JP2020029185A - ハイブリット型船舶推進機 - Google Patents

ハイブリット型船舶推進機 Download PDF

Info

Publication number
JP2020029185A
JP2020029185A JP2018156133A JP2018156133A JP2020029185A JP 2020029185 A JP2020029185 A JP 2020029185A JP 2018156133 A JP2018156133 A JP 2018156133A JP 2018156133 A JP2018156133 A JP 2018156133A JP 2020029185 A JP2020029185 A JP 2020029185A
Authority
JP
Japan
Prior art keywords
clutch
rotation speed
engine
electric motor
state
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2018156133A
Other languages
English (en)
Inventor
中村 大介
Daisuke Nakamura
大介 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yamaha Motor Co Ltd
Original Assignee
Yamaha Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yamaha Motor Co Ltd filed Critical Yamaha Motor Co Ltd
Priority to JP2018156133A priority Critical patent/JP2020029185A/ja
Priority to US16/535,190 priority patent/US11161582B2/en
Priority to EP19193134.4A priority patent/EP3613663B1/en
Publication of JP2020029185A publication Critical patent/JP2020029185A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63HMARINE PROPULSION OR STEERING
    • B63H20/00Outboard propulsion units, e.g. outboard motors or Z-drives; Arrangements thereof on vessels
    • B63H20/14Transmission between propulsion power unit and propulsion element
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63HMARINE PROPULSION OR STEERING
    • B63H21/00Use of propulsion power plant or units on vessels
    • B63H21/20Use of propulsion power plant or units on vessels the vessels being powered by combinations of different types of propulsion units
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63HMARINE PROPULSION OR STEERING
    • B63H21/00Use of propulsion power plant or units on vessels
    • B63H21/21Control means for engine or transmission, specially adapted for use on marine vessels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63HMARINE PROPULSION OR STEERING
    • B63H23/00Transmitting power from propulsion power plant to propulsive elements
    • B63H23/30Transmitting power from propulsion power plant to propulsive elements characterised by use of clutches
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D11/00Clutches in which the members have interengaging parts
    • F16D11/14Clutches in which the members have interengaging parts with clutching members movable only axially
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D21/00Systems comprising a plurality of actuated clutches
    • F16D21/02Systems comprising a plurality of actuated clutches for interconnecting three or more shafts or other transmission members in different ways
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D48/00External control of clutches
    • F16D48/06Control by electric or electronic means, e.g. of fluid pressure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63HMARINE PROPULSION OR STEERING
    • B63H21/00Use of propulsion power plant or units on vessels
    • B63H21/20Use of propulsion power plant or units on vessels the vessels being powered by combinations of different types of propulsion units
    • B63H2021/202Use of propulsion power plant or units on vessels the vessels being powered by combinations of different types of propulsion units of hybrid electric type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63HMARINE PROPULSION OR STEERING
    • B63H21/00Use of propulsion power plant or units on vessels
    • B63H21/20Use of propulsion power plant or units on vessels the vessels being powered by combinations of different types of propulsion units
    • B63H2021/202Use of propulsion power plant or units on vessels the vessels being powered by combinations of different types of propulsion units of hybrid electric type
    • B63H2021/205Use of propulsion power plant or units on vessels the vessels being powered by combinations of different types of propulsion units of hybrid electric type the second power unit being of the internal combustion engine type, or the like, e.g. a Diesel engine
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63HMARINE PROPULSION OR STEERING
    • B63H21/00Use of propulsion power plant or units on vessels
    • B63H21/21Control means for engine or transmission, specially adapted for use on marine vessels
    • B63H21/213Levers or the like for controlling the engine or the transmission, e.g. single hand control levers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2500/00External control of clutches by electric or electronic means
    • F16D2500/10System to be controlled
    • F16D2500/11Application
    • F16D2500/1105Marine applications
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2500/00External control of clutches by electric or electronic means
    • F16D2500/30Signal inputs
    • F16D2500/306Signal inputs from the engine
    • F16D2500/3067Speed of the engine
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T70/00Maritime or waterways transport
    • Y02T70/50Measures to reduce greenhouse gas emissions related to the propulsion system
    • Y02T70/5218Less carbon-intensive fuels, e.g. natural gas, biofuels
    • Y02T70/5236Renewable or hybrid-electric solutions

Abstract

【課題】動力切替の際における衝撃や音の低減を図れるハイブリッド型船舶推進機を提供する。【解決手段】船舶推進機1は、エンジン8の動力をプロペラシャフト17に伝達する第1伝達経路9と、電動モータ11の動力をプロペラシャフト17に伝達する第2伝達経路12と、制御装置とを含む。第1クラッチ81が、第1切断状態において第1伝達経路9の動力伝達を遮断し、第1接続状態において第1伝達経路9の動力伝達を許容する。第2クラッチが、第2切断状態にて第2伝達経路12の動力伝達を遮断し、第2接続状態にて第2伝達経路12の動力伝達を許容する。第1クラッチ81が第1切断状態と第1接続状態との間で切り替わり且つ第2クラッチが第2接続状態と第2切断状態との間で切り替わるときに、制御装置が、エンジン8および電動モータ11の同調制御を実行する。【選択図】図1

Description

本発明は、エンジンおよび電動モータを動力源とするハイブリット型船舶推進機に関する。
特許文献1に記載の船舶推進機は、船外機と、船外機を船体に取り付ける懸架装置とを含む。船外機は、プロペラと、プロペラを回転させる動力を発生するエンジンおよび電動モータとを含む。船外機は、エンジンによって回転駆動されるドライブシャフトと、ドライブシャフトとともに回転するピニオンと、ピニオンによって互いに反対の方向に回転駆動される前ギヤおよび後ギヤと、前ギヤおよび後ギヤに選択的に噛み合う第1ドッグクラッチとを含む。船外機は、電動モータによって回転駆動される出力シャフトと、出力シャフトとともに回転する駆動ギヤと、駆動ギヤによって回転駆動される従動ギヤと、従動ギヤとともに回転する中間リングと、中間リングに選択的に噛み合う第2ドッグクラッチとをさらに含む。船外機は、第1ドッグクラッチおよび第2ドッグクラッチを伴って中間位置、前位置および後位置のいずれかに移動するシフトスライダと、シフトスライダを移動させるシフトアクチュエータとを含む。シフトスライダは、プロペラが取り付けられたプロペラシャフトに対して前後方向に移動可能であり、第1ドッグクラッチ、第2ドッグクラッチおよびプロペラシャフトとともに回転する。
シフトスライダが中間位置にあるとき、第1ドッグクラッチが前ギヤおよび後ギヤの両方から離れていて、第2ドッグクラッチが中間リングに噛み合っている。この場合には、電動モータの動力が中間リングおよび第2ドッグクラッチを介してプロペラシャフトに伝達されるので、プロペラは、電動モータの動力だけで回転する。
シフトアクチュエータがシフトスライダを中間位置から前位置に移動させると、第1ドッグクラッチが前ギヤに噛み合って、第2ドッグクラッチが中間リングから離れる。これにより、エンジンの動力が前ギヤおよび第1ドッグクラッチを介してプロペラシャフトに伝達されるので、プロペラは、エンジンの動力だけで回転して、船体を前進させる方向の推力を発生する。シフトアクチュエータがシフトスライダを前位置から中間位置へ向けて移動させると、第1ドッグクラッチが前ギヤから離れて、第2ドッグクラッチが中間リングに噛み合う。これにより、プロペラは、再び電動モータの動力だけで回転する。
シフトアクチュエータがシフトスライダを中間位置から後位置に移動させると、第1ドッグクラッチが後ギヤに噛み合って、第2ドッグクラッチが中間リングから離れる。これにより、エンジンの動力が後ギヤおよび第1ドッグクラッチを介してプロペラシャフトに伝達されるので、プロペラは、エンジンの動力だけで回転して、船体を後進させる方向の推力を発生する。シフトアクチュエータがシフトスライダを後位置から中間位置へ向けて移動させると、第1ドッグクラッチが後ギヤから離れて、第2ドッグクラッチが中間リングに噛み合う。これにより、プロペラは、再び電動モータの動力だけで回転する。
特開2017−218016号公報
特許文献1に記載の船舶推進機では、第1ドッグクラッチが前ギヤまたは後ギヤに噛み合うときや、第2ドッグクラッチが中間リングに噛み合うとき、つまり、エンジンと電動モータとの間での動力切替の際に、噛み合いによる衝撃や音が発生するおそれがある。
そこで、本発明の一実施形態は、動力切替の際における衝撃や音の低減を図れるハイブリッド型船舶推進機を提供する。
本発明の一実施形態は、エンジンと、電動モータと、プロペラと共に回転するプロペラシャフトと、第1伝達経路と、第2伝達経路と、第1クラッチと、第2クラッチと、切替装置と、制御装置とを含む、ハイブリッド型船舶推進機を提供する。前記第1伝達経路は、前記エンジンの動力を前記プロペラシャフトに伝達する。前記第2伝達経路は、前記第1伝達経路を経ずに前記電動モータの動力を前記プロペラシャフトに伝達する。前記第1クラッチは、前記第1伝達経路の動力伝達を遮断する第1切断状態と、前記第1伝達経路の動力伝達を許容する第1接続状態とになり得る。前記第2クラッチは、前記第2伝達経路の動力伝達を遮断する第2切断状態と、前記第2伝達経路の動力伝達を許容する第2接続状態とになり得る。前記切替装置は、前記第1クラッチを前記第1切断状態から前記第1接続状態に切り替え且つ前記第2クラッチを前記第2接続状態から前記第2切断状態に切り替えることができる。前記切替装置は、前記第1クラッチを前記第1接続状態から前記第1切断状態に切り替え且つ前記第2クラッチを前記第2切断状態から前記第2接続状態に切り替えることができる。前記切替装置が前記第1クラッチを前記第1切断状態と前記第1接続状態との間で切り替え且つ前記第2クラッチを前記第2接続状態と前記第2切断状態との間で切り替えるときに、前記制御装置は、前記エンジンおよび前記電動モータの同調制御を実行する。前記同調制御に関連して、前記エンジンの回転速度を前記プロペラシャフトの回転速度に換算したエンジン換算回転速度が求められ、前記電動モータの回転速度を前記プロペラシャフトの回転速度に換算した電動モータ換算回転速度が求められる。前記同調制御とは、前記エンジン換算回転速度の絶対値と前記電動モータ換算回転速度の絶対値との差を縮める制御である。前記同調制御により、前記エンジン換算回転速度の絶対値と前記電動モータ換算回転速度の絶対値との差が零より大きく所定の上限値以下になる。前記制御装置は、前記エンジン換算回転速度の絶対値が前記電動モータ換算回転速度の絶対値よりも大きい状態において前記同調制御を開始する。
この構成によれば、切替装置が第1クラッチを第1切断状態から第1接続状態に切り替え且つ第2クラッチを第2接続状態から第2切断状態に切り替えると、ハイブリッド型船舶推進機の動力源が電動モータからエンジンに切り替わる。このときのハイブリッド型船舶推進機のモードをエンジン駆動モードという。切替装置が第1クラッチを第1接続状態から第1切断状態に切り替え且つ第2クラッチを第2切断状態から第2接続状態に切り替えると、ハイブリッド型船舶推進機の動力源がエンジンから電動モータに切り替わる。このときのハイブリッド型船舶推進機のモードを電動モータ駆動モードという。ハイブリッド型船舶推進機がエンジン駆動モードと電動モータ駆動モードとの間で切り替わるときに、エンジンおよび電動モータの同調制御が実行される。すなわち、エンジン換算回転速度の絶対値と電動モータ換算回転速度の絶対値との差がほとんど無い状態となるように同調制御が実行され、その状態でハイブリッド型船舶推進機がエンジン駆動モードと電動モータ駆動モードとの間で切り替わる。これにより、ハイブリッド型船舶推進機の動力がエンジンと電動モータとの間で切り替わる。そのため、動力切替の際に、エンジン換算回転速度と電動モータ換算回転速度との差の大きさに起因する衝撃や音の低減を図れる。特に、エンジン換算回転速度の絶対値が電動モータ換算回転速度の絶対値よりも大きい状態において同調制御が開始されるので、同調制御の開始後にエンジン換算回転速度の絶対値がある程度小さくなることによってエンジンによる振動が少なくなった状態において、動力を切り替えることができる。これにより、動力切替の際における衝撃や音の低減を一層図れる。なお、この効果は、エンジン換算回転速度および電動モータ換算回転速度が共に正の値であってエンジン換算回転速度が電動モータ換算回転速度よりも高い場合だけでなく、電動モータ換算回転速度がエンジン換算回転速度よりも高い場合にも得られる。電動モータ換算回転速度がエンジン換算回転速度よりも高い場合とは、電動モータ換算回転速度が正の値であってエンジン換算回転速度が負の値である場合である。
本発明の一実施形態においては、前記切替装置が前記第1クラッチを前記第1切断状態から前記第1接続状態に切り替え且つ前記第2クラッチを前記第2接続状態から前記第2切断状態に切り替えるときに、前記制御装置は、前記同調制御を実行する。この構成によれば、ハイブリッド型船舶推進機が電動モータ駆動モードからエンジン駆動モードに切り替わるための動力切替の際における衝撃や音の低減を図れる。
本発明の一実施形態においては、前記切替装置が前記第1クラッチを前記第1接続状態から前記第1切断状態に切り替え且つ前記第2クラッチを前記第2切断状態から前記第2接続状態に切り替えるときに、前記制御装置は、前記同調制御を実行する。この構成によれば、ハイブリッド型船舶推進機がエンジン駆動モードから電動モータ駆動モードに切り替わるための動力切替の際における衝撃や音の低減を図れる。
本発明の一実施形態においては、前記制御装置は、前記エンジン換算回転速度が前記電動モータ換算回転速度よりも一旦低くなるように前記同調制御を実行する。この構成によれば、同調制御では、エンジン換算回転速度が電動モータ換算回転速度を下回るまで低下することによってエンジンによる振動が少なくなった状態において、動力が切り替わる。そのため、動力切替の際における衝撃や音の低減を一層図れる。
本発明の一実施形態においては、前記制御装置は、前記エンジン換算回転速度が前記電動モータ換算回転速度よりも一旦低くなってから上昇するように前記同調制御を実行する。この構成によれば、エンジン換算回転速度が電動モータ換算回転速度を下回った後に上昇することによって、エンジン換算回転速度の絶対値と電動モータ換算回転速度の絶対値との差がほとんど無くなる。この状態で動力が切り替わることによって、動力切替の際における衝撃や音の低減を確実に図れる。
本発明の一実施形態においては、前記制御装置は、前記電動モータ換算回転速度が前記エンジン換算回転速度よりも一旦高くなってから低下するように前記同調制御を実行する。この構成によれば、エンジン換算回転速度が電動モータ換算回転速度を下回ることによって電動モータ換算回転速度がエンジン換算回転速度を上回るが、その後に電動モータ換算回転速度が低下する。これによって、エンジン換算回転速度の絶対値と電動モータ換算回転速度の絶対値との差がほとんど無くなる。この状態で動力が切り替わることによって、動力切替の際における衝撃や音の低減を確実に図れる。
本発明の一実施形態においては、前記制御装置は、前記同調制御を開始してから前記エンジン換算回転速度が低下して前記電動モータ換算回転速度に一旦一致するまでの間において、前記電動モータ換算回転速度を一定にしてもよい。この構成によれば、電動モータ換算回転速度が一定なので、制御装置は、エンジン換算回転速度の絶対値を、電動モータ換算回転速度の絶対値に近付くように容易に制御することができる。
本発明の一実施形態においては、前記制御装置は、前記同調制御を開始してから前記エンジン換算回転速度が低下して前記電動モータ換算回転速度に一旦一致するまでの間において、前記電動モータ換算回転速度を上昇させてもよい。この構成によれば、エンジン換算回転速度が低下するのに対して電動モータ換算回転速度が上昇するので、エンジン換算回転速度の絶対値と電動モータ換算回転速度の絶対値との差が速やかに小さくなる。これにより、動力切替の際における衝撃や音の低減を図りつつ、速やかな動力切替が可能になる。
本発明の一実施形態においては、前記第1伝達経路は、前記エンジンの回転に応じて回転する第1駆動ギヤと、前記第1駆動ギヤによって回転駆動される第1従動ギヤとを含む。前記第1クラッチは、前記第1従動ギヤから離れる第1切断位置と、前記第1従動ギヤに連結される第1接続位置との間で前記プロペラシャフトの軸方向に移動可能であり、前記プロペラシャフトと共に回転する第1ドッグクラッチを含む。前記第1ドッグクラッチが前記第1切断位置に配置されると前記第1クラッチが前記第1切断状態になり、前記第1ドッグクラッチが前記第1接続位置に配置されると前記第1クラッチが前記第1接続状態になる。前記第2伝達経路は、前記電動モータの回転に応じて回転する第2駆動ギヤと、前記第2駆動ギヤによって回転駆動される第2従動ギヤとを含む。前記第2クラッチは、前記第2従動ギヤから離れる第2切断位置と、前記第2従動ギヤに連結される第2接続位置との間で前記軸方向に移動可能であり、前記プロペラシャフトと共に回転する第2ドッグクラッチを含む。前記第2ドッグクラッチが前記第2切断位置に配置されると前記第2クラッチが前記第2切断状態になり、前記第2ドッグクラッチが前記第2接続位置に配置されると前記第2クラッチが前記第2接続状態になる。前記切替装置は、前記軸方向に前記第1ドッグクラッチおよび前記第2ドッグクラッチを移動させるシフトアクチュエータを含む。前記エンジン換算回転速度は、前記第1従動ギヤの回転速度と同じまたは略同じであり、前記電動モータ換算回転速度は、前記第2従動ギヤの回転速度と同じまたは略同じである。
この構成によれば、第1ドッグクラッチおよび第2ドッグクラッチは、プロペラシャフトと共に回転する。第1ドッグクラッチが、エンジンの動力を受けて回転する第1従動ギヤに連結されて、第2ドッグクラッチが、電動モータの動力を受けて回転する第2従動ギヤから離れると、ハイブリッド型船舶推進機はエンジン駆動モードになる。第1ドッグクラッチが第1従動ギヤから離れて、第2ドッグクラッチが第2従動ギヤに連結されると、ハイブリッド型船舶推進機は電動モータ駆動モードになる。このように駆動モードがエンジン駆動モードおよび電動モータ駆動モードのそれぞれに切り替わる際に、第1従動ギヤの回転速度の絶対値と第2従動ギヤの回転速度の絶対値との差は、同調制御によって、零より大きく所定の上限値以下になる。これにより、エンジン駆動モードへの切替のために第1ドッグクラッチが第1従動ギヤに連結される際や、電動モータ駆動モードへの切替のために第2ドッグクラッチが第2従動ギヤに連結されたりする際における衝撃や音の低減を図れる。
本発明によれば、ハイブリッド型船舶推進機において、動力切替の際における衝撃や音の低減を図れる。
本発明の第1実施形態に係る船舶推進機を示す模式的な左側面図である。 船舶推進機の電気的構成を示すブロック図である。 船外機のロワーユニットの鉛直断面の一部を示す断面図である。 船外機のロワーユニットの鉛直断面の一部を示す断面図である。 船外機のロワーユニットの鉛直断面の一部を示す断面図である。 リモコンユニットの模式図である。 始動スイッチの模式図である。 操作レバーを前方に傾けたときの、操作レバーの位置とエンジン等の動作との関係を示す表である。 操作レバーを後方に傾けたときの、操作レバーの位置とエンジン等の動作との関係を示す表である。 操作レバーの位置とエンジンおよび電動モータのそれぞれの回転速度との関係を示す図である。 操作レバーの位置とエンジンおよび電動モータのそれぞれの回転速度との関係についての変形例を示す図である 本発明の第2実施形態に係る船舶推進機における船外機のロワーユニットの鉛直断面の一部を示す断面図である。 本発明の第2実施形態に係る船舶推進機における船外機のロワーユニットの鉛直断面の一部を示す断面図である。 本発明の第2実施形態に係る船舶推進機における船外機のロワーユニットの鉛直断面の一部を示す断面図である。
以下では、本発明の実施形態を、添付図面を参照して詳細に説明する。
図1は、本発明の第1実施形態に係る船舶推進機1を示す模式的な左側面図である。以下では、基準姿勢の船舶推進機1について説明する。基準姿勢は、エンジン8の回転軸線(クランクシャフト14の回転軸線)が鉛直方向に延び、エンジン8の回転軸線に直交するプロペラシャフト17の回転軸線が前後方向に延びる姿勢である。
船舶は、水面に浮かぶ船体H1と、船体H1を推進させる船舶推進機1とを含む。船舶推進機1は、推力を発生する船外機3と、船外機3を船体H1の後部に取り付ける懸架装置2とを含む。船舶推進機1は、さらに、船体H1に対して船外機3を左右に回動させるステアリング装置99と、船体H1に対して船外機3を上下に回動させるチルト装置100とを含む。
懸架装置2は、船尾に取付可能なクランプブラケット4と、クランプブラケット4に保持されたスイベルブラケット6と、スイベルブラケット6に保持されたステアリングシャフト7とを含む。スイベルブラケット6は、左右方向に延びるチルティングシャフト5まわりにクランプブラケット4に対して回転可能である。ステアリングシャフト7は、上下方向に延びており、その軸線まわりにスイベルブラケット6に対して回転可能である。
船外機3は、船体H1の後方に配置されている。船外機3は、上マウント部材および下マウント部材を介してステアリングシャフト7の上端部および下端部に連結されている。船外機3は、ステアリングシャフト7と共にステアリングシャフト7まわりに回転する。船外機3は、船体H1に対してステアリングシャフト7まわりに回転可能であり、船体H1に対してチルティングシャフト5まわりに回転可能である。
船外機3は、エンジン8を含む第1パワートレインと、電動モータ11を含む第2パワートレインとを含む。エンジン8および電動モータ11は、いずれも、プロペラ18を回転させる動力を発生する原動機の一例である。そのため、船舶推進機1は、ハイブリッド型船舶推進機である。エンジン8の回転動力は、プロペラシャフト17を介してプロペラ18に伝達される。同様に、電動モータ11の回転動力は、プロペラシャフト17を介してプロペラ18に伝達される。すなわち、プロペラシャフト17は、第1および第2パワートレインに共有されている。
第1パワートレインは、エンジン8およびプロペラシャフト17に加えて、エンジン8からプロペラシャフト17に延びる第1伝達経路9を形成する第1伝達部材10を含む。第2パワートレインは、電動モータ11およびプロペラシャフト17に加えて、電動モータ11からプロペラシャフト17に延びる第2伝達経路12を形成する第2伝達部材13を含む。
第1伝達経路9および第2伝達経路12は、互いに独立した並列の経路である。第1伝達経路9の上流端は、エンジン8に接続されており、第1伝達経路9の下流端は、船外機3の内部でプロペラシャフト17に接続されている。第2伝達経路12の上流端は、電動モータ11に接続されており、第2伝達経路12の下流端は、船外機3の内部でプロペラシャフト17に接続されている。第1伝達経路9および第2伝達経路12は、エンジン8および電動モータ11からプロペラシャフト17まで互いに離れている。第1伝達経路9は、エンジン8の動力をプロペラシャフト17に伝達する。第2伝達経路12は、第1伝達経路9を経ずに電動モータ11の動力をプロペラシャフト17に伝達する。
船外機3は、第1および第2パワートレインを収容するケーシングを含む。ケーシングは、エンジン8を収容するカウル20と、エンジン8の下方に配置されたエギゾーストガイド21と、エギゾーストガイド21の下方に配置されたアッパーケース23と、アッパーケース23の下方に配置されたロワーケース24とを含む。エンジン8は、エギゾーストガイド21の上に配置されている。電動モータ11は、ロワーケース24内に配置されている。
第1伝達部材10は、エンジン8の下方で上下方向に延びるドライブシャフト15と、ドライブシャフト15の下端部に連結された前後進切替機構16とを含む。ドライブシャフト15は、アッパーケース23およびロワーケース24内に配置されている。前後進切替機構16およびプロペラシャフト17は、ロワーケース24内に配置されている。プロペラシャフト17は、ロワーケース24内で前後方向に延びている。プロペラ18は、プロペラシャフト17の後端部に取り付けられており、ロワーケース24の後方に配置されている。プロペラ18は、プロペラシャフト17と共に正転方向または逆転方向に回転する。
エンジン8は、一定の回転方向にドライブシャフト15を回転させる。前後進切替機構16は、正転方向の回転がドライブシャフト15からプロペラシャフト17に伝達される前進状態と、逆転方向の回転がドライブシャフト15からプロペラシャフト17に伝達される後進状態とに切り替わる。前後進切替機構16は、ドライブシャフト15からプロペラシャフト17への回転の伝達が遮断される中立状態にも切り替わる。船外機3のシフト装置19は、前後進切替機構16の状態を切り替えることにより、エンジン8からプロペラ18に伝達される回転の方向を切り替える。
図2は、船舶推進機1の電気的構成を示すブロック図である。船外機3は、推進機ECU31と、燃焼室に供給される空気の流量を変更するスロットルバルブの開度を変更するスロットルアクチュエータ32と、燃焼室に供給される燃料の流量を変更する燃料供給装置33とを含む。推進機ECU(Electronic Control Unit)31は、船舶推進機1を制御する制御装置の一例である。推進機ECU31は、スロットルアクチュエータ32および燃料供給装置33を制御することによりエンジン8の出力を変更する。エンジン8の回転速度(クランクシャフト14の回転速度)は、速度センサ34によって検出される。電動モータ11の回転速度は、別の速度センサ(図示せず)によって検出されて推進機ECU31に入力される。推進機ECU31は、カウル20内に配置されたスタータモータ35にエンジン8を始動させる。
船舶推進機1は、船舶の前進および後進の切替と船舶推進機1の出力の調整とを行うときにユーザによって操作されるリモコンユニット101と、船舶推進機1を始動させるときにユーザによって操作される始動スイッチ108とを含む。リモコンユニット101および始動スイッチ108は、船体H1に配置されている。ユーザによるリモコンユニット101および始動スイッチ108の操作は、無線または有線によって推進機ECU31に電気的に伝達される。
図3、図4および図5は、船外機3のロワーユニットの鉛直断面の一部を示す断面図であって、それぞれに異なる状態を示している。図3に示すように、ロワーケース24は、第1パワートレインを収容する第1収容室と、第2パワートレインを収容する第2収容室とを形成している。第1収容室は、ドライブシャフト15が挿入されたシャフト挿入穴43と、前後進切替機構16が配置されたギヤ室44とを含む。第2収容室は、電動モータ11が配置されたモータ室41(図1参照)と、後述するシフトスライダ65の前端部が配置されたシフト室42とを含む。
シャフト挿入穴43は、ギヤ室44から上方に延びており、モータ室41は、シフト室42から上方に延びている。シャフト挿入穴43およびモータ室41は、前後方向に互いに離れており、ギヤ室44およびシフト室42は、互いに接続されている。シフト室42は、スペーサ(図示せず)によってモータ室41から隔てられている。潤滑油は、シャフト挿入穴43、ギヤ室44およびシフト室42に貯留されている。
前後進切替機構16は、ドライブシャフト15と共に回転するピニオン49と、ピニオン49によって回転駆動される前ギヤ50と、ピニオン49によって前ギヤ50とは反対の方向に回転駆動される後ギヤ51とを含む。前後進切替機構16は、前ギヤ50および後ギヤ51の一方に噛み合う第1接続位置と、前ギヤ50および後ギヤ51の両方から離れる第1切断位置との間で移動可能な第1ドッグクラッチ52も含む。ピニオン49は、第1駆動ギヤの一例であり、前ギヤ50および後ギヤ51は、第1従動ギヤの一例である。
ピニオン49、前ギヤ50および後ギヤ51は、いずれも、ベベルギヤである。ピニオン49は、ドライブシャフト15と同軸であり、前ギヤ50および後ギヤ51は、プロペラシャフト17と同軸である。前ギヤ50および後ギヤ51は、プロペラシャフト17を取り囲んでおり、回転可能にロワーケース24に支持されている。前ギヤ50および後ギヤ51は、間隔を空けて前後方向に対向している。
第1ドッグクラッチ52は、前ギヤ50および後ギヤ51の間に配置されている。第1ドッグクラッチ52は、ピニオン49の下方に位置している。第1ドッグクラッチ52は、プロペラシャフト17を取り囲む筒状である。第1ドッグクラッチ52は、前後方向に延びるスプラインによってプロペラシャフト17に結合されている。第1ドッグクラッチ52は、プロペラシャフト17に対して前後方向に移動可能であり、プロペラシャフト17と共に回転可能である。
図4および図5に示すように、第1ドッグクラッチ52は、前ギヤ50の複数の前凹部53に噛み合う複数の前凸部54と、後ギヤ51の複数の後凹部56に噛み合う複数の後凸部55とを含む。複数の前凸部54は、第1ドッグクラッチ52の周方向に等間隔で配置されており、プロペラシャフト17および第1ドッグクラッチ52の軸方向に相当する前後方向に延びている。複数の後凸部55についても複数の前凸部54と同様である。第1ドッグクラッチ52、前凹部53および後凹部56は、第1クラッチ81に含まれる。
第1ドッグクラッチ52は、前進位置(図4に示す位置)、中立位置(図3に示す位置)、および後進位置(図5に示す位置)のいずれかに配置される。前進位置は、第1ドッグクラッチ52が、前ギヤ50に噛み合い、前ギヤ50と共に回転する位置である。後進位置は、第1ドッグクラッチ52が、後ギヤ51に噛み合い、後ギヤ51と共に回転する位置である。中立位置は、第1ドッグクラッチ52が前ギヤ50および後ギヤ51から離れてドライブシャフト15からプロペラシャフト17への回転の伝達が遮断される位置である。中立位置は、第1伝達経路9の動力伝達を遮断する第1切断位置であり、前進位置および後進位置は、第1伝達経路9の動力伝達を許容する第1接続位置である。第1ドッグクラッチ52が中立位置に配置されると、第1クラッチ81は第1切断状態になる。第1ドッグクラッチ52が第1接続位置に配置されると、第1クラッチ81は第1接続状態になる。
図3に示すように、シフト装置19は、前後進切替機構16の状態を切り替える動力を発生するシフトアクチュエータ57と、第1ドッグクラッチ52と共に前後方向に移動するシフトスライダ65とを含む。シフト装置19は、シフトスライダ65を前後方向に押すプッシャ64と、シフトアクチュエータ57の動力をプッシャ64に伝達する側面視L字状のリンクアーム60とを含む。シフト装置19は、第1ドッグクラッチ52およびシフトスライダ65を互いに連結する連結ピン66も含む。シフト装置19は、切替装置の一例である。
シフトアクチュエータ57の少なくとも一部は、ロワーケース24内に配置されている。シフトアクチュエータ57は、軸方向に移動可能なシフトロッド59と、シフトロッド59をその軸方向に移動させる動力を発生するシフトモータと、シフトモータの回転をシフトロッド59の直線運動に変換するボールネジおよびボールナットとを含む。シフトアクチュエータ57は、これらのシフトモータ、ボールネジおよびボールナットを収容するシフトハウジング58を含む。
シフトハウジング58は、前述したスペーサを介してロワーケース24に固定されている。シフトロッド59は、シフトハウジング58から下方に突出している。上下方向に延びるシフトロッド59は、ドライブシャフト15と平行である。シフトモータがその出力シャフトを回転させると、ボールナットおよびボールネジが相対回転し、シフトロッド59がシフトハウジング58に対してシフトロッド59の軸方向に移動する。これにより、シフトハウジング58からのシフトロッド59の突出量が変化する。
シフトスライダ65は、ロワーケース24内で前後方向に延びている。シフトスライダ65は、プロペラシャフト17と同軸である。シフトスライダ65の一部は、プロペラシャフト17の前方に位置している。シフトスライダ65は、前後方向に延びる複数の歯が外周に設けられたスプライン部70を含む。スプライン部70は、プロペラシャフト17の前端部から後方に延びるプロペラシャフト17の中心穴72に挿入されている。シフトスライダ65は、プロペラシャフト17にスプライン結合されている。シフトスライダ65は、プロペラシャフト17に対して前後方向に移動可能であり、プロペラシャフト17と共に回転可能である。
連結ピン66は、プロペラシャフト17の径方向にプロペラシャフト17を貫通する貫通穴73に挿入されている。シフトスライダ65の後端部は、貫通穴73内に配置されている。連結ピン66は、貫通穴73内でシフトスライダ65の差込穴71に挿入されている。連結ピン66の両端部は、貫通穴73を取り囲む第1ドッグクラッチ52に連結されている。連結ピン66は、貫通穴73内で前後方向に移動可能である。連結ピン66は、第1ドッグクラッチ52およびシフトスライダ65と共にプロペラシャフト17に対して前後方向に移動可能であり、第1ドッグクラッチ52、シフトスライダ65およびプロペラシャフト17と共に回転可能である。
リンクアーム60は、左右方向に延びるピン61を介してシフトロッド59に連結された第1端部と、プッシャ64に連結された第2端部と、左右方向に延びる中間ピン62を介してホルダ75に連結された中間部とを含む。ピン61は、シフトロッド59に保持されている。ピン61は、リンクアーム60の第1端部に形成された長穴60Aに、前後の遊びを持って嵌め込まれている。ホルダ75は、前述したスペーサから下方に延びており、スペーサを介してロワーケース24に固定されている。リンクアーム60は、ホルダ75に対して中間ピン62の中心線まわりに回転可能である。
シフトロッド59が上下方向に移動すると、リンクアーム60の第1端部が、上方または下方に押され、中間ピン62の中心線まわりに上下方向に回動する。それに伴って、リンクアーム60の第2端部が、中間ピン62の中心線まわりに前後方向に回動する。これにより、プッシャ64が前方または後方に押される。
プッシャ64は、シフトスライダ65の中心線まわりにシフトスライダ65を取り囲む環状溝68に挿入されている。シフトスライダ65は、環状溝68の側面を形成する環状の前対向部67および後対向部69を含む。前対向部67は、プッシャ64の前方に配置されており、後対向部69は、プッシャ64の後方に配置されている。前対向部67および後対向部69は、シフトスライダ65がいずれの回転角にあるときでも、プッシャ64に対向している。プッシャ64が前方に移動すると、前対向部67が前方に押され、シフトスライダ65が前方に移動する。これとは反対にプッシャ64が後方に移動すると、後対向部69が後方に押され、シフトスライダ65が後方に移動する。
次に、電動モータ11を含む第2パワートレインについて説明する。
電動モータ11は、ドライブシャフト15の前方に配置されている。ドライブシャフト15は、ピニオン49の上方に位置するベアリング48等を介してロワーケース24に回転可能に支持されている。
電動モータ11は、例えば、ステッピングモータであって、ロワーケース24に固定されている。電動モータ11は、ドライブシャフト15と平行に延びて下方へ突出した出力シャフトを含む。
第2伝達部材13は、電動モータ11の回転(前述した出力シャフトの回転)を減速および伝達する減速機構と、減速機構によって減速および伝達された回転をプロペラシャフト17の方に伝達する中間シャフト90とを含む。第2伝達部材13は、さらに、中間シャフト90と共に回転する第2駆動ギヤ91と、第2駆動ギヤ91によって回転駆動される第2従動ギヤ92とを含む。第2伝達部材13は、さらに、第2従動ギヤ92と共に回転する中間リング93と、第2従動ギヤ92および中間リング93によって取り囲まれたシフトスライダ65とを含む。シフトスライダ65は、第2伝達部材13およびシフト装置19に共有されている。
減速機構は、例えば、遊星歯車機構であって、電動モータ11の出力シャフトおよび中間シャフト90に連結されている。電動モータ11が出力シャフトを回転させると、電動モータ11の回転が減速機構によって減速されて中間シャフト90に伝達される。
中間シャフト90は、電動モータ11と同軸である。中間シャフト90は、電動モータ11に対して偏心していてもよい。中間シャフト90は、減速機構から下方に延びている。中間シャフト90は、ドライブシャフト15と平行である。中間シャフト90は、ロワーケース24に固定された筒状のシャフトハウジング76内に配置されている。中間シャフト90は、第2駆動ギヤ91に連結されている。第2駆動ギヤ91は、中間シャフト90の下端に固定されている。中間シャフト90および第2駆動ギヤ91は、シャフトハウジング76に対して回転可能である。
第2駆動ギヤ91および第2従動ギヤ92は、いずれも、ベベルギヤである。第2駆動ギヤ91は、シフトスライダ65の上方に位置している。第2従動ギヤ92は、プロペラシャフト17の前方に位置している。第2従動ギヤ92は、シフトスライダ65と同軸であり、シフトスライダ65の径方向に間隔を空けてシフトスライダ65を取り囲んでいる。第2従動ギヤ92は、シフトスライダ65から離れている。第2従動ギヤ92は、第2駆動ギヤ91の回転軸線よりも前方に配置されている。第2従動ギヤ92は、第2駆動ギヤ91の回転軸線よりも後方に配置されていてもよい。
中間リング93は、シフトスライダ65と同軸であり、シフトスライダ65を取り囲んでいる。中間リング93および第2従動ギヤ92は、単一の一体部材である。中間リング93は、第2従動ギヤ92に固定された、第2従動ギヤ92とは別の部材であってもよい。いずれにせよ、中間リング93を第2従動ギヤ92の一部とみなしてもよい。中間リング93は、第2従動ギヤ92から前方へ延びている。中間リング93は、ベアリングおよびアダプター77を介して回転可能にロワーケース24に支持されている。
第2伝達部材13は、中間リング93がシフトスライダ65と共に回転する第2接続状態と、中間リング93およびシフトスライダ65の接続が解除される第2切断状態との間で切り替わる第2クラッチ82を含む。第2クラッチ82は、中間リング93に噛み合う第2接続位置と、中間リング93から離れる第2切断位置との間で前後方向に移動可能な第2ドッグクラッチ94を含む。
図3は、第2ドッグクラッチ94およびシフトスライダ65が、単一の一体部材である例を示している。第2ドッグクラッチ94は、シフトスライダ65に固定された、シフトスライダ65とは別の部材であってもよい。シフトスライダ65がプロペラシャフト17と共に回転可能であるので、第2ドッグクラッチ94もプロペラシャフト17と共に回転可能である。
図4および図5に示すように、第2ドッグクラッチ94は、中間リング93の複数の凹部95に噛み合う複数の凸部96を含む。複数の凸部96は、第2ドッグクラッチ94の周方向に等間隔で配置されている。複数の凸部96は、シフトスライダ65から第2ドッグクラッチ94の径方向における外方に突出している。複数の凹部95は、中間リング93の内周面から第2ドッグクラッチ94の径方向における外方に凹んでいる。複数の凹部95は、第2ドッグクラッチ94の周方向に等間隔で配置されている。凸部96および凹部95は、前後方向における環状溝68とスプライン部70との間に位置している。
第2ドッグクラッチ94は、前切断位置(図4に示す位置)、第2接続位置(図3に示す位置)、および後切断位置(図5に示す位置)のいずれかに配置される。前切断位置および後切断位置は、前述した第2切断位置である。第2ドッグクラッチ94が第2接続位置に移動すると、各凸部96が対応する凹部95に嵌まる。これにより、第2クラッチ82が第2切断状態から第2接続状態に切り替わる。第2接続状態では、滑りを生じることなく、電動モータ11の回転が中間リング93およびシフトスライダ65の間で伝達される。つまり、第2接続状態の第2クラッチ82は、第2伝達経路12の動力伝達を許容する。
第2ドッグクラッチ94が第2切断位置に移動すると、各凸部96が対応する凹部95から離れる。これにより、第2クラッチ82が第2接続状態から第2切断状態に切り替わる。第2切断状態では、中間リング93およびシフトスライダ65の間での回転の伝達が遮断される。つまり、第2切断状態の第2クラッチ82は、第2伝達経路12の動力伝達を遮断する。
シフトアクチュエータ57は、シフトスライダ65を前後方向に移動させて前位置(図4に示す位置)、中間位置(図3に示す位置)、および後位置(図5に示す位置)のいずれかに位置させる。シフトスライダ65が前後方向に移動すると、第1ドッグクラッチ52および第2ドッグクラッチ94も前後方向に移動する。そのため、中間位置では、第1ドッグクラッチ52が中立位置(第1切断位置)に配置され、第2ドッグクラッチ94が第2接続位置に配置される。前位置では、第1ドッグクラッチ52が前進位置(第1接続位置)に配置され、第2ドッグクラッチ94が前切断位置(第2切断位置)に配置される。後位置では、第1ドッグクラッチ52が後進位置(第1接続位置)に配置され、第2ドッグクラッチ94が後切断位置(第2切断位置)に配置される。
シフトアクチュエータ57がシフトスライダ65を中間位置から前位置に移動させる。すると、第2ドッグクラッチ94の複数の凸部96が、中間リング93の複数の凹部95に対して前方に移動しながら、第1ドッグクラッチ52の複数の前凸部54が、前ギヤ50の複数の前凹部53の方に前方に移動する。シフトスライダ65が前位置に配置されると、第2ドッグクラッチ94の複数の凸部96が、中間リング93の複数の凹部95から前方に離れ、第1ドッグクラッチ52の複数の前凸部54が、前ギヤ50の複数の前凹部53に噛み合う。これにより、第1クラッチ81が接続され、第2クラッチ82が切断される。
シフトアクチュエータ57がシフトスライダ65を中間位置から後位置に移動させる。すると、第2ドッグクラッチ94の複数の凸部96が、中間リング93の複数の凹部95に対して後方に移動しながら、第1ドッグクラッチ52の複数の後凸部55が、後ギヤ51の複数の後凹部56の方に後方に移動する。シフトスライダ65が後位置に配置されると、第2ドッグクラッチ94の複数の凸部96が、中間リング93の複数の凹部95から後方に離れ、第1ドッグクラッチ52の複数の後凸部55が、後ギヤ51の複数の後凹部56に噛み合う。これにより、第1クラッチ81が接続され、第2クラッチ82が切断される。
シフトアクチュエータ57がシフトスライダ65を前位置または後位置から中間位置に移動させるとき、第2ドッグクラッチ94の複数の凸部96が、中間リング93の複数の凹部95の方に移動する。それと共に、第1ドッグクラッチ52の複数の前凸部54が、前ギヤ50の複数の前凹部53に対して後方に移動する。もしくは、第1ドッグクラッチ52の複数の後凸部55が、後ギヤ51の複数の後凹部56に対して前方に移動する。シフトスライダ65が中間位置に配置されると、第2ドッグクラッチ94の複数の凸部96が、中間リング93の複数の凹部95に噛み合い、第1クラッチの前凸部54および後凸部55が、第1クラッチの前凹部53および後凹部56から離れる。これにより、第2クラッチ82が接続され、第1クラッチ81が切断される。
以上のように、シフトアクチュエータ57を有するシフト装置19は、第1クラッチ81を第1切断状態から第1接続状態に切り替え、且つ、第2クラッチ82を第2接続状態から第2切断状態に切り替える。また、シフト装置19は、第1クラッチ81を第1接続状態から第1切断状態に切り替え、且つ、第2クラッチ82を第2切断状態から第2接続状態に切り替える。
図6は、リモコンユニット101の模式図である。リモコンユニット101は、ユーザに操作される操作レバー102と、操作レバー102が前後方向に傾倒できるように操作レバー102の根元部を支持するリモコンボックス103とを含む。操作レバー102は、船舶推進機1の出力を調整するときに操作されるスロットル操作部材であり、且つ、船舶の前進および後進を切り替えるときに操作されるシフト操作部材である。リモコンユニット101は、操作レバー102に代えて、互いに独立したスロットル操作部材およびシフト操作部材を備えていてもよい。
操作レバー102は、中立位置Nから前後方向に傾倒可能である。中立位置Nは、船舶推進機1が推力を発生しない原点位置である。中立位置Nから前方の領域は、船舶推進機1が船舶を前方に向けて推進させる前進領域である。中立位置Nから後方の領域は、船舶推進機1が船舶を後方に向けて推進させる後進領域である。
ユーザは、操作レバー102を中立位置Nから前方に傾倒することにより、操作レバー102を、第1前進位置F1、第2前進位置F2および第3前進位置F3に順に配置することができ、第3前進位置F3を超えてさらに前方へ移動させることができる。中立位置Nから第1前進位置F1までの領域は、エンジン8および電動モータ11の両方が停止した停船領域である。第1前進位置F1から第2前進位置F2までの領域は、電動モータ11だけでプロペラ18を正転方向に回転させるEM前進領域である。第2前進位置F2から第3前進位置F3までの領域は、原動機をエンジン8および電動モータ11の間で切り替える切替領域である。第3前進位置F3を前方に越えた領域は、エンジン8だけでプロペラ18を正転方向に回転させるEG前進領域である。
同様に、ユーザは、操作レバー102を中立位置Nから後方に傾倒することにより、操作レバー102を、第1後進位置R1、第2後進位置R2および第3後進位置R3に順に配置することができ、第3後進位置R3を超えてさらに後方へ移動させることができる。中立位置Nから第1後進位置R1までの領域は、エンジン8および電動モータ11の両方が停止した停船領域である。第1後進位置R1から第2後進位置R2までの領域は、電動モータ11だけでプロペラ18を逆転方向に回転させるEM後進領域である。第2後進位置R2から第3後進位置R3までの領域は、原動機をエンジン8および電動モータ11の間で切り替える切替領域である。第3後進位置R3を後方に越えた領域は、エンジン8だけでプロペラ18を逆転方向に回転させるEG後進領域である。
ユーザが操作レバー102を中立位置Nに配置すると、操作レバー102に設けられた突起104が、リモコンボックス103に設けられた凹み105に嵌まり、操作レバー102の操作抵抗が増加する。ユーザが操作レバー102を中立位置Nから前方または後方に傾けると、突起104が凹み105から外れる。これにより、操作レバー102が中立位置Nに位置しているか否かが感覚的にユーザに伝わる。このような凹み105は、第1前進位置F1、第2前進位置F2、第3前進位置F3、第1後進位置R1、第2後進位置R2および第3後進位置R3のそれぞれに対応する位置にも設けられている。
リモコンユニット101は、操作レバー102の位置を検出するレバー位置センサ106を含む。リモコンユニット101は、船外機3をシフトさせるシフト変更信号と船舶推進機1の出力を変更させる出力変更信号とをレバー位置センサ106の検出値に応じて推進機ECU31に出力するリモコンECU107も含む。推進機ECU31は、操作レバー102の位置に応じて船舶の前進および後進の切替を行う。また、推進機ECU31は、EG前進領域およびEG後進領域のそれぞれにおいて中立位置Nからの操作レバー102の移動量が増加するのに従って、エンジン8の出力を増加させる。推進機ECU31は、EM前進領域およびEM後進領域のそれぞれにおいて中立位置Nからの操作レバー102の移動量が増加するのに従って、電動モータ11の出力を増加させてもよいし、一定にしてもよい。
図7は、始動スイッチ108の模式図である。始動スイッチ108は、ユーザの操作によって、OFF位置、ON位置、およびSTART位置のいずれかの操作位置をとり得る。図7は、始動スイッチ108がロータリースイッチである例を示している。始動スイッチ108は、ロータリースイッチに限らず、プッシュ式またはプル式のスイッチであってもよいし、これら以外の形式のスイッチであってもよい。ON位置は、OFF位置とSTART位置との間の位置である。始動スイッチ108がSTART位置まで操作された後にユーザが始動スイッチ108を離すと、始動スイッチ108は自動でON位置に戻る。
OFF位置は、バッテリと電気機器とを接続する電気回路が切断される位置である。ON位置は、電気回路の切断が解除され、バッテリと電気機器とが電気回路を介して接続される位置である。START位置は、スタータモータ35を動作させる位置、もしくは、スタータモータ35の動作が許可されたことを推進機ECU31に記憶させる位置である。図2に示すように、電動モータ11は、船体H1内に配置されたバッテリB1に接続されている。同様に、スタータモータ35は、船体H1内に配置されたバッテリB2に接続されている。電動モータ11およびスタータモータ35は、同じバッテリに接続されていてもよい。
操作レバー102が中立位置Nにあるときに、ユーザがON位置を介してOFF位置からSTART位置に始動スイッチ108を移動させると、電動モータ11とバッテリB1との間に介在する電気回路が閉じられる。さらに、エンジン8の始動を許可する始動許可指令が推進機ECU31に入力され、始動が許可されたことが推進機ECU31に記憶される。この記憶は、始動スイッチ108がOFF位置に配置されるまで保持される。後述するように、推進機ECU31は、操作レバー102の位置に応じてスタータモータ35にエンジン8を始動させる。
図8は、操作レバー102を前方に傾けたときの、操作レバー102の位置とエンジン8等の動作との関係を示す表である。図9は、操作レバー102を後方に傾けたときの、操作レバー102の位置とエンジン8等の動作との関係を示す表である。図10は、操作レバー102の位置とエンジン8および電動モータ11のそれぞれの回転速度との関係を示す図である。
図8および図9において、「←」は操作レバー102が前方に移動されることを示し、「→」は操作レバー102が後方に移動されることを示す。「EG」はエンジン8を意味し、「EM」は電動モータ11を意味する。第1ドッグクラッチ52の「F」「N」および「R」は、それぞれ、「前進位置(第1接続位置)」「中立位置(第1切断位置)」および「後進位置(第1接続位置)」を意味する。第2ドッグクラッチ94の「ON」および「OFF」は、それぞれ、「第2接続位置」および「第2切断位置」を意味する。
図10において、横軸は操作レバー102の位置を示し、縦軸はエンジン8および電動モータ11のそれぞれの回転速度(単位:rpm)を示している。ただし、以下で述べるエンジン8の回転速度は、エンジン8の実際の回転速度ではなく、エンジン8の実際の回転速度を第1伝達経路9における減速比に基いてプロペラシャフト17の回転速度に換算して得られるエンジン換算回転速度である。当該減速比として、ピニオン49のギヤ比等が挙げられる。エンジン換算回転速度は、前ギヤ50および後ギヤ51の回転速度と同じまたは略同じである。エンジン8の回転速度(エンジン換算回転速度)は、図10では太い1点鎖線LEG1または実線LEG2で示されている。
同様に、電動モータ11の回転速度は、電動モータ11の実際の回転速度ではなく、電動モータ11の実際の回転速度を第2伝達経路12における減速比に基いてプロペラシャフト17の回転速度に換算して得られる電動モータ換算回転速度である。当該減速比として、第2駆動ギヤ91のギヤ比等が挙げられる。電動モータ換算回転速度は、第2従動ギヤ92および中間リング93の回転速度と同じまたは略同じである。電動モータ11の回転速度(電動モータ換算回転速度)は、図10では太い破線LEM1およびLEM2で示されている。また、以下の説明では、エンジン換算回転速度および電動モータ換算回転速度が共に正の値である場合を前提としているが、電動モータ換算回転速度およびエンジン換算回転速度の一方が正の値であって他方が負の値である場合もあり得る。
最初に、図8および図10を参照して、操作レバー102を中立位置Nから前方に傾けたときのエンジン8等の動作について説明する。
操作レバー102が中立位置Nにあるとき、第1ドッグクラッチ52は、前ギヤ50および後ギヤ51の両方から離れた中立位置に位置しており、第2ドッグクラッチ94は、複数の凸部96が複数の凹部95に噛み合う第2接続位置に位置している。そのため、第1クラッチ81は、第1切断状態にあり、第2クラッチ82は、第2接続状態にある。
ユーザが操作レバー102を中立位置Nから第1前進位置F1まで前方に移動させると、推進機ECU31が電動モータ11を正転方向に回転させ、電動モータ11が動力(トルク)を発生する。これにより、プロペラ18が正転方向に回転し、船舶を前方に推進させる推力が発生する。
操作レバー102が第1前進位置F1と第2前進位置F2との間に位置している間、推進機ECU31は、電動モータ換算回転速度を、例えば700rpmといった一定の値に維持する。そのため、船舶を前方に推進させる推力は一定である。
操作レバー102が第2前進位置F2に配置されると、推進機ECU31は、スタータモータ35にエンジン8を始動させる。これにより、エンジン8の回転がドライブシャフト15およびピニオン49を介して前ギヤ50および後ギヤ51に伝達され、前ギヤ50および後ギヤ51が互いに反対の方向に回転する。その後、推進機ECU31は、例えばスロットルバルブの開度を制御することにより、エンジン8の回転速度を低回転速度に維持する。このときのエンジン8の回転速度は、アイドリング回転速度であってもよいし、トローリング回転速度であってもよい。
操作レバー102が第3前進位置F3へ向けて操作されると、推進機ECU31は、同調制御を実行する。具体的には、推進機ECU31は、エンジン8が始動した後の前ギヤ50の回転速度の絶対値が第1しきい値以下であり、かつ、前ギヤ50の回転速度の絶対値と第1ドッグクラッチ52の回転速度の絶対値との差を示す速度差Xが、0を超え第2しきい値以下であるか否かを判断する。第1しきい値および第2しきい値は、正の値である。第1しきい値の具体値は、一例として900rpmである。第2しきい値は、上限値の一例であり、具体的には200rpmであり、好ましくは50rpmである。また、このときには電動モータ11の動力だけでプロペラシャフト17が回転しているので、プロペラシャフト17と一体回転する第1ドッグクラッチ52の回転速度は、電動モータ換算回転速度と同じまたは略同じである。一方、前ギヤ50の回転速度は、エンジン換算回転速度と同じまたは略同じである。本実施形態における同調制御とは、エンジン換算回転速度の絶対値と電動モータ換算回転速度の絶対値との差を縮める制御である。
前ギヤ50の回転速度は、エンジン8の回転速度に応じて変化する。エンジン8の始動時は、エンジン8の回転速度が例えば1200rpmまで一時的に高まるものの、時間の経過に伴って減少する。前ギヤ50の回転速度の絶対値が第1しきい値を超えている場合、推進機ECU31は、前ギヤ50の回転速度の絶対値が第1しきい値以下になるまで待機する。
前ギヤ50の回転速度の絶対値が第1しきい値以下まで小さくなり、かつ、速度差Xが0になると(図10のタイミングT1参照)、推進機ECU31は、シフトアクチュエータ57にシフトスライダ65を中間位置から前位置へ向けて移動させる。これにより、第2ドッグクラッチ94が中間リング93から離れ、第1ドッグクラッチ52が前ギヤ50に噛み合い始める。
そして、推進機ECU31は、エンジン換算回転速度の絶対値を電動モータ換算回転速度の絶対値に近付くように制御することにより、速度差Xを、0を超え第2しきい値以下の値に減少させる。つまり、推進機ECU31は、第1ドッグクラッチ52が前ギヤ50に噛み合う際に、前ギヤ50の回転速度と第1ドッグクラッチ52の回転速度とが概ね等しく、かつ、互いに異なるように、エンジン8および電動モータ11の回転速度を同調制御する。前ギヤ50の回転速度と第1ドッグクラッチ52の回転速度とを互いに異ならせる理由は、速度差Xが0であると、第1ドッグクラッチ52の前凸部54が前ギヤ50の前凹部53に対向していない状態が維持され、第1ドッグクラッチ52の前凸部54が前ギヤ50の前凹部53に嵌まり難くなり得るからである。また、前ギヤ50の回転速度と第1ドッグクラッチ52の回転速度とを概ね等しくする理由は、速度差Xが大きいと、第1ドッグクラッチ52が前ギヤ50に噛み合うときに騒音が発生し得るからである。
第1ドッグクラッチ52が前ギヤ50に噛み合っていくと速度差Xが0になる(図10のタイミングT2参照)。そして、操作レバー102が第3前進位置F3に到達するときには、シフトスライダ65が前位置に到達することにより、第1ドッグクラッチ52と前ギヤ50との噛み合いが完了する。そのため、電動モータ11からプロペラシャフト17への回転の伝達が遮断され、エンジン8の回転が、前ギヤ50および第1ドッグクラッチ52を介してプロペラシャフト17に伝達される。つまり、第1クラッチ81が第1切断状態から第1接続状態に切り替わり、且つ、第2クラッチ82が第2接続状態から第2切断状態に切り替わる。
操作レバー102が第3前進位置F3に到達するタイミングまたは当該タイミングよりも前に、推進機ECU31は、電動モータ11を停止させる(図10のタイミングT3参照)。操作レバー102が第3前進位置F3を越えた位置にあるとき、推進機ECU31は、中立位置Nからの操作レバー102の移動量が増加するのに従ってエンジン8の動力を増加させ、中立位置Nからの操作レバー102の移動量が減少するのに従ってエンジン8の動力を減少させる。これにより、エンジン8の回転速度が増減する。
次に、操作レバー102を第3前進位置F3から中立位置Nに戻すときのエンジン8等の動作について説明する。
ユーザが操作レバー102を第3前進位置F3から第2前進位置F2へ向けて移動させると、推進機ECU31は、例えばスロットルバルブの開度を減少させることにより、エンジン8の回転速度を低下させる。このときのエンジン8の回転速度は、アイドリング回転速度であってもよいし、トローリング回転速度であってもよい。
推進機ECU31は、エンジン8の回転速度を低下させるのと同時に、電動モータ11に電力を供給し、電動モータ11を正転方向に回転させる。電動モータ11の回転は、中間シャフト90および第2駆動ギヤ91を介して第2従動ギヤ92および中間リング93に伝達される。
推進機ECU31は、電動モータ11が始動した後、同調制御を実行する。具体的には、まず、推進機ECU31は、中間リング93の回転速度の絶対値が第3しきい値以下であり、かつ、中間リング93の回転速度の絶対値と第2ドッグクラッチ94の回転速度の絶対値との差を示す速度差Yが0を超え第4しきい値以下であるか否かを判断する。第3しきい値および第4しきい値は、正の値である。第3しきい値の具体値は、一例として第1しきい値と同じ900rpmであるが、第1しきい値と異なってもよい。第4しきい値は、具体的には200rpmであり、好ましくは50rpmである。第4しきい値は、前述した第2しきい値と同じであってもよいし、第2しきい値と異なってもよい。また、電動モータ11の始動直後では、エンジン8の動力だけでプロペラシャフト17が回転しているので、プロペラシャフト17と一体回転する第2ドッグクラッチ94の回転速度は、エンジン換算回転速度と同じまたは略同じである。一方、中間リング93の回転速度は、電動モータ換算回転速度と同じまたは略同じである。
中間リング93の回転速度の絶対値が第3しきい値以下であり、かつ、速度差Yが0になると、推進機ECU31は、シフトアクチュエータ57にシフトスライダ65を前位置から中間位置へ向けて移動させる。これにより、第1ドッグクラッチ52が前ギヤ50から離れ、第2ドッグクラッチ94が中間リング93に噛み合い始める(図10のタイミングT4参照)。
そして、推進機ECU31は、エンジン換算回転速度の絶対値を電動モータ換算回転速度の絶対値に近付くように制御することにより、速度差Yを、0を超え第4しきい値以下の値に減少させる。つまり、推進機ECU31は、第2ドッグクラッチ94が中間リング93に噛み合う際に、中間リング93の回転速度と第2ドッグクラッチ94の回転速度とが概ね等しく、かつ、互いに異なるように、エンジン8および電動モータ11の回転速度を同調制御する。中間リング93の回転速度と第2ドッグクラッチ94の回転速度とを互いに異ならせる理由は、速度差Yが0であると、第2ドッグクラッチ94の凸部96が中間リング93の凹部95に対向していない状態が維持され、凸部96が凹部95に嵌まり難くなり得るからである。また、中間リング93の回転速度と第2ドッグクラッチ94の回転速度とを概ね等しくする理由は、速度差Yが大きいと、第2ドッグクラッチ94が中間リング93に噛み合うときに騒音が発生し得るからである。
操作レバー102が第2前進位置F2に到達するときには、シフトスライダ65が中間位置に到達することにより、中間リング93と第2ドッグクラッチ94との噛み合いが完了する。そのため、エンジン8からプロペラシャフト17への回転の伝達が遮断され、電動モータ11の回転が、シフトスライダ65を介してプロペラシャフト17に伝達される。つまり、第1クラッチ81が第1接続状態から第1切断状態に切り替わり、且つ、第2クラッチ82が第2切断状態から第2接続状態に切り替わる。
操作レバー102が第2前進位置F2に到達するタイミングまたは当該タイミングよりも前に、推進機ECU31は、エンジン8を停止させる(図10のタイミングT5参照)。操作レバー102が第2前進位置F2と第1前進位置F1との間に位置しているとき、推進機ECU31は、電動モータ換算回転速度を、例えば700rpmといった一定の値に維持する。そのため、船舶を前方に推進させる推力は一定である。操作レバー102が中立位置Nへ向けて第1前進位置F1を越えると、推進機ECU31は、電動モータ11を停止させる。
図9は、操作レバー102を中立位置Nから後方に傾けたときと、操作レバー102を第3後進位置R3から中立位置Nに戻したときのエンジン8等の動作を示している。図9におけるエンジン8等の動作は、電動モータ11の回転方向が正転方向ではなく逆転方向であることと、第1ドッグクラッチ52が前進位置ではなく後進位置に配置されることを除き、図8におけるエンジン8等の動作とほぼ同様である。したがって、図9についての詳細な説明は省略する。
以上の通り、この実施形態の構成によれば、電動モータ11および第2伝達経路12が船外機3のロワーケース24内に収められていて、既存の前後進切替機構16およびシフト装置19の流用によって動力切替ができる。具体的には、シフト装置19における共通のシフトロッド59の前後移動に連動して、エンジン8と電動モータ11との間で動力を切り替えることができる。そのため、ハイブリッド船舶推進機1では、船外機3の基本構造やサイズを変えることなく、小型軽量且つシンプルな構成によって動力切替を達成できる。
この実施形態において、第1クラッチ81が第1切断状態に切り替わると、第2クラッチ82が第2接続状態に切り替わる。これとは反対に、第2クラッチ82が第2切断状態に切り替わると、第1クラッチ81が第1接続状態に切り替わる。したがって、エンジン8がプロペラシャフト17を回転させているときに、電動モータ11の抵抗がプロペラシャフト17に伝達されたり、エンジン8の回転が電動モータ11に伝達されたりすることを防止できる。同様に、電動モータ11がプロペラシャフト17を回転させているときに、エンジン8の抵抗がプロペラシャフト17に伝達されることを防止できる。これにより、エンジン8および電動モータ11の動力を効率的に利用することができる。そのため、出力が小さい電動モータ11でも、容易にプロペラシャフト17およびプロペラ18を回転させて推力を発生することができる。
この実施形態において、シフト装置19が第1クラッチ81を第1切断状態と第1接続状態との間で切り替え且つ第2クラッチ82を第2接続状態と第2切断状態との間で切り替えるときに、推進機ECU31は、エンジン8および電動モータ11の同調制御を実行する。同調制御では、推進機ECU31は、エンジン換算回転速度の絶対値と電動モータ換算回転速度の絶対値との差が零より大きく所定の上限値(前述した第2しきい値や第4しきい値)以下になるようにエンジン8および電動モータ11を制御する。
ユーザが操作レバー102を第2前進位置F2から第3前進位置F3へ移動させることによって、シフトイン操作する。すると、シフト装置19がシフトインする。つまり、シフト装置19が、第1クラッチ81を第1切断状態から第1接続状態に切り替え且つ第2クラッチ82を第2接続状態から第2切断状態に切り替える。これにより、第1ドッグクラッチ52が、エンジン8の動力を受けて回転する前ギヤ50または後ギヤ51に連結されて、第2ドッグクラッチ94が、電動モータ11の動力を受けて回転する第2従動ギヤ92から離れる。すると、船舶推進機1はエンジン駆動モードになる。
ユーザが操作レバー102を第3前進位置F3から第2前進位置F2へ移動させることによって、シフトアウト操作する。すると、シフト装置19がシフトアウトする。つまり、シフト装置19が、第1クラッチ81を第1接続状態から第1切断状態に切り替え且つ第2クラッチ82を第2切断状態から第2接続状態に切り替える。これにより、第1ドッグクラッチ52が前ギヤ50および後ギヤ51から離れて、第2ドッグクラッチ94が第2従動ギヤ92に連結される。すると、船舶推進機1は電動モータ駆動モードになる。
このように船舶推進機1が電動モータ駆動モードからエンジン駆動モードに切り替わったりエンジン駆動モードから電動モータ駆動モードに切り替わったりするときに、エンジン8および電動モータ11の同調制御が実行される。前ギヤ50および後ギヤ51の回転速度の絶対値と第2従動ギヤ92の回転速度の絶対値との差は、同調制御によって、零より大きく前記上限値以下になる。すわなち、エンジン換算回転速度の絶対値と電動モータ換算回転速度の絶対値との差がほとんど無い状態となるように同調制御が実行され、その状態で船舶推進機1がエンジン駆動モードと電動モータ駆動モードとの間で切り替わる。これにより、船舶推進機1の動力がエンジン8と電動モータ11との間で切り替わる。そのため、動力切替の際に、エンジン換算回転速度と電動モータ換算回転速度との差の大きさに起因する衝撃や音の低減を図れる。具体的には、動力切替のために第1ドッグクラッチ52が前ギヤ50または後ギヤ51に連結されたり第2ドッグクラッチ94が第2従動ギヤ92に連結されたりする際における衝撃や音の低減を図れる。
さらに、推進機ECU31は、エンジン換算回転速度の絶対値が電動モータ換算回転速度の絶対値よりも大きい状態において同調制御を開始する(図10参照)。そのため、同調制御の開始後にエンジン換算回転速度がある程度低下することによってエンジン8による振動が少なくなった状態において、動力を切り替えることができる。これにより、動力切替の際における衝撃や音の低減を一層図れる。なお、この効果は、前述したようにエンジン換算回転速度および電動モータ換算回転速度が共に正の値であってエンジン換算回転速度が電動モータ換算回転速度よりも高い場合だけでなく、電動モータ換算回転速度がエンジン換算回転速度よりも高い場合にも得られる。電動モータ換算回転速度がエンジン換算回転速度よりも高い場合とは、電動モータ換算回転速度が正の値であってエンジン換算回転速度が負の値である場合である。
この実施形態において、推進機ECU31は、エンジン換算回転速度が電動モータ換算回転速度よりも一旦低くなるように同調制御を実行する(図10のタイミングT1およびタイミングT4の直後を参照)。この構成によれば、同調制御では、エンジン換算回転速度が電動モータ換算回転速度を下回るまで低下することによってエンジン8による振動が少なくなった状態において、動力が切り替わる。そのため、動力切替の際における衝撃や音の低減を一層図れる。
この実施形態において、推進機ECU31は、エンジン換算回転速度が電動モータ換算回転速度よりも一旦低くなってから上昇するように同調制御を実行する(図10のタイミングT1〜T2を参照)。この構成によれば、エンジン換算回転速度が電動モータ換算回転速度を下回った後に上昇することによって、エンジン換算回転速度の絶対値と電動モータ換算回転速度の絶対値との差がほとんど無くなる。この状態で動力が切り替わることによって、動力切替の際における衝撃や音の低減を確実に図れる。
この実施形態において、推進機ECU31は、電動モータ換算回転速度がエンジン換算回転速度よりも一旦高くなってから低下するように同調制御を実行する(図10のタイミングT1〜T2およびT4〜T5を参照)。この構成によれば、エンジン換算回転速度が電動モータ換算回転速度を下回ることによって電動モータ換算回転速度がエンジン換算回転速度を上回るが、その後に電動モータ換算回転速度が低下する。これによって、エンジン換算回転速度の絶対値と電動モータ換算回転速度の絶対値との差がほとんど無くなる。この状態で動力が切り替わることによって、動力切替の際における衝撃や音の低減を確実に図れる。
この実施形態において、推進機ECU31は、同調制御を開始してからエンジン換算回転速度が低下して電動モータ換算回転速度に一旦一致するまでの間において、電動モータ換算回転速度を一定にする(図10のタイミングT1以前の電動モータ換算回転速度を参照)。この構成によれば、推進機ECU31は、エンジン換算回転速度の絶対値を、一定の電動モータ換算回転速度の絶対値に近付くように容易に制御することができる。
図11は、操作レバー102の位置とエンジン8および電動モータ11のそれぞれの回転速度との関係についての変形例を示す図である。前述した実施形態では、第1前進位置F1と第2前進位置F2との間における電動モータ11の回転速度は、操作レバー102の移動量に関係なく一定である(図10参照)。そして、推進機ECU31は、エンジン換算回転速度の絶対値を電動モータ換算回転速度の絶対値に近付くように同調制御する。これに対して、図11に示す変形例では、中立位置Nからの操作レバー102の移動量の増減に応じて、第1前進位置F1と第2前進位置F2との間における電動モータ11の回転速度が増減している。そのため、第1前進位置F1から第2前進位置F2へ向かう操作レバー102の移動量が増加するのに従って、電動モータ11の回転速度が増加する。これにより、電動モータ11の動力、換言すれば船舶を前方に推進させる推力が増減する。同様の制御は、船舶の後進時にも適用できる。
この変形例の同調制御において、推進機ECU31は、電動モータ換算回転速度の絶対値をエンジン換算回転速度の絶対値に近付くように制御する。そのために、推進機ECU31は、同調制御を開始してからエンジン換算回転速度が低下して電動モータ換算回転速度に一旦一致するまでの間において、電動モータ換算回転速度を上昇させる(図11のタイミングT1以前の電動モータ換算回転速度を参照)。この構成によれば、エンジン換算回転速度が低下するのに対して電動モータ換算回転速度が上昇するので、エンジン換算回転速度の絶対値と電動モータ換算回転速度の絶対値との差が速やかに小さくなる。これにより、動力切替の際における衝撃や音の低減を図りつつ、速やかな動力切替が可能になる。変形例の同調制御でも、同調制御に関する他の作用効果を奏することができる。
図12〜図14は、本発明の第2実施形態に係る船舶推進機1における船外機3のロワーユニットの鉛直断面の一部を示す断面図である。以降では、前述の第1実施形態に関して説明した部分と機能的に同じ部分には同一番号を付して、当該部分についての詳細な説明は省略する。
この第2実施形態では、シフト装置19を構成するシフトロッド59が、前後方向における第1伝達経路9と第2伝達経路12との間に配置されている。
シフトロッド59は、上下方向に延びる回動軸線まわりに回転する。シフトロッド59の下端部には、前述したプッシャ64が固定されている。プッシャ64は、シフトロッド59の回動軸線から外れた位置でシフトロッド59から下方へ延びて、シフトスライダ65の環状溝68に挿入されている。シフトロッド59が回動すると、プッシャ64は、シフトロッド59と一体回動しながら前後に移動する。すると、前対向部67または後対向部69がプッシャ64によって押されることによって、シフトスライダ65が、前位置や中間位置や後位置へ向けて前後に移動する。
第2ドッグクラッチ94の凸部96は、シフトスライダ65の前端に形成されてもよい。その場合、第2伝達部材13の第2駆動ギヤ91は、シフトスライダ65の前端よりも前方に配置されている。中間リング93は、第2従動ギヤ92とは別の部材であり、第2従動ギヤ92から後方へ延びてシフトスライダ65の前端を取り囲んでいる。前述した凹部95が、中間リング93の内周面に形成されている。
シフトスライダ65が中間位置にある状態では、第1ドッグクラッチ52が中立位置に配置され、第2ドッグクラッチ94が第2接続位置に配置されているので、第2ドッグクラッチ94の凸部96が中間リング93の凹部95に嵌っている(図12参照)。そのため、第1クラッチ81が第1切断状態にあり、第2クラッチ82が第2接続状態にある。
シフトスライダ65が中間位置から前進して前位置に配置されると、第1ドッグクラッチ52が前進位置に配置され、第2ドッグクラッチ94が前切断位置に配置されるので、凸部96が凹部95から前方へ離れる(図13参照)。そのため、第1クラッチ81が第1切断状態から第1接続状態に切り替わり、第2クラッチ82が第2接続状態から第2切断状態に切り替わる。
シフトスライダ65が中間位置から後退して後位置に配置されると、第1ドッグクラッチ52が後進位置に配置され、第2ドッグクラッチ94が後切断位置に配置されるので、凸部96が凹部95から後方へ離れる(図14参照)。そのため、第1クラッチ81が第1切断状態から第1接続状態に切り替わり、第2クラッチ82が第2接続状態から第2切断状態に切り替わる。
以上、この発明の2つの実施形態について説明してきたが、この発明は、以下に例示的に説明するとおり、さらに他の形態で実施することもできる。
(1)第1前進位置F1および第1後進位置R1(図6参照)が省略されてもよく、その場合には、第1前進位置F1と第1後進位置R1との間の不感帯が省略される。これにより、ユーザが操作レバー102を中立位置Nから前後のどちらかに移動させると、推進機ECU31が直ちにスタータモータ35にエンジン8を始動させる。このとき、電動モータ11は停止している。そして、ユーザが操作レバー102を第2前進位置F2または第2後進位置R2まで移動させると、推進機ECU31は、電動モータ11を回転させて、船舶を前方または後方に推進させる。ユーザが操作レバー102を第3前進位置F3または第3後進位置R3まで移動させる間に、推進機ECU31は、前述したように動力を電動モータ11からエンジン8に切り替える。そのため、ユーザが第3前進位置F3または第3後進位置R3を越えて操作レバー102を移動させると、船舶はエンジン8の動力だけで推進する。その後、ユーザが操作レバー102を第2前進位置F2または第2後進位置R2へ向けて移動させると、推進機ECU31は、エンジン8から電動モータ11に動力を切り替える。ユーザが操作レバー102を第2前進位置F2または第2後進位置R2から中立位置Nへ向けて移動させると、推進機ECU31は、エンジン8および電動モータ11を停止させる。この場合にも、動力切替の際において、前述した同調制御が実行されるので、衝撃や音の低減を図れる。
(2)前述した実施形態ではシフトインおよびシフトアウトの両方において同調制御が実行されるが、シフトインおよびシフトアウトの一方だけにおいて同調制御が実行されてもよい。
(3)第2伝達部材13において電動モータ11の回転を減速および伝達する減速機構が省略されてもよい。その場合には、前述した中間シャフト90が、電動モータ11の出力シャフトであってもよい。
(4)シフト装置19は、シフトアクチュエータ57を備えていない機械式(油圧式またはケーブル式)であってもよい。
(5)船舶推進機1は、船外機3に代えて船内外機を備えていてもよい。
(6)第1実施形態および第2実施形態にて説明した特徴や、上記の変形例にて説明した特徴のうち、2つ以上が組み合わされてもよい。
その他、特許請求の範囲に記載された事項の範囲で種々の設計変更を施すことが可能である。
1:ハイブリッド型船舶推進機、8:エンジン、9:第1伝達経路、11:電動モータ、12:第2伝達経路、17:プロペラシャフト、18:プロペラ、19:シフト装置、31:推進機ECU、49:ピニオン、50:前ギヤ、51:後ギヤ、52:第1ドッグクラッチ、57:シフトアクチュエータ、81:第1クラッチ、82:第2クラッチ、91:第2駆動ギヤ、92:第2従動ギヤ、94:第2ドッグクラッチ

Claims (9)

  1. エンジンと、
    電動モータと、
    プロペラと共に回転するプロペラシャフトと、
    前記エンジンの動力を前記プロペラシャフトに伝達する第1伝達経路と、
    前記第1伝達経路を経ずに前記電動モータの動力を前記プロペラシャフトに伝達する第2伝達経路と、
    前記第1伝達経路の動力伝達を遮断する第1切断状態と、前記第1伝達経路の動力伝達を許容する第1接続状態とになる第1クラッチと、
    前記第2伝達経路の動力伝達を遮断する第2切断状態と、前記第2伝達経路の動力伝達を許容する第2接続状態とになる第2クラッチと、
    前記第1クラッチを前記第1切断状態から前記第1接続状態に切り替え且つ前記第2クラッチを前記第2接続状態から前記第2切断状態に切り替えたり、前記第1クラッチを前記第1接続状態から前記第1切断状態に切り替え且つ前記第2クラッチを前記第2切断状態から前記第2接続状態に切り替えたりする切替装置と、
    前記切替装置が前記第1クラッチを前記第1切断状態と前記第1接続状態との間で切り替え且つ前記第2クラッチを前記第2接続状態と前記第2切断状態との間で切り替えるときに、前記エンジンの回転速度を前記プロペラシャフトの回転速度に換算して得られるエンジン換算回転速度の絶対値と、前記電動モータの回転速度を前記プロペラシャフトの回転速度に換算して得られる電動モータ換算回転速度の絶対値との差が零より大きく所定の上限値以下になるように前記エンジンおよび前記電動モータの同調制御を実行する制御装置とを含み、
    前記制御装置は、前記エンジン換算回転速度の絶対値が前記電動モータ換算回転速度の絶対値よりも大きい状態において前記同調制御を開始する、ハイブリッド型船舶推進機。
  2. 前記切替装置が前記第1クラッチを前記第1切断状態から前記第1接続状態に切り替え且つ前記第2クラッチを前記第2接続状態から前記第2切断状態に切り替えるときに、前記制御装置は、前記同調制御を実行する、請求項1に記載のハイブリッド型船舶推進機。
  3. 前記切替装置が前記第1クラッチを前記第1接続状態から前記第1切断状態に切り替え且つ前記第2クラッチを前記第2切断状態から前記第2接続状態に切り替えるときに、前記制御装置は、前記同調制御を実行する、請求項1または2に記載のハイブリッド型船舶推進機。
  4. 前記制御装置は、前記エンジン換算回転速度が前記電動モータ換算回転速度よりも一旦低くなるように前記同調制御を実行する、請求項1〜3のいずれか一項に記載のハイブリッド型船舶推進機。
  5. 前記制御装置は、前記エンジン換算回転速度が前記電動モータ換算回転速度よりも一旦低くなってから上昇するように前記同調制御を実行する、請求項4に記載のハイブリッド型船舶推進機。
  6. 前記制御装置は、前記電動モータ換算回転速度が前記エンジン換算回転速度よりも一旦高くなってから低下するように前記同調制御を実行する、請求項4または5に記載のハイブリッド型船舶推進機。
  7. 前記制御装置は、前記同調制御を開始してから前記エンジン換算回転速度が低下して前記電動モータ換算回転速度に一旦一致するまでの間において、前記電動モータ換算回転速度を一定にする、請求項1〜6のいずれか一項に記載のハイブリッド型船舶推進機。
  8. 前記制御装置は、前記同調制御を開始してから前記エンジン換算回転速度が低下して前記電動モータ換算回転速度に一旦一致するまでの間において、前記電動モータ換算回転速度を上昇させる、請求項1〜6のいずれか一項に記載のハイブリッド型船舶推進機。
  9. 前記第1伝達経路は、前記エンジンの回転に応じて回転する第1駆動ギヤと、前記第1駆動ギヤによって回転駆動される第1従動ギヤとを含み、
    前記第1クラッチは、前記第1従動ギヤから離れる第1切断位置と、前記第1従動ギヤに連結される第1接続位置との間で前記プロペラシャフトの軸方向に移動可能であり、前記プロペラシャフトと共に回転する第1ドッグクラッチを含み、
    前記第1ドッグクラッチが前記第1切断位置に配置されると前記第1クラッチが前記第1切断状態になり、前記第1ドッグクラッチが前記第1接続位置に配置されると前記第1クラッチが前記第1接続状態になり、
    前記第2伝達経路は、前記電動モータの回転に応じて回転する第2駆動ギヤと、前記第2駆動ギヤによって回転駆動される第2従動ギヤとを含み、
    前記第2クラッチは、前記第2従動ギヤから離れる第2切断位置と、前記第2従動ギヤに連結される第2接続位置との間で前記軸方向に移動可能であり、前記プロペラシャフトと共に回転する第2ドッグクラッチを含み、
    前記第2ドッグクラッチが前記第2切断位置に配置されると前記第2クラッチが前記第2切断状態になり、前記第2ドッグクラッチが前記第2接続位置に配置されると前記第2クラッチが前記第2接続状態になり、
    前記切替装置は、前記軸方向に前記第1ドッグクラッチおよび前記第2ドッグクラッチを移動させるシフトアクチュエータを含み、
    前記エンジン換算回転速度は、前記第1従動ギヤの回転速度と同じまたは略同じであり、
    前記電動モータ換算回転速度は、前記第2従動ギヤの回転速度と同じまたは略同じである、請求項1〜8のいずれか一項に記載のハイブリッド型船舶推進機。
JP2018156133A 2018-08-23 2018-08-23 ハイブリット型船舶推進機 Pending JP2020029185A (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2018156133A JP2020029185A (ja) 2018-08-23 2018-08-23 ハイブリット型船舶推進機
US16/535,190 US11161582B2 (en) 2018-08-23 2019-08-08 Hybrid type vessel propulsion apparatus
EP19193134.4A EP3613663B1 (en) 2018-08-23 2019-08-22 Hybrid type vessel propulsion apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018156133A JP2020029185A (ja) 2018-08-23 2018-08-23 ハイブリット型船舶推進機

Publications (1)

Publication Number Publication Date
JP2020029185A true JP2020029185A (ja) 2020-02-27

Family

ID=67734569

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018156133A Pending JP2020029185A (ja) 2018-08-23 2018-08-23 ハイブリット型船舶推進機

Country Status (3)

Country Link
US (1) US11161582B2 (ja)
EP (1) EP3613663B1 (ja)
JP (1) JP2020029185A (ja)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11932367B1 (en) 2020-06-04 2024-03-19 Evoa, Llc Axial flux outboard propulsion system for an electric boat
JP2021146755A (ja) * 2020-03-16 2021-09-27 ヤマハ発動機株式会社 船舶推進機の制御システム及び船舶推進機の駆動源の切り替え方法
JP2021154946A (ja) * 2020-03-27 2021-10-07 ヤマハ発動機株式会社 舶用電源システムおよび舶用電源システムの制御方法
JP2021160663A (ja) 2020-04-02 2021-10-11 ヤマハ発動機株式会社 船舶推進機の制御システムおよびその制御方法、船舶
JP2022049413A (ja) * 2020-09-16 2022-03-29 ヤマハ発動機株式会社 船外機および船舶推進システム
JP2022112788A (ja) * 2021-01-22 2022-08-03 ヤマハ発動機株式会社 船外機、船舶及び船舶推進機
JP2022172628A (ja) * 2021-05-06 2022-11-17 ヤマハ発動機株式会社 操船システムおよび船舶

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FI122138B (fi) 2005-03-10 2011-09-15 Waertsilae Finland Oy Propulsiojärjestely
EP1897801B1 (en) 2006-09-11 2017-12-06 Yamaha Hatsudoki Kabushiki Kaisha Hybrid-type watercraft propulsion system and its operating method
US8187046B2 (en) * 2009-06-04 2012-05-29 Twin Disc, Inc. Marine power splitting gearbox
US8298023B2 (en) * 2009-03-26 2012-10-30 Suzuki Motor Corporation Hybrid outboard motor
US8454402B1 (en) 2011-03-11 2013-06-04 Brunswick Corporation Systems and methods for performing a shift in a transmission in marine propulsion systems
US8808139B1 (en) * 2012-05-18 2014-08-19 Brunswick Corporation Hybrid marine propulsion systems having programmable clutch operations
JP6695216B2 (ja) 2016-06-07 2020-05-20 ヤマハ発動機株式会社 船舶推進機

Also Published As

Publication number Publication date
US20200062361A1 (en) 2020-02-27
EP3613663A1 (en) 2020-02-26
US11161582B2 (en) 2021-11-02
EP3613663B1 (en) 2021-02-24

Similar Documents

Publication Publication Date Title
JP6695216B2 (ja) 船舶推進機
JP2020029185A (ja) ハイブリット型船舶推進機
US11008084B2 (en) Hybrid type vessel propulsion apparatus
JP2009202686A (ja) 船舶用推進システム、その制御装置及び制御方法
JP5176163B2 (ja) 船舶用推進システム、その制御装置及び制御方法
US8454402B1 (en) Systems and methods for performing a shift in a transmission in marine propulsion systems
US20090247025A1 (en) Boat propulsion unit
US7942712B2 (en) Boat propulsion system, and control device and control method therefor
US10507897B2 (en) Vessel propulsion apparatus
JP4731401B2 (ja) 船舶用推進機の電子式遠隔制御装置及び船舶
JP5066730B2 (ja) 船舶用推進システム
JP2009241754A (ja) 船舶推進装置
JP5226550B2 (ja) 舶用推進ユニット
JP5283422B2 (ja) 船舶用推進システム、その制御装置及び制御方法
JP2012025250A (ja) 船舶用ハイブリッド推進装置
JP5603662B2 (ja) 船外機の制御装置
US20170284511A1 (en) Reduction reverse gear and ship including the same
JP2018140725A (ja) 舶用推進システムおよび船舶
JP2021020556A (ja) 船舶推進装置
JP2011246059A (ja) 船外機の制御装置
JP2017223294A (ja) 減速逆転機及びこれを備えた船舶
US20230264799A1 (en) Marine propulsion device with simplified wiring of power lines
EP2492186B1 (en) Power transmission device of outboard motor
JP5547993B2 (ja) 船外機の制御装置
JP2022049413A (ja) 船外機および船舶推進システム