872A (en) * 2007-01-09 2008-07-24 Sony Ericsson Mobilecommunications Japan Inc Contactless power transmission coil, portable terminal and terminal charger
JP2008205215A (en) * 2007-02-20 2008-09-04 Seiko Epson Corp Laminated coil unit and electronic apparatus having the same, and charger

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013099221A1 (en) * 2011-12-27 2013-07-04 パナソニック株式会社 Non-contact charging device
WO2013150785A1 (en) * 2012-04-02 2013-10-10 パナソニック株式会社 Coil unit, and power transmission device equipped with coil unit
JP2015136287A (en) * 2013-03-06 2015-07-27 株式会社ヘッズ Non-contact power supply device
US9431166B2 (en) 2013-03-06 2016-08-30 Kabushiki Kaisha Toshiba Inductor and method of manufacturing the same
US9716386B2 (en) 2013-03-06 2017-07-25 Heads Co., Ltd. Contactless power supply system
WO2018062117A1 (en) * 2016-09-28 2018-04-05 日本電産株式会社 Contactless power feeding coil unit
CN109643607A (en) * 2016-09-28 2019-04-16 日本电产株式会社 Non-contact power coil unit
CN109643607B (en) * 2016-09-28 2021-01-12 日本电产株式会社 Coil unit for non-contact power supply

Similar Documents

Publication Publication Date Title
US20180175645A1 (en) Wireless charging module having a wireless charging coil and a magnetic sheet
KR101448024B1 (en) Contactless power transmission system and transmission coil for contactless power transmission
CN108140478B (en) Coil device
WO2020238192A1 (en) Coil winding, coil module, transmitting device, receiving device, system, and terminal
WO2009081934A1 (en) Plane coil, and non-contact power transmission device using the same
JP4835786B1 (en) Non-contact charging module and non-contact charging device
JP4835787B1 (en) Non-contact charging module and non-contact charging device
JP2011229202A (en) Wireless power transmission coil
JP6092862B2 (en) Coiled member and coil device
JP2017212880A (en) Wireless power transmission apparatus
JP6056100B2 (en) Spiral coil
JP5445545B2 (en) Non-contact charging module, non-contact charger and electronic device
WO2018163409A1 (en) Resonance-type power transfer coil
KR20180132205A (en) wireless power transfer module
JP2014116543A (en) Antenna and wireless power supply device
KR101753189B1 (en) Transformer with multi-stacking
JP2013207907A (en) Collective electric wire, power transmission device and electronic apparatus using the same, and wireless power transmission system
JP2012156281A (en) Air-core coil
US20160111201A1 (en) Transformer
JP5595893B2 (en) Resonant coil and non-contact power transmission device having the same
US9991749B2 (en) Coil unit, wireless power feeding device, wireless power receiving device, and wireless power transmission device
WO2022154028A1 (en) Wireless power transmission coil
CN214753198U (en) Coil winding, coil module, transmitter and receiver
JP5595894B2 (en) Resonant coil and non-contact power transmission device having the same
CN116895448A (en) Coil

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120214

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20121218

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130809

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130820

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20131210