JP5595894B2 - Resonant coil and non-contact power transmission device having the same - Google Patents

Resonant coil and non-contact power transmission device having the same Download PDF

Info

Publication number
JP5595894B2
JP5595894B2 JP2010283665A JP2010283665A JP5595894B2 JP 5595894 B2 JP5595894 B2 JP 5595894B2 JP 2010283665 A JP2010283665 A JP 2010283665A JP 2010283665 A JP2010283665 A JP 2010283665A JP 5595894 B2 JP5595894 B2 JP 5595894B2
Authority
JP
Japan
Prior art keywords
coil
resonance
resonance coil
power
conductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010283665A
Other languages
Japanese (ja)
Other versions
JP2012134249A (en
Inventor
誠 平山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yazaki Corp
Original Assignee
Yazaki Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yazaki Corp filed Critical Yazaki Corp
Priority to JP2010283665A priority Critical patent/JP5595894B2/en
Priority to PCT/JP2011/078843 priority patent/WO2012086473A1/en
Publication of JP2012134249A publication Critical patent/JP2012134249A/en
Application granted granted Critical
Publication of JP5595894B2 publication Critical patent/JP5595894B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Description

本発明は、共鳴現象によって相手方コイルに電力を送信し又は相手方コイルから送信された電力を受信する共鳴コイル、及び、その共鳴コイルを有する非接触電力伝送装置に関するものである。   The present invention relates to a resonance coil that transmits power to a counterpart coil or receives power transmitted from the counterpart coil by a resonance phenomenon, and a non-contact power transmission apparatus having the resonance coil.

近年、例えば、電気自動車等が備える二次電池(以下、単に「バッテリ」という)の充電などにおいて、充電作業を容易にするために、プラグ接続等の物理的接続を必要としないワイヤレス(非接触)での電力伝送技術が用いられている。   In recent years, for example, charging of a secondary battery (hereinafter simply referred to as “battery”) included in an electric vehicle or the like is wireless (non-contact) that does not require physical connection such as plug connection in order to facilitate charging work. ) Is used.

このようなワイヤレス電力伝送技術として、電磁誘導現象を利用した電磁誘導方式、電磁波を利用した電磁波送信方式、共鳴現象を利用した共鳴方式などが知られている。中でも、共鳴方式は、送信共鳴コイルに交流電力を供給して、電磁場を介して送信共鳴コイルと当該送信共鳴コイルに対向配置された受信共鳴コイルとを共鳴させて、電力を伝送する技術であり、数kWの大電力を比較的離れた場所間で伝送することが可能である。   As such wireless power transmission technology, an electromagnetic induction method using an electromagnetic induction phenomenon, an electromagnetic wave transmission method using an electromagnetic wave, a resonance method using a resonance phenomenon, and the like are known. Among them, the resonance method is a technique for transmitting electric power by supplying AC power to the transmission resonance coil and causing the transmission resonance coil to resonate with the reception resonance coil disposed opposite to the transmission resonance coil via an electromagnetic field. It is possible to transmit large power of several kW between relatively distant places.

しかしながら、このような共鳴方式のワイヤレス電力伝送技術を、例えば、電気自動車のバッテリ充電システムなどの数kWから数十kWの大電力が伝送されるシステムに適用した場合、図7に示すように、共鳴状態になると共鳴コイルが有する管状に巻回されたコイル導線の端部あるいは端部近傍において高電圧が生じ、当該共鳴コイルを収容するアースされたケースなどとの間で絶縁破壊が起きて火花放電が発生してしまうなどの問題があった。そして、このような問題を解決する技術が、例えば、特許文献1に開示されている。   However, when such a resonance-type wireless power transmission technology is applied to a system in which large power of several kW to several tens of kW is transmitted, such as a battery charging system of an electric vehicle, for example, as shown in FIG. When the resonance state is reached, a high voltage is generated at or near the end of the coil wire wound in the tubular shape of the resonance coil, and a dielectric breakdown occurs with a grounded case that accommodates the resonance coil, resulting in a spark. There were problems such as the occurrence of discharge. And the technique which solves such a problem is disclosed by patent document 1, for example.

特許文献1に開示されている共鳴コイル901は、図8に示すように、コイル導線910と絶縁性の樹脂920とを備えている。コイル導線910は、管状に複数回巻回されている。そして、この絶縁性の樹脂920が、コイル導線910の長手方向の端部910aに近いほど厚みが増すようにコイル導線910に被覆加工されているので、コイル導線910の端部910aにおける絶縁耐力を高めて火花放電を防止することができた。また、この共鳴コイル901のコイル導線910には、コイル導線910の巻回部間に一定の導線間ギャップが設けられており、コイル導線910の巻回部間での絶縁破壊による火花放電を防いでいた。   As shown in FIG. 8, the resonance coil 901 disclosed in Patent Document 1 includes a coil conductor 910 and an insulating resin 920. The coil conducting wire 910 is wound in a tubular shape a plurality of times. And since this insulating resin 920 is coated on the coil conductor 910 so that the thickness increases as the length of the end 910a in the longitudinal direction of the coil conductor 910 increases, the dielectric strength at the end 910a of the coil conductor 910 is increased. It was possible to prevent spark discharge. The coil conductor 910 of the resonance coil 901 is provided with a certain inter-conductor gap between the winding portions of the coil conductor 910 to prevent spark discharge due to dielectric breakdown between the winding portions of the coil conductor 910. It was out.

また、このような共鳴コイル901は、例えば、電気自動車のバッテリの充電システムなどに用いられるので、燃費向上、車内スペース確保、及び、充電エリアの有効利用等のために小型化が求められているが、共鳴コイル901を小型化するとコイル導線910の導線間ギャップが小さくなってしまい、コイル導線910間に絶縁破壊が生じる恐れがある。そして、このような問題を解決する技術として、コイル導線の巻回部間に絶縁性樹脂などからなる絶縁部材を充填してコイル導線全体を包むようにモールドすることにより、コイル導線の巻回部間の絶縁破壊耐性(絶縁耐力)を向上させて、コイル導線の導線間ギャップを小さくする構成が知られている。   Such a resonance coil 901 is used for, for example, a battery charging system of an electric vehicle, and therefore, downsizing is required for improving fuel efficiency, securing a vehicle interior space, and effectively using a charging area. However, when the resonance coil 901 is downsized, the gap between the conductors of the coil conductor 910 becomes small, and there is a possibility that dielectric breakdown may occur between the coil conductors 910. As a technique for solving such a problem, an insulating member made of an insulating resin or the like is filled between the winding portions of the coil lead wire and molded so as to wrap the entire coil lead wire. There is known a configuration in which the dielectric breakdown resistance (dielectric strength) is improved and the gap between the conductors of the coil conductor is reduced.

特開2010−73885号公報JP 2010-73885 A

しかしながら、上述した構成の共鳴コイルにおいて、図7から判るようにコイル導線の各巻回部間に生じる電位差がコイル導線の箇所によって異なるにもかかわらず、コイル導線の導線間ギャップ、即ち、コイル導線の巻回部間に充填される絶縁部材の厚さが、最も大きい電位差に合わせて一定にされているので、これより電位差が低い箇所においては、絶縁部材が必要以上の厚さとなって過剰な絶縁耐力を有することになり、そのため、小型化に際して無駄が生じて製造コストが増加してしまうという問題があった。   However, in the resonance coil having the above-described configuration, as can be seen from FIG. 7, the gap between the coil conductors, that is, the coil conductor gap, although the potential difference generated between the winding portions of the coil conductor differs depending on the location of the coil conductor. Since the thickness of the insulating member filled between the winding portions is made constant according to the largest potential difference, the insulating member becomes excessively thick at the portion where the potential difference is lower than this, and excessive insulation is obtained. Therefore, there is a problem that the manufacturing cost is increased due to wasteful size reduction.

本発明は、上記課題に係る問題を解決することを目的としている。即ち、本発明は、コイル導線間での絶縁破壊のない小型で安価な共鳴コイル及びそれを備える非接触電力伝送装置を提供することを目的としている。   The present invention aims to solve the above problems. That is, an object of the present invention is to provide a small and inexpensive resonant coil that does not cause dielectric breakdown between coil conductors and a non-contact power transmission device including the same.

本発明者は、共鳴コイルの小型化と低コストとを両立すべく、共鳴コイルの構成について検討を重ねた結果、コイル導線の各巻回部間には異なる電位差が生じており、この各巻回部間における電位差に応じて適切な絶縁耐力を有する絶縁部材を各巻回部間に設けることで、小型形状でありながら低コストを実現できることを見出し、本発明の完成に至った。   As a result of repeated investigations on the configuration of the resonance coil in order to achieve both reduction in size and cost of the resonance coil, the present inventor has produced different potential differences between the winding portions of the coil conductor. It has been found that by providing an insulating member having an appropriate dielectric strength between the winding portions according to the potential difference between them, it is possible to realize a low cost while having a small shape, and the present invention has been completed.

請求項1に記載された発明は、上記目的を達成するために、共鳴現象によって相手方コイルに電力を送信し又は前記相手方コイルから送信された電力を受信する共鳴コイルであって、複数回巻回されたコイル導線を有し、そして、前記コイル導線の一の巻回部と当該一の巻回部に隣接する他の巻回部との間には、前記一の巻回部と前記他の巻回部との間に生じる電位差に応じた絶縁耐力を有する絶縁部材が設けられていることを特徴とする共鳴コイルである。   In order to achieve the above object, the invention described in claim 1 is a resonance coil that transmits electric power to a counterpart coil by a resonance phenomenon or receives electric power transmitted from the counterpart coil. And between the one winding part of the coil conductor and another winding part adjacent to the one winding part, the one winding part and the other winding part. The resonance coil is characterized in that an insulating member having a dielectric strength corresponding to a potential difference generated between the winding portion and the winding portion is provided.

請求項2に記載された発明は、請求項1に記載された発明において、前記絶縁部材には、異なる前記絶縁耐力を有する、順次積層された、複数の絶縁層が設けられていることを特徴とするものである。   According to a second aspect of the present invention, in the first aspect of the present invention, the insulating member is provided with a plurality of sequentially laminated insulating layers having different dielectric strengths. It is what.

請求項3に記載された発明は、請求項2に記載された発明において、前記コイル導線が、管状に複数回巻回されており、前記絶縁部材における前記コイル導線の軸方向中央部に設けられた前記絶縁層の絶縁耐力が、前記絶縁部材における前記コイル導線の軸方向両端部に設けられた前記絶縁層の絶縁耐力より高いことを特徴とするものである。   The invention described in claim 3 is the invention described in claim 2, wherein the coil conductor is wound in a tubular shape a plurality of times, and is provided at a central portion in the axial direction of the coil conductor in the insulating member. Further, the dielectric strength of the insulating layer is higher than the dielectric strength of the insulating layer provided at both axial ends of the coil conductor in the insulating member.

請求項4に記載された発明は、請求項3に記載された発明において、前記複数の絶縁層が、前記コイル導線の軸方向両端部に設けられた一対の第1絶縁層と、前記一対の第1絶縁層に挟まれるように積層されて前記コイル導線の軸方向中央部に設けられた、前記一対の第1絶縁層より絶縁耐力が高い第2絶縁層と、からなることを特徴とするものである。   The invention described in claim 4 is the invention described in claim 3, wherein the plurality of insulating layers includes a pair of first insulating layers provided at both axial ends of the coil conductor, and the pair of insulating layers. And a second insulating layer having a dielectric strength higher than that of the pair of first insulating layers, which is laminated so as to be sandwiched between the first insulating layers and provided at a central portion in the axial direction of the coil conductor. Is.

請求項5に記載された発明は、上記目的を達成するために、共鳴現象によって電力を送信する送信共鳴コイルと、前記送信共鳴コイルから送信された電力を受信する受信共鳴コイルと、を有する非接触電力伝送装置において、前記送信共鳴コイル及び前記受信共鳴コイルの少なくとも一方が、請求項1〜4のいずれか一項に記載された共鳴コイルであることを特徴とする非接触電力伝送装置である。   In order to achieve the above object, the invention described in claim 5 includes a transmission resonance coil that transmits electric power by a resonance phenomenon and a reception resonance coil that receives electric power transmitted from the transmission resonance coil. In the contact power transmission device, at least one of the transmission resonance coil and the reception resonance coil is the resonance coil according to any one of claims 1 to 4, wherein the contact power transmission device is a non-contact power transmission device. .

請求項1に記載された発明によれば、複数回巻回されたコイル導線を有し、そして、このコイル導線の一の巻回部と当該一の巻回部に隣接する他の巻回部との間には、前記一の巻回部と前記他の巻回部との間に生じる電位差に応じた絶縁耐力を有する絶縁部材が設けられているので、例えば、コイル導線の各巻回部間に設ける絶縁部材の絶縁耐力を均一にした場合、コイル導線の一部の巻回部間において、過剰な絶縁耐力の絶縁部材を設けることになってしまうところ、本発明では、コイル導線の各巻回部間に生じる電位差に合わせた絶縁耐力を有する絶縁部材を設けることで、過剰な絶縁耐力を有する部分をなくすことができ、コイル導線間の絶縁破壊のない小型で安価な共鳴コイルを提供できる。   According to the first aspect of the present invention, the coil conductor is wound a plurality of times, and one winding portion of the coil conductor and another winding portion adjacent to the one winding portion are provided. Is provided with an insulating member having a dielectric strength according to a potential difference generated between the one winding part and the other winding part. If the insulation strength of the insulation member provided on the coil conductor is made uniform, an insulation member with excessive dielectric strength is provided between some winding portions of the coil conductor. In the present invention, each winding of the coil conductor By providing an insulating member having a dielectric strength that matches the potential difference generated between the portions, a portion having an excessive dielectric strength can be eliminated, and a small and inexpensive resonance coil free from dielectric breakdown between coil conductors can be provided.

請求項2に記載された発明によれば、絶縁部材には、異なる前記絶縁耐力を有する、順次積層された、複数の絶縁層が設けられているので、絶縁部材が、異なる絶縁耐力を有する複数の絶縁層を順次積層した簡易な構成となり、より安価な共鳴コイルを提供できる。   According to the second aspect of the present invention, since the insulating member is provided with a plurality of insulating layers which are sequentially stacked and have different dielectric strengths, the insulating member has a plurality of different dielectric strengths. Thus, a simple structure in which the insulating layers are sequentially stacked can be provided, and a cheaper resonance coil can be provided.

請求項3に記載された発明によれば、コイル導線が、管状に複数回巻回されており、絶縁部材におけるコイル導線の軸方向中央部に設けられた絶縁層の絶縁耐力が、絶縁部材に軸方向両端部に設けられた絶縁層の絶縁耐力より高いので、コイル導線の各巻回部間に生じる電位差が、管状のコイル導線の軸方向中央部で大きく、両端部で小さくなる特性を有する共鳴コイルにおいて、コイル導線間の絶縁破壊のない小型で安価な共鳴コイルを提供できる。   According to the invention described in claim 3, the coil conductor is wound in a tubular shape a plurality of times, and the dielectric strength of the insulating layer provided in the axial central portion of the coil conductor in the insulating member is applied to the insulating member. Since the dielectric strength of the insulating layer provided at both ends in the axial direction is higher than that of the insulation layer, the potential difference generated between the winding portions of the coil conductor is large at the axial center of the tubular coil conductor, and has a characteristic of decreasing at both ends. In the coil, it is possible to provide a small and inexpensive resonance coil that does not cause dielectric breakdown between coil conductors.

請求項4に記載された発明によれば、複数の絶縁層が、コイル導線の軸方向両端部に設けられた一対の第1絶縁層と、これら一対の第1絶縁層に挟まれるように積層されてコイル導線の軸方向中央部に設けられた、一対の第1絶縁層より絶縁耐力が高い第2絶縁層と、からなるので、コイル導線の各巻回部間に生じる電位差が、管状のコイル導線の軸方向中央部で大きく、両端部で小さくなる特性を有する共鳴コイルにおいて、絶縁部材を、異なる絶縁耐力を有する絶縁材料を三層構造にした非常に簡易な構成とすることで、より安価な共鳴コイルを提供できる。   According to the invention described in claim 4, the plurality of insulating layers are laminated so as to be sandwiched between the pair of first insulating layers provided at both axial ends of the coil conductor and the pair of first insulating layers. And a second insulating layer having a higher dielectric strength than the pair of first insulating layers provided in the central portion of the coil conductor in the axial direction. Therefore, the potential difference generated between the winding portions of the coil conductor is a tubular coil. In the resonance coil having the characteristic that it is large at the axial center part of the conducting wire and small at both ends, the insulation member is made cheaper by adopting a very simple structure with a three-layer insulation material having different dielectric strength A resonant coil can be provided.

請求項5に記載された発明によれば、送信共鳴コイル及び受信共鳴コイルの少なくとも一方が、請求項1〜4のいずれか一項に記載された共鳴コイルであるので、小型で安価な共鳴コイルを用いることにより、小型で安価な非接触電力伝送装置を提供できる。   According to the invention described in claim 5, since at least one of the transmission resonance coil and the reception resonance coil is the resonance coil described in any one of claims 1 to 4, a small and inexpensive resonance coil is provided. Can be used to provide a small and inexpensive contactless power transmission device.

本発明の共鳴コイルの一実施形態を示す斜視図である。It is a perspective view which shows one Embodiment of the resonance coil of this invention. 図1の共鳴コイルの側面図である。It is a side view of the resonance coil of FIG. 図1の共鳴コイルの変形例の構成を示す図であって、(a)は、丸型平面コイルの正面図であり、(b)は、角形平面コイルの正面図である。It is a figure which shows the structure of the modification of the resonance coil of FIG. 1, Comprising: (a) is a front view of a round planar coil, (b) is a front view of a square planar coil. 本発明の非接触電力伝送装置の一実施形態に係るワイヤレス電力伝送装置の構成を示す説明図である。It is explanatory drawing which shows the structure of the wireless power transmission apparatus which concerns on one Embodiment of the non-contact power transmission apparatus of this invention. 図4のワイヤレス電力伝送装置のブロック図である。It is a block diagram of the wireless power transmission apparatus of FIG. 共鳴型電力伝送方式の原理を示す説明図である。It is explanatory drawing which shows the principle of a resonance-type electric power transmission system. コイル導線における、共鳴状態での電圧分布を模式的に示す図である。It is a figure which shows typically the voltage distribution in the resonance state in a coil conducting wire. 従来の共鳴コイルの構成を示す部分拡大断面図である。It is a partial expanded sectional view which shows the structure of the conventional resonance coil.

(共鳴コイルの一実施形態)
以下、本発明の共鳴コイルの一実施形態について、図1、図2を参照して説明する。
(One Embodiment of Resonance Coil)
Hereinafter, an embodiment of a resonance coil of the present invention will be described with reference to FIGS.

共鳴コイルは、共鳴現象を利用して、対向配置された相手方コイルに電力を送信し又は前記相手方コイルから送信された電力を受信するのに用いられる。   The resonance coil is used to transmit power to or receive power transmitted from the counterpart coil by using a resonance phenomenon.

各図に示す本発明に係る共鳴コイル(図中、符号50で示す)は、コイル導線51と、絶縁部材としてのモールド部材52と、を有している。   The resonance coil according to the present invention shown in each drawing (indicated by reference numeral 50 in the drawings) includes a coil conductor 51 and a mold member 52 as an insulating member.

コイル導線51は、各図に示すように、例えば、直径5mmの銅線を管状(ソレノイド)に複数回(n回)巻回した、直径Dが600mm、長さLが200mmの空心のらせんコイルである。このコイル導線51には、複数の円形部分(1ターン)である巻回部55[1]〜55[n]が設けられている。コイル導線の一の巻回部55[k]とそれに隣接する他の巻回部55[k+1](k:1〜n−1)の間(以下、単に巻回部55間という)には、一定の導線間ギャップG(即ち、間隔)が設けられている。なお、「一定の導線間ギャップG」とは、各導線間ギャップGが、それぞれ同一又は概ね同一であることを意味する。   As shown in each drawing, the coil conductor 51 is, for example, an air-core spiral coil having a diameter D of 600 mm and a length L of 200 mm, in which a copper wire having a diameter of 5 mm is wound around a tubular (solenoid) a plurality of times (n times). It is. The coil conductor 51 is provided with winding portions 55 [1] to 55 [n] which are a plurality of circular portions (one turn). Between one winding portion 55 [k] of the coil conductor and another winding portion 55 [k + 1] (k: 1 to n−1) adjacent thereto (hereinafter simply referred to as between the winding portions 55), A certain gap G (that is, a gap) between the conductors is provided. The “constant inter-conductor gap G” means that the inter-conductor gaps G are the same or substantially the same.

共振状態におけるコイル導線51の電圧分布を図7に示す。そして、この図7から明らかなように、コイル導線51における単位距離間の電位差(即ち、グラフの傾き)は、コイル導線51の長手方向中央部(即ち、グラフの原点)ほど大きく、長手方向両端部に近づくにしたがって小さくなる。つまり、管状に巻回されたコイル導線51は、箇所によって巻回部55間の電位差が異なり、具体的には、その軸方向(即ち、長さL方向)中央部における巻回部55間の電位差が、軸方向両端部における巻回部55間の電位差より大きくなる特性を有している。   FIG. 7 shows the voltage distribution of the coil conductor 51 in the resonance state. As is clear from FIG. 7, the potential difference between unit distances in the coil conductor 51 (ie, the slope of the graph) is larger at the central portion in the longitudinal direction of the coil conductor 51 (ie, the origin of the graph). It gets smaller as it gets closer to the part. That is, the coil conductor 51 wound in a tubular shape has a different potential difference between the winding portions 55 depending on the location, and specifically, between the winding portions 55 in the central portion in the axial direction (that is, the length L direction). The potential difference is larger than the potential difference between the winding portions 55 at both axial ends.

モールド部材52は、各図に示すように、一対の第1絶縁層52a、52bと、これら一対の第1絶縁層52a、52bの間に挟まれて積層された第2絶縁層52cと、を有している。このモールド部材52の、一対の第1絶縁層52a、52bと、第2絶縁層52cとは、上記コイル導線51の上記特性を考慮して、その材料が定められる。   As shown in each drawing, the mold member 52 includes a pair of first insulating layers 52a and 52b, and a second insulating layer 52c sandwiched and stacked between the pair of first insulating layers 52a and 52b. Have. The material of the pair of first insulating layers 52 a and 52 b and the second insulating layer 52 c of the mold member 52 is determined in consideration of the characteristics of the coil conductor 51.

一対の第1絶縁層52a、52bは、例えば、PI(ポリイミド)などの中耐圧の絶縁性を有する合成樹脂で構成されており、コイル導線51の軸方向(即ち、長さL方向)両端部における巻回部55間に充填されてそれら巻回部55を内包するように設けられている。   The pair of first insulating layers 52a and 52b is made of, for example, a synthetic resin having medium withstand voltage insulation such as PI (polyimide), and both ends of the coil conductor 51 in the axial direction (that is, the length L direction). Are provided so as to be filled between the winding portions 55 and include the winding portions 55.

第2絶縁層52cは、例えば、PFA(テトラフルオロエチレン・パーフルオロアリキルビニルエーテル共重合体)などの高耐圧の絶縁性を有する合成樹脂で構成されており、コイル導線51の軸方向中央部における巻回部55間に充填されてそれら巻回部55を内包するように設けられている。第2絶縁層52cには、一対の第1絶縁層52a、52bに用いられる材料より絶縁耐力が高い材料が用いられる。   The second insulating layer 52 c is made of, for example, a synthetic resin having a high withstand voltage insulation such as PFA (tetrafluoroethylene / perfluoroalkyl vinyl ether copolymer), and is formed at the central portion in the axial direction of the coil conductor 51. It is provided so as to be filled between the winding portions 55 and include the winding portions 55. The second insulating layer 52c is made of a material having higher dielectric strength than the material used for the pair of first insulating layers 52a and 52b.

一対の第1絶縁層52a、52bに用いたPIの絶縁破壊電圧(AC)は、15〜20[kV/mm]程度であり、第2絶縁層52cに用いたPFAの絶縁破壊電圧(AC)は、150[kV/mm]程度であり、その一方で、空気の絶縁破壊電圧(AC)は、3[kV/mm]程度であるので、このようなモールド部材52を設けることにより、コイル導線51単体の構成より、導線間ギャップGをより小さくすることができる。   The dielectric breakdown voltage (AC) of PI used for the pair of first insulating layers 52a and 52b is about 15 to 20 [kV / mm], and the dielectric breakdown voltage (AC) of PFA used for the second insulating layer 52c. Is about 150 [kV / mm], and on the other hand, the dielectric breakdown voltage (AC) of air is about 3 [kV / mm]. The gap G between the conductors can be made smaller than that of the single 51 configuration.

モールド部材52は、例えば、コイル導線51の全体が収容された直方体枠型に、(1)まず、溶融状態のPIが枠型の3分の1程度の高さまで流し込まれたのち凝固されることにより第1絶縁層52bが形成され、(2)次に、溶融状態のPFAが枠型の3分の2程度の高さまで流し込まれたのち凝固されることにより第2絶縁層52cが形成され、(3)最後に、溶融状態のPIが枠型の高さまで流し込まれたのち凝固されることにより第1絶縁層52aが形成される。これにより、各巻回部55間にそれぞれの絶縁層を形成する合成樹脂が充填されて、コイル導線51を内包するように、第1絶縁層52a、52b及び第2絶縁層52cが設けられる。つまり、モールド部材52は、共振状態でのコイル導線51の軸方向中央部における巻回部55間の電位差が、軸方向両端部における巻回部55間の電位差より大きくなるという特性に応じて、そのコイル導線51の軸方向中央部の絶縁耐力が、軸方向両端部の絶縁耐力より高くなるように構成されている。   For example, the mold member 52 is solidified after the molten PI is poured to a height of about one third of the frame shape in a rectangular parallelepiped frame shape in which the entire coil conductor 51 is accommodated. Thus, the first insulating layer 52b is formed. (2) Next, the molten PFA is poured to a height of about two-thirds of the frame shape and then solidified, thereby forming the second insulating layer 52c. (3) Finally, the molten PI is poured into the frame shape and then solidified, thereby forming the first insulating layer 52a. Thus, the first insulating layers 52 a and 52 b and the second insulating layer 52 c are provided so as to be filled with the synthetic resin forming the respective insulating layers between the winding portions 55 and include the coil conductor 51. That is, according to the characteristic that the mold member 52 has a potential difference between the winding portions 55 at the axial central portion of the coil conductor 51 in the resonance state larger than a potential difference between the winding portions 55 at both axial end portions. The dielectric strength at the axial center of the coil conductor 51 is configured to be higher than the dielectric strength at both axial ends.

本実施形態においては、上述のように第1絶縁層52a、52b及び第2絶縁層52cを有するモールド部材52を設けている。その一方で、従来の構成、例えば、絶縁耐力が比較的低い上記PIのみを用いて絶縁耐力が均一になるようにモールド部材52を構成した場合、コイル導線51の軸方向中央部における巻回部55間の電位差、即ち、最も大きい電位差に合わせて導線間ギャップG(即ち、巻回部55間に充填されるモールド部材52の厚さ)が定められるので、必要な絶縁耐力を確保するために巻回部55間に充填されるモールド部材52の厚さが大きくなって、モールド部材52の外形サイズ(即ち、長さL)が大きくなってしまう。   In the present embodiment, the mold member 52 having the first insulating layers 52a and 52b and the second insulating layer 52c is provided as described above. On the other hand, when the mold member 52 is configured so that the dielectric strength is uniform using only the conventional configuration, for example, the PI having a relatively low dielectric strength, the winding portion in the axial central portion of the coil conductor 51 The gap G between conductors (that is, the thickness of the mold member 52 filled between the winding portions 55) is determined in accordance with the potential difference between 55, that is, the largest potential difference. The thickness of the mold member 52 filled between the winding portions 55 is increased, and the outer size (that is, the length L) of the mold member 52 is increased.

また、絶縁耐力が比較的高い上記PFAのみを用いて絶縁耐力が均一になるようにモールド部材52を構成した場合、巻回部55間に充填されるモールド部材52の厚さを小さくすることができ、外形サイズを小さくすることができる。しかしながら、絶縁耐力がより高い材料は高コストであり、また、巻回部55間に充填されるモールド部材52の厚さは、コイル導線51の軸方向中央部における巻回部55間の電位差、即ち、最も大きい電位差に合わせて定められているので、コイル導線51の軸方向両端部においては、巻回部55間に充填されるモールド部材52の厚さが過剰となって、無駄が生じてしまう。また、上記PIを用いた場合でも、このような無駄が生じる点に関して同様である。   In addition, when the mold member 52 is configured so that the dielectric strength is uniform using only the PFA having a relatively high dielectric strength, the thickness of the mold member 52 filled between the winding portions 55 can be reduced. And the outer size can be reduced. However, a material having a higher dielectric strength is expensive, and the thickness of the mold member 52 filled between the winding portions 55 is the potential difference between the winding portions 55 in the axial central portion of the coil conductor 51. That is, since it is determined in accordance with the largest potential difference, the thickness of the mold member 52 filled between the winding portions 55 is excessive at both ends in the axial direction of the coil conducting wire 51, resulting in waste. End up. Further, even when the PI is used, the same is true with respect to such waste.

そして、本実施形態によれば、モールド部材52について、巻回部55間の電位差が比較的低いコイル導線51の軸方向両端部では、絶縁耐力の比較的低い材料からなる一対の第1絶縁層52a、52bを設け、巻回部55間の電位差が比較的高いコイル導線51の軸方向中央部では、絶縁耐力の比較的高い材料からなる第2絶縁層52cを設けることにより、巻回部55間の電位差に応じた絶縁耐力を有する絶縁部材を配設して、絶縁耐力が過剰となる部分をなくし、小型化と低コストとを両立している。   And according to this embodiment, a pair of 1st insulating layer which consists of material with comparatively low dielectric strength at the axial direction both ends of the coil conducting wire 51 about the mold member 52 where the potential difference between the winding parts 55 is comparatively low. 52a and 52b are provided, and in the central portion in the axial direction of the coil conductor 51 having a relatively high potential difference between the winding portions 55, the winding portion 55 is provided by providing a second insulating layer 52c made of a material having a relatively high dielectric strength. An insulating member having a dielectric strength corresponding to the potential difference between them is disposed to eliminate a portion where the dielectric strength is excessive, and both miniaturization and low cost are achieved.

以上より、本発明によれば、複数回巻回され且つ各巻回部55間に一定の導線間ギャップGが設けられたコイル導線51を有し、そして、このコイル導線51の一の巻回部55[k]とそれに隣接する他の巻回部55[k+1]との間には、これら一の巻回部55[k]と他の巻回部55[k+1]との間に生じる電位差に応じた絶縁耐力を有するモールド部材52が設けられているので、例えば、コイル導線51の各巻回部55間に設けるモールド部材52の絶縁耐力を均一にした場合、コイル導線51の一部の巻回部55間において、過剰な絶縁耐力となる部分を設けることになってしまうところ、本発明では、コイル導線51の各巻回部55間に生じる電位差に合わせた絶縁耐力を有する第1絶縁層52a、52b及び第2絶縁層52cを設けることで、モールド部材52における過剰な絶縁耐力となる部分をなくすことができ、コイル導線51間の絶縁破壊のない小型で安価な共鳴コイル50を実現できる。   As mentioned above, according to this invention, it has the coil conducting wire 51 by which the fixed gap | interval gap G was provided between each winding part 55 by several turns, and one winding part of this coil conducting wire 51 is provided. 55 [k] and another winding part 55 [k + 1] adjacent thereto have a potential difference generated between the one winding part 55 [k] and the other winding part 55 [k + 1]. Since the mold member 52 having the appropriate dielectric strength is provided, for example, when the dielectric strength of the mold member 52 provided between the winding portions 55 of the coil conductor 51 is made uniform, a part of the coil conductor 51 is wound. In the present invention, a portion having excessive dielectric strength is provided between the portions 55. In the present invention, the first insulating layer 52a having a dielectric strength in accordance with the potential difference generated between the winding portions 55 of the coil conductor 51, 52b and the second insulating layer 52 The By providing, it is possible to eliminate a portion to be an excess of dielectric strength in the mold member 52 can be an inexpensive resonance coil 50 in a small no dielectric breakdown between the coil wires 51.

また、コイル導線51が、管状に複数回巻回されており、モールド部材52におけるコイル導線51の軸方向中央部の絶縁耐力が、軸方向両端部の絶縁耐力より高いので、コイル導線51の各巻回部55間に生じる電位差が、管状のコイル導線51の軸方向中央部で大きく、両端部で小さくなる特性を有する共鳴コイル50において、コイル導線51間の絶縁破壊のない小型で安価な共鳴コイル50を実現できる。   Moreover, since the coil conducting wire 51 is wound in a tubular shape a plurality of times, and the dielectric strength at the axial central portion of the coil conducting wire 51 in the mold member 52 is higher than the dielectric strength at both axial end portions, each winding of the coil conducting wire 51 is performed. In the resonance coil 50 having a characteristic that a potential difference generated between the turning portions 55 is large at the axial center portion of the tubular coil conductor 51 and becomes small at both ends, a small and inexpensive resonance coil without insulation breakdown between the coil conductors 51. 50 can be realized.

また、モールド部材52が、コイル導線51の軸方向両端部に設けられた一対の第1絶縁層52a、52bと、これら一対の第1絶縁層52a、52bに挟まれるように積層されてコイル導線51の軸方向中央部に設けられた、一対の第1絶縁層52a、52bより絶縁耐力が高い第2絶縁層52cと、を有しているので、コイル導線51の各巻回部55間に生じる電位差が、管状のコイル導線の軸方向中央部で大きく、両端部で小さくなる特性を有する共鳴コイルにおいて、モールド部材52を、異なる絶縁耐力を有する絶縁材料を三層構造にした簡易な構成とすることで、より安価な共鳴コイル50を実現できる。   In addition, the mold member 52 is laminated so as to be sandwiched between the pair of first insulating layers 52a and 52b provided at both ends of the coil conducting wire 51 in the axial direction, and the pair of first insulating layers 52a and 52b. And a second insulating layer 52c having a higher dielectric strength than the pair of first insulating layers 52a and 52b, which are provided at the central portion in the axial direction of 51, and are generated between the winding portions 55 of the coil conductor 51. In the resonance coil having the characteristic that the potential difference is large at the axial center portion of the tubular coil conductor and becomes small at both ends, the mold member 52 has a simple configuration in which an insulating material having different dielectric strength is made into a three-layer structure. Thus, a cheaper resonance coil 50 can be realized.

本実施形態では、一対の第1絶縁層52a、52b及び第2絶縁層52cからなる三層構造のモールド部材52を有するものであったが、これに限定されるものではなく、例えば、四層以上の複数の絶縁層を有するモールド部材52としてもよい。モールド部材52をこのような複数の絶縁層を積層した簡易な構成とすることで、安価な共鳴コイルを実現できる。また、モールド部材52については、複数の絶縁層を積層した構成に限らず、本発明の目的に反しない限り、コイル導線51の電圧分布に合わせて、コイル導線51の一の巻回部55[k]とそれに隣接する他の巻回部55[k+1]との間に、これら一の巻回部55[k]と他の巻回部55[k+1]との間に生じる電位差に応じた絶縁耐力を有するモールド部材52などが設けられているものであればよい。   In the present embodiment, the mold member 52 has a three-layer structure including a pair of first insulating layers 52a and 52b and a second insulating layer 52c. However, the present invention is not limited to this. It is good also as the mold member 52 which has the above several insulating layer. By making the mold member 52 have a simple configuration in which a plurality of such insulating layers are laminated, an inexpensive resonance coil can be realized. In addition, the mold member 52 is not limited to a configuration in which a plurality of insulating layers are stacked, and unless it is contrary to the object of the present invention, according to the voltage distribution of the coil conductor 51, one winding portion 55 [ k] and another winding portion 55 [k + 1] adjacent thereto, and insulation according to a potential difference generated between the one winding portion 55 [k] and the other winding portion 55 [k + 1]. What is necessary is just to be provided with a mold member 52 having proof stress.

また、本実施形態では、コイル導線51の各巻回部55間に一定の導線間ギャップGが設けられているものであったが、これに限定されるものではない。例えば、巻回部55間の電位差に合わせて、モールド部材52の絶縁耐力とともに導線間ギャップGを調整するなど、各導線間ギャップGが互いに異なる構成などであってもよい。   Moreover, in this embodiment, although the fixed gap G between conductors was provided between each winding part 55 of the coil conductor 51, it is not limited to this. For example, the inter-conductor gap G may be different from each other, such as adjusting the inter-conductor gap G together with the dielectric strength of the mold member 52 in accordance with the potential difference between the winding portions 55.

また、本実施形態のコイル導線51は、管状に複数回巻回されたものであったが、これに限定されるものではなく、例えば、図3(a)、(b)に示すような、半径方向(中心から放射状に広がる方向)に沿って第1絶縁層52b、第2絶縁層52c、第1絶縁層52aが順次配置された平板環状のモールド部材52の中に、コイル導線51が平板状に複数回巻回されている平型らせんコイルなどであってもよく、本発明の目的に反しない限り、コイル導線51の形状は任意である。   Moreover, although the coil conducting wire 51 of this embodiment was wound in a tubular shape a plurality of times, it is not limited to this, for example, as shown in FIGS. 3 (a) and 3 (b), The coil conductor 51 is a flat plate in a flat plate-shaped mold member 52 in which the first insulating layer 52b, the second insulating layer 52c, and the first insulating layer 52a are sequentially arranged along the radial direction (the direction radially extending from the center). A flat spiral coil or the like wound a plurality of times in a shape may be used, and the shape of the coil conducting wire 51 is arbitrary as long as it does not contradict the object of the present invention.

(非接触電力伝送装置の一実施形態)
次に、上述した共鳴コイルを備えた、本発明の非接触電力伝送装置の一実施形態に係るワイヤレス電力伝送装置ついて、図4〜図6を参照して説明する。
(One Embodiment of Non-contact Power Transmission Device)
Next, a wireless power transmission device according to an embodiment of the non-contact power transmission device of the present invention provided with the above-described resonance coil will be described with reference to FIGS.

図4は、本発明の実施形態に係るワイヤレス電力伝送装置の構成を示す説明図である。同図に示すように、本実施形態に係るワイヤレス電力伝送装置10は、電気自動車5に設けられる受電装置12と、該受電装置12に交流電力を供給する給電装置11と、を備えており、給電装置11より出力される交流電力を非接触(ワイヤレス)で受電装置12に送信する。給電装置11は、電力送信用の通信コイル24を備えており、該通信コイル24に交流電力が供給されると、この交流電力は、受電装置12に設けられている電力受信用の通信コイル31に伝達される。   FIG. 4 is an explanatory diagram showing the configuration of the wireless power transmission device according to the embodiment of the present invention. As shown in the figure, a wireless power transmission device 10 according to the present embodiment includes a power receiving device 12 provided in an electric vehicle 5 and a power feeding device 11 that supplies AC power to the power receiving device 12. The AC power output from the power feeding device 11 is transmitted to the power receiving device 12 in a non-contact (wireless) manner. The power feeding device 11 includes a communication coil 24 for power transmission. When AC power is supplied to the communication coil 24, the AC power is supplied to the power reception communication coil 31 provided in the power receiving device 12. Is transmitted to.

電気自動車5に設けられる受電装置12は、充電時に電気自動車5を給電装置11の所定位置に置いたときに、電力送信用の通信コイル24と接近する電力受信用の通信コイル31と、整流器33と、を備えている。更に、直流電力が充電されるバッテリ35と、該バッテリ35の電圧を降圧してサブバッテリ41に供給するDC/DCコンバータ42と、バッテリ35の出力電力を交流電力に変換するインバータ43と、該インバータ43より出力される交流電力により駆動するモータ44を備えている。   The power receiving device 12 provided in the electric vehicle 5 includes a power receiving communication coil 31 that approaches the power transmitting communication coil 24 and a rectifier 33 when the electric vehicle 5 is placed at a predetermined position of the power feeding device 11 during charging. And. Furthermore, a battery 35 charged with DC power, a DC / DC converter 42 that steps down the voltage of the battery 35 and supplies it to the sub-battery 41, an inverter 43 that converts output power of the battery 35 into AC power, A motor 44 driven by AC power output from the inverter 43 is provided.

図5は、本発明の実施形態に係るワイヤレス電力伝送装置10のブロック図であり、給電装置11、及び電気自動車5に搭載される受電装置12を備えている。   FIG. 5 is a block diagram of the wireless power transmission device 10 according to the embodiment of the present invention, which includes a power feeding device 11 and a power receiving device 12 mounted on the electric vehicle 5.

給電装置11は、電力伝送用のキャリア信号を出力するキャリア発振器21と、該キャリア発振器21より出力されるキャリア信号(即ち、交流電力)を増幅する電力増幅器23、及び電力増幅器23で増幅された交流電力を出力する通信コイル24を備えている。通信コイル24は、後述するように給電コイル(一次コイル)L1と送信共鳴コイルX1から構成されている。そして、この送信共鳴コイルX1として、上述した共鳴コイル50を用いている。   The power supply apparatus 11 is amplified by a carrier oscillator 21 that outputs a carrier signal for power transmission, a power amplifier 23 that amplifies the carrier signal (that is, AC power) output from the carrier oscillator 21, and the power amplifier 23. A communication coil 24 that outputs AC power is provided. As will be described later, the communication coil 24 includes a feeding coil (primary coil) L1 and a transmission resonance coil X1. And the resonance coil 50 mentioned above is used as this transmission resonance coil X1.

キャリア発振器21は、電力伝送用の交流信号として例えば周波数1〜100[MHz]の交流電力を出力する。   The carrier oscillator 21 outputs, for example, AC power having a frequency of 1 to 100 [MHz] as an AC signal for power transmission.

電力増幅器23は、キャリア発信器21より出力された交流電力を増幅する。そして、増幅した交流電力を通信コイル24に出力する。通信コイル24は、受電装置12に設けられる通信コイル31と連携し、共鳴型電力伝送方式によりワイヤレスで交流電力を通信コイル31に伝送する。共鳴型電力伝送方式(即ち、共鳴方式)については後述する。   The power amplifier 23 amplifies the AC power output from the carrier transmitter 21. Then, the amplified AC power is output to the communication coil 24. The communication coil 24 cooperates with the communication coil 31 provided in the power receiving device 12 and wirelessly transmits AC power to the communication coil 31 by a resonance type power transmission method. The resonance type power transmission method (that is, the resonance method) will be described later.

また、受電装置12は、電力送信用の通信コイル24より送信される交流電力を受信する電力受信用の通信コイル31と、この通信コイル31で受信された交流電力を整流して、直流電圧を生成する整流器33と、を備える。また、車両駆動用のモータ44(図4参照)に電力を供給するバッテリ35を備え、該バッテリ35は、整流器33より出力される直流電力により充電される。   The power receiving device 12 rectifies the AC power received by the communication coil 31 and receives the AC power transmitted from the power transmission communication coil 24, and rectifies the DC voltage. And a rectifier 33 to be generated. Further, a battery 35 that supplies electric power to a vehicle driving motor 44 (see FIG. 4) is provided, and the battery 35 is charged by DC power output from the rectifier 33.

通信コイル31は、後述するように受電コイル(一次コイル)L2と受信共鳴コイルX2から構成されている。そして、この受信共鳴コイルX2として、上述した共鳴コイル50を用いている。   As will be described later, the communication coil 31 includes a power receiving coil (primary coil) L2 and a receiving resonance coil X2. The above-described resonance coil 50 is used as the reception resonance coil X2.

次に、共鳴型電力伝送方式について説明する。図6は、共鳴型電力伝送方式の原理を示す説明図である。図示のように、給電装置11には、給電コイルL1、及び該給電コイルL1と同心円状に且つ近接して配置された送信共鳴コイルX1(即ち、共鳴コイル50)が設けられている。なお、給電コイルL1と送信共鳴コイルX1により図4、図5に示す通信コイル24が構成される。また、受電装置12には、受電コイルL2、及び該受電コイルL2と同心円状に且つ近接して配置された受信共鳴コイルX2(即ち、共鳴コイル50)が設けられている。なお、受電コイルL2と受信共鳴コイルX2により図4、図5に示す通信コイル31が構成される。   Next, the resonance type power transmission method will be described. FIG. 6 is an explanatory diagram showing the principle of the resonant power transmission method. As shown in the figure, the power feeding device 11 is provided with a power feeding coil L1 and a transmission resonance coil X1 (that is, a resonance coil 50) that is disposed concentrically and in proximity to the power feeding coil L1. The power supply coil L1 and the transmission resonance coil X1 constitute the communication coil 24 shown in FIGS. In addition, the power receiving device 12 is provided with a power receiving coil L2 and a receiving resonance coil X2 (that is, a resonance coil 50) disposed concentrically and in proximity to the power receiving coil L2. The power receiving coil L2 and the receiving resonance coil X2 constitute the communication coil 31 shown in FIGS.

そして、給電コイルL1に1次電流を流すと、電磁誘導により送信共鳴コイルX1に誘導電流が流れ、更に、該送信共鳴コイルX1のインダクタンスLs、及び浮遊容量Csにより、該送信共鳴コイルX1が共鳴周波数ωs(=1/√Ls・Cs)で共鳴する。すると、この送信共鳴コイルX1に近接して設けられた、受電装置12側の受信共鳴コイルX2が共鳴周波数ωsで共鳴し、受信共鳴コイルX2に2次電流が流れる。更に、電磁誘導により受信共鳴コイルX2に近接した受電コイルL2に2次電流が流れる。   When a primary current is passed through the feeding coil L1, an induced current flows through the transmission resonance coil X1 by electromagnetic induction, and the transmission resonance coil X1 resonates due to the inductance Ls and the stray capacitance Cs of the transmission resonance coil X1. Resonates at a frequency ωs (= 1 / √Ls · Cs). Then, the reception resonance coil X2 on the power receiving device 12 side provided near the transmission resonance coil X1 resonates at the resonance frequency ωs, and a secondary current flows through the reception resonance coil X2. Further, a secondary current flows through the power receiving coil L2 close to the receiving resonance coil X2 due to electromagnetic induction.

上記の動作により、給電装置11から受電装置12に、ワイヤレスで電力を送信することができることとなる。   With the above operation, power can be transmitted from the power feeding device 11 to the power receiving device 12 wirelessly.

次に、図4、図5に示した本発明のワイヤレス電力伝送装置の動作について説明する。図4に示すように、電気自動車5が給電装置11の所定位置に置かれ、給電装置11に設けられる通信コイル24と、電気自動車5の受電装置12に設けられる通信コイル31が対向する位置となると、バッテリ35への充電を行うことができる。   Next, the operation of the wireless power transmission device of the present invention shown in FIGS. 4 and 5 will be described. As shown in FIG. 4, the electric vehicle 5 is placed at a predetermined position of the power feeding device 11, and the communication coil 24 provided in the power feeding device 11 and the communication coil 31 provided in the power receiving device 12 of the electric vehicle 5 are opposed to each other. Then, the battery 35 can be charged.

充電が開始されると、図5に示すキャリア発振器21より、周波数1〜100[MHz]程度の交流電力が出力される。   When charging is started, AC power having a frequency of about 1 to 100 [MHz] is output from the carrier oscillator 21 shown in FIG.

そして、キャリア発信器21より出力された交流電力は、電力増幅器23にて増幅される。増幅された交流電力は、通信コイル24,31を介して、前述した共鳴型電力伝送の原理により、受電装置12に伝送されることになる。   Then, the AC power output from the carrier transmitter 21 is amplified by the power amplifier 23. The amplified AC power is transmitted to the power receiving device 12 through the communication coils 24 and 31 based on the principle of the resonance power transmission described above.

受電装置12に伝送された交流電力は、通信コイル31から整流器33に出力される。   The AC power transmitted to the power receiving device 12 is output from the communication coil 31 to the rectifier 33.

そして、整流器33では、交流電力を整流して所定電圧の直流電力に変換し、この電力をバッテリ35に供給して、該バッテリ35を充電する。これにより、バッテリ35を充電することができる。   The rectifier 33 rectifies AC power and converts it into DC power of a predetermined voltage, supplies this power to the battery 35, and charges the battery 35. Thereby, the battery 35 can be charged.

以上より、本発明によれば、送信共鳴コイルX1及び受信共鳴コイルX2として、上述した共鳴コイル50を用いているので、この共鳴コイル50は、複数回巻回され且つ各巻回部55間に一定の導線間ギャップGが設けられたコイル導線51を有し、そして、このコイル導線51の一の巻回部55[k]とそれに隣接する他の巻回部55[k+1]との間には、これら一の巻回部55[k]と他の巻回部55[k+1]との間に生じる電位差に応じた絶縁耐力を有するモールド部材52が設けられているので、モールド部材52において過剰な絶縁耐力となる部分をなくすことができ、送信共鳴コイルX1及び受信共鳴コイルX2を低コストで小型化でき、したがって、小型で安価な非接触電力伝送装置を提供できる。   As described above, according to the present invention, since the above-described resonance coil 50 is used as the transmission resonance coil X1 and the reception resonance coil X2, the resonance coil 50 is wound a plurality of times and is constant between the winding portions 55. The coil conductor 51 is provided with a gap G between the conductors, and between one winding portion 55 [k] of the coil conductor 51 and another winding portion 55 [k + 1] adjacent thereto. Since the mold member 52 having a dielectric strength corresponding to the potential difference generated between the one winding portion 55 [k] and the other winding portion 55 [k + 1] is provided, the mold member 52 has an excessive amount. It is possible to eliminate the portion that becomes the dielectric strength, and it is possible to reduce the size of the transmission resonance coil X1 and the reception resonance coil X2 at low cost, and thus it is possible to provide a small and inexpensive non-contact power transmission device.

本実施形態においては、送信共鳴コイルX1及び受信共鳴コイルX2の両方とも上述した共鳴コイル50を用いていたが、これに限定されるものではなく、送信共鳴コイルX1及び受信共鳴コイルX2のうち少なくとも一方に共鳴コイル50を用いるものであればよい。   In the present embodiment, the resonance coil 50 described above is used for both the transmission resonance coil X1 and the reception resonance coil X2. However, the present invention is not limited to this, and at least one of the transmission resonance coil X1 and the reception resonance coil X2 is used. Any one using the resonance coil 50 may be used.

なお、前述した実施形態は本発明の代表的な形態を示したに過ぎず、本発明は、実施形態に限定されるものではない。即ち、本発明の骨子を逸脱しない範囲で種々変形して実施することができる。   In addition, embodiment mentioned above only showed the typical form of this invention, and this invention is not limited to embodiment. That is, various modifications can be made without departing from the scope of the present invention.

5 電気自動車
10 ワイヤレス電力伝送装置(非接触電力伝送装置)
50 共鳴コイル
51 コイル導線
52 モールド部材(絶縁部材)
52a、52b 第1絶縁層
52c 第2絶縁層
X1 送信共鳴コイル(共鳴コイル)
X2 受信共鳴コイル(共鳴コイル)
5 Electric vehicle 10 Wireless power transmission device (non-contact power transmission device)
50 Resonant coil 51 Coil conductor 52 Mold member (insulating member)
52a, 52b 1st insulating layer 52c 2nd insulating layer X1 Transmission resonance coil (resonance coil)
X2 receiving resonance coil (resonance coil)

Claims (5)

共鳴現象によって相手方コイルに電力を送信し又は前記相手方コイルから送信された電力を受信する共鳴コイルであって、
複数回巻回されたコイル導線を有し、そして、
前記コイル導線の一の巻回部と当該一の巻回部に隣接する他の巻回部との間には、前記一の巻回部と前記他の巻回部との間に生じる電位差に応じた絶縁耐力を有する絶縁部材が設けられている
ことを特徴とする共鳴コイル。
A resonance coil that transmits power to a counterpart coil by a resonance phenomenon or receives power transmitted from the counterpart coil,
Having a coil wire wound several times; and
Between the one winding part of the coil conductor and the other winding part adjacent to the one winding part, there is a potential difference generated between the one winding part and the other winding part. An insulating member having a corresponding dielectric strength is provided.
前記絶縁部材には、異なる前記絶縁耐力を有する、順次積層された、複数の絶縁層が設けられていることを特徴とする請求項1に記載の共鳴コイル。   The resonance coil according to claim 1, wherein the insulating member is provided with a plurality of sequentially stacked insulating layers having different dielectric strengths. 前記コイル導線が、管状に複数回巻回されており、
前記絶縁部材における前記コイル導線の軸方向中央部に設けられた前記絶縁層の絶縁耐力が、前記絶縁部材における前記コイル導線の軸方向両端部に設けられた前記絶縁層の絶縁耐力より高いことを特徴とする請求項2に記載の共鳴コイル。
The coil conductor is wound into a tube a plurality of times;
The dielectric strength of the insulating layer provided at the axial center of the coil conductor in the insulating member is higher than the dielectric strength of the insulating layer provided at both axial ends of the coil conductor in the insulating member. The resonance coil according to claim 2, characterized in that:
前記複数の絶縁層が、前記コイル導線の軸方向両端部に設けられた一対の第1絶縁層と、前記一対の第1絶縁層に挟まれるように積層されて前記コイル導線の軸方向中央部に設けられた、前記一対の第1絶縁層より絶縁耐力が高い第2絶縁層と、からなることを特徴とする請求項3に記載の共鳴コイル。   The plurality of insulating layers are stacked so as to be sandwiched between the pair of first insulating layers provided at both ends in the axial direction of the coil conductor and the pair of first insulating layers, and the central portion in the axial direction of the coil conductor. The resonance coil according to claim 3, further comprising: a second insulating layer having a higher dielectric strength than the pair of first insulating layers. 共鳴現象によって電力を送信する送信共鳴コイルと、前記送信共鳴コイルから送信された電力を受信する受信共鳴コイルと、を有する非接触電力伝送装置において、
前記送信共鳴コイル及び前記受信共鳴コイルの少なくとも一方が、請求項1〜4のいずれか一項に記載された共鳴コイルである
ことを特徴とする非接触電力伝送装置。
In a non-contact power transmission apparatus having a transmission resonance coil that transmits power by a resonance phenomenon, and a reception resonance coil that receives power transmitted from the transmission resonance coil,
5. The contactless power transmission device according to claim 1, wherein at least one of the transmission resonance coil and the reception resonance coil is the resonance coil according to claim 1.
JP2010283665A 2010-12-20 2010-12-20 Resonant coil and non-contact power transmission device having the same Active JP5595894B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2010283665A JP5595894B2 (en) 2010-12-20 2010-12-20 Resonant coil and non-contact power transmission device having the same
PCT/JP2011/078843 WO2012086473A1 (en) 2010-12-20 2011-12-07 Resonance coil and contactless power transmission system incorporating the same resonance coil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010283665A JP5595894B2 (en) 2010-12-20 2010-12-20 Resonant coil and non-contact power transmission device having the same

Publications (2)

Publication Number Publication Date
JP2012134249A JP2012134249A (en) 2012-07-12
JP5595894B2 true JP5595894B2 (en) 2014-09-24

Family

ID=46649524

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010283665A Active JP5595894B2 (en) 2010-12-20 2010-12-20 Resonant coil and non-contact power transmission device having the same

Country Status (1)

Country Link
JP (1) JP5595894B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109637795A (en) * 2019-01-21 2019-04-16 中车青岛四方机车车辆股份有限公司 Contactless power supply system transmitting terminal and its unit, vehicle

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3703434B2 (en) * 2002-02-05 2005-10-05 株式会社アイキューフォー High voltage pulse transformer
JP4795427B2 (en) * 2006-03-13 2011-10-19 三菱電機株式会社 High voltage generation transformer for discharge lamp lighting device
JP2007281131A (en) * 2006-04-05 2007-10-25 Toshiba Corp Resin-molded coil
JP4947426B2 (en) * 2007-10-15 2012-06-06 独立行政法人理化学研究所 Pulse transformer
JP2010073885A (en) * 2008-09-18 2010-04-02 Toyota Motor Corp Resonance coil and non-contact feeding system
JP4759610B2 (en) * 2008-12-01 2011-08-31 株式会社豊田自動織機 Non-contact power transmission device

Also Published As

Publication number Publication date
JP2012134249A (en) 2012-07-12

Similar Documents

Publication Publication Date Title
KR102167688B1 (en) Receiving coil for wireless chargement of electric vehicle and wireless power receiving apparatus using the same
US9431166B2 (en) Inductor and method of manufacturing the same
JP5405694B1 (en) Power transmission device, electronic device and wireless power transmission system
JP2011258807A (en) Non-contact power feeding device
EP2927917B1 (en) Power receiving device and power transmission device
JP2013219210A (en) Non-contact power transmission device
JP2010173503A (en) Non-contact power supply device
JP5490385B2 (en) Non-contact power feeding device
WO2015040650A1 (en) Contactless power transmission device
JPWO2018092392A1 (en) Electronic component, power supply device, and method of manufacturing coil
WO2013099221A1 (en) Non-contact charging device
WO2013150785A1 (en) Coil unit, and power transmission device equipped with coil unit
JP5888542B2 (en) Resonance coil holding member, resonance coil unit, and non-contact power transmission device
JP5595894B2 (en) Resonant coil and non-contact power transmission device having the same
JP5595893B2 (en) Resonant coil and non-contact power transmission device having the same
JP7447457B2 (en) Contactless power supply system
JP2013214613A (en) Coil unit and power transmission device having coil unit
JP2011229202A (en) Wireless power transmission coil
WO2012086473A1 (en) Resonance coil and contactless power transmission system incorporating the same resonance coil
JP2014116543A (en) Antenna and wireless power supply device
JP2015099847A (en) Coil unit and non-contact power transmission device
JP2014176133A (en) Power feeding section, power reception section, and power feeding system
JP5888541B2 (en) Resonance coil holding member, resonance coil unit, and non-contact power transmission device
JP5595895B2 (en) Resonant coil and non-contact power transmission device having the same
CN110391696A (en) Method and apparatus for carrying out wireless charging to energy storage in fixation or mobile subscriber

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131114

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140708

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140806

R150 Certificate of patent or registration of utility model

Ref document number: 5595894

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250