JP2020041991A - 形状計測方法および形状計測装置 - Google Patents

形状計測方法および形状計測装置 Download PDF

Info

Publication number
JP2020041991A
JP2020041991A JP2018171860A JP2018171860A JP2020041991A JP 2020041991 A JP2020041991 A JP 2020041991A JP 2018171860 A JP2018171860 A JP 2018171860A JP 2018171860 A JP2018171860 A JP 2018171860A JP 2020041991 A JP2020041991 A JP 2020041991A
Authority
JP
Japan
Prior art keywords
shape
measurement
substrate
incident
electromagnetic wave
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2018171860A
Other languages
English (en)
Inventor
一希 萩原
Kazuki Hagiwara
一希 萩原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kioxia Corp
Original Assignee
Kioxia Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kioxia Corp filed Critical Kioxia Corp
Priority to JP2018171860A priority Critical patent/JP2020041991A/ja
Priority to US16/291,629 priority patent/US10837768B2/en
Publication of JP2020041991A publication Critical patent/JP2020041991A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B15/00Measuring arrangements characterised by the use of electromagnetic waves or particle radiation, e.g. by the use of microwaves, X-rays, gamma rays or electrons
    • G01B15/04Measuring arrangements characterised by the use of electromagnetic waves or particle radiation, e.g. by the use of microwaves, X-rays, gamma rays or electrons for measuring contours or curvatures
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/20Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by using diffraction of the radiation by the materials, e.g. for investigating crystal structure; by using scattering of the radiation by the materials, e.g. for investigating non-crystalline materials; by using reflection of the radiation by the materials
    • G01N23/201Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by using diffraction of the radiation by the materials, e.g. for investigating crystal structure; by using scattering of the radiation by the materials, e.g. for investigating non-crystalline materials; by using reflection of the radiation by the materials by measuring small-angle scattering
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70483Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
    • G03F7/70605Workpiece metrology
    • G03F7/70616Monitoring the printed patterns
    • G03F7/70625Dimensions, e.g. line width, critical dimension [CD], profile, sidewall angle or edge roughness
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L22/00Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
    • H01L22/10Measuring as part of the manufacturing process
    • H01L22/12Measuring as part of the manufacturing process for structural parameters, e.g. thickness, line width, refractive index, temperature, warp, bond strength, defects, optical inspection, electrical measurement of structural dimensions, metallurgic measurement of diffusions
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B2210/00Aspects not specifically covered by any group under G01B, e.g. of wheel alignment, caliper-like sensors
    • G01B2210/56Measuring geometric parameters of semiconductor structures, e.g. profile, critical dimensions or trench depth
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2223/00Investigating materials by wave or particle radiation
    • G01N2223/60Specific applications or type of materials
    • G01N2223/611Specific applications or type of materials patterned objects; electronic devices
    • G01N2223/6116Specific applications or type of materials patterned objects; electronic devices semiconductor wafer

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Electromagnetism (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Computer Hardware Design (AREA)
  • Length-Measuring Devices Using Wave Or Particle Radiation (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

【課題】周期的に配置された微小パターンの形状を方位に依らず、従来に比して高精度に計測することができる形状計測方法を提供する。【解決手段】実施形態によれば、形状計測方法では、まず、所定の入射方位角の測定範囲で、パターンを有する基板に電磁波を照射し、前記基板から散乱される電磁波の散乱強度を測定する。ついで、前記電磁波の散乱強度に基づいて前記パターン中の単位構造の形状情報を算出する。そして、前記散乱強度の測定では、前記測定範囲を複数の領域に分け、隣接する領域間では異なる測定条件が設定される。【選択図】図1

Description

本発明の実施形態は、形状計測方法および形状計測装置に関する。
半導体製造プロセスにおいて、二次元的に周期的に配置された微小なホールパターンの形状を計測する技術として、微小角入射X線小角散乱法(Grazing Incidence Small Angle X-ray Scattering;以下、GISAXSという)が提案されている。
GISAXSで、微小なパターンの3次元形状を計測する場合には、入射方位角を一定の速度で変化させて、どの入射方位角でも同じ条件で計測を行っている。しかしながら、同じ条件で計測を行う方法では、微小パターンの方位によって、断面形状測定精度が異なってしまう。
特開2015−11024号公報
本発明の一つの実施形態は、周期的に配置された微小パターンの形状を方位に依らず、従来に比して高精度に計測することができる形状計測方法および形状計測装置を提供することを目的とする。
本発明の一つの実施形態によれば、形状計測方法では、まず、所定の入射方位角の測定範囲で、パターンを有する基板に電磁波を照射し、前記基板から散乱される電磁波の散乱強度を測定する。ついで、前記電磁波の散乱強度に基づいて前記パターン中の単位構造の形状情報を算出する。そして、前記散乱強度の測定では、前記測定範囲を複数の領域に分け、隣接する領域間では異なる測定条件が設定される。
図1は、実施形態による形状計測装置の構成の一例を模式的に示すブロック図である。 図2は、測定対象の一例を示す上面図である。 図3は、形状計測装置での二次元検出器による散乱X線の検出の概要を示す図である。 図4は、実施形態による測定条件の一例を示す図である。 図5は、シミュレーションで使用されるメモリホールの形状モデルの一例を示す図である。 図6は、実施形態による形状計測方法の手順の一例を示すフローチャートである。 図7は、実施形態による形状計測方法の手順を模式的に示す図である。 図8は、演算部および制御部のハードウェア構成の一例を示す図である。
以下に添付図面を参照して、実施形態にかかる形状計測方法および形状計測装置を詳細に説明する。なお、この実施形態により本発明が限定されるものではない。
図1は、実施形態による形状計測装置の構成の一例を模式的に示すブロック図である。なお、以下の説明では、形状計測装置1として、GISAXSを例に挙げる。
形状計測装置1は、ステージ11と、X線管球12と、発散スリット13と、二次元検出器14と、制御部20と、演算部30と、を備える。
ステージ11は、計測対象の基板100を載置する。ステージ11は、図示しない駆動機構によって基板載置面に平行な方向に移動可能に構成されるとともに、基板載置面に平行な面内で回転可能に構成される。計測対象の基板100には、所定の形状を有する構造部(パターン)が二次元的に周期的に配置されている。構造部は、周期構造を構成する単位構造である。構造部として、メモリホールなどのホールパターン、ピラーパターンなどが例示される。
図2は、測定対象の一例を示す上面図である。図2では、構造部がメモリホール110である場合を示している。また、メモリホール110は、長径と短径とを有する矩形状を有している。ただし、矩形状は一例であり、楕円状等との他の形状であってもよい。ここで、メモリホール110の長径方向をX軸とし、短径方向をY軸としている。X軸とY軸とは互いに直交している。メモリホール110は、X方向にピッチ長Pxで周期的に配置され、Y方向にピッチ長Pyで配置されている。ここでは、Px>Pyであるとする。このように、基板100には、メモリホール110が二次元的に周期的に配置された周期構造が設けられている。
X線管球12は、所定の波長のX線を発生させる光源と、図示しない凹面鏡と、を含む。光源は、X線を生成するものであれば特に限定されないが、例えばCuのKα線を光源として用いることができる。X線管球12は、光源制御部22から制御信号を与えられて、例えば1nm以下の波長のX線(以下、入射X線という)Liを生成する。入射X線Liは、X線管球12内の凹面鏡によって光路が調整され、所望の斜入射角αで基板100内の周期構造へと照射される。
発散スリット13は、基板100に照射される入射X線Liの幅を調整するためのスリットである。入射X線Liの強度を上げたい場合には、発散スリット13の幅が広くされる。
二次元検出器14は、基板100に配置された周期構造から十分に離れた位置に配置され、入射X線Liが照射された周期構造によって散乱および回折されたX線(以下、散乱X線という)Loを受光素子で検出し、その強度を測定する。二次元検出器14は、受光素子が二次元に配置された受光部を有する。各受光素子は、周期構造により散乱および回折された散乱X線Loの強度を測定し、測定した強度を自身の位置に対応付けることにより、受光部全体として散乱X線の強度(以下、X線散乱強度という)の二次元画像を作成する。二次元検出器14は、作成したX線散乱強度の二次元画像をデータ処理部31に出力する。
図3は、形状計測装置での二次元検出器による散乱X線の検出の概要を示す図であり、(a)は側面図を示し、(b)は上面図を示している。図3(a)に示されるように、側面から見た場合には、入射X線Liは、斜入射角αで基板100に入射し、入射X線Liの光路を含む面内で、種々の出射角βで散乱される。二次元検出器14の各位置では、この種々の出射角βで散乱された散乱X線Loの強度が検出される。なお、斜入射角αは、略水平に近い角度であり、通常は、0.2°前後の角度とされる。
図3(b)に示されるように、上面から見た場合には、入射X線Liは入射方位角φで基板100に入射し、種々の回折角2θで回折される。二次元検出器14の各位置では、この種々の回折角2θで散乱された散乱X線Loの強度が検出される。ここで、図2に示されるように、周期構造を構成する1つのメモリホール110での特定の方向(基準方向)と、入射X線Liの入射方向と、がなす角度を入射方位角φとする。例えば、図2では、メモリホール110の長径の方向、すなわちX方向を基準方向としている。メモリホール110の長径(X方向)と入射X線Liの入射方向とが平行な場合に入射方位角φは0°となり、メモリホール110の長径(X方向)と入射X線Liの入射方向とがと垂直になる場合に入射方位角φは90°となる。図では、入射X線Liの位置を変えているが、ステージ11をXY面内方向で回転させることによっても、入射方位角φを変えることができる。
制御部20は、ステージ制御部21と、光源制御部22と、スリット幅制御部23と、条件設定部24と、を有する。ステージ制御部21は、ステージ11を移動して基板100に入射X線Liが入射される位置(基板100の並進動作)と入射方位角φ(基板100の回転動作)と、を制御する。
光源制御部22は、基板100に対する入射X線Liの角度(斜入射角)および光源(X線管球12)からの入射X線Liの出力を制御する。
スリット幅制御部23は、入射X線Liの照射面積を決めるための発散スリット13の幅を制御する。
条件設定部24は、ステージ制御部21、光源制御部22、スリット幅制御部23および後述する演算部30の形状算出部33に、基板100を計測する際の測定条件を設定する。本実施形態では、形状計測を行う際に、斜入射角α、スリット幅およびステージ11の回転速度を一定として測定を行うのではなく、入射方位角φに応じて、斜入射角α、スリット幅およびステージ11の回転速度を変えて測定を行う。
例えば、メモリホールについて、短径方向の形状情報(長径に垂直な面内の形状情報)を高精度で取得する条件と、長径方向の形状情報(短径に垂直な面内の形状情報)を高精度で取得する条件と、が異なることが実験によってわかっている場合には、メモリホールの形状計測を行う場合に、それぞれの方向で測定条件が変えられる。また、予め実験によって入射方位角φによる望ましい測定条件がわかっている場合には、メモリホールを製造するための設計データに基づいて条件を設定することもできる。例えば、ピッチが長くなるほど斜入射角αを小さくした方が測定精度が上がること、あるいは、メモリホールの短径および長径に平行な方向以外の入射方位角φ(図2においては0°と90°近傍)では高精度に測定をしなくてもよいこと、がわかっているものとする。この場合には、ピッチが長くなるほど斜入射角を小さくしたり、メモリホールの短径および長径に平行な入射方位角の照射時間は長く、それ以外の照射時間は短くしたりすることが望ましい。
図4は、実施形態による測定条件の一例を示す図である。ここでは、図2で、入射方位角が−5°〜5°の範囲の領域をR1とし、入射方位角が5°〜85°の範囲の領域をR2とし、入射方位角が85°〜95°の範囲の領域をR3としている。また、測定条件として、斜入射角α、回転速度およびスリット幅を例示している。
領域R1では、主にメモリホール110の短径方向の形状情報を取得するための測定が行われる。斜入射角αは0.24°に設定され、回転速度は1,000秒/10°に設定され、スリット幅は0.09mmに設定される。これによって、メモリホール110の短径方向の形状情報を高精度で取得可能な測定を行うことができる。
領域R3では、主にメモリホール110の長径方向の形状情報を取得するための測定が行われる。斜入射角αは0.25°に設定され、回転速度は1,500秒/10°に設定され、スリット幅は0.15mmに設定される。これによって、メモリホール110の長径方向の形状情報を高精度で取得可能な測定を行うことができる。
領域R2では、例えばメモリホール110の平面形状における曲率などの短径方向および長径方向の形状情報以外の形状情報を取得するための計測が行われる。そのため、領域R1,R3に比して重要度は低く、なるべく測定に時間をかけない方が望ましい。そこで、斜入射角は0.24°に設定され、回転速度は300秒/10°に設定され、スリット幅は0.15mmに設定される。
このように測定を行う入射方位角φの範囲を複数の領域に分け、隣接する領域間で異なる測定条件が設定される。なお、図4に示される測定条件は一例である。このような測定条件として、例えば、メモリホールの各断面形状を計測する上で、散乱X線Loのコントラストおよび強度が最適化された状態で波形を取得することができる条件が選択される。これによって、測定精度を向上ることができる。
演算部30は、データ処理部31と、シミュレーション部32と、形状算出部33と、を有する。データ処理部31は、二次元検出器14で検出された二次元画像から散乱プロファイルを算出し、散乱プロファイルを形状算出部33に出力する。なお、本実施形態では、図4に示されるように、領域R1〜R3で回転速度は異なる。これは、入射方位角φによって測定対象への入射X線の照射時間、すなわち露光時間が異なることを意味する。そのため、それぞれの領域R1〜R3で検出された散乱データから算出した散乱プロファイルのX線強度同士を比較することはできない。露光時間の異なる領域R1〜R3で算出されたX線強度を比較するには、算出されたX線強度を、各入射方位角における露光時間で割ることによって、単位時間当たりのX線強度として規格化すればよい。データ処理部31によって算出される散乱プロファイルのX線強度は、単位時間当たりのX線強度に規格化されたものになる。
シミュレーション部33は設計データに基づき、複数の形状パラメータから成る形状モデルを用いて、形状モデルが二次元的に周期的に配置された周期構造に入射X線を照射して得られる予想散乱プロファイルをシミュレーションする。シミュレーション部33は予想散乱プロファイルを形状算出部32に出力する。
図5は、シミュレーションで使用されるメモリホールの形状モデルの一例を示す図であり、(a)は平面形状モデルであり、(b)は長径方向の断面形状モデルであり、(c)は短径方向の断面形状モデルである。これらの平面形状モデルおよび断面形状モデルに示されるように、形状パラメータとして、長径Lx、短径Ly、パターンの輪郭がX軸およびY軸と交わる位置でのそれぞれの曲率半径Rx,Ry、深さD、メモリホールの側壁が底面となす側壁角θs、X方向(長径方向)のピッチPx、Y方向(短径方向)のピッチPyなどが用いられる。なお、ここで示した形状パラメータは一例であり、これらに加えて他の形状パラメータを用いることも可能である。
モデル形状に形状パラメータを設定して得られる仮想的なメモリホールに、測定条件にしたがって入射X線を照射した時の散乱X線の各位置での強度がシミュレーションによって計算され、予想散乱プロファイルが得られる。
形状算出部33は、散乱プロファイルと予想散乱プロファイルとをフィッティングさせて三次元形状を算出する。具体的には、形状算出部33は、複数の予想散乱プロファイルの中から1つの予想散乱プロファイルを取得し、散乱プロファイルと取得した予想散乱プロファイルとの差異が所定の範囲内であるかを判定するフィッティング処理を行う。形状算出部33は、差異が所定の範囲内に収まる予想散乱プロファイルが得られるまで、異なる予想散乱プロファイルを取得してフィッティング処理を行う。形状算出部33は、差異が所定の範囲内となる予想散乱プロファイルが得られた場合には、この予想散乱プロファイルを作成するのに使用された形状パラメータを、測定したメモリホールの形状情報とする。
つぎに、このような形状計測装置1における形状計測方法について説明する。図6は、実施形態による形状計測方法の手順の一例を示すフローチャートである。まず、測定対象の基板100をステージ11上に載置する(ステップS11)。この時、基板100に設けられるメモリホール110の基準方向が形状計測装置1の入射X線Liの入射方向と一致するように配置位置が調整される。例えば、図2の場合では、メモリホール110の長径方向(X方向)が入射X線Liの入射方向と一致するように調整される。
ついで、条件設定部24は、測定対象の設計データに基づいた測定条件を取得し(ステップS12)、ステージ制御部21は、測定条件中の測定範囲の最初の入射角方位φを設定する(ステップS13)。例えば、図4の場合には、測定範囲が−5°〜95°であるので、入射方位角φは−5°に設定される。
その後、ステージ制御部21、光源制御部22およびスリット幅制御部23は、設定した入射方位角φに応じた測定条件を取得し(ステップS14)、測定条件に基づいて制御を行う。例えば、図4の場合には、斜入射角α、回転速度およびスリット幅が測定条件にしたがってステージ制御部21はステージ11を制御し、光源制御部22はX線管球12を制御し、スリット幅制御部23は、発散スリット13を制御する。
ついで、X線管球12で発生された入射X線Liが、発散スリット13を介して基板100表面に照射され(ステップS15)、基板100からの散乱X線Loが二次元検出器14で検出される(ステップS16)。現在の入射方位角φに入射X線Liが照射されてから測定条件で規定される露光時間だけ経過すると、現在の入射方位角φは測定範囲の最後であるかが判定される(ステップS17)。現在の入射方位角φが測定範囲の最後の角度ではない場合(ステップS17でNoの場合)には、つぎの入射方位角φが設定され(ステップS18)、ステップS14へと処理が戻る。そして、ステップS14〜S18の処理が入射方位角φが測定範囲の最後の角度となるまで繰り返し実行される。
入射方位角φが測定範囲の最後の角度である場合(ステップS17でYesの場合)には、データ処理部31は、二次元検出器14で検出された散乱X線Loの検出結果から散乱プロファイルを算出する(ステップS19)。一方、シミュレーション部32は、形状パラメータを設定した形状モデルを用いて予想散乱プロファイルを算出する(ステップS20)。その後、形状算出部33は、散乱プロファイルと予想散乱プロファイルとをフィッティングし(ステップS21)、散乱プロファイルと予想散乱プロファイルとの差異が所定の範囲内であるかを判定する(ステップS22)。
差異が所定の範囲内ではない場合(ステップS22でNoの場合)には、シミュレーション部32は、ステップS20とは異なる形状パラメータを設定した形状モデルを用いて予想散乱プロファイルを算出し(ステップS23)、ステップS21へと処理が戻る。そして、ステップS21〜S23の処理が、散乱プロファイルと予想散乱プロファイルとの差異が所定の範囲内となるまで繰り返し実行される。換言すると、予想散乱プロファイルと散乱プロファイルがある一定の差以下に収束するまで、シミュレーション部33は、形状パラメータを変えた予想散乱プロファイルを作成し続ける。
また、差異が所定の範囲内である場合(ステップS22でYesの場合)には、形状算出部33は、予想散乱プロファイルの算出に用いた形状パラメータを測定対象の形状情報として出力し(ステップS24)、形状計測処理が終了する。
図7は、実施形態による形状計測方法の手順を模式的に示す図である。ステージ11に基板100が載置され、入射方位角φ1〜φNで計測が行われる。このうち、入射方位角φ1は、図2の領域R1に含まれ、入射方位角φ2〜φN−1は領域R2に含まれ、入射方位角φNは領域R3に含まれるものとする。また、図4に例示されるように、領域R1〜R3毎に異なる測定条件が設定されている。
X線による測定は、入射方位角φ1,φ2,・・・,φN−1,φNの順に行われる。それぞれの入射方位角φi(i=1,2,・・・,N)では、その入射方位角φiごとに定められる測定条件での測定が行われる。そして、入射角方位φ1,φ2,・・・,φNでの測定結果からそれぞれ散乱プロファイルが、P1,P2,・・・,PNが算出される。
短径方向の形状を取得する場合には、短径方向の断面形状モデルM1に、ある形状パラメータを設定してX線の散乱をシミュレーションした結果である予想散乱プロファイルと、散乱プロファイルP1とがフィッティングされる。また、長径方向の形状を取得する場合には、長径方向の断面形状モデルM2に、ある形状パラメータを設定してX線の散乱をシミュレーションした結果である予想散乱プロファイルと、散乱プロファイルPNとがフィッティングされる。さらに、平面形状を取得する場合には、平面形状モデルM3に、ある形状パラメータを設定してX線の散乱をシミュレーションした結果である予想散乱プロファイルと、散乱プロファイルP1〜PNとがフィッティングされる。そして、これらのフィッティングの結果、差異が所定の範囲内に収まる予想散乱プロファイルを取得し、この予想散乱プロファイルに設定された形状パラメータを測定対象の形状情報200として出力する。例えば、短径方向の散乱プロファイルP1からは、短径(Ly)と深さ(D)とが求められ、長径方向の散乱プロファイルPNからは、長径(Lx)と深さ(D)とが求められる。また、散乱プロファイルP1〜PNからは、曲率(Rx,Ry)などが求められる。
なお、上記した説明では、構造部としてメモリホールの形状を計測する場合を例に挙げたが、本実施形態がこれに限定されるものではない。例えば、構造部としてメモリホール以外のホール、ピラーなど二次元的に周期的に配置されるものであれば、形状を計測することができる。また、平面形状は、矩形状だけではなく、楕円形状、真円形状、正方形状など他の形状を有する構造部であってもよい。
また、上記した説明では、形状計測装置1としてGISAXSを例に挙げたが、本実施形態がこれに限定されるものではない。例えば、可視光領域の光など他の電磁波を用いて形状計測を行うOCD(Optical Critical Dimension)にも本実施形態を適用することができる。
上記した制御部20および演算部30は、情報処理装置によって構成される。図8は、演算部および制御部のハードウェア構成の一例を示す図である。制御部20および演算部30は、CPU(Central Processing Unit)211と、ROM(Read Only Memory)212と、主記憶装置であるRAM(Random Access Memory)213と、HDD(Hard Disk Drive)、SSD(Solid State Drive)またはCD(Compact Disc)ドライブ装置などの外部記憶装置214と、ディスプレイ装置などの表示部215と、キーボードまたはマウスなどの入力部216と、を備えており、これらがバスライン217を介して接続された、通常のコンピュータを利用したハードウェア構成となっている。
本実施形態の制御部20で実行されるプログラムは、図6のステップS12〜S18に示される形状計測方法を実行するものであり、インストール可能な形式または実行可能な形式のファイルでCD−ROM、フレキシブルディスク(FD)、CD−R、DVD(Digital Versatile Disk)等のコンピュータで読み取り可能な記録媒体に記録されて提供される。
また、本実施形態の演算部30で実行されるプログラムは、図6のステップS19〜S24に示される形状計測方法を実行するものであり、インストール可能な形式または実行可能な形式のファイルでCD−ROM、フレキシブルディスク(FD)、CD−R、DVD(Digital Versatile Disk)等のコンピュータで読み取り可能な記録媒体に記録されて提供される。
また、本実施形態の制御部20および演算部30で実行されるプログラムを、インターネット等のネットワークに接続されたコンピュータ上に格納し、ネットワーク経由でダウンロードさせることにより提供するように構成してもよい。また、本実施形態の制御部20および演算部30で実行されるプログラムをインターネット等のネットワーク経由で提供または配布するように構成してもよい。
また、本実施形態のプログラムを、ROM等に予め組み込んで提供するように構成してもよい。
図1では、制御部20と演算部30とがそれぞれ独立に設けられる場合を示したが、制御部20と演算部30とを1つの情報処理装置で構成してもよい。
実施形態では、二次元的に周期的に配置された構造部の形状を計測する場合に、構造部のある特定の方位と、その他の方位とで、斜入射角α、基板100の回転速度、スリット幅などの測定条件を変えて、測定を行う。そして、測定の結果得られる散乱プロファイルと、形状パラメータを設定したモデル形状を用いてシミュレーションした結果得られる予想散乱プロファイルと、をフィッティングして、両者の差異が最も小さい予想散乱プロファイルに用いた形状パラメータを、計測対象の形状情報とした。これによって、構造部の特徴となる特定の方位で、断面形状を高精度に取得することができ、その結果、実際の3次元構造に近い形状情報を得ることができるという効果を有する。すなわち、周期的に配置された微小パターンの形状を方位に依らず、高精度に計測することができる。
一方、構造部のある方位で散乱プロファイルを取得するのに適した測定条件で、すべての方位の測定を行う場合には、他の方位で得られる散乱プロファイルは最適ではない場合もある。これによって得られる構造部の3次元構造の形状情報は、実際の3次元構造の形状情報からずれてしまう可能性がある。本実施形態では、このような場合に比して、実際の3次元構造の形状情報からのずれを少なくすることができる。
また、実施形態では、形状情報を取得するのに重要な方位の測定では電磁波の照射時間を長くし、それほど重要でない方位の測定では照射時間を短くするように測定条件が設定される。その結果、どの方位も同じ回転速度で測定を行う場合に比して、測定に要する時間が短縮され、測定スループットを向上させることができるという効果も有する。
さらに、照射時間を短くする場合には、スリット幅を広げて、散乱される電磁波の強度を上げるようにした。これによって、照射時間が短くても、散乱される電磁波について十分な強度が得られるので、解析精度を向上させることができるという効果を有する。
本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。
1 形状計測装置、11 ステージ、12 X線管球、13 発散スリット、14 二次元検出器、20 制御部、21 ステージ制御部、22 光源制御部、23 スリット幅制御部、24 条件設定部、30 演算部、31 データ処理部、32 シミュレーション部、33 形状算出部、100 基板、110 メモリホール

Claims (5)

  1. 所定の入射方位角の測定範囲で、パターンを有する基板に電磁波を照射し、前記基板から散乱される電磁波の散乱強度を測定し、
    前記電磁波の散乱強度に基づいて前記パターン中の単位構造の形状情報を算出し、
    前記散乱強度の測定では、前記測定範囲を複数の領域に分け、隣接する領域間では異なる測定条件が設定される形状計測方法。
  2. 前記測定条件は、前記基板の表面への前記電磁波の入射角および前記電磁波の前記基板への照射量を定めるスリット幅のうち少なくとも一方を含む請求項1に記載の形状計測方法。
  3. 前記測定条件は、前記入射方位角での前記電磁波の照射時間を含む請求項1または2に記載の形状計測方法。
  4. 前記形状情報の算出では、前記電磁波の散乱強度を前記照射時間を用いて規格化し、規格化した前記電磁波の散乱強度に基づいて、前記単位構造の形状情報を算出する請求項3に記載の形状計測方法。
  5. パターンを有する基板を、前記基板の載置面に平行な面内で回転可能に載置するステージと、
    前記基板に電磁波を照射する光源と、
    前記基板で散乱された電磁波の散乱強度を検出する検出器と、
    前記基板の特定の方位と前記光源からの前記電磁波の入射方向との角度である入射方位角を所定の入射方位角の測定範囲内で制御する制御部と、
    前記検出器で検出された前記電磁波の散乱強度に基づいて前記パターン中の単位構造の形状情報を算出する演算部と、
    を備え、
    前記制御部は、前記測定範囲を複数の領域に分け、隣接する領域間では、異なる測定条件を設定する形状計測装置。
JP2018171860A 2018-09-13 2018-09-13 形状計測方法および形状計測装置 Pending JP2020041991A (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2018171860A JP2020041991A (ja) 2018-09-13 2018-09-13 形状計測方法および形状計測装置
US16/291,629 US10837768B2 (en) 2018-09-13 2019-03-04 Shape measurement method and shape measurement apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018171860A JP2020041991A (ja) 2018-09-13 2018-09-13 形状計測方法および形状計測装置

Publications (1)

Publication Number Publication Date
JP2020041991A true JP2020041991A (ja) 2020-03-19

Family

ID=69773661

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018171860A Pending JP2020041991A (ja) 2018-09-13 2018-09-13 形状計測方法および形状計測装置

Country Status (2)

Country Link
US (1) US10837768B2 (ja)
JP (1) JP2020041991A (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11835334B2 (en) 2021-07-13 2023-12-05 Kioxia Corporation Shape measuring method, shape measuring device, and program

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7149532B2 (ja) * 2019-04-26 2022-10-07 株式会社日立製作所 粒子線実験データ解析装置
JP7221536B2 (ja) * 2019-12-27 2023-02-14 株式会社リガク 散乱測定解析方法、散乱測定解析装置、及び散乱測定解析プログラム

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006066205A2 (en) * 2004-12-19 2006-06-22 Ade Corporation System and method for inspection of a workpiece surface using multiple scattered light collectors
JP5367549B2 (ja) 2009-12-07 2013-12-11 株式会社東芝 基板計測方法
JP2015011024A (ja) 2013-07-02 2015-01-19 株式会社東芝 計測装置および計測方法
WO2016124345A1 (en) * 2015-02-04 2016-08-11 Asml Netherlands B.V. Metrology method, metrology apparatus and device manufacturing method
JP6495789B2 (ja) 2015-09-11 2019-04-03 東芝メモリ株式会社 形状算出プログラム、形状算出装置および形状測定方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11835334B2 (en) 2021-07-13 2023-12-05 Kioxia Corporation Shape measuring method, shape measuring device, and program

Also Published As

Publication number Publication date
US10837768B2 (en) 2020-11-17
US20200088516A1 (en) 2020-03-19

Similar Documents

Publication Publication Date Title
TWI805594B (zh) 基於多色軟性x射線繞射之用於半導體度量之方法及系統
TWI634325B (zh) 用於使用x射線度量術量測半導體器件疊加之方法及裝置
TWI649536B (zh) 用於以散射術量測為基礎之成像及關鍵尺寸度量之度量方法、度量系統及非暫時性電腦可讀媒體
JP2019536057A (ja) X線スキャトロメトリシステムのフルビーム計測
JP2020041991A (ja) 形状計測方法および形状計測装置
JP5237186B2 (ja) X線散乱測定装置およびx線散乱測定方法
JP5367549B2 (ja) 基板計測方法
WO2010119844A1 (ja) 表面微細構造計測方法、表面微細構造計測データ解析方法およびx線散乱測定装置
US10859518B2 (en) X-ray zoom lens for small angle x-ray scatterometry
TW201700961A (zh) 殘留應力測定裝置及殘留應力測定方法
JP2011203061A (ja) パターン計測方法およびパターン計測装置
US11408837B2 (en) Analysis method for fine structure, and apparatus and program thereof
JP2023509480A (ja) 軟x線スキャタロメトリに依拠するオーバレイ計測方法及びシステム
TW201818136A (zh) 以繞射為基礎之聚焦度量
TW201946175A (zh) 基於可重複使用子結構之奈米線半導體結構之測量模型
JP2016502119A (ja) 面内斜入射回折を用いた表面マッピングのための装置、および、方法
TW202340709A (zh) 用於半導體結構之資料驅動參數化及量測之方法及系統
US10156435B1 (en) Shape measuring apparatus and shape measuring method
JP2007240192A (ja) 多結晶材料の配向性の評価方法
US20160085155A1 (en) Lithography metrology method for determining best focus and best dose and lithography monitoring method using the same
JP2005315742A (ja) 測定装置および測定方法
JP2023505152A (ja) 簡略化モデルを用いるトモグラフィ依拠半導体計測
JP2015004670A (ja) 基板計測装置および基板計測方法
TWI795075B (zh) 形狀計測方法、形狀計測裝置及形狀計測程式
JP2013200181A (ja) ビームコンディションモニタ装置、ビームコンディションモニタ方法およびパターン計測方法