JP2020044553A - レーザマーカ - Google Patents

レーザマーカ Download PDF

Info

Publication number
JP2020044553A
JP2020044553A JP2018175537A JP2018175537A JP2020044553A JP 2020044553 A JP2020044553 A JP 2020044553A JP 2018175537 A JP2018175537 A JP 2018175537A JP 2018175537 A JP2018175537 A JP 2018175537A JP 2020044553 A JP2020044553 A JP 2020044553A
Authority
JP
Japan
Prior art keywords
lens
laser
laser light
distance
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2018175537A
Other languages
English (en)
Inventor
俊輔 柴田
Shunsuke Shibata
俊輔 柴田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Brother Industries Ltd
Original Assignee
Brother Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Brother Industries Ltd filed Critical Brother Industries Ltd
Priority to JP2018175537A priority Critical patent/JP2020044553A/ja
Publication of JP2020044553A publication Critical patent/JP2020044553A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Laser Beam Processing (AREA)

Abstract

【課題】レーザ光の焦点位置と、レーザ光とは異なる波長の可視光の焦点位置とを変えることが可能なレーザマーカを提供すること。【解決手段】レーザマーカは、第1波長のレーザ光Pを出射するレーザ発振ユニット12と、第1波長とは異なる第2波長の可視レーザ光Qを出射するガイド光部15と、レーザ光Pと可視レーザ光Qを走査するガルバノスキャナ18と、レーザ光Pと可視レーザ光Qが通過する第1レンズ72及び第2レンズ74と、レーザ光Pと可視レーザ光Qの経路方向に第2レンズ74を移動させる移動機構76とを有する光学系70と、レーザ光Pが第2レンズ74を通過する場合と可視レーザ光Qが第2レンズ74を通過する場合とでは異なる位置に、第2レンズ74を移動機構76で移動させて、レーザ光Pの焦点位置F1と可視レーザ光Qの焦点位置F2を変えるレーザコントローラ6とを備える。【選択図】図1

Description

本開示は、レーザマーカに関するものである。
従来より、可視光を出射するレーザマーカに関し、種々の技術が提案されている。例えば、下記特許文献1に記載の技術は、ガイド用の可視光レーザを出射する可視光レーザ光源と、前記可視光レーザの方向を変えて被印字対象物上に前記可視光レーザを照射するガルバノスキャナと、このガルバノスキャナを駆動することで前記可視光レーザを前記被印字対象物上を走査するように照射して、印字すべき文字、記号、図形等の印字内容に応じた投影像が被印字対象物上に投射されるよう制御する制御手段を備えたガルバノスキャニング式レーザマーキング装置において、前記制御手段は、前記印字内容の少なくとも一部の文字、記号、図形等を簡略化した文字、記号、或いは図形に置き換えた簡略化印字内容の投影像を前記被印字対象物上に投射するように前記ガルバノスキャナの制御データを生成する制御データ生成手段が備えられていることを特徴とする。
これにより、ユーザは、簡略化印字内容の投影像をみることで、印字内容内の各文字等間のバランスや位置関係を知ることができるから、もって印字領域図の投影像を投射する従来のものに比べて印字位置の正確な調整を行うことができる。
特開2003−117669号公報
しかしながら、可視光レーザの波長は、被印字対象物上に印字するマーキング用レーザ光の波長とは異なる。そのため、上記特許文献1に記載の技術において、例えば、マーキング用レーザ光の焦点位置が被印字対象物上に合うように光学系が構成されていると、可視光レーザの焦点位置が被印字対象物上からずれるので、簡略化印字内容の投影像がぼやけてしまう。
そこで、本開示は、上述した点を鑑みてなされたものであり、レーザ光の焦点位置と、レーザ光とは異なる波長の可視光の焦点位置とを変えることが可能なレーザマーカを提供する。
本明細書は、第1波長のレーザ光を出射するレーザ光源と、第1波長とは異なる第2波長の可視光を出射するガイド光源と、レーザ光及び可視光を走査するガルバノスキャナと、レーザ光及び可視光が通過する少なくとも1つのレンズと、レーザ光及び可視光の経路方向にレンズを移動させる移動機構とを有する光学系と、レーザ光がレンズを通過する場合と可視光がレンズを通過する場合とでは異なる位置に、レンズを移動機構で移動させることによって、レーザ光の焦点位置及び可視光の焦点位置を変える光学系制御装置とを備えることを特徴とするレーザマーカを開示する。
本開示によれば、レーザマーカは、レーザ光の焦点位置と、レーザ光とは異なる波長の可視光の焦点位置とを変えることが可能である。
本実施形態のレーザマーカの概略構成が表された図である。 同レーザマーカの電気的構成が表されたブロック図である。 同レーザマーカの概略構成が表された図である。 同レーザマーカのデータテーブルが表された図である。 同レーザマーカが実行する各処理が表されたフローチャートである。 同レーザマーカの第1変更例が表された図である。 同レーザマーカの第2変更例が表された図である。 同レーザマーカの第3変更例が表された図である。
以下、本開示のレーザマーカについて、具体化した実施形態に基づき、図面を参照しつつ説明する。以下の説明に用いる図1乃至図3では、基本的構成の一部が省略されて描かれており、描かれた各部の寸法比等は必ずしも正確ではない。
[1.レーザマーカの概略構成]
先ず、図1及び図2に基づいて、本実施形態のレーザマーカ1の概略構成について説明する。本実施形態のレーザマーカ1は、印字情報作成部2及びレーザ加工部3で構成されている。印字情報作成部2は、パーソナルコンピュータ等で構成されている。
レーザ加工部3は、レーザ光Pを加工対象物7の加工面8上で2次元走査してマーキング(印字)加工を行うものである。レーザ加工部3は、レーザコントローラ6を備えている。
レーザコントローラ6は、コンピュータで構成され、印字情報作成部2と双方向通信可能に接続されている。レーザコントローラ6は、印字情報作成部2から送信された印字情報、制御パラメータ、各種指示情報等に基づいてレーザ加工部3を駆動制御する。
レーザ加工部3の概略構成について説明する。レーザ加工部3は、レーザ発振ユニット12、ガイド光部15、ハーフミラー101、光学系70、ガルバノスキャナ18、及びfθレンズ19等を備えており、不図示の略直方体形状の筐体カバーで覆われている。
レーザ発振ユニット12は、レーザ発振器21等で構成されている。レーザ発振器21は、CO2レーザ、YAGレーザ等で構成されており、レーザ光Pを出射する。尚、レーザ光Pの光径は、不図示のビームエキスパンダで調整(例えば、拡大)される。
ガイド光部15は、可視半導体レーザ28等で構成されている。可視半導体レーザ28は、可視可干渉光である可視レーザ光Q、例えば、赤色レーザ光を出射する。尚、可視レーザ光Qは、不図示のレンズ群で平行光にされ、レーザ光Pでマーキング(印字)加工すべき印字パターンの像を加工対象物7の加工面8に対して投影するものである。
可視レーザ光Qの波長は、レーザ光Pの波長とは異なる。本実施形態では、例えば、レーザ光Pの波長は1064nmであり、可視レーザ光Qの波長は、650nmである。
ハーフミラー101では、入射されたレーザ光Pのほぼ全部が透過する。また、ハーフミラー101では、レーザ光Pが透過する略中央位置にて、可視レーザ光Qが45度の入射角で入射され、45度の反射角でレーザ光Pの光路上に反射される。ハーフミラー101の反射率は、波長依存性を持っている。具体的には、ハーフミラー101は、誘電体層と金属層との多層膜構造の表面処理がなされており、可視レーザ光Qの波長に対して高い反射率を有し、それ以外の波長の光をほとんど(99%)透過するように構成されている。
尚、図1の一点鎖線は、レーザ光Pと可視レーザ光Qの光軸Cを示している。また、光軸Cの方向は、レーザ光Pと可視レーザ光Qの経路方向を示している。
光学系70は、第1レンズ72、第2レンズ74、及び移動機構76を備えている。光学系70では、ハーフミラー101を経たレーザ光Pと可視レーザ光Qが、第1レンズ72に入射し通過する。その際、第1レンズ72によって、レーザ光Pと可視レーザ光Qの各光径が縮小される。また、第1レンズ72を通過したレーザ光Pと可視レーザ光Qは、第2レンズ74に入射し通過する。その際、第2レンズ74によって、レーザ光Pと可視レーザ光Qが平行光にされる。移動機構76は、光学系モータ80と、光学系モータ80の回転運動を直線運動に変換するラック・アンド・オピニオン(不図示)等を備えており、光学系モータ80の回転制御によって、第2レンズ74をレーザ光Pと可視レーザ光Qの経路方向に移動させる。
尚、移動機構76は、第2レンズ74に代えて第1レンズ72を移動させる構成であってもよいし、第1レンズ72と第2レンズ74との間の距離が変わるように第1レンズ72と第2レンズ74の双方を移動させる構成であってもよい。
ガルバノスキャナ18は、レーザ発振ユニット12から出射されたレーザ光Pと、ハーフミラー101で反射された可視レーザ光Qとを2次元走査するものである。ガルバノスキャナ18では、ガルバノX軸モータ31とガルバノY軸モータ32とが、それぞれのモータ軸が互いに直交するように取り付けられ、各モータ軸の先端部に取り付けられた走査ミラー18X、18Yが内側で互いに対向している。そして、各モータ31、32の回転制御で、各走査ミラー18X、18Yを回転させることによって、レーザ光Pと可視レーザ光Qとを2次元走査する。この2次元走査方向は、X方向とY方向である。
fθレンズ19は、ガルバノスキャナ18によって2次元走査されたレーザ光Pと可視レーザ光Qとを加工対象物7の加工面8上に集光するものである。従って、レーザ光Pと可視レーザ光Qは、各モータ31、32の回転制御によって、加工対象物7の加工面8上でX方向とY方向に2次元走査される。
次に、レーザマーカ1を構成する印字情報作成部2とレーザ加工部3の回路構成について図2に基づいて説明する。先ず、レーザ加工部3の回路構成について説明する。
図2に表されたように、レーザ加工部3は、レーザコントローラ6、ガルバノコントローラ35、ガルバノドライバ36、レーザドライバ37、半導体レーザドライバ38、及び光学系ドライバ78等から構成されている。レーザコントローラ6は、レーザ加工部3の全体を制御する。レーザコントローラ6には、ガルバノコントローラ35、レーザドライバ37、半導体レーザドライバ38、及び光学系ドライバ78等が電気的に接続されている。また、レーザコントローラ6には、外部の印字情報作成部2が双方向通信可能に接続されており、印字情報作成部2から送信された各情報(例えば、印字情報、レーザ加工部3に対する制御パラメータ、ユーザからの各種指示情報等)を受信可能に構成されている。
尚、ユーザからの各種指示情報には、レーザ光P及び可視レーザ光Qの中からユーザが選択した結果を示す選択情報が含まれる。すなわち、ユーザからの各種指示情報には、ユーザが選択したレーザ光P又は可視レーザ光Qのいずれかを示す情報が選択情報として含まれる。
レーザコントローラ6は、CPU41、RAM42、及びROM43等を備えている。CPU41は、レーザ加工部3の全体の制御を行う演算装置及び制御装置である。CPU41、RAM42、ROM43は、不図示のバス線により相互に接続されて、相互にデータのやり取りが行われる。
RAM42は、CPU41により演算された各種の演算結果や印字パターンのXY座標データ等を一時的に記憶させておくためのものである。
ROM43は、各種のプログラムを記憶させておくものであり、例えば、印字情報作成部2から送信された印字情報に基づいて印字パターンのXY座標データを算出してRAM42に記憶するプログラムが記憶されている。尚、各種プログラムには、上述したプログラムに加えて、例えば、印字情報作成部2から入力された印字情報に対応する印字パターンの太さ、深さ及び本数、レーザ発振器21のレーザ出力、レーザ光Pのレーザパルス幅、ガルバノスキャナ18によるレーザ光Pを走査する速度等を示す各種制御パラメータをRAM42に記憶するプログラム等がある。更に、ROM43には、フォントの種類別に、直線と楕円弧とで構成された各文字のフォントの始点、終点、焦点、曲率等のデータが記憶されている。
CPU41は、ROM43に記憶されている各種のプログラムに基づいて各種の演算及び制御を行う。
CPU41は、印字情報作成部2から入力された印字情報に基づいて算出した印字パターンのXY座標データ、及びガルバノスキャナ18によるレーザ光Pを走査する速度等を示すガルバノ走査速度情報等を、ガルバノコントローラ35に出力する。また、CPU41は、印字情報作成部2から入力された印字情報に基づいて設定したレーザ発振器21のレーザ出力、及びレーザ光Pのレーザパルス幅等を示すレーザ駆動情報を、レーザドライバ37に出力する。
CPU41は、可視半導体レーザ28の点灯開始を指示するオン信号又は消灯を指示するオフ信号を半導体レーザドライバ38に出力する。
更に、CPU41は、印字情報作成部2から入力された選択情報に基づいて生成した各情報を、ガルバノコントローラ35又は光学系ドライバ78に出力する。
ガルバノコントローラ35は、レーザコントローラ6から入力された各情報(例えば、印字パターンのXY座標データ、ガルバノ走査速度情報、選択情報に基づいて生成された情報等)に基づいて、ガルバノX軸モータ31とガルバノY軸モータ32の駆動角度、回転速度等を算出して、駆動角度及び回転速度を示すモータ駆動情報をガルバノドライバ36に出力する。ガルバノドライバ36は、ガルバノコントローラ35から入力されたモータ駆動情報に基づいて、ガルバノX軸モータ31とガルバノY軸モータ32を駆動制御して、レーザ光Pと可視レーザ光Qを2次元走査する。
レーザドライバ37は、レーザコントローラ6から入力されたレーザ発振器21のレーザ出力、及びレーザ光Pのレーザパルス幅等を示すレーザ駆動情報等に基づいて、レーザ発振器21を駆動させる。半導体レーザドライバ38は、レーザコントローラ6から入力されたオン信号又はオフ信号に基づいて、可視半導体レーザ28を点灯駆動又は、消灯させる。
光学系ドライバ78は、レーザコントローラ6から入力された情報(つまり、選択情報に基づいて生成された情報)に基づいて、光学系モータ80を駆動制御して、第2レンズ74を移動させる。
次に、印字情報作成部2の回路構成について説明する。印字情報作成部2は、制御部51、入力操作部55、液晶ディスプレイ(LCD)56、及びCD−R/W58等を備えている。制御部51には、不図示の入出力インターフェースを介して、入力操作部55、液晶ディスプレイ56、及びCD−R/W58等が接続されている。
入力操作部55は、不図示のマウス及びキーボード等から構成されており、例えば、レーザ光P及び可視レーザ光Qの中からいずれかをユーザが選択する際に使用される。
CD−R/W58は、各種データ、及び各種アプリケーションソフトウェア等をCD−ROM57から読み込む、又は、CD−ROM57に対して書き込むものである。
制御部51は、印字情報作成部2の全体を制御するものであって、CPU61、RAM62、ROM63、及びハードディスクドライブ(以下、「HDD」という。)66等を備えている。CPU61は、印字情報作成部2の全体の制御を行う演算装置及び制御装置である。CPU61、RAM62、ROM63は、不図示のバス線により相互に接続されており、相互にデータのやり取りが行われる。更に、CPU61とHDD66は、不図示の入出力インターフェースを介して接続されており、相互にデータのやり取りが行われる。
RAM62は、CPU61により演算された各種の演算結果等を一時的に記憶させておくためのものである。ROM63は、各種のプログラム等を記憶させておくものである。
HDD66には、各種アプリケーションソフトウェアのプログラム、及び各種データファイル等が記憶される。
[2.レーザ光の焦点位置と可視レーザ光の焦点位置]
次に、レーザ光Pの焦点位置と可視レーザ光Qの焦点位置について説明する。
図1に表されたように、レーザ光Pは、レーザ発振ユニット12から出射される。その出射されたレーザ光Pは、ハーフミラー101を透過する。その透過したレーザ光Pは、光学系70内の第1レンズ72及び第2レンズ74を通過する。その通過したレーザ光Pは、ガルバノスキャナ18の走査ミラー18X、18Yで2次元走査される。その2次元走査されたレーザ光Pは、fθレンズ19に入射する。その入射したレーザ光Pは、fθレンズ19で集光され、fθレンズ19から出射する。その出射されたレーザ光Pは、加工対象物7を照射する。
一方、可視レーザ光Qは、ガイド光部15から出射される。その出射された可視レーザ光Qは、ハーフミラー101でレーザ光Pの光路上に反射される。その反射された可視レーザ光Qは、レーザ光Pと同様な経路を辿って、加工対象物7を照射する。
但し、本実施形態では、レーザ光Pと可視レーザ光Qが光学系70を通過することによって、fθレンズ19からレーザ光Pの焦点位置F1までの距離(以下、「レーザ光焦点距離」という。)L1が、fθレンズ19から可視レーザ光Qの焦点位置F2までの距離(以下、「可視レーザ光焦点距離」という。)L2よりも長くなる。
更に、光学系70において、第1レンズ72から第2レンズ74までの距離が第1距離Aである場合には、レーザ光焦点距離L1が、fθレンズ19から加工対象物7の加工面8までの距離と一致する。そのため、レーザ光Pの焦点位置F1は、加工対象物7の加工面8にある一方、可視レーザ光Qの焦点位置F2は、加工対象物7の加工面8から上方へ隔てた位置にある。
これに対して、図3に表されたように、光学系70において、第1レンズ72から第2レンズ74までの距離が、第1距離Aよりも短い第2距離Bである場合には、可視レーザ光焦点距離L2が、fθレンズ19から加工対象物7の加工面8までの距離と一致する。そのため、可視レーザ光Qの焦点位置F2は、加工対象物7の加工面8にある一方、レーザ光Pの焦点位置F1は、加工対象物7の加工面8から下方へ隔てた位置にある。
次に、レーザ光Pの焦点位置F1と可視レーザ光Qの焦点位置F2の調整について説明する。レーザ光Pの焦点位置F1と可視レーザ光Qの焦点位置F2の調整では、図4に表されたデータテーブルD、及び図5のフローチャートで表されたプログラムが使用される。
図4に表されたデータテーブルDは、レーザコントローラ6のROM43に記憶されている。データテーブルDでは、レーザ光Pに対して、第1距離A及び第1パラメータが対応付けられ、可視レーザ光Qに対して、第2距離B及び第2パラメータが対応付けられている。
第1パラメータ及び第2パラメータには、複数のパラメータが存在し、例えば、印字パターンのXY座標データに対する倍率、補正係数等がある。尚、第1パラメータと第2パラメータの間において、倍率及び正係数等は異なる値である。これらのパラメータは、ガルバノX軸モータ31とガルバノY軸モータ32を駆動制御するためのモータ駆動情報に反映される。そのため、レーザ光Pと可視レーザ光Qが、加工対象物7の加工面8において、同一の印字パターンでX方向とY方向に2次元走査される場合でも、レーザ光Pが2次元走査されるときと、可視レーザ光Qが2次元走査されるときとでは、走査ミラー18X、18Yの振り幅が異なる。
図5のフローチャートで表されたプログラムは、レーザコントローラ6のROM43に記憶されており、レーザコントローラ6のCPU41により実行される。図5のフローチャートで表されたプログラムでは、先ず、ステップ(以下、単に「S」と表記する。)10において、受付処理が実行される。この処理では、印字情報作成部2からレーザコントローラ6に入力された情報に基づいて、ユーザの選択結果が特定される。選択結果とは、ユーザが入力操作部55を介してレーザ光P又は可視レーザ光Qのいずれかを選択した選択結果である。例えば、この処理では、レーザ光Pでマーキング(印字)加工される印字パターンをユーザが確認するために、マーキング(印字)加工前に可視レーザ光Qで印字パターンの像を加工対象物7の加工面8に投影させる指示が、ユーザによる入力操作部55の操作を介して受け付けられた場合には、可視レーザ光Qが選択されたと特定される。これに対して、レーザ光Pで印字パターンを加工対象物7の加工面8にマーキング(印字)加工させる指示が、ユーザによる入力操作部55の操作を介して受け付けられた場合には、レーザ光Pが選択されたと特定される。
ユーザの選択結果が特定されると、移動距離の変更処理S12が実行される。この処理では、ユーザによる選択情報が、データテーブルDに基づいて生成され、光学系ドライバ78に入力される。具体的には、ユーザの選択結果がレーザ光Pである場合には、第1距離Aを示す情報が生成され、その情報が光学系ドライバ78に入力される。これに対して、ユーザの選択結果が可視レーザ光Qである場合には、第2距離Bを示す情報が生成され、その情報が光学系ドライバ78に入力される。
ユーザの選択情報が光学系ドライバ78に入力されると、移動処理S14が行われる。この処理において、光学系ドライバ78は、レーザコントローラ6から入力された情報に基づいて、光学系モータ80を駆動制御して、第2レンズ74を移動させる。具体的には、光学系ドライバ78は、第1距離Aを示す情報が入力された場合には、光学系モータ80の駆動制御によって、第1レンズ72から第2レンズ74までの距離を第1距離Aとする(図1参照)。これに対して、第2距離Bを示す情報が入力された場合には、光学系モータ80の駆動制御によって、第1レンズ72から第2レンズ74までの距離を第2距離Bとする(図3参照)。つまり、ユーザの選択結果が可視レーザ光Qである場合は、ユーザの選択結果がレーザ光Pである場合に比べ、第1レンズ72と第2レンズ74との間の距離が短く設定され、ユーザの選択結果がレーザ光Pである場合は、ユーザの選択結果が可視レーザ光Qである場合に比べ、第1レンズ72と第2レンズ74との間の距離が長く設定される。
その後は、パラメータ変更処理S16が行われる。この処理では、ユーザの選択情報が、データテーブルDに基づいて生成され、ガルバノコントローラ35に入力される。具体的には、ユーザの選択結果がレーザ光Pである場合には、第1パラメータを示す情報が生成され、その情報がガルバノコントローラ35に入力される。これに対して、ユーザの選択結果が可視レーザ光Qである場合には、第2パラメータを示す情報が生成され、その情報がガルバノコントローラ35に入力される。
ユーザの選択情報がガルバノコントローラ35に入力されると、走査処理S18が行われる。この処理において、ガルバノコントローラ35は、レーザコントローラ6から入力された各情報(上記S16で生成された情報を含む。)に基づいて、モータ駆動情報を算出する。その算出されたモータ駆動情報は、ガルバノドライバ36に入力される。これにより、ガルバノドライバ36は、第1パラメータを示す情報がガルバノコントローラ35に入力された場合には、ガルバノX軸モータ31及びガルバノY軸モータ32の駆動制御を第1パラメータが反映された状態で行う。これに対して、ガルバノドライバ36は、第2パラメータを示す情報がガルバノコントローラ35に入力された場合には、ガルバノX軸モータ31及びガルバノY軸モータ32の駆動制御を第2パラメータが反映された状態で行う。
その後、図5のフローチャートで表されたプログラムは、終了する。
従って、本実施形態のレーザマーカ1では、ユーザがレーザ光Pを選択した場合には、第1レンズ72から第2レンズ74までの距離が第1距離Aとなる。そのため、レーザ光Pがレーザ発振ユニット12から出射され、レーザ光Pが光学系70の第1レンズ72及び第2レンズ74を通過すると、レーザ光Pの焦点位置F1が加工対象物7の加工面8にある状態で、第1パラメータが反映されたレーザ光Pの2次元走査が行われる。
これに対して、ユーザが可視レーザ光Qを選択した場合には、第1レンズ72から第2レンズ74までの距離が第2距離Bとなる。そのため、可視レーザ光Qがガイド光部15から出射され、可視レーザ光Qが光学系70の第1レンズ72及び第2レンズ74を通過すると、可視レーザ光Qの焦点位置F2が加工対象物7の加工面8にある状態で、第2パラメータが反映された可視レーザ光Qの2次元走査が行われる。
[3.まとめ]
以上詳細に説明したように、本実施形態のレーザマーカ1では、光学系70が有する第1レンズ72及び第2レンズ74をレーザ光Pと可視レーザ光Qが通過し、その通過したレーザ光Pと可視レーザ光Qがガルバノスキャナ18によって2次元走査される。その際、レーザ光Pが第1レンズ72及び第2レンズ74を通過する場合と、可視レーザ光Qが第1レンズ72及び第2レンズ74を通過する場合とでは、第2レンズ74が異なる位置に移動することによって、第1レンズ72と第2レンズ74との間の距離が変更される。これにより、本実施形態のレーザマーカ1は、レーザ光Pの焦点位置F1と、レーザ光Pとは異なる波長の可視レーザ光Qの焦点位置F2とを変えることが可能である。よって、本実施形態のレーザマーカ1では、レーザ光Pの焦点位置F1が加工対象物7の加工面8となるように、光学系70における第1レンズ72と第2レンズ74との間の距離が第1距離Aにされていても、光学系70における第1レンズ72と第2レンズ74との間の距離が第1距離Aから第2距離Bに変更されることによって、可視レーザ光Qの焦点位置F2が加工対象物7の加工面8となるので、可視レーザ光Qによる印字パターンの投影像が加工対象物7の加工面8上でぼやけることがない。
また、本実施形態のレーザマーカ1では、レーザ光Pが第1レンズ72及び第2レンズ74を通過する場合には、第1レンズ72から第2レンズ74までの距離が第1距離Aとなるように第2レンズ74を移動させることでレーザ光Pの焦点位置F1が加工対象物7の加工面8となるようにし、可視レーザ光Qが第1レンズ72及び第2レンズ74を通過する場合には、第1レンズ72から第2レンズ74までの距離が第2距離Bとなるように第2レンズ74を移動させることでレーザ光Pの焦点位置F1が加工対象物7の加工面8となるようにした。これにより、本実施形態のレーザマーカ1は、ユーザが可視レーザ光Qを選択した場合と、レーザ光Pを選択した場合とで、適切に加工面8上に焦点位置を合わせることが可能である。
また、本実施形態のレーザマーカ1において、光学系70は、レーザ光Pの光径と可視レーザ光Qの光径を第1レンズ72で縮小する縮小光学系である。そのため、本実施形態では、光学系70を通過したレーザ光Pと可視レーザ光Qが入射するガルバノスキャナ18の小型化、高速化が可能であり、ひいては、レーザマーカ1の小型化、高速化が可能である。
また、本実施形態のレーザマーカ1において、レーザ光Pと可視レーザ光Qは、それらの光径が第1レンズ72で縮小された後で、第2レンズ74で平行光にされる。従って、レーザ光Pと可視レーザ光Qは、平行光でガルバノスキャナ18に入射される。そのため、レーザ光Pと可視レーザ光Qは、第1レンズ72と第2レンズ74との間の距離が変更されても、ガルバノスキャナ18の走査ミラー18X、18Yで1点に集中しない。これにより、本実施形態のレーザマーカ1では、レーザ光Pと可視レーザ光Qの光径を縮小する第1レンズ72を備えていても、第1レンズ72及び第2レンズ74を有する光学系70とガルバノスキャナ18との配置関係に対する制約が生じ難い。
また、本実施形態のレーザマーカ1では、レーザ光Pの波長(1064nm)が、可視レーザ光Qの波長(650nm)よりも長いので、光学系70における第1レンズ72と第2レンズ74との間の距離が不変の場合には、可視レーザ光焦点距離L2が、レーザ光焦点距離L1と比べて短い。本実施形態のレーザマーカ1は、そのような条件下において、レーザ光Pの焦点位置F1と、レーザ光Pとは異なる波長の可視レーザ光Qの焦点位置F2とを変えることを可能にする。具体的に、レーザマーカ1は、ユーザの選択結果が可視レーザ光Qである場合、つまり、可視レーザ光Qが第1レンズ72と第2レンズ74に入射する場合は、ユーザの選択結果がレーザ光Pである場合、つまり、レーザ光Pが第1レンズ72と第2レンズ74に入射する場合と比べて、第1レンズ72と第2レンズ74との間の距離を短くすることでレーザ光Pの焦点位置F1と、レーザ光Pとは異なる波長の可視レーザ光Qの焦点位置F2とを変えることを可能にする。これにより、レーザマーカ1は、ユーザの選択結果が、レーザ光Pである場合と可視レーザ光Qである場合とで、焦点位置F1又は焦点位置F2を適切に加工対象物7の加工面8に合わせることが可能となる。
また、本実施形態のレーザマーカ1では、ユーザがレーザ光P又は可視レーザ光Qのいずれかを入力操作部55で選択すると(S10)、レーザコントローラ6は、その選択結果に応じて、第1レンズ72から第2レンズ74までの距離を第1距離A又は第2距離Bとし(S12,S14)、ガルバノコントローラ35は、ガルバノスキャナ18の制御を第1パラメータ又は第2パラメータが反映された状態で行う(S16,S18)。これにより、本実施形態のレーザマーカ1は、第2レンズ74の移動に連動して、ガルバノスキャナ18を制御する際に使用されるパラメータを変更することが可能である。
ちなみに、本実施形態において、レーザコントローラ6は、「光学系制御装置」の一例である。レーザ発振ユニット12は、「レーザ光源」の一例である。ガイド光部15は、「ガイド光源」の一例である。ガルバノコントローラ35は、「ガルバノ制御装置」の一例である。入力操作部55は、「受付装置」の一例である。第1レンズ72は、「光学系のレンズ」の一例である。第2レンズ74は、「光学系のレンズ」の一例である。可視レーザ光Qは、「可視光」の一例である。可視レーザ光Qの光径は、「可視光の光径」の一例である。光軸Cの方向は、「レーザ光及び可視光の経路方向」の一例である。可視レーザ光Qの焦点位置F2は、「可視光の焦点位置」の一例である。レーザ光焦点距離L1は、「レーザ光が第1レンズ及び第2レンズを通過する場合のfθレンズとレーザ光の焦点位置との間の距離」の一例である。可視レーザ光焦点距離L2は、「可視光が第1レンズ及び第2レンズを通過する場合のfθレンズと可視光の焦点位置との間の距離」の一例である。
[4.その他]
尚、本開示は上記実施形態に限定されるものでなく、その趣旨を逸脱しない範囲で様々な変更が可能である。
例えば、本実施形態は、レーザ光Pの焦点位置F1や可視レーザ光Qの焦点位置F2を加工対象物7の加工面8に合わせているが、加工対象物7の材料(例えば、樹脂)によっては、デフォーカスによるマーキング(印字)加工が行われることから、そのような場合には、レーザ光Pの焦点位置F1や可視レーザ光Qの焦点位置F2を加工対象物7の加工面8に合わせなくてもよい。
また、本実施形態とは異なり、レーザ光Pの波長が、可視レーザ光Qの波長よりも短くてもよい。そのような場合において、光学系70における第1レンズ72と第2レンズ74との間の距離が不変のときは、可視レーザ光焦点距離L2が、レーザ光焦点距離L1と比べて長い。そのような条件でも、レーザマーカ1は、第2レンズ74の位置を移動させることによって、レーザ光Pの焦点位置F1と、レーザ光Pとは異なる波長の可視レーザ光Qの焦点位置F2とを変えることが可能である。具体的に、レーザマーカ1は、ユーザの選択結果がレーザ光Pである場合、つまり、レーザ光Pが第1レンズ72と第2レンズ74に入射する場合は、ユーザの選択結果が可視レーザ光Qである場合、つまり、可視レーザ光Qが第1レンズ72と第2レンズ74に入射する場合と比べて、第1レンズ72と第2レンズ74との間の距離を長くすることでレーザ光Pの焦点位置F1と、レーザ光Pとは異なる波長の可視レーザ光Qの焦点位置F2とを変えることを可能にする。これにより、レーザマーカ1は、ユーザの選択結果が、レーザ光Pである場合と可視レーザ光Qである場合とで、焦点位置F1又は焦点位置F2を適切に加工対象物7の加工面8に合わせることが可能となる。
また、本実施形態のレーザマーカ1は、第1レンズ72、第2レンズ74、及びfθレンズ19の3個のレンズを備えたものであるが、図6乃至図8に表された各変更例のように、2個のレンズR1,R2又は1個のレンズR1を備えるレーザマーカであってもよい。尚、以下の各変更例の説明では、上記実施形態と実質的に共通する部分には同一の符号を使用し、詳しい説明を省略する。
図6に表された第1変更例は、2個のレンズR1,R2で光学系70を構成すると共に、2個のレンズR1,R2を通過したレーザ光Pと可視レーザ光Qがガルバノスキャナ18に入射する構成を有している。更に、レーザ光Pが2個のレンズR1,R2を通過する場合と、可視レーザ光Qが2個のレンズR1,R2を通過する場合とでは、2個のレンズR1,R2のいずれかが異なる位置に移動する。これにより、図6に表された第1変更例は、レーザ光Pの焦点位置F1と、レーザ光Pとは異なる波長の可視レーザ光Qの焦点位置F2とを変えることが可能である。なお、レンズR1及びレンズR2の両方が異なる位置に移動してもよい。
図7に表された第2変更例は、2個のレンズR1,R2で光学系70を構成すると共に、一方のレンズR1を通過したレーザ光Pと可視レーザ光Qがガルバノスキャナ18に入射すると共に、ガルバノスキャナ18で2次元走査されたレーザ光Pと可視レーザ光Qが他方のレンズR2に入射する構成を有している。更に、レーザ光Pが2個のレンズR1,R2を通過する場合と、可視レーザ光Qが2個のレンズR1,R2を通過する場合とでは、2個のレンズR1,R2のいずれかが異なる位置に移動する。これにより、図7に表された第2変更例は、レーザ光Pの焦点位置F1と、レーザ光Pとは異なる波長の可視レーザ光Qの焦点位置F2とを変えることが可能である。
図8に表された第3変更例は、1個のレンズR1で光学系70を構成すると共に、ガルバノスキャナ18で2次元走査されたレーザ光Pと可視レーザ光QがレンズR1に入射する構成を有している。更に、レーザ光PがレンズR1を通過する場合と、可視レーザ光QがレンズR1を通過する場合とでは、レンズR1が異なる位置に移動する。これにより、図8に表された第3変更例は、レーザ光Pの焦点位置F1と、レーザ光Pとは異なる波長の可視レーザ光Qの焦点位置F2とを変えることが可能である。
ちなみに、各変更例において、各レンズR1,R2は、「光学系のレンズ」の一例である。
また、各変更例では、2個のレンズR1,R2又は1個のレンズR1で光学系70を構成しているが、3個以上のレンズで光学系70を構成する場合でも、レーザ光Pの焦点位置F1と、レーザ光Pとは異なる波長の可視レーザ光Qの焦点位置F2とを変えることが可能である。
1 レーザマーカ
6 レーザコントローラ
7 加工対象物
12 レーザ発振ユニット
15 ガイド光部
18 ガルバノスキャナ
19 fθレンズ
35 ガルバノコントローラ
55 入力操作部
70 光学系
72 第1レンズ
74 第2レンズ
76 移動機構
A 第1距離
B 第2距離
C 光軸
F1 レーザ光の焦点位置
F2 可視レーザ光の焦点位置
P レーザ光
Q 可視レーザ光
R1 レンズ
R2 レンズ
L1 レーザ光焦点距離
L2 可視レーザ光焦点距離

Claims (10)

  1. 第1波長のレーザ光を出射するレーザ光源と、
    前記第1波長とは異なる第2波長の可視光を出射するガイド光源と、
    前記レーザ光及び前記可視光を走査するガルバノスキャナと、
    前記レーザ光及び前記可視光が通過する少なくとも1つのレンズと、前記レーザ光及び前記可視光の経路方向に該レンズを移動させる移動機構とを有する光学系と、
    前記レーザ光が前記レンズを通過する場合と前記可視光が該レンズを通過する場合とでは異なる位置に、該レンズを前記移動機構で移動させることによって、該レーザ光の焦点位置及び該可視光の焦点位置を変える光学系制御装置とを備えることを特徴とするレーザマーカ。
  2. 前記光学系は、
    前記レーザ光及び前記可視光が入射する第1レンズと、
    前記第1レンズを通過した前記レーザ光及び前記可視光が入射する第2レンズとを備え、
    前記光学系制御装置は、前記レーザ光が前記第1レンズ及び前記第2レンズを通過する場合と前記可視光が該第1レンズ及び該第2レンズを通過する場合とでは異なる位置に、該第1レンズ又は該第2レンズを前記移動機構で移動させることによって、該第1レンズと該第2レンズとの間の距離を変更し、
    前記ガルバノスキャナは、前記第2レンズを通過した前記レーザ光及び前記可視光を走査することを特徴とする請求項1に記載のレーザマーカ。
  3. 前記光学系制御装置は、
    前記レーザ光が前記第1レンズ及び前記第2レンズを通過する場合、前記第1レンズと前記第2レンズとの間の距離が第1距離となるように前記第1レンズ又は前記第2レンズを前記移動機構により移動させ、
    前記可視光が前記第1レンズ及び前記第2レンズを通過する場合、前記第1レンズと前記第2レンズとの間の距離が第2距離となるように前記第1レンズ又は前記第2レンズを前記移動機構により移動させ、
    前記第1距離は、前記レーザ光の焦点位置が前記加工対象物上となる前記第1レンズと前記第2レンズとの間の距離であり、
    前記第2距離は、前記第1距離とは異なる距離であり、前記可視光の焦点位置が前記加工対象物上となる前記第1レンズと前記第2レンズとの間の距離であることを特徴とする請求項2に記載のレーザマーカ。
  4. 前記光学系は、前記レーザ光の光径及び前記可視光の光径を縮小する縮小光学系であることを特徴とする請求項2又は請求項3に記載のレーザマーカ。
  5. 前記第1レンズは、前記レーザ光の光径及び前記可視光の光径を縮小し、
    前記第2レンズは、前記レーザ光及び前記可視光を平行光にすることを特徴とする請求項4に記載のレーザマーカ。
  6. 前記ガルバノスキャナで走査された前記レーザ光及び前記可視光を加工対象物上に集光させるfθレンズを備え、
    前記第1波長は、前記第2波長よりも長く、
    前記可視光が前記第1レンズ及び前記第2レンズを通過する場合の前記fθレンズと該可視光の焦点位置との間の距離は、前記レーザ光が該第1レンズ及び該第2レンズを通過する場合の該fθレンズと該レーザ光の焦点位置との間の距離と比べて短いことを特徴とする請求項2乃至請求項5のいずれか一つに記載のレーザマーカ。
  7. 前記光学系制御装置は、前記可視光が前記第1レンズ及び前記第2レンズに入射する場合、前記レーザ光が該第1レンズ及び該第2レンズに入射する場合と比べて、該第1レンズと該第2レンズとの間の距離を短くすることを特徴とする請求項6に記載のレーザマーカ。
  8. 前記ガルバノスキャナで走査された前記レーザ光及び前記可視光を加工対象物上に集光させるfθレンズを備え、
    前記第1波長は、前記第2波長よりも短く、
    前記可視光が前記第1レンズ及び前記第2レンズを通過する場合の前記fθレンズと該可視光の焦点位置との間の距離は、前記レーザ光が該第1レンズ及び該第2レンズを通過する場合の該fθレンズと該レーザ光の焦点位置との間の距離と比べて長いことを特徴とする請求項2乃至請求項5のいずれか一つに記載のレーザマーカ。
  9. 前記光学系制御装置は、前記可視光が前記第1レンズ及び前記第2レンズに入射する場合、前記レーザ光が該第1レンズ及び該第2レンズに入射する場合と比べて、該第1レンズと該第2レンズとの間の距離を長くすることを特徴とする請求項8に記載のレーザマーカ。
  10. 前記レーザ光又は前記可視光の選択を受け付ける受付装置と、
    前記受付装置での選択に応じて変更されるパラメータに基づいて前記ガルバノスキャナを制御するガルバノ制御装置とを備え、
    前記受付装置で前記レーザ光の選択を受け付けた場合、
    前記光学系制御装置は、前記移動機構により前記第1レンズと前記第2レンズとの間の距離を第1距離とし、
    前記ガルバノ制御装置は、第1パラメータに基づいて前記ガルバノスキャナを制御し、
    前記受付装置で前記可視光の選択を受け付けた場合、
    前記光学系制御装置は、前記移動機構により前記第1レンズと前記第2レンズとの間の距離を、前記第1距離とは異なる第2距離とし、
    前記ガルバノ制御装置は、前記第1パラメータとは異なる第2パラメータに基づいて前記ガルバノスキャナを制御することを特徴とする請求項2乃至請求項9のいずれか一つに記載のレーザマーカ。
JP2018175537A 2018-09-20 2018-09-20 レーザマーカ Pending JP2020044553A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018175537A JP2020044553A (ja) 2018-09-20 2018-09-20 レーザマーカ

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018175537A JP2020044553A (ja) 2018-09-20 2018-09-20 レーザマーカ

Publications (1)

Publication Number Publication Date
JP2020044553A true JP2020044553A (ja) 2020-03-26

Family

ID=69899561

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018175537A Pending JP2020044553A (ja) 2018-09-20 2018-09-20 レーザマーカ

Country Status (1)

Country Link
JP (1) JP2020044553A (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI830120B (zh) * 2021-03-05 2024-01-21 日商松下知識產權經營股份有限公司 雷射加工裝置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008030109A (ja) * 2006-07-31 2008-02-14 Sunx Ltd レーザ加工装置
JP2009166104A (ja) * 2008-01-17 2009-07-30 Keyence Corp レーザ加工装置、レーザ加工方法及びレーザ加工装置の設定プログラム並びにコンピュータで読取可能な記録媒体
JP2010046701A (ja) * 2008-08-25 2010-03-04 Nidec Sankyo Corp レーザ加工装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008030109A (ja) * 2006-07-31 2008-02-14 Sunx Ltd レーザ加工装置
JP2009166104A (ja) * 2008-01-17 2009-07-30 Keyence Corp レーザ加工装置、レーザ加工方法及びレーザ加工装置の設定プログラム並びにコンピュータで読取可能な記録媒体
JP2010046701A (ja) * 2008-08-25 2010-03-04 Nidec Sankyo Corp レーザ加工装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI830120B (zh) * 2021-03-05 2024-01-21 日商松下知識產權經營股份有限公司 雷射加工裝置

Similar Documents

Publication Publication Date Title
JP5994807B2 (ja) レーザ加工装置、制御方法、及びプログラム
US8772669B2 (en) Laser appartus with digital manipulation capabilities
JP2009208093A (ja) レーザマーキング装置
WO2007077630A1 (ja) レーザ加工装置、プログラム作成装置およびレーザ加工方法
JP2020099912A (ja) レーザマーカ
JP2009208132A (ja) レーザマーキング装置
JP2020044553A (ja) レーザマーカ
JP4194458B2 (ja) レーザマーキング装置及びレーザマーキング装置のワークディスタンス調整方法
JP4519443B2 (ja) レーザ加工装置及びそのワーク距離調整方法
JP6107782B2 (ja) プログラム及びレーザ加工装置
JP2008062259A (ja) レーザ加工装置、レーザ加工方法及びレーザ加工プログラム
KR101470150B1 (ko) 카메라일체형 레이저 스캐너를 구비하는 레이저마킹시스템
JP4966804B2 (ja) レーザマーキング装置
JP2007007699A (ja) レーザマーキング装置
JP7310500B2 (ja) レーザ加工装置
JP6036738B2 (ja) レーザマーカ
WO2021200380A1 (ja) レーザ加工装置
JP2005014089A (ja) レーザマーキング方法
JP7294190B2 (ja) レーザ加工システム、制御装置、及び制御プログラム
JPWO2019065533A1 (ja) ガラス基板の切断装置、切断方法、プログラム、及び記憶媒体
WO2023210055A1 (ja) レーザーマーカー装置、及びレーザーマーカー装置用制御装置
JP2005103553A (ja) レーザマーキング装置
JP2591473B2 (ja) レーザマーキング方法およびレーザマーキング装置
JP2024093611A (ja) レーザ加工装置及びレーザ加工方法
JP2009106979A (ja) レーザ加工装置、及び、レーザ加工方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200326

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210202

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20210803