JP2020010762A - 超音波信号処理装置、超音波診断装置、および、超音波信号処理方法 - Google Patents

超音波信号処理装置、超音波診断装置、および、超音波信号処理方法 Download PDF

Info

Publication number
JP2020010762A
JP2020010762A JP2018133457A JP2018133457A JP2020010762A JP 2020010762 A JP2020010762 A JP 2020010762A JP 2018133457 A JP2018133457 A JP 2018133457A JP 2018133457 A JP2018133457 A JP 2018133457A JP 2020010762 A JP2020010762 A JP 2020010762A
Authority
JP
Japan
Prior art keywords
ultrasonic
transmission
signal
acoustic line
aperture
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018133457A
Other languages
English (en)
Other versions
JP7124505B2 (ja
Inventor
渡邊 泰仁
Yasuhito Watanabe
泰仁 渡邊
淳子 吉田
Junko Yoshida
淳子 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konica Minolta Inc
Original Assignee
Konica Minolta Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Inc filed Critical Konica Minolta Inc
Priority to JP2018133457A priority Critical patent/JP7124505B2/ja
Priority to US16/460,092 priority patent/US11744555B2/en
Publication of JP2020010762A publication Critical patent/JP2020010762A/ja
Application granted granted Critical
Publication of JP7124505B2 publication Critical patent/JP7124505B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/52Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/5207Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves involving processing of raw data to produce diagnostic data, e.g. for generating an image
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/88Sonar systems specially adapted for specific applications
    • G01S15/89Sonar systems specially adapted for specific applications for mapping or imaging
    • G01S15/8906Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques
    • G01S15/8909Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques using a static transducer configuration
    • G01S15/8915Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques using a static transducer configuration using a transducer array
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/13Tomography
    • A61B8/14Echo-tomography
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/88Sonar systems specially adapted for specific applications
    • G01S15/89Sonar systems specially adapted for specific applications for mapping or imaging
    • G01S15/8906Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques
    • G01S15/8997Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques using synthetic aperture techniques
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/52Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00
    • G01S7/52017Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00 particularly adapted to short-range imaging
    • G01S7/52046Techniques for image enhancement involving transmitter or receiver
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/52Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00
    • G01S7/52017Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00 particularly adapted to short-range imaging
    • G01S7/52085Details related to the ultrasound signal acquisition, e.g. scan sequences
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/44Constructional features of the ultrasonic, sonic or infrasonic diagnostic device
    • A61B8/4444Constructional features of the ultrasonic, sonic or infrasonic diagnostic device related to the probe
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/44Constructional features of the ultrasonic, sonic or infrasonic diagnostic device
    • A61B8/4477Constructional features of the ultrasonic, sonic or infrasonic diagnostic device using several separate ultrasound transducers or probes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/44Constructional features of the ultrasonic, sonic or infrasonic diagnostic device
    • A61B8/4483Constructional features of the ultrasonic, sonic or infrasonic diagnostic device characterised by features of the ultrasound transducer
    • A61B8/4488Constructional features of the ultrasonic, sonic or infrasonic diagnostic device characterised by features of the ultrasound transducer the transducer being a phased array
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/44Constructional features of the ultrasonic, sonic or infrasonic diagnostic device
    • A61B8/4483Constructional features of the ultrasonic, sonic or infrasonic diagnostic device characterised by features of the ultrasound transducer
    • A61B8/4494Constructional features of the ultrasonic, sonic or infrasonic diagnostic device characterised by features of the ultrasound transducer characterised by the arrangement of the transducer elements
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/52Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/5215Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves involving processing of medical diagnostic data
    • A61B8/5223Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves involving processing of medical diagnostic data for extracting a diagnostic or physiological parameter from medical diagnostic data

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Acoustics & Sound (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Radiology & Medical Imaging (AREA)
  • Molecular Biology (AREA)
  • Pathology (AREA)
  • Biophysics (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Ultra Sonic Daignosis Equipment (AREA)

Abstract

【課題】合成開口法において、観測点の深度に係らず空間分解能及びS/N比の低下を抑制する。【解決手段】超音波信号処理装置であって、複数の振動子の一部を送信振動子列として選択して超音波主照射領域に超音波ビームを送信させる送信イベントを、送信開口を送信イベントごとに振動子の並ぶ方向にシフトしながら繰り返す送信部と、受信信号列を生成する受信部と、フォーカス点よりも浅部に位置する深度範囲において深度が浅いほど振動子の並ぶ方向の幅が小さくなる形状を有する対象領域を超音波主照射領域内に設定し、対象領域の複数の観測点について、各観測点から得られた反射超音波に基づく前記受信信号列を整相加算してサブフレーム音響線信号を生成する整相加算部と、複数のサブフレーム音響線信号に基づき、フレーム音響線信号を生成する合成部とを備える。【選択図】図5

Description

本開示は、超音波信号処理装置、及び、それを備えた超音波診断装置に関し、特に、超音波信号処理装置における受信ビームフォーミング処理方法に関する。
超音波診断装置は、超音波プローブ(以後、「プローブ」とする)により被検体内部に超音波を送信し、被検体組織の音響インピーダンスの差異により生じる超音波反射波(エコー)を受信する。さらに、この受信から得た電気信号に基づいて、被検体の内部組織の構造を示す超音波断層画像を生成し、モニタ(以後、「表示部」とする)上に表示するものである。超音波診断装置は、被検体への侵襲が少なく、リアルタイムに体内組織の状態を断層画像などで観察できるため、生体の形態診断に広く用いられている。
従来の超音波診断装置では、受信した反射超音波に基づく信号の受信ビームフォーミング方法として、一般的に整相加算法と呼ばれる方法が使用されている。この方法では、一般に、複数の振動子によって行われる被検体への超音波送信が行われる際、被検体のある深度で超音波ビームがフォーカスを結ぶよう送信ビームフォーミングがなされる。また、この方法では、送信超音波ビームの中心軸上に観測点を設定する。そのため、1回の超音波送信イベントでは送信超音波ビームの中心軸上にある1本若しくは少数本の音響線信号しか生成することができず、超音波の利用効率が悪い。また、観測点がフォーカス点近傍から離れた位置にある場合には、得られる音響線信号の空間分解能及び信号S/N比が低くなる課題も有している。
これに対して、合成開口法(Synthetic Aperture Method)により、送信フォーカス点近傍以外の領域においても空間分解能の高い、高画質な画像を得る受信ビームフォーミング方法が考案されている(例えば、特許文献1)。この方法によれば、超音波送信波の観測点への到達時間と、観測点で反射された反射波の観測点から振動子への到達時間の両方を加味した遅延制御を行うことで、送信フォーカス点近傍以外に位置する超音波主照射領域からの反射超音波も反映した受信ビームフォーミングを行うことができる。その結果、1回の超音波送信イベントから超音波主照射領域全体に対して音響線信号を生成することができる。なお、超音波主照射領域とは、領域内のすべての点において、送信振動子列を構成する各振動子から送波される超音波の位相が揃っている領域を指す。また、合成開口法では、複数の送信イベントから得た同一観測点に対する複数の受信信号をもとに仮想的に送信フォーカスを合わせることで、空間分解能及びS/N比の高い超音波画像を得ることが可能となる。
特開2016−87453号公報
合成開口法においては、超音波利用効率と解像度向上の観点から、1回の超音波送信イベントで音響線信号を生成する領域(以下、「対象領域」と呼ぶ)の面積が大きいことが好ましく、超音波主照射領域全域を対象領域とすることがより好ましい。しかしながら、合成開口法を用いても、プローブに近接した浅部においては、送信超音波ビームの中心軸から離れた観測点で、音響線信号の空間分解能及び信号S/N比が低くなる課題が十分に解消することができないことがある。一方で、送信超音波ビームの中心軸近傍のみを対象領域とすると、同一観測点に対する受信信号の数が減少することから、合成開口法による空間分解能及びS/N比の向上を図ることが困難となる。
本開示の一態様は、上記課題に鑑みてなされたものであり、合成開口法において、観測点の深度に係らず空間分解能及びS/N比の低下を抑制することのできる超音波信号処理装置および超音波信号処理方法、及び、それを用いた超音波診断装置を提供することを目的とする。
本開示の一態様に係る超音波信号処理装置は、複数の振動子を備えた超音波プローブに、被検体に超音波ビームを送信させる送信イベントを複数回繰り返すとともに、各送信イベントに対応して受波された被検体からの反射超音波に基づく前記超音波プローブからの信号に基づき、複数の音響線信号を合成して合成音響線信号を得る超音波信号処理装置であって、前記複数の振動子の一部を含む送信開口を設定して前記送信開口の位置によって定まる超音波主照射領域に超音波ビームを送信させる送信イベントを、前記送信開口を送信イベントごとに前記振動子の並ぶ方向にシフトしながら繰り返し実行する送信部と、各送信イベントに対応して、前記超音波プローブからの信号に基づき、前記超音波プローブの振動子各々に対する受信信号列を生成する受信部と、前記送信イベントごとに、フォーカス点よりも浅部に位置する深度範囲において深度が浅いほど前記振動子の並ぶ方向の幅が小さくなる形状を有する対象領域を前記超音波主照射領域内に設定し、前記対象領域の複数の観測点について、各観測点から得られた反射超音波に基づく前記受信信号列を整相加算してサブフレーム音響線信号を生成する整相加算部と、前記整相加算部が生成した前記複数のサブフレーム音響線信号に基づき、前記フレーム音響線信号を生成する合成部とを備えることを特徴とする。
本開示の一態様に係る超音波信号処理装置、及び、それを用いた超音波診断装置は、合成開口法において、観測点の深度に係らず空間分解能及びS/N比の低下を抑制することができる。
実施の形態1に係る超音波診断装置100の構成を示すブロック図である。 実施の形態1に係る送信ビームフォーマ部103による送信超音波ビームの伝播経路を示す図である。 実施の形態1に係る受信ビームフォーマ部104の構成を示す機能ブロック図である。 実施の形態1に係る整相加算部1041の構成を示す機能ブロック図である。 実施の形態1に係る対象領域Bxを示す図である。 実施の形態1に係る受信開口設定部1043により設定された受信開口Rxと送信開口Txとの関係を示す模式図である。 実施の形態1に係る、送信開口Txから観測点Pijを経由して受信振動子Rkに到達する超音波の伝播経路を示す模式図である。 実施の形態1に係る合成部1140の構成を示す機能ブロック図である。 実施の形態1に係る加算処理部11401における合成音響線信号を合成する処理を示す模式図である。 実施の形態1に係る、合成音響線信号における最大重畳数と、増幅処理部11402における増幅処理の概要を示す模式図である。 実施の形態1に係る超音波診断装置100のフレーム音響線信号生成動作を示すフローチャートである。 実施の形態1に係る受信ビームフォーマ部104における観測点Pijについての音響線信号生成動作を示すフローチャートである。 実施の形態1に係る受信ビームフォーマ部104における観測点Pijについての音響線信号生成動作を説明するための模式図である。 送信開口Txと観測点Pijとの位置関係と、信号S/N比との関係を示す模式図である。 実施の形態1に係る、浅部開口Asの第1の設定例を示す図である。 実施の形態1に係る、浅部開口Asの第2の設定例を示す図である。 実施の形態1に係る、浅部開口Asの第3の設定例を示す図である。 変形例1に係る受信開口設定部により設定された受信開口Rxと送信開口Txとの関係を示す模式図である。 変形例1に係る超音波診断装置のフレーム音響線信号生成動作を示すフローチャートである。 変形例1に係る受信ビームフォーマ部における観測点Pijについての音響線信号生成動作を説明するための模式図である。 変形例2に係る対象領域Bxの設定例を示す図である。 変形例3に係る対象領域Bxの設定例を示す図である。 変形例4に係る対象領域Bxの設定例を示す図である。 変形例4に係る対象領域Bxの設定例を示す図である。
≪発明を実施するための形態に至った経緯≫
発明者は、合成開口法を用いる超音波診断装置において、浅部において音響線信号の空間分解能及びS/N比(以下、「音響線信号の品質」と呼ぶ)の低下が発生する課題を見出した。
合成開口法では、まず、それぞれの送信イベントにおいて対象領域(1回の超音波送信イベントで音響線信号を生成する領域)を設定し、対象領域内の観測点のそれぞれについて、観測点からの反射超音波を受波する受信振動子Rkを設定する。そして、観測点のそれぞれについて、受信振動子Rkのそれぞれが受波した反射超音波に基づき受信信号を作成し、複数の受信信号を整相加算してサブフレーム音響線信号を作成する。これにより、1つの送信イベントに対応する音響線信号を作成する。そして、観測点の位置を指標として、複数のサブフレーム音響線信号を合成することで、フレーム音響線信号を作成する。これにより、仮想的な送信フォーカスを実現している。
しかしながら、観測点の深度が浅い場合、送信超音波ビームの中心軸から離れた観測点では音響線信号の空間分解能及び信号S/N比が低くなるという課題を発明者は見出した。以下、図14を用いて説明する。図14は、振動子列101aから送信された超音波ビームが観測点Pijに到達し、観測点Pijからの反射超音波が受信振動子Rkに到達する経路を模式的に示している。ここで、超音波プローブの被検体に接する表面のうち、超音波ビームの送信に用いた複数の振動子に対応する領域を送信開口とし、送信開口の中心を送信基準点Sとする。また、送信基準点Sを通過し、超音波ビームの進行方向と平行な直線を送信開口中心軸Txoとする。超音波ビームが平面波である場合は、送信開口中心軸Txoは超音波ビームの波面に直交する直線となる。一方、超音波ビームが収束波である場合は、送信開口中心軸Txoは、送信基準点Sと、超音波ビームが収束する位置、または、超音波ビームが収束する領域の中心である、送信フォーカス点Fとを通過する直線となる。このとき、超音波ビームは、送信基準点Sから観測点Pijまでの経路Psを通過したとみなすことができ、同様に、反射超音波は、観測点Pijから受信振動子Rkまでの経路Prを通過したとみなすことができる。一方で、受信振動子Rkは、観測点Pijを、超音波ビームが経路Psを通過し、さらに反射超音波が経路Prを通過した全経路の所要時間により特定している。すなわち、送信基準点Sから参照点Dまでの経路P’sと参照点Dから受信振動子Rkまでの経路P’rの総経路長が、経路Psと経路Prの総経路長と等しくなるような参照点Dからの反射超音波は、観測点Pijからの反射超音波と区別することができない。一方で、参照点Dの位置は、送信基準点Sの位置と受信振動子Rkの位置とを焦点とする楕円上に存在する。つまり、参照点Dの位置は受信振動子Rkの位置に依存する。したがって、複数の受信振動子Rkで受信した信号を整相加算することにより、観測点Pijからの反射超音波を強めあう一方で、参照点Dからの反射超音波も加算することになってしまう。
ところが、整相加算による参照点Dからの反射超音波の打消しの度合いは、観測点Pijの位置にも依存する。例えば、図14(a)に示すように、観測点Pijが送信開口中心軸Txoの近傍に存在する場合は、観測点Pijからの反射超音波は空間的に観測点Pijに最も近い受信振動子Rkで最も強く受信できる。このとき、参照点Dの存在領域は、送信基準点Sと受信振動子Rkが近接しているため、ほぼ受信振動子Rkを中心とする円周上に存在する。一方で、送信超音波ビームは、送信開口中心軸Txoに近いほど強いため、観測点Pijに届く超音波ビームは、参照点D1やD2に届く超音波ビームより強い。すなわち、受信振動子Rkが受信する受信信号において、観測点Pijからの反射超音波が最も強くなる。従って、整相加算により、参照点Dからの反射超音波の影響は少なくなり、音響線信号の空間分解能及び信号S/N比を向上させることが可能である。また、観測点Pijの深度が深い場合は、経路Psの長さおよび経路Prの長さに対して受信振動子Rkと送信基準点Sとの距離が及ぼす影響が小さいため、同様に、整相加算により、音響線信号の空間分解能及び信号S/N比を向上させることが可能である。ところが、図14(b)に示すように、観測点Pijが観測点と離れた位置にある受信振動子Rkでは、以下のようになる。観測点Pijからの反射超音波は受信振動子Rkへ最短距離のPrで受信できる。このとき、参照点Dの位置は、送信基準点Sの位置と受信振動子Rkの位置とを焦点とする楕円上に存在する。したがって、受信振動子Rkが受信する受信信号において、観測点Pijからの反射超音波と、参照点D3からの反射超音波とで、強度に差がない。また参照点Dが参照点D3のみならず多数存在することから、整相加算を行っても、観測点Pijからの反射超音波の強め合いが不十分となり、参照点D3など複数の参照点Dからの反射超音波が残存することがある。したがって、音響線信号の空間分解能及び信号S/N比が、複数の参照点Dからの反射超音波によって低下する課題が発生する。
上述した音響線信号の空間分解能及び信号S/N比低下の課題は、観測点Pijと送信開口中心軸Txoとの距離により発生する。そのため、この課題を解決する手段としては、送信開口中心軸Txoより遠い領域を対象領域より除くために、対象領域の列方向の幅を小さくすることが考えられる。しかしながら、対象領域の列方向の幅を小さくすると、異なる送信イベント間で対象領域の重なり合う領域が狭くなり、特に、浅部以外の領域において、合成数の減少により空間分解能及び信号S/N比が低下する。そこで、発明者は、浅部以外の領域における合成数の減少を抑制しながら浅部の空間分解能及び信号S/N比を向上する方法を模索し、実施の形態に至ったものである。
以下、実施の形態に係る超音波信号処理装置、超音波信号処理方法、および、それを用いた超音波診断装置について、図面を用いて詳細に説明する。
≪実施の形態1≫
<全体構成>
以下、実施の形態1に係る超音波診断装置100について、図面を参照しながら説明する。
図1は、実施の形態1に係る超音波診断システム1000の機能ブロック図である。図1に示すように、超音波診断システム1000は、被検体に向けて超音波を送信しその反射波の受信する複数の振動子101aを有するプローブ101、プローブ101に超音波の送受信を行わせプローブ101からの出力信号に基づき超音波画像を生成する超音波診断装置100、超音波画像を画面上に表示する表示部106を有する。プローブ101、表示部106は、それぞれ、超音波診断装置100に各々接続可能に構成されている。図1は超音波診断装置100に、プローブ101、表示部106が接続された状態を示している。なお、プローブ101と、表示部106とは、超音波診断装置100の内部にあってもよい。
<超音波診断装置100の構成>
超音波診断装置100は、プローブ101の複数ある振動子101aのうち送信又は受信の際に用いる振動子のそれぞれについて入出力を確保するマルチプレクサ部102、超音波の送信を行うためにプローブ101の各振動子101aに対する高電圧印加のタイミングを制御する送信ビームフォーマ部103と、プローブ101で受信した超音波の反射波に基づき、複数の振動子101aで得られた電気信号を増幅し、A/D変換し、受信ビームフォーミングして音響線信号を生成する受信ビームフォーマ部104を有する。また、受信ビームフォーマ部104からの出力信号に基づいて超音波画像(Bモード画像)を生成する超音波画像生成部105、受信ビームフォーマ部104が出力する音響線信号及び超音波画像生成部105が出力する超音波画像を保存するデータ格納部107と、各構成要素を制御する制御部108を備える。
このうち、マルチプレクサ部102、送信ビームフォーマ部103、受信ビームフォーマ部104、超音波画像生成部105は、超音波信号処理装置150を構成する。
超音波診断装置100を構成する各要素、例えば、マルチプレクサ部102、送信ビームフォーマ部103、受信ビームフォーマ部104、超音波画像生成部105、制御部108は、それぞれ、例えば、FPGA(Field Programmable Gate Array)、ASIC(Application Specific Integrated Circuit)などのハードウェア回路により実現される。あるいは、プロセッサなどのプログラマブルデバイスとソフトウェアにより実現される構成であってもよい。プロセッサとしてはCPU(Central Processing Unit)やGPU(Graphics Processing Unit)を用いることができ、GPUを用いる構成はGPGPU(General-Purpose computing on Graphics Processing Unit)と呼ばれる。これらの構成要素は一個の回路部品とすることができるし、複数の回路部品の集合体にすることもできる。また、複数の構成要素を組合せて一個の回路部品とすることができるし、複数の回路部品の集合体にすることもできる。
データ格納部107は、コンピュータ読み取り可能な記録媒体であり、例えば、フレキシブルディスク、ハードディスク、MO、DVD、DVD−RAM、BD、半導体メモリ等を用いることができる。また、データ格納部107は、超音波診断装置100に外部から接続された記憶装置であってもよい。
なお、本実施の形態に係る超音波診断装置100は、図1で示した構成の超音波診断装置に限定されない。例えば、マルチプレクサ部102がなく、送信ビームフォーマ部103と受信ビームフォーマ部104とが直接、プローブ101の各振動子101aに接続されていてもよい。また、プローブ101に送信ビームフォーマ部103や受信ビームフォーマ部104、またその一部などが内蔵される構成であってもよい。これは、本実施の形態に係る超音波診断装置100に限られず、後に説明する他の実施の形態や変形例に係る超音波診断装置でも同様である。
<超音波診断装置100の主要部の構成>
実施の形態1に係る超音波診断装置100は、プローブ101の各振動子101aから超音波ビームの送信を行わせる送信ビームフォーマ部103と、プローブ101において超音波反射波の受信から得た電気信号をプローブから受信し、電気信号を演算し、超音波画像を生成するための音響線信号を生成する受信ビームフォーマ部104に特徴を有する。そのため、本明細書では、主に、送信ビームフォーマ部103及び受信ビームフォーマ部104について、その構成及び機能を説明する。なお、送信ビームフォーマ部103及び受信ビームフォーマ部104以外の構成については、公知の超音波診断装置に使われるものと同じ構成を適用可能であり、公知の超音波診断装置のビームフォーマ部を本実施の形態に係る送信ビームフォーマ部103及び受信ビームフォーマ部104に置き換えて使用することが可能である。
以下、送信ビームフォーマ部103と、受信ビームフォーマ部104の構成について説明する。
1.送信ビームフォーマ部103
送信ビームフォーマ部103は、マルチプレクサ部102を介してプローブ101と接続され、プローブ101から超音波の送信を行うためにプローブ101に存する複数の振動子101aの全てもしくは一部に当たる送信振動子列からなる送信開口Txに含まれる複数の振動子の各々に対する高電圧印加のタイミングを制御する。送信ビームフォーマ部103は送信部1031から構成される。
送信部1031は、制御部108からの送信制御信号に基づき、プローブ101に存する複数の振動子101a中、送信開口Txに含まれる各振動子に超音波ビームを送信させるためのパルス状の送信信号を供給する送信処理を行う。具体的には、送信部1031は、例えば、クロック発生回路、パルス発生回路、遅延回路を備えている。クロック発生回路は、超音波ビームの送信タイミングを決定するクロック信号を発生させる回路である。パルス発生回路は、各振動子を駆動するパルス信号を発生させるための回路である。遅延回路は、超音波ビームの送信タイミングを振動子毎に遅延時間を設定し、遅延時間だけ超音波ビームの送信を遅延させて超音波ビームのフォーカシングを行うための回路である。
送信部1031は、超音波送信ごとに送信開口Txを列方向に移動ピッチMpだけ移動させながら超音波送信を繰り返し、プローブ101に存する全ての振動子101aから超音波送信を行う。本実施の形態では、移動ピッチMpを振動子1つ分とし、超音波送信ごとに、送信開口Txが振動子1つ分ずつ振動子列方向に移動していく。なお、移動ピッチMpは振動子1つ分に限られず、例えば、振動子0.5個分としてもよい。送信開口Txに含まれる振動子の位置を示す情報は制御部108を介してデータ格納部107に出力される。例えば、プローブ101に存する振動子101a全数を192としたとき、送信開口Txを構成する振動子列の数として、例えば20〜100を選択してもよく、超音波送信毎に振動子1つ分だけ移動させる構成としてもよい。以後、送信部1031により同一の送信開口Txから行われる超音波送信を「送信イベント」と称呼する。
図2は、送信ビームフォーマ部103による超音波送信波の伝播経路を示す模式図である。ある送信イベントにおいて、超音波送信に寄与するアレイ状に配列された振動子101aの列(送信振動子列)を送信開口Txとして図示している。また、送信開口Txの列長を送信開口長と呼ぶ。
送信ビームフォーマ部103において、送信開口Txの中心に位置する振動子ほど送信タイミングを遅らせるように各振動子の送信タイミングを制御する。これにより、送信開口Tx内の振動子列から送信された超音波送信波は、ある深度(Focal depth)において、波面がある一点、すなわち送信フォーカス点F(Focal point)で、フォーカスがあう(集束する)状態となる。送信フォーカス点Fの深さ(Focal depth)(以下、「フォーカス深さ」とする)は、任意に設定することができる。ここで、フォーカス深さは、超音波送信波が振動子の並ぶ方向(図2におけるx方向)に最も集束する深度、すなわち、超音波ビームのx方向における幅が最も狭まる深度である、送信フォーカス点Fは、フォーカス深さにおける超音波ビームのx方向における中心位置である。但し、1フレームに係る複数の送信イベント中ではフォーカス深さは一定である。すなわち、1フレームに係る複数の送信イベントにおいて、送信開口Txと送信フォーカス点Fとの相対的な関係は変化しない。送信フォーカス点Fで合焦した波面は、再び拡散し、送信開口Txを底とし送信フォーカス点Fを節とする交差する2つの直線で区切られた砂時計型の空間内を超音波送信波が伝播する。すなわち、送信開口Txで放射された超音波は、次第にその空間上での幅(図中のX方向)を小さくし、送信フォーカス点Fでその幅を最小化し、それよりも深部(図中ではY方向)に進行するにしたがって、再び、その幅を大きくしながら拡散し、伝播することとなる。この砂時計型の領域が超音波主照射領域Axである。なお、上述したように、超音波主照射領域Axは、1点の送信フォーカス点Fの近傍に集束するように超音波送信波を送信してもよい。
2.受信ビームフォーマ部104の構成
受信ビームフォーマ部104は、プローブ101で受信した超音波の反射波に基づき、複数の振動子101aで得られた電気信号から音響線信号を生成する。なお、「音響線信号」とは、ある観測点に対する、整相加算処理がされた後の信号である。整相加算処理については後述する。図3は、受信ビームフォーマ部104の構成を示す機能ブロック図である。図3に示すように、受信ビームフォーマ部104は、受信部1040、整相加算部1041、合成部1140を備える。
以下、受信ビームフォーマ部104を構成する各部の構成について説明する。
(1)受信部1040
受信部1040は、マルチプレクサ部102を介してプローブ101と接続され、送信イベントに同期してプローブ101で超音波反射波の受信から得た電気信号を受信し、受信した電気信号を増幅し、AD変換した受信信号(RF信号)を生成する回路である。送信イベントの順に時系列に受信信号を生成しデータ格納部107に出力し、データ格納部107に受信信号を保存する。
ここで、受信信号(RF信号)とは、各振動子にて受信された反射超音波から変換された電気信号を増幅してA/D変換したデジタル信号であり、各振動子にて受信された超音波の送信方向(被検体の深さ方向)に連なった信号の列を形成している。
送信イベントでは、上述のとおり、送信部1031は、プローブ101に存する複数の振動子101a中、送信開口Txに含まれる複数の振動子の各々に超音波ビームを送信させる。これに対し、受信部1040は、送信イベントに同期してプローブ101に存する複数の振動子101aの一部又は全部にあたる振動子の各々が受波した反射超音波に基づきプローブ内で変換された電気信号を受信し、受信した電気信号に基づき各振動子に対する受信信号の列を生成する。ここで、1回の送信イベントにおいて1以上の観測点から反射された反射超音波を受波する振動子を「受波振動子」と称呼する。観測点それぞれに対応する受信振動子Rkは、受波振動子の一部または全部である。受波振動子の数は、送信開口Txに含まれる振動子の数よりも多いことが好ましい。
受信部1040は、送信イベントに同期して各受波振動子に対する受信信号の列を生成し、生成された受信信号はデータ格納部107に保存される。
(2)整相加算部1041
整相加算部1041は、送信イベントに同期して、サブフレーム音響線信号の生成を行う被検体内の対象領域Bxを設定する。次に、整相加算部1041は、対象領域Bx内に存する複数の観測点Pij各々について、観測点から各受信振動子Rkが受信した受信信号列を整相加算する。そして、整相加算部1041は、各観測点における音響線信号の列を算出することによりサブフレーム音響線信号を生成する。図4は、整相加算部1041の構成を示す機能ブロック図である。図4に示すように、整相加算部1041は、対象領域設定部1042、受信開口設定部1043、送信時間算出部1044、受信時間算出部1045、遅延量算出部1046、遅延処理部1047、重み算出部1048、及び加算部1049を備える。
以下、整相加算部1041を構成する各部の構成について説明する。
i)対象領域設定部1042
対象領域設定部1042は、サブフレーム音響線信号の生成を行う被検体内の領域である対象領域Bxを設定する。「対象領域」とは、送信イベントに同期して被検体内においてサブフレーム音響線信号の生成が行われるべき信号上の領域であり、対象領域Bx内の観測点Pijについて音響線信号が生成される。対象領域Bxは、音響線信号の生成が行われる観測対象点の集合として、1回の送信イベントに同期して計算の便宜上設定される。
ここで、「サブフレーム音響線信号」とは、1回の送信イベントから生成される対象領域Bx内に存在する全ての観測点Pijに対する音響線信号の集合である。なお、「サブフレーム」とは、1回の送信イベントで得られ、対象領域Bx内に存在する全ての観測点Pijに対応するまとまった信号を形成する単位をさす。取得時間の異なる複数のサブフレームを合成したものがフレームとなる。
対象領域設定部1042は、送信イベントに同期して、送信ビームフォーマ部103から取得する送信開口Txの位置を示す情報に基づき対象領域Bxを設定する。
図5は、対象領域Bxを示す模式図である。図5に示すように、対象領域Bxは、超音波主照射領域Ax内に存在し、深度が第1深度範囲である第1対象領域Bx1と、深度が第2深度範囲である第2対象領域Bx2とを含む。なお、第1深度範囲は深度が最浅部から所定深度までの領域であり、第2深度範囲は深度が所定深度より深い領域である。また、当該所定深度は、フォーカス深さよりも浅い。なお、最浅部は、代表的には被検体の表面、被検体と超音波プローブとの界面、または、振動子列の表面であるが、これに限られない。所定深度は、例えば、以下に示す浅部開口Asの列方向の幅と、超音波主照射領域Axの列方向の幅が等しくなる深度に設定される。第2対象領域Bx2は、第2深度範囲における超音波主照射領域Axの全域である。これに対し、第1対象領域Bx1は、深度が浅いほど前記振動子の並ぶ方向の幅が小さくなる形状として設定される。より具体的には、第1対象領域Bx1は、送信開口Txの中心を頂点とする二等辺三角形であり、送信開口Txの中心である送信基準点Sから所定の角度で広がる浅部開口Asと超音波主照射領域Axとの重複領域として設定される。なお、第1対象領域Bx1の形状は上述の例に限らず、深度が浅いほど前記振動子の並ぶ方向の幅が小さくなるテーパー状であればよい。また、第2対象領域Bx2は、第2深度範囲における超音波主照射領域Axの一部であってもよい。このようにすることで、第1深度範囲では、受波振動子Rkが観測点Pijから離間することによる空間分解能及び信号S/N比の低下を抑止することができるとともに、第2深度範囲では、超音波主照射領域Axのほぼ全域に観測点を設定して照射された超音波の利用効率を向上し、仮想的な送信フォーカスによる空間分解能及び信号S/N比の向上を図ることができる。
設定された対象領域Bxは受信開口設定部1043、送信時間算出部1044、受信時間算出部1045、遅延処理部1047に出力される。
ii)受信開口設定部1043
受信開口設定部1043は、制御部108からの制御信号と、対象領域設定部1042からの対象領域Bxの範囲を示す情報とに基づき、プローブ101に存する複数の振動子の一部に当たり、列中心が観測点に最も空間的に近接する振動子と合致する振動子列(受信振動子列)を受信振動子として選択して受信開口Rxを設定する回路である。受波振動子列のうち、観測点ごとに設定された受信開口Rxに含まれる振動子が、当該観測点に対応する受信振動子Rkとなる。
受信開口設定部1043は、列中心が観測点Pijに最も空間的に近接する振動子Xkと合致するよう受信開口Rxを選択する。図6は、受信開口設定部1043により設定された受信開口Rxと送信開口Txとの関係を示す模式図である。図6に示すように、受信開口Rx振動子列の列中心が、観測点Pijに最も空間的に近接する振動子Xkと合致するように受信開口Rxが選択される。そのため、受信開口Rxの位置は、観測点Pijの位置によって定まり、送信イベントに同期して変動する送信開口Txの位置に基づいては変化しない。すなわち、異なる送信イベントであっても、同一位置にある観測点Pijについての音響線信号を生成する処理においては、同一の受信開口Rx内の受信振動子Rkによって取得された受信信号に基づき整相加算が行われる。
ただし、受信開口設定部1043の構成は上記の構成に限らない。例えば、送信フォーカス点Fを受信開口中心軸とした構成としてもよい。また、超音波主照射領域全体からの反射波を受信するために、受信開口Rxに含まれる振動子の数は、対応する送信イベントにおける送信開口Txに含まれる振動子の数以上に設定することが好ましい。受信開口Rxを構成する振動子列の数は、例えば32、64、96、128、192等としてもよい。
受信開口Rxの設定は、少なくとも列方向における観測点Pijの最大数と同じ回数だけ行われる。また、受信開口Rxの設定は、送信イベントに同期して漸次行われる構成であってもよく、あるいは、全ての送信イベントが終了した後に、各送信イベントに対応した受信開口Rxの設定が送信イベントの回数分まとめて行われる構成であってもよい。
選択された受信開口Rxの位置を示す情報は制御部108を介してデータ格納部107に出力される。
データ格納部107は、受信開口Rxの位置を示す情報と受信振動子に対応する受信信号とを、送信時間算出部1044、受信時間算出部1045、遅延処理部1047、重み算出部1048に出力する。
iii)送信時間算出部1044
送信時間算出部1044は、送信された超音波が被検体中の観測点Pに到達するのに要する時間である送信時間を算出する回路である。送信イベントに対応して、データ格納部107から取得した送信開口Txに含まれる振動子の位置を示す情報と、対象領域設定部1042から取得した対象領域Bxの位置を示す情報とに基づき、対象領域Bx内に存在する任意の観測点Pijについて、送信された超音波が被検体中の観測点Pijに到達する送信時間を算出する。
図7は、送信開口Txから放射され対象領域Bx内の任意の位置にある観測点Pijにおいて反射され受信開口Rx内に位置する受信振動子Rkに到達する超音波の伝播経路を説明するための模式図である。なお、図7(a)は観測点Pijの深度がフォーカス深さ以下である場合、図7(b)は観測点Pijがフォーカス深さより深い場合を示している。
送信開口Txから放射された送信波は、経路401を通って送信フォーカス点Fにて波面が集束し、再び、拡散する。送信波が集束または拡散する途中で観測点Pijに到達し、観測点Pijで音響インピーダンスに変化があれば反射波を生成し、その反射波がプローブ101における受信開口Rx内の受信振動子Rkに戻っていく。送信フォーカス点Fは送信ビームフォーマ部103の設計値として装置内に格納されているので、送信フォーカス点Fと任意の観測点Pijとの間の経路402の長さは幾何学的に算出することができる。
送信時間の算出方法を、以下、さらに詳細に説明する。
まず、観測点Pijの深度がフォーカス深さ以下である場合について、図7(a)を用いて説明する。このとき、送信開口Txから放射された送信波の波面405が、経路401を通って送信フォーカス点Fに到達する時刻と、経路404を通って観測点Pijに到達した後、観測点Pijから経路402を通って送信フォーカス点Fに到達する時刻とが同一である。つまり、送信波が経路401を通過する時間から、経路402を通過する時間を差し引いた値が、観測点Pijへの送信時間となる。具体的な算出方法としては、例えば、経路401の長さから経路402の長さを減算した経路長差を、被検体内における超音波の伝搬速度で除算することで求められる。
次に、観測点Pijがフォーカス深さより深い場合について、図7(b)を用いて説明する。このとき、送信開口Txから放射された送信波が、経路401を通って送信フォーカス点Fに到達し、送信フォーカス点Fから経路402を通って観測点Pijに到達したものとして算出する。したがって、送信波が経路401を通過する時間と、経路402を通過する時間を合算した値が、観測点Pijへの送信時間となる。具体的な算出方法としては、例えば、経路401の長さと経路402の長さとを加算した全経路長を、被検体内における超音波の伝搬速度で除算することで求められる。
なお、観測点Pijがフォーカス点である場合の観測点Pijへの送信時間は、送信波が経路401を通過する時間から、経路402を通過する時間を差し引く計算方法を用いるとした。しかしながら、送信波が経路401を通過する時間と、経路402を通過する時間を合算する計算方法を用いるとしてもよい。経路402の長さが0となるため、いずれで算出しても経路401を通過する時間と一致するためである。
送信時間算出部1044は、1回の送信イベントに対し、対象領域Bx内の全ての観測点Pijについて、送信された超音波が被検体中の観測点Pijに到達する送信時間を算出して遅延量算出部1046に出力する。
iv)受信時間算出部1045
受信時間算出部1045は、観測点Pからの反射波が、受信開口Rxに含まれる受信振動子Rkの各々に到達する受信時間を算出する回路である。送信イベントに対応して、データ格納部107から取得した受信振動子Rkの位置を示す情報と、対象領域設定部1042から取得した対象領域Bxの位置を示す情報とに基づき対象領域Bx内に存在する任意の観測点Pijについて、送信された超音波が被検体中の観測点Pijで反射され受信開口Rxの各受信振動子Rkに到達する受信時間を算出する。
上述のとおり、観測点Pijに到達した送信波は、観測点Pijで音響インピーダンスに変化があれば反射波を生成し、その反射波がプローブ101における受信開口Rx内の各受信振動子Rkに戻っていく。受信開口Rx内の各受信振動子Rkの位置情報はデータ格納部107から取得されるので、任意の観測点Pijから各受信振動子Rkまでの経路403の長さは幾何学的に算出することができる。
受信時間算出部1045は、1回の送信イベントに対し、対象領域Bx内に存在する全ての観測点Pijについて、送信された超音波が観測点Pijで反射して各受信振動子Rkに到達する受信時間を算出して遅延量算出部1046に出力する。
v)遅延量算出部1046
遅延量算出部1046は、送信時間と受信時間とから受信開口Rx内の各受信振動子Rkへの総伝播時間を算出し、当該総伝播時間に基づいて、各受信振動子Rkに対する受信信号の列に適用する遅延量を算出する回路である。遅延量算出部1046は、送信時間算出部1044から、送信された超音波が観測点Pijに到達する送信時間を取得し、受信時間算出部1046から、観測点Pijで反射して各受信振動子Rkに到達する受信時間を取得する。そして、送信された超音波が観測点Pijに到達して観測点Pijから反射されて各受信振動子Rkへ到達するまでの総伝播時間を算出し、各受信振動子Rkに対する総伝播時間の差異により、各受信振動子Rkに対する遅延量を算出する。遅延量算出部1046は、対象領域Bx内に存在する全ての観測点Pijについて、各受信振動子Rkに対する受信信号の列に適用する遅延量を算出して遅延処理部1047に出力する。
v)遅延処理部1047
遅延処理部1047は、受信開口Rx内の受信振動子Rkに対する受信信号の列から、各受信振動子Rkに対する遅延量に相当する受信信号を、観測点Pijからの反射超音波に基づく各受信振動子Rkに対応する受信信号として同定する回路である。
遅延処理部1047は、送信イベントに対応して、受信開口設定部1043から受信振動子Rkの位置を示す情報、データ格納部107から受信振動子Rkに対応する受信信号、対象領域設定部1042から取得した対象領域Bxの位置を示す情報、遅延量算出部1046から各受信振動子Rkに対する受信信号の列に適用する遅延量を入力として取得する。そして、各受信振動子Rkに対応する受信信号の列から、各受信振動子Rkに対する遅延量を差引いた時間に対応する受信信号を観測点Pijからの反射波に基づく受信信号として同定し、加算部1049に出力する。
vi)重み算出部1048
重み算出部1048は、受信開口Rxの列方向の中心に位置する振動子に対する重みが最大となるよう各受信振動子Rkに対する重み数列(受信アポダイゼーション)を算出する回路である。
図6に示すように、重み数列は受信開口Rx内の各振動子に対応する受信信号に適用される重み係数の数列である。重み数列は、観測点Pijに最も空間的に近接する振動子xkを中心として対称な分布をなす。重み数列の分布の形状は、ハミング窓、ハニング窓、矩形窓などを用いることができ、分布の形状は特に限定されない。重み数列は、受信開口Rxの列方向の中心に位置する振動子に対する重みが最大となるように設定され、重みの分布の中心軸は、受信開口中心軸Rxoと一致する。重み算出部1048は、受信開口設定部1043から出力される受信振動子Rkの位置を示す情報を入力として、各受信振動子Rkに対する重み数列を算出し加算部1049に出力する。なお、上記では、重み数列を観測点Pijに最も空間的に近接する振動子xkを中心として対称な分布としたが、送信フォーカス点Fを受信開口中心軸とした構成としてもよい。
vii)加算部1049
加算部1049は、遅延処理部1047から出力される各受信振動子Rkに対応して同定された受信信号を入力として、それらを加算して、観測点Pijに対する整相加算された音響線信号を生成する回路である。あるいは、さらに、重み算出部1048から出力される各受信振動子Rkに対する重み数列を入力として、各受信振動子Rkに対応して同定された受信信号に、各受信振動子Rkに対する重みを乗じて加算して、観測点Pijに対する音響線信号を生成する構成としてもよい。遅延処理部1047において受信開口Rx内に位置する各受信振動子Rkが検出した受信信号の位相を整えて加算部1049にて加算処理をすることにより、観測点Pijからの反射波に基づいて各受信振動子Rkで受信した受信信号を重ね合わせてその信号S/N比を増加し、観測点Pijからの受信信号を抽出することができる。
1回の送信イベントとそれに伴う処理から、対象領域Bx内の全ての観測点Pijについて音響線信号を生成することができる。そして、送信イベントに同期して送信開口Txを列方向に移動ピッチMpだけ移動させながら超音波送信を繰り返し、プローブ101に存する全ての振動子101aから超音波送信を行い、送信イベント毎にサブフレーム音響線信号を生成し、各サブフレームを合成することにより1フレームの合成された音響線信号であるフレーム音響線信号を生成する。
また、フレーム音響線信号を構成する観測点ごとの合成された音響線信号を、以後、「合成音響線信号」と称呼する。
加算部1049により、送信イベントに同期して対象領域Bx内に存在する全ての観測点Pijに対するサブフレームの音響線信号が生成される。生成されたサブフレームの音響線信号は、データ格納部107に出力され保存される。
(5)合成部1140
合成部1140は、送信イベントに同期して生成されるサブフレーム音響線信号からフレーム音響線信号を合成する回路である。図8は、合成部1140の構成を示す機能ブロック図である。図8に示すように、合成部1140は、加算処理部11401、増幅処理部11402を備える。
以下、合成部1140を構成する各部の構成について説明する。
i)加算処理部11401
加算処理部11401は、フレーム音響線信号を合成するための一連のサブフレーム音響線信号の生成が終了したのち、データ格納部107に保持されている複数のサブフレーム音響線信号を読み出す。そして、各サブフレーム音響線信号に含まれる音響線信号が取得された観測点Pijの位置を指標として複数のサブフレーム音響線信号を加算することにより、各観測点に対する合成音響線信号を生成してフレーム音響線信号を合成する。そのため、複数のサブフレーム音響線信号に含まれる同一位置の観測点に対する音響線信号は加算されて合成音響線信号が生成される。
図9は、加算処理部11401における合成音響線信号を合成する処理を示す模式図である。上述のとおり、送信イベントに同期して送信振動子列(送信開口Tx)に用いる振動子を振動子列方向に振動子1つ分だけ異ならせて超音波送信が順次行われる。そのため、異なる送信イベントに基づく対象領域Bxも送信イベントごとに同一方向に振動子1つ分だけ位置が異なる。複数のサブフレーム音響線信号を、各サブフレーム音響線信号に含まれる音響線信号が取得された観測点Pijの位置を指標として加算することにより、全ての対象領域Bxを網羅したフレーム音響線信号が合成される。
また、位置の異なる複数の対象領域Bxにまたがって存在する観測点Pijについては、各サブフレーム音響線信号における音響線信号の値が加算されるので、合成音響線信号は、跨りの程度に応じて大きな値を示す。以後、観測点Pijが異なる対象領域Bxに含まれる回数を「重畳数」、振動子列方向における重畳数の最大値を「最大重畳数」と称する。
また、本実施の形態では、対象領域Bxは砂時計形状の領域内に存在する。図10(a)に示すように、重畳数は被検体の深さ方向において変化する。そのため、合成音響線信号の値は、深さ方向に変化する重畳数の影響を受け、合成音響線信号の値は、深さ方向において変化する。但し、上述したように第1対象領域Bx1は、深度が浅いほど列方向の幅が小さい。そのため、深度に対する重畳数の変化は、第2対象領域Bx2における、フォーカス深さより深い領域と同様の変化となる。
なお、各サブフレーム音響線信号に含まれる音響線信号が取得された観測点Pijの位置を指標として加算する際に、観測点Pijの位置を指標として重みづけしながら加算してもよい。
合成されたフレーム音響線信号は増幅処理部11402に出力される。
ii)増幅処理部11402
上述のとおり、合成音響線信号の値は、重畳数の影響により、被検体の深度方向において変化する。これを補うために、増幅処理部11402は、フレーム音響線信号に含まれる合成音響線信号の合成において、加算が行われた回数(重畳数)に応じて決定した増幅率を各合成音響線信号に乗じる増幅処理を行う。
図10(b)は、増幅処理部11402における増幅処理の概要を示す模式図である。図10(b)に示すように、最大重畳数は被検体の深度方向において変化するので、この変化を補うように、最大重畳数に応じて決定された被検体の深度方向において変化する増幅率が合成音響線信号に乗じられる。これにより、深度方向における重畳数の変化に伴う合成音響線信号の変動要因は解消され、増幅処理後の合成音響線信号の値は深度方向において均一化が図られる。
また、重畳数に応じて決定された振動子列方向において変化する増幅率を合成音響線信号に乗じる処理を行ってもよい。振動子列方向において重畳数が変化する場合に、その変動要因を解消し、振動子列方向において増幅処理後の合成音響線信号の値の均一化が図られる。
なお、生成した各観測点に対する合成音響線信号に増幅処理を施した信号をフレーム音響線信号としてもよい。
<動作>
以上の構成からなる超音波診断装置100の動作について説明する。
図11は、超音波診断装置100のフレーム音響線信号生成動作を示すフローチャートである。
先ず、ステップS101において、送信部1031は、プローブ101に存する複数の振動子101aの内、送信開口Txに含まれる各振動子に超音波ビームを送信させるための送信信号を供給する送信処理(送信イベント)を行う。
次に、ステップS102において、受信部1040は、プローブ101での超音波反射波の受信から得た電気信号に基づき受信信号を生成しデータ格納部107に出力し、データ格納部107に受信信号を保存する。プローブ101に存する全ての振動子101aから超音波送信が完了したか否かを判定する(ステップS103)。そして、完了していない場合にはステップS101に戻り、送信開口Txを列方向に移動ピッチMpだけ移動させながら送信イベントを行い、完了している場合にはステップS210に進む。
次に、ステップS210において、対象領域設定部1042は、送信イベントに同期して、送信開口Txの位置を示す情報に基づき対象領域Bxを設定する。1回目のループでは初回の送信イベントにおける送信開口Txから求められる対象領域Bxが設定される。
次に、観測点同期型ビームフォーミング処理(ステップS220(S221〜S228))に進む。ステップS220では、まず、観測点Pijの位置を示す座標ijを対象領域Bx上の最小値に初期化し(ステップS221、S222)、受信開口設定部1043は、列中心が観測点Pijに最も空間的に近接する振動子Xkと合致するよう受信開口Rx振動子列を選択する(ステップS223)。
次に、観測点Pijについて音響線信号を生成する(ステップS224)。
ここで、ステップS224における、観測点Pijについて音響線信号を生成する動作について説明する。図12は、受信ビームフォーマ部104における観測点Pijについての音響線信号生成動作を示すフローチャートである。図13は、受信ビームフォーマ部104における観測点Pijについての音響線信号生成動作を説明するための模式図である。
まず、ステップS2241において、送信時間算出部1044は、対象領域Bx上に存在する任意の観測点Pijについて、送信された超音波が被検体中の観測点Pijに到達する送信時間を算出する。送信時間は、(1)観測点Pijがフォーカス深さより深い場合は、幾何学的に定まる受信開口Rx内の受信振動子Rkから送信フォーカス点Fを経由して観測点Pijに至る経路(401+402)の長さを超音波の音速csで除することにより、(2)観測点Pijの深度がフォーカス深さ以下である場合には、幾何学的に定まる、受信開口Rx内の受信振動子Rkから送信フォーカス点Fに至る経路と観測点Pijからフォーカス点に至る経路との差分(401−402)の長さを、超音波の音速csで除することにより、算出できる。
次に受信開口Rxから求められる受信開口Rx内の受信振動子Rkの位置を示す座標kを受信開口Rx内の最小値に初期化し(ステップS2242)、送信された超音波が被検体中の観測点Pijで反射され受信開口Rxの受信振動子Rkに到達する受信時間を算出する(ステップS2243)。受信時間は、幾何学的に定まる観測点Pijから受信振動子Rkまでの経路403の長さを超音波の音速csで除することにより算出できる。さらに、送信時間と受信時間の合計から、送信開口Txから送信された超音波が観測点Pijで反射して受信振動子Rkに到達するまでの総伝播時間を算出し(ステップS2244)、受信開口Rx内の各受信振動子Rkに対する総伝播時間の差異により、各受信振動子Rkに対する遅延量を算出する(ステップS2245)。
受信開口Rx内に存在する全ての受信振動子Rkについて遅延量の算出を完了したか否かを判定し(ステップS2246)、完了していない場合には座標kをインクリメント(ステップS2247)して、更に受信振動子Rkについて遅延量の算出を行い(ステップS2243)、完了している場合にはステップS2248に進む。この段階では、受信開口Rx内に存在する全ての受信振動子Rkについて観測点Pijからの反射波到達の遅延量が算出されている。
ステップS2248において、遅延処理部1047は、受信開口Rx内の受信振動子Rkに対応する受信信号の列から、各受信振動子Rkに対する遅延量を差引いた時間に対応する受信信号を観測点Pijからの反射波に基づく受信信号として同定する。
次に、重み算出部1048は、受信開口Rxの列方向の中心に位置する振動子に対する重みが最大となるよう各受信振動子Rkに対する重み数列を算出する(ステップS2249)。加算部1049は、各受信振動子Rkに対応して同定された受信信号に、各受信振動子Rkに対する重みを乗じて加算して、観測点Pijに対する音響線信号を生成し(ステップS2250)、生成された観測点Pijについて音響線信号はデータ格納部107に出力され保存される(ステップS2251)。
次に、図11に戻り、座標ijをインクリメントしてステップS223、S224を繰り返すことにより、対象領域Bx内の座標ijに位置する全ての観測点Pij(図13中の「・」)について音響線信号が生成される。対象領域Bx内に存在する全ての観測点Pijについて音響線信号の生成を完了したか否かを判定し(ステップS225、S227)、完了していない場合には座標ijをインクリメント(ステップS226、S228)して、観測点Pijについて音響線信号を生成し(ステップS224)、完了した場合にはステップS230に進む。この段階では、1回の送信イベントに伴う対象領域Bx内に存在する全ての観測点Pijについてのサブフレームの音響線信号が生成され、データ格納部107に出力され保存されている。
次に、全ての送信イベントについて、サブフレームの音響線信号の生成が終了したか否かを判定し(ステップS230)、終了していない場合には、ステップS210に戻り、観測点Pijの位置を示す座標ijを、次の送信イベントでの送信開口Txから求められる対象領域Bx上の最小値に初期化し(ステップS221、S222)、受信開口Rxを設定(ステップS223)、音響線信号の作成(ステップS224)を行い、終了している場合にはステップS301に進む。
次に、ステップS301において、加算処理部11401は、データ格納部107に保持されている複数のサブフレーム音響線信号を読み出し、観測点Pijの位置を指標として複数のサブフレーム音響線信号を加算して各観測点Pijに対する合成音響線信号を生成してフレーム音響線信号を合成する。次に、増幅処理部11402は、フレーム音響線信号に含まれる各合成音響線信号の加算回数に応じて決定された増幅率を各合成音響線信号に乗じ(ステップS302)、増幅されたフレーム音響線信号を超音波画像生成部105及びデータ格納部107に出力し(ステップS303)、処理を終了する。
<浅部開口Asの決定方法>
以下、第1対象領域Bxの形状を規定する浅部開口Asの設定方法についてより詳細に説明する。
上述したように、第1対象領域Bxは、深度が浅いほど列方向の幅が小さくなる形状を有する。したがって、送信開口Txの中心から所定の角度で広がる浅部開口Asを決定し、浅部開口Asと超音波主照射領域Axの重複領域を第1対象領域Bxとすることが好ましい。
(1)受信ダイナミックアパーチャー
浅部開口Asの1つの例としては、受信ダイナミックアパーチャーを用いる方法がある。図15(a)は、受信ダイナミックアパーチャーの模式図を示している。上述したように、観測点が浅いほど、観測点と離れた位置にある受波振動子Rkの受信信号のS/N比は、低下する。したがって、送信開口中心軸Txoを中心とした受信開口を設定する場合に、観測点の深度が所定の深度以下である場合には、受信開口の列方向の幅と観測点の深度とを比例関係として、浅部ほど受信開口を狭くする構成が考案されている。この受信開口の設定方法を、受信ダイナミックアパーチャーと呼ぶ。実施の形態では、この受信ダイナミックアパーチャーを合成開口法における仮想的な送信フォーカスに適用し、受信ダイナミックアパーチャーDARをそのまま浅部開口Asとして転用する。そして、図15(b)の模式図に示すように、受信ダイナミックアパーチャーDARと超音波主照射領域Axとの交点となる深度より浅い領域を第1深度範囲、深い領域を第2深度範囲とする。第1深度範囲において、超音波主照射領域Axと浅部開口Asとの重複領域を、第1対象領域Bx1とする。本構成により、サブフレーム音響線信号からフレーム音響線信号を形成する際において、受信ダイナミックアパーチャーと同様の効果を得ることができる。
なお、対象領域設定部は、受信ダイナミックアパーチャーの形状を特定するパラメータをあらかじめ保持し、このパラメータを基に浅部開口Asを定めてもよい。
(2)振動子の指向特性
浅部開口Asの他の一例として、超音波プローブ101の振動子101aの指向特性を用いる方法がある。図16(a)の模式図は、所定の周波数における1つの振動子101aの受信感度における指向特性を示す図である。図16(a)に示すように、振動子101aの指向特性は、Y方向が最も強く、Y方向に対してθ1/2の角度をなす方向に対して最も弱くなる。この、Y方向に対してθ1/2の角度をなす方向を、ヌルビームとも呼ぶ。実施の形態では、ヌルビームを含まない範囲、すなわち、θ2≦θ1を満たす角度θ2の範囲を、浅部開口Asとする。そして、図16(b)の模式図に示すように、第1深度範囲において、超音波主照射領域Axと浅部開口Asとの重複領域を、第1対象領域Bx1とする。なお、浅部開口Asは、振動子101aの受信感度における指向特性が所定の基準以上の範囲を含むように設定する、としてもよい。なお、振動子101aの受信感度における指向特性は、同一の振動子であっても超音波の周波数によって異なる。したがって、対象領域設定部は、送受信の対象となる超音波の周波数に応じて、浅部開口Asを変更することが好ましい。
なお、対象領域設定部は、送受信の対象となる超音波の周波数と、振動子101aの固体特性を示す情報と、浅部開口Asを規定するパラメータとの組み合わせをあらかじめ保持し、送受信の対象となる超音波の周波数と、振動子101aの固体特性を示す情報とに基づいて浅部開口Asを定めてもよい。
(3)受信ビームプロファイル
浅部開口Asの他の一例として、超音波プローブ101の指向特性である受信ビームプロファイルを用いる方法がある。図17(a)の模式図は、所定の周波数における超音波プローブ101の受信感度における指向特性を示す図である。図17(a)に示すように、超音波プローブ101の受信感度における指向特性は、Y方向に最も強い0次ピークがあり、Y方向に対して所定の角度をなす方向において、サイドローブと呼ばれる1次ピークがある。実施の形態では、0次ピークを含み1次ピークを含まない角度範囲θ4に対してθ3≦θ4を満たす角度θ3の範囲を受信プロファイルとし、角度θ3の範囲を浅部開口Asとする。なお、超音波プローブ101の受信感度における指向特性は、振動子101aの指向特性と同様、超音波の周波数によって異なる。したがって、対象領域設定部は、送受信の対象となる超音波の周波数に応じて、浅部開口Asを変更するとしてもよい。
なお、対象領域設定部は、送受信の対象となる超音波の周波数と、超音波プローブ101の固体特性を示す情報と、浅部開口Asを規定するパラメータとの組み合わせをあらかじめ保持し、送受信の対象となる超音波の周波数と、超音波プローブ101の固体特性を示す情報とに基づいて浅部開口Asを定めてもよい。
<まとめ>
以上、説明したように本実施の形態に係る超音波診断装置100によれば、合成開口法により、異なる送信イベントにより生成された同一位置にある観測点Pについての音響線信号を重ね合わせて合成する。これにより、送信フォーカス点F以外の深度にある観測点Pにおいても、仮想的に送信フォーカスを行った効果が得られ空間分解能と信号S/N比を向上することができる。
また、超音波診断装置100では、深度が所定深度以上の第2深度範囲では、サブフレーム音響線信号の生成されるべき対象領域としての第2対象領域は、超音波主照射領域全域に設定される。これにより、超音波の利用効率を向上させるとともに、合成開口法によるS/N比および空間解像度の向上効果を最大限に享受することができる。一方、深度が所定深度未満の第1深度範囲では、対象領域としての第1対象領域は、深度が浅いほど列方向の幅が狭くなるように設定される。これにより、浅い観測点では、観測点と受信振動子Rkとの距離が遠く、整相加算によってもS/N比が十分に向上しない条件下でのサブフレーム音響線信号を算出しないことで、フレーム音響線信号のS/N比および空間解像度の劣化を抑制することができる。さらに、対象領域から、整相加算によってもS/N比が十分に向上しない観測点を取り除くことにより、フレーム音響線信号における品質劣化の影響を最小限としつつ整相加算の演算量を削減することが可能となる。
また、超音波診断装置100では、受信開口設定部1043は、列中心が観測点Pに最も空間的に近接する振動子と合致するよう受信開口Rx振動子列を選択し、送信イベントに依存せず観測点Pの位置に基づいて、観測点Pを中心として対称な受信開口を用いて受信ビームフォーミングを行う。そのため、送信フォーカス点Fを横軸方向に変化(移動)させる送信イベントに同期せず、受信開口の位置が一定となり、異なる送信イベントにおいても同一の観測点Pに対して同一の受信開口にて整相加算を行うことができる。併せて、観測点Pからの反射波を、観測点Pから距離が小さい振動子ほど大きな重み数列が適用されることができるので、超音波が伝播距離に依存して減衰することを鑑みても、観測点Pに対して最も感度よく反射波を受信することができる。その結果、高い空間分解能と信号S/N比を実現できる。
なお、上記実施形態では、列中心が観測点Pに最も空間的に近接する振動子と合致するよう受信開口Rx振動子列を選択したが、列中心がフォーカス点となるよう受信開口Rx振動子列を選択してもよい。
≪変形例1≫
実施の形態1に係る超音波診断装置100では、受信開口設定部1043は、列中心が観測点Pに最も空間的に近接する振動子と合致するよう受信開口Rxを選択する構成とした。しかしながら、受信開口Rxの構成は、送信開口Txから送信された超音波が送信フォーカス点Fを経由して対象領域Bx内の観測点Pijで反射され受信開口Rxの受信振動子Rkに到達するまでの総伝播時間を算出して総伝播経路に基づく遅延制御を行なうことで、対象領域Bx内の全ての観測点Pijについての音響線信号を生成するものであればよく、受信開口Rxの選択のための構成は適宜変更することができる。
変形例1では、列中心が送信開口Tx振動子列の列中心と合致する受信開口Rx振動子列を選択する送信同期型受信開口設定部(以後、「Tx受信開口設定部」)を備えた点で実施の形態1と相違する。Tx受信開口設定部以外の構成については、実施の形態1に示した各要素と同じであり、同じ部分については説明を省略する。
図18は、Tx受信開口設定部により設定された受信開口Rxと送信開口Txとの関係を示す模式図である。変形例1では、受信開口Rx振動子列の列中心が送信開口Tx振動子列の列中心と合致するように受信開口Rx振動子列が選択される。受信開口Rxの中心軸Rxoの位置は、送信開口Txの中心軸Txoの位置と同一であり、受信開口Rxは、送信フォーカス点Fを中心として対称な開口である。したがって、送信イベントにごとに列方向に移動する送信開口Txの位置変化に同期して、受信開口Rxの位置も移動する。
また、受信開口Rxの中心軸Rxo及び送信開口Txの中心軸Txo上に位置する振動子に対する重みが最大となるよう受信開口Rxの各受信振動子Riに対する重み数列(受信アポダイゼーション)は算出される。重み数列は、振動子Xiを中心として対称な分布をなす。重み数列の分布の形状は、ハミング窓、ハニング窓、矩形窓などを用いることができ、分布の形状は特に限定されない。
<動作>
図19は、変形例1に係る超音波診断装置のフレーム音響線信号生成動作を示すフローチャートである。本フローチャートでは、図11における観測点同期型ビームフォーミング処理(ステップS220(S221〜S228))に替えて送信同期型ビームフォーミング処理(ステップS420(S421〜S428))を行う点にて相違する。ステップS420以外の処理については、図11と同じであり、同じ部分については説明を省略する。
ステップS420の処理において、先ず、ステップS421では、Tx受信開口設定部は、送信イベントに対応して列中心が送信開口Txに含まれる振動子列の列中心と合致する振動子列を受信振動子Rkとして選択して受信開口Rxを設定する。
次に、ステップS210で算出した対象領域Bx内の観測点Pijの位置を示す座標ijを対象領域Bx内の最小値に初期化し(ステップS422、S423)、観測点Pijについて音響線信号を生成する(ステップS424)。図20は、変形例1に係る受信ビームフォーマ部における観測点Pijについての音響線信号生成動作を説明するための模式図である。実施の形態1に関する図13とは、送信開口Txと受信開口Rxとの位置関係が異なる。ステップS424における処理方法については、図11におけるステップS224(図12におけるステップS2241〜ステップS2251)と同じである。
座標ijをインクリメントしてステップS424を繰り返すことにより、対象領域Bx内の座標ijに位置する全ての観測点Pij(図20中の「・」)について音響線信号が生成される。対象領域Bx内に存在する全ての観測点Pijについて音響線信号の生成を完了したか否かを判定し(ステップS425、S427)、完了していない場合には座標ijをインクリメント(ステップS426、S428)して、観測点Pijについて音響線信号を生成し(ステップS424)、完了している場合にはステップS230に進む。この段階で、1回の送信イベントに伴う対象領域Bx内に存在する全ての観測点Pijのサブフレームの音響線信号が生成されデータ格納部107に出力され保存されている。
<効果>
以上説明した、変形例1に係る超音波診断装置では、実施の形態1において示した効果のうち観測点同期型の受信開口に関する部分を除いた効果に変えて、以下の効果を奏する。すなわち、変形例1では、Tx受信開口設定部は送信イベントに対応して列中心が送信開口Txに含まれる振動子列の列中心と合致する振動子列を受信振動子として選択して受信開口Rxを設定する。そのため、受信開口Rxの中心軸Rxoの位置は、送信開口Txの中心軸Txoの位置と同一であり、送信イベントにごとに列方向に移動する送信開口Txの位置変化に同期して、受信開口Rxの位置も変化(移動)する。よって、送信イベントに同期してそれぞれ異なる受信開口にて整相加算を行うことができ、複数の送信イベントにわたって受信時刻は異なるものの、結果としてより一層広い受信開口を用いた受信処理の効果が得られ、広い観測領域で空間分解能を均一にすることができる。
≪変形例2≫
実施の形態1および変形例1に係る超音波診断装置では、対象領域Bxは、所定の深度以下である第1深度範囲の第1対象領域Bx1と、所定の深度より深い第2深度範囲の第2対象領域Bx2とからなるとした。しかしながら、対象領域Bxは、それ以外の形状を備えてもよい。
図21(a)に、変形例2に係る対象領域Bxの第1の設定例を示す。図21(a)に示すように、対象領域は、第1深度範囲の第1対象領域Bx1と、第2深度範囲の第2対象領域Bx2と、第1深度範囲と第2深度範囲の間に位置する第3深度範囲の第3対象領域Bx3とからなる。第3対象領域Bx3は、例えば、第1深度範囲と第3深度範囲との境界である深度における第1対象領域の列方向の幅を全ての深度について備える、長方形状の領域となる。つまり、フォーカス深さより浅い領域において、対象領域Bxの列方向の幅は、第1対象領域Bx1の列方向の幅の最大より広くならない。この構成により、浅部におけるフレーム音響線信号のS/N比の低下を抑えるとともに、演算量を低下させることができる。
なお、第3領域Bx3の形状は、長方形に限られない。図21(b)に、変形例2に係る対象領域Bxの第2の設定例を示す。第2の設定例では、第1深度範囲の第1対象領域Bx1と、第2深度範囲の第2対象領域Bx2とは、第1の設定例と同一である。これに対し、第3対象領域Bx3は、図21(b)に示すように、列方向の幅が、最浅部と最深部に対して中間部分で大きくなった樽型の形状である。また、図21(c)に、変形例2に係る対象領域Bxの第3の設定例を示す。第3の設定例では、第2の設定例とは逆に、第3対象領域Bx3が、図21(c)に示すように、列方向の幅が、最浅部と最深部に対して中間部分で小さくなった砂時計型の形状である。
なお、第3対象領域Bx3の形状は上述の場合に限らず、第3深度範囲における超音波主照射領域Axの全域でなければ、任意の形状であってよい。
≪変形例3≫
実施の形態1および変形例1、2に係る超音波診断装置では、対象領域Bxは、観測点が列方向と深度方向にほぼ均等に配置された領域であるとした。しかしながら、対象領域Bxは、それ以外の特徴を有していてもよい。
図22(a)に、変形例3に係る対象領域Bxの第1の設定例を示す。第1の設定例では、対象領域は、実施の形態1と同様、第1深度範囲において超音波主照射領域Axの内部かつ浅部開口Asの内部に存在する第1対象領域Bx1と、第2深度範囲において超音波主照射領域Axの内部に存在する第2対象領域Bx2とを含む。その一方で、図22(a)に示すように、第1対象領域Bx1は、送信開口Txの中心から放射状に延びる複数の直線状の領域である対象線BL11、BL12、BL13、BL14、BL15からなる。同様に、第2対象領域Bx2は、フォーカス点Fを貫通する複数の直線状の領域である対象線BL21、BL22、BL23、BL24、BL25からなる。すなわち、変形例3に係る対象領域Bxでは、第1対象領域Bx1内全域に観測点を設定するのではなく、第1対象領域内の対象線BL11、BL12、BL13、BL14、BL15上にのみ観測点を設定する。そのため、実施の形態1にと比べて、列方向における観測点の密度が低い。このようにすることで、仮想的に送信フォーカスを行った効果の低減を抑えつつ、観測点の数の減少による演算量の削減を図ることができる。
また、図22(b)に、変形例3に係る対象領域Bxの第2の設定例を示す。第2の設定例では、対象領域は、変形例2の第2の設定例と同様、第1深度範囲において超音波主照射領域Axの内部かつ浅部開口Asの内部に存在する第1対象領域Bx1と、第2深度範囲において超音波主照射領域Axの内部に存在する第2対象領域Bx2と、第2深度範囲において超音波主照射領域Axの一部に存在する第2対象領域Bx3とを含む。その一方で、図22(b)に示すように、第1対象領域Bx1は、送信開口Txの中心から放射状に延びる複数の直線状の領域である対象線BL11、BL12、BL13、BL14、BL15からなる。同様に、第2対象領域Bx2は、フォーカス点Fを貫通する複数の直線状の領域である対象線BL21、BL22、BL23、BL24、BL25からなる。また、第3対象領域Bx3は、対象線BL11と対象線BL21との間に位置する対象線BL31、対象線BL12と対象線BL22との間に位置する対象線BL32、対象線BL13と対象線BL23との間に位置する対象線BL33、対象線BL14と対象線BL24との間に位置する対象線BL34、対象線BL15と対象線BL25との間に位置する対象線BL35、からなる。すなわち、第2の設定例においても、変形例2に係る対象領域Bxと比べて、列方向における観測点の密度が低い。このようにすることで、仮想的に送信フォーカスを行った効果の低減を抑えつつ、観測点の数の減少による演算量の削減を図ることができる。
なお、上述の例では、第1対象領域Bx1、第2対象領域Bx2、第3対象領域Bx3がそれぞれ対象線を5つずつ含むものとしたが、任意の数でよい。また、複数の観測線は、列方向に観測点が等間隔に配置されるように配置されることが好ましく、隣接する2つの観測線のなす角が所定の角度となるように配置されてもよい。さらに、列方向における観測点の間隔について、送信開口中心軸Txoに近いほど間隔が狭く、送信開口中心軸Txoから遠いほど間隔が広くなるような配置であってもよい。さらに、第1対象領域Bx1、第2対象領域Bx2、第3対象領域Bx3のそれぞれにおいて、含む対象線の数が異なる、としてもよい。
≪変形例4≫
実施の形態1および変形例1〜3に係る超音波診断装置では、超音波ビームが、送信フォーカス点Fにおいて焦点があう焦点波、または、送信フォーカス点Fの近傍において列方向に狭い範囲に集束する集束波であるとした。しかしながら、超音波ビームは、平面波等の非集束波であってもよい。
図23(a)に、変形例4に係る対象領域Bxの第1の設定例を示す。第1の設定例では、超音波ビームは平面波であり、超音波主照射領域Axは、送信開口Txを1辺とする長方形状の領域である。このとき、浅部開口Asを実施の形態1等と同様に設定し、第1深度範囲では、超音波主照射領域Axの内部かつ浅部開口Asの内部を、第1対象領域Bx1とする。また、第2深度範囲では、超音波主照射領域Axの内部を、第2対象領域Bx2とする。この構成により、対象領域から、整相加算によってもS/N比が十分に向上しない観測点を取り除くことにより、フレーム音響線信号における品質劣化の影響を最小限としつつ整相加算の演算量を削減することが可能となる。
また、図23(b)に、変形例4に係る対象領域Bxの第2の設定例を示す。第2の設定例では、超音波ビームは非集束波とみなせる程度に集束領域が広い、いわゆるFat Beamであり、超音波主照射領域Axは、送信開口Txを1辺とした略長方形であるが、中間部が少しだけくびれている。このとき、浅部開口Asを実施の形態1等と同様に設定し、第1深度範囲では、超音波主照射領域Axの内部かつ浅部開口Asの内部を、第1対象領域Bx1とする。また、第2深度範囲では、超音波主照射領域Axの内部を、第2対象領域Bx2とする。この構成により、対象領域から、整相加算によってもS/N比が十分に向上しない観測点を取り除くことにより、フレーム音響線信号における品質劣化の影響を最小限としつつ整相加算の演算量を削減することが可能となる。
なお、図24(a)に示すように、第1の設定例に変形例3の構成を組み合わせ、第1対象領域Bx1は、深度方向に延びる複数の直線状の領域である対象線BLnからなり、第2対象領域Bx2は、深度方向に延びる複数の直線状の領域である対象線BL2mからなる、としてもよい。同様に、図24(b)に示すように、第2の設定例に変形例3の構成を組み合わせ、第1対象領域Bx1は、深度方向に延びる複数の直線状の領域である対象線BLnからなり、第2対象領域Bx2は、深度方向に延びる複数の直線状の領域である対象線BL2mからなる、としてもよい。
また、図示しないが、変形例2の構成を組み合わせ、第3対象領域Bx3を設定する、としてもよい。
≪実施の形態に係るその他の変形例≫
(1)各実施の形態および各変形例では、第1対象領域Bx1、第2対象領域Bx2、第3対象領域Bx3とで、観測点の密度が同一であるとした。しかしながら、例えば、第1対象領域Bx1、第2対象領域Bx2、第3対象領域Bx3とで、観測点の密度を変更してもよい。このとき、変形例3に示すように、深度方向の密度を変更せずに列方向の密度を低下させることで、演算量の削減量を大きくしてもフレーム音響線信号の空間解像度やS/N比の低下を抑制することができる。例えば、第2対象領域Bx2のみ観測点の列方向の密度を低下させる構成により、深度が大きく反射超音波が微弱な観測点について、合成数を増加してもフレーム音響線信号の空間解像度やS/N比の向上効果が小さい場合に演算量の増加を抑止することができる。
(2)各実施の形態および各変形例では、第2対象領域Bx2を、第2深度範囲における超音波主照射領域Axの全域であるとした。しかしながら、例えば、第2対象領域Bx2は、第2深度範囲における超音波主照射領域Axの一部であるとしてもよい。例えば、第2対象領域Bx2は、第2深度範囲において、超音波主照射領域Axの列方向の一部であってよく、具体的には、超音波主照射領域Axを列方向に狭めた三角形の領域であってもよい。また、第2対象領域Bx2は、所定の深度までは超音波主照射領域Axのうち列方向の幅が所定の幅以下の三角形状とし、所定の深度より深い領域では、所定の深度における第2対象領域Bx2の幅と同じ幅の長方形となるような、三角形と四角形とを合わせた形状であってもよい。または、例えば、第2対象領域Bx2は、所定の深度よりも深い領域においては、深度が大きくなるほど列方向の幅が小さくなる形状であってもよい。これにより、深度が大きく反射超音波が微弱な観測点について、合成数を増加してもフレーム音響線信号の空間解像度やS/N比の向上効果が小さい場合に演算量の増加を抑止することができる。
(3)各実施の形態および各変形例では、浅部開口Asは、送受信の対象となる超音波の周波数と、超音波プローブ101の固体特性または振動子101aの固体特性を示す情報とに基づいて決定されるとした。しかしながら、浅部開口Asを定める情報は、超音波の波数、送信時間、送信間隔等の他の超音波送信条件を含むとしてもよい。また、超音波プローブ101の固体特性または振動子101aの固体特性を示す情報は、例えば、超音波プローブ101の型番等に関連付けて管理されてもよい。
(4)なお、本発明を上記実施の形態に基づいて説明してきたが、本発明は、上記の実施の形態に限定されず、以下のような場合も本発明に含まれる。
例えば、本発明は、マイクロプロセッサとメモリを備えたコンピュータシステムであって、上記メモリは、上記コンピュータプログラムを記憶しており、上記マイクロプロセッサは、上記コンピュータプログラムにしたがって動作するとしてもよい。例えば、本発明の超音波信号処理方法のコンピュータプログラムを有しており、このプログラムに従って動作する(又は接続された各部位に動作を指示する)コンピュータシステムであってもよい。
また、上記超音波診断装置の全部、もしくは一部、また超音波信号処理装置の全部又は一部を、マイクロプロセッサ、ROM、RAM等の記録媒体、ハードディスクユニットなどから構成されるコンピュータシステムで構成した場合も本発明に含まれる。上記RAM又はハードディスクユニットには、上記各装置と同様の動作を達成するコンピュータプログラムが記憶されている。上記マイクロプロセッサが、上記コンピュータプログラムにしたがって動作することにより、各装置はその機能を達成する。
また、上記の各装置を構成する構成要素の一部又は全部は、1つのシステムLSI(Large Scale Integration(大規模集積回路))から構成されているとしてもよい。システムLSIは、複数の構成部を1個のチップ上に集積して製造された超多機能LSIであり、具体的には、マイクロプロセッサ、ROM、RAMなどを含んで構成されるコンピュータシステムである。これらは個別に1チップ化されてもよいし、一部又は全てを含むように1チップ化されてもよい。なお、LSIは、集積度の違いにより、IC、システムLSI、スーパーLSI、ウルトラLSIと呼称されることもある。上記RAMには、上記各装置と同様の動作を達成するコンピュータプログラムが記憶されている。上記マイクロプロセッサが、上記コンピュータプログラムにしたがって動作することにより、システムLSIは、その機能を達成する。例えば、本発明のビームフォーミング方法がLSIのプログラムとして格納されており、このLSIがコンピュータ内に挿入され、所定のプログラム(ビームフォーミング方法)を実施する場合も本発明に含まれる。
なお、集積回路化の手法はLSIに限るものではなく、専用回路または汎用プロセッサで実現してもよい。LSI製造後に、プログラムすることが可能なFPGA(Field Programmable Gate Array)や、LSI内部の回路セルの接続や設定を再構成可能なリコンフィギュラブル・プロセッサー(Reconfigurable Processor)を利用してもよい。
さらには、半導体技術の進歩または派生する別技術によりLSIに置き換わる集積回路化の技術が登場すれば、当然、その技術を用いて機能ブロックの集積化を行ってもよい。
また、各実施の形態に係る、超音波診断装置の機能の一部又は全てを、CPU等のプロセッサがプログラムを実行することにより実現してもよい。上記超音波診断装置の診断方法や、ビームフォーミング方法を実施させるプログラムが記録された非一時的なコンピュータ読み取り可能な記録媒体であってもよい。プログラムや信号を記録媒体に記録して移送することにより、プログラムを独立した他のコンピュータシステムにより実施するとしてもよい、また、上記プログラムは、インターネット等の伝送媒体を介して流通させることができるのは言うまでもない。
上記実施形態に係る超音波診断装置では、記憶装置であるデータ格納部を超音波診断装置内に含む構成としたが、記憶装置はこれに限定されず、半導体メモリ、ハードディスクドライブ、光ディスクドライブ、磁気記憶装置、等が、超音波診断装置に外部から接続される構成であってもよい。
また、ブロック図における機能ブロックの分割は一例であり、複数の機能ブロックを一つの機能ブロックとして実現したり、一つの機能ブロックを複数に分割したり、一部の機能を他の機能ブロックに移してもよい。また、類似する機能を有する複数の機能ブロックの機能を単一のハードウェア又はソフトウェアが並列又は時分割に処理してもよい。
また、上記のステップが実行される順序は、本発明を具体的に説明するために例示するためのものであり、上記以外の順序であってもよい。また、上記ステップの一部が、他のステップと同時(並列)に実行されてもよい。
また、超音波診断装置には、プローブ及び表示部が外部から接続される構成としたが、これらは、超音波診断装置内に一体的に具備されている構成としてもよい。
また、上記実施の形態においては、プローブは、複数の圧電素子が一次元方向に配列されたプローブ構成を示した。しかしながら、プローブの構成は、これに限定されるものではなく、例えば、複数の圧電変換素子を二次元方向に配列した二次元配列振動子や、一次元方向に配列された複数の振動子を機械的に揺動させて三次元の断層画像を取得する揺動型プローブを用いてもよく、測定に応じて適宜使い分けることができる。例えば、2次元に配列されたプローブを用いた場合、圧電変換素子に電圧を与えるタイミングや電圧の値を個々に変化させることによって、送信する超音波ビームの照射位置や方向を制御することができる。
また、プローブは、送受信部の一部の機能をプローブに含んでいてもよい。例えば、送受信部から出力された送信電気信号を生成するための制御信号に基づき、プローブ内で送信電気信号を生成し、この送信電気信号を超音波に変換する。併せて、受信した反射超音波を受信電気信号に変換し、プローブ内で受信電気信号に基づき受信信号を生成する構成を採ることができる。
また、各実施の形態に係る超音波診断装置、及びその変形例の機能のうち少なくとも一部を組み合わせてもよい。更に上記で用いた数字は、全て本発明を具体的に説明するために例示するものであり、本発明は例示された数字に制限されない。
さらに、本実施の形態に対して当業者が思いつく範囲内の変更を施した各種変形例も本発明に含まれる。
≪まとめ≫
(1)実施の形態に係る超音波信号処理装置は、複数の振動子を備えた超音波プローブに、被検体に超音波ビームを送信させる送信イベントを複数回繰り返すとともに、各送信イベントに対応して受波された被検体からの反射超音波に基づく前記超音波プローブからの信号に基づき、複数の音響線信号を合成して合成音響線信号を得る超音波信号処理装置であって、前記複数の振動子の一部を含む送信開口を設定して前記送信開口の位置によって定まる超音波主照射領域に超音波ビームを送信させる送信イベントを、前記送信開口を送信イベントごとに前記振動子の並ぶ方向にシフトしながら繰り返し実行する送信部と、各送信イベントに対応して、前記超音波プローブからの信号に基づき、前記超音波プローブの振動子各々に対する受信信号列を生成する受信部と、前記送信イベントごとに、フォーカス点よりも浅部に位置する深度範囲において深度が浅いほど前記振動子の並ぶ方向の幅が小さくなる形状を有する対象領域を前記超音波主照射領域内に設定し、前記対象領域の複数の観測点について、各観測点から得られた反射超音波に基づく前記受信信号列を整相加算してサブフレーム音響線信号を生成する整相加算部と、前記整相加算部が生成した前記複数のサブフレーム音響線信号に基づき、前記フレーム音響線信号を合成する合成部とを備えることを特徴とする。
また、実施の形態に係る超音波信号処理方法は、複数の振動子を備えた超音波プローブに、被検体に超音波ビームを送信させる送信イベントを複数回繰り返すとともに、各送信イベントに対応して受波された被検体からの反射超音波に基づく前記超音波プローブからの信号に基づき、複数の音響線信号を合成して合成音響線信号を得る超音波信号処理方法であって、前記複数の振動子の一部を含む送信開口を設定して前記送信開口の位置によって定まる超音波主照射領域に超音波ビームを送信させる送信イベントを、前記送信開口を送信イベントごとに前記振動子の並ぶ方向にシフトしながら繰り返し実行し、各送信イベントに対応して、前記超音波プローブからの信号に基づき、前記超音波プローブの振動子各々に対する受信信号列を生成し、前記送信イベントごとに、フォーカス点よりも浅部に位置する深度範囲において深度が浅いほど前記振動子の並ぶ方向の幅が小さくなる形状を有する対象領域を前記超音波主照射領域内に設定し、前記対象領域内の複数の観測点について、各観測点から得られた反射超音波に基づく前記受信信号列を整相加算してサブフレーム音響線信号を生成し、前記複数のサブフレーム音響線信号に基づき、前記フレーム音響線信号を生成することを特徴とする。
上記構成又は方法によれば、浅部において、観測点と反射超音波信号を受波する受信振動子とを近づけることができるため、音響線信号の空間分解能及び信号S/N比を高めることができる。また、浅部以外の深度については、対象領域の振動子の並ぶ向きの幅を大きくすることができるため、仮想的に送信フォーカスを合わせることによる空間分解能及びS/N比の向上を図ることができる。
(2)他の実施の形態に係る超音波信号処理装置は、複数の振動子を備えた超音波プローブに、被検体に集束型の超音波ビームを送信させる送信イベントを複数回繰り返すとともに、各送信イベントに対応して受波された被検体からの反射超音波に基づく前記超音波プローブからの信号に基づき、複数の音響線信号を合成して合成音響線信号を得る超音波信号処理装置であって、前記複数の振動子の一部を含む送信開口を設定して前記送信開口の位置によって定まるフォーカス点で超音波ビームが収束するように超音波主照射領域に超音波ビームを送信させる送信イベントを、前記送信振動子列を送信イベントごとに前記振動子の並ぶ方向にシフトしながら繰り返し実行する送信部と、各送信イベントに対応して、前記超音波プローブからの信号に基づき、前記超音波プローブの振動子各々に対する受信信号列を生成する受信部と、前記送信イベントごとに、前記フォーカス点より浅い深度範囲において深度が浅いほど前記振動子の並ぶ方向の幅が小さくなる形状を有する対象領域を前記超音波主照射領域内に設定し、前記対象領域内の複数の観測点について、各観測点から得られた反射超音波に基づく前記受信信号列を整相加算してサブフレーム音響線信号を生成する整相加算部と、前記整相加算部が生成した前記複数のサブフレーム音響線信号に基づき、前記フレーム音響線信号を合成する合成部とを備えることを特徴とする。
また、他の実施の形態に係る超音波信号処理方法は、複数の振動子を備えた超音波プローブに、被検体に集束型の超音波ビームを送信させる送信イベントを複数回繰り返すとともに、各送信イベントに対応して受波された被検体からの反射超音波に基づく前記超音波プローブからの信号に基づき、複数の音響線信号を合成して合成音響線信号を得る超音波信号処理方法であって、前記複数の振動子の一部を含む送信開口を設定して前記送信開口の位置によって定まるフォーカス点で超音波ビームが収束するように超音波主照射領域に超音波ビームを送信させる送信イベントを、前記送信振動子列を送信イベントごとに前記振動子の並ぶ方向にシフトしながら繰り返し実行し、各送信イベントに対応して、前記超音波プローブからの信号に基づき、前記超音波プローブの振動子各々に対する受信信号列を生成し、前記送信イベントごとに、前記フォーカス点より浅い深度範囲において深度が浅いほど前記振動子の並ぶ方向の幅が小さくなる形状を有する対象領域を前記超音波主照射領域内に設定し、前記対象領域内の複数の観測点について、各観測点から得られた反射超音波に基づく前記受信信号列を整相加算してサブフレーム音響線信号を生成し、前記複数のサブフレーム音響線信号に基づき、前記フレーム音響線信号を生成することを特徴とする。
上記構成又は方法であっても、浅部において、観測点と反射超音波信号を受波する受信振動子とを近づけることができるため、音響線信号の空間分解能及び信号S/N比を高めることができる。また、浅部以外の深度については、対象領域の振動子の並ぶ向きの幅を大きくすることができるため、仮想的に送信フォーカスを合わせることによる空間分解能及びS/N比の向上を図ることができる。
(3)また、上記(1)または(2)の超音波信号処理装置は、前記対象領域は、前記深度範囲より深い第2深度範囲において、前記超音波主照射領域と同一の形状を有する、としてもよい。
上記構成により、浅部以外の深度については、超音波の利用効率を最大化し、仮想的に送信フォーカスを合わせることによる空間分解能及びS/N比の向上を図ることができる。
(4)また、上記(1)〜(3)の超音波信号処理装置は、前記対象領域は、前記深度範囲において、前記振動子の並ぶ方向の幅の大きさが深度に比例する形状である、としてもよい。
上記構成により、浅部においては、単純な方法で深度が浅いほど前記振動子の並ぶ方向の幅が小さくなる形状を実現することができる。
(5)また、上記(1)〜(3)の超音波信号処理装置は、前記対象領域は、前記深度範囲において、前記振動子の指向特性に基づく形状である、としてもよい。
上記構成により、振動子の受信特性に合わせて浅部における対象領域の形状を設定することができる。
(6)また、上記(1)〜(3)の超音波信号処理装置は、前記対象領域は、前記深度範囲において、前記超音波プローブの受信ビームプロファイルに基づく形状である、としてもよい。
上記構成により、超音波プローブの受信特性に合わせて浅部における対象領域の形状を設定することができる。
(7)また、上記(3)の超音波信号処理装置は、前記対象領域は、前記深度範囲より深く前記第2深度範囲より浅い第3深度範囲において、前記振動子の並ぶ方向の幅が前記超音波主照射領域より狭く、かつ、前記深度範囲とは異なる形状を有する、としてもよい。
上記構成により、第3深度範囲における観測点の数を削減し、音響線信号の空間分解能及び信号S/N比の低下を抑制しながら演算量を削減することができる。
(8)また、上記(1)〜(7)の超音波信号処理装置は、前記対象領域の形状を決定するための複数のパラメータの組み合わせを複数保持するパラメータ保持部と、前記パラメータ保持部が保持するパラメータを取得して複数のパラメータの1つの組み合わせを選択し、対象領域の形状を決定する対象領域決定部とをさらに備える、としてもよい。
上記構成により、撮像条件等に合わせて対象領域の形状を容易に決定することができる。
(9)また、上記(8)の超音波信号処理装置は、前記パラメータは、前記超音波プローブの特性値、前記振動子の特性値の1以上を含み、前記対象領域決定部は、超音波プローブを特定する情報に基づいて、対象領域の形状を決定する、としてもよい。
上記構成により、超音波プローブまたはその振動子の特性に合わせて、対象領域の形状を容易に決定することができる。
(10)また、上記(8)または(9)の超音波信号処理装置は、前記パラメータは、前記超音波ビームの周波数、波数、時間長、送信ビームフォーミング方法を特定する情報の1以上を含み、前記対象領域決定部は、超音波ビームを特定する情報に基づいて、対象領域の形状を決定する、としてもよい。
上記構成により、送受信に用いる超音波の特性に合わせて、対象領域の形状を容易に決定することができる。
(11)また、実施の形態に係る超音波処理装置は、超音波プローブと、上記(1)〜(10)の超音波信号処理装置を備える。
本開示にかかる超音波信号処理装置、超音波診断装置、超音波信号処理方法、プログラム、及びコンピュータ読み取り可能な非一時的な記録媒体は、従来の超音波診断装置の性能向上、特に、対象領域の深度に依存しない空間分解能およびS/N比の向上に有用である。また本開示は超音波への適用のみならず、複数のアレイ素子を用いたセンサ等の用途にも応用できる。
100 超音波診断装置
101 超音波プローブ
101a 振動子
102 マルチプレクサ部
103 送信ビームフォーマ部
1031 送信部
104 受信ビームフォーマ部
1040 受信部
1041 整相加算部
1042 対象領域設定部
1043 受信開口設定部
1044 送信時間算出部
1045 受信時間算出部
1046 遅延量算出部
1047 遅延処理部
1048 重み算出部
1049 加算部
1140 合成部
11401 加算処理部
11402 増幅処理部
105 超音波画像生成部
106 表示部
107 データ格納部
108 制御部
150 超音波信号処理装置
1000 超音波診断システム

Claims (13)

  1. 複数の振動子を備えた超音波プローブに、被検体に超音波ビームを送信させる送信イベントを複数回繰り返すとともに、各送信イベントに対応して受波された被検体からの反射超音波に基づく前記超音波プローブからの信号に基づき、複数の音響線信号を合成して合成音響線信号を得る超音波信号処理装置であって、
    前記複数の振動子の一部を含む送信開口を設定して前記送信開口の位置によって定まる超音波主照射領域に超音波ビームを送信させる送信イベントを、前記送信開口を送信イベントごとに前記振動子の並ぶ方向にシフトしながら繰り返し実行する送信部と、
    各送信イベントに対応して、前記超音波プローブからの信号に基づき、前記超音波プローブの振動子各々に対する受信信号列を生成する受信部と、
    前記送信イベントごとに、フォーカス点よりも浅部に位置する深度範囲において深度が浅いほど前記振動子の並ぶ方向の幅が小さくなる形状を有する対象領域を前記超音波主照射領域内に設定し、前記対象領域の複数の観測点について、各観測点から得られた反射超音波に基づく前記受信信号列を整相加算してサブフレーム音響線信号を生成する整相加算部と、
    前記整相加算部が生成した前記複数のサブフレーム音響線信号に基づき、フレーム音響線信号を生成する合成部と
    を備えることを特徴とする超音波信号処理装置。
  2. 複数の振動子を備えた超音波プローブに、被検体に集束型の超音波ビームを送信させる送信イベントを複数回繰り返すとともに、各送信イベントに対応して受波された被検体からの反射超音波に基づく前記超音波プローブからの信号に基づき、複数の音響線信号を合成して合成音響線信号を得る超音波信号処理装置であって、
    前記複数の振動子の一部を含む送信開口を設定して前記送信開口の位置によって定まるフォーカス点で超音波ビームが収束するように超音波主照射領域に超音波ビームを送信させる送信イベントを、前記送信開口を送信イベントごとに前記振動子の並ぶ方向にシフトしながら繰り返し実行する送信部と、
    各送信イベントに対応して、前記超音波プローブからの信号に基づき、前記超音波プローブの振動子各々に対する受信信号列を生成する受信部と、
    前記送信イベントごとに、前記フォーカス点より浅い所定の深度範囲において深度が浅いほど前記振動子の並ぶ方向の幅が小さくなる形状を有する対象領域を前記超音波主照射領域内に設定し、前記対象領域内の複数の観測点について、各観測点から得られた反射超音波に基づく前記受信信号列を整相加算してサブフレーム音響線信号を生成する整相加算部と、
    前記整相加算部が生成した前記複数のサブフレーム音響線信号に基づき、前記フレーム音響線信号を生成する合成部と
    を備えることを特徴とする超音波信号処理装置。
  3. 前記対象領域は、前記深度範囲より深い第2深度範囲において、前記超音波主照射領域と同一の形状を有する
    ことを特徴とする請求項1または2に記載の超音波信号処理装置。
  4. 前記対象領域は、前記深度範囲において、前記振動子の並ぶ方向の幅の大きさが深度に比例する形状である
    ことを特徴とする請求項1から3のいずれか1項に記載の超音波信号処理装置。
  5. 前記対象領域は、前記深度範囲において、前記振動子の指向特性に基づく形状である
    ことを特徴とする請求項1から3のいずれか1項に記載の超音波信号処理装置。
  6. 前記対象領域は、前記深度範囲において、前記超音波プローブの受信ビームプロファイルに基づく形状である
    ことを特徴とする請求項1から3のいずれか1項に記載の超音波信号処理装置。
  7. 前記対象領域は、前記深度範囲より深く前記第2深度範囲より浅い第3深度範囲において、前記振動子の並ぶ方向の幅が前記超音波主照射領域より狭く、かつ、前記深度範囲とは異なる形状を有する
    ことを特徴とする請求項3に記載の超音波信号処理装置。
  8. 前記対象領域の形状を決定するための複数のパラメータの組み合わせを複数保持するパラメータ保持部と、
    前記パラメータ保持部が保持するパラメータを取得して複数のパラメータの1つの組み合わせを選択し、対象領域の形状を決定する対象領域決定部と
    をさらに備えることを特徴とする請求項1から7のいずれか1項に記載の超音波信号処理装置。
  9. 前記パラメータは、前記超音波プローブの特性値、前記振動子の特性値の1以上を含み、
    前記対象領域決定部は、超音波プローブを特定する情報に基づいて、対象領域の形状を決定する
    ことを特徴とする請求項8に記載の超音波信号処理装置。
  10. 前記パラメータは、前記超音波ビームの周波数、波数、時間長、送信ビームフォーミング方法を特定する情報の1以上を含み、
    前記対象領域決定部は、超音波ビームを特定する情報に基づいて、対象領域の形状を決定する
    ことを特徴とする請求項8または9に記載の超音波信号処理装置。
  11. 超音波プローブと、
    請求項1から10のいずれか1項に記載の超音波信号処理装置と
    を備えることを特徴とする超音波診断装置。
  12. 複数の振動子を備えた超音波プローブに、被検体に超音波ビームを送信させる送信イベントを複数回繰り返すとともに、各送信イベントに対応して受波された被検体からの反射超音波に基づく前記超音波プローブからの信号に基づき、複数の音響線信号を合成して合成音響線信号を得る超音波信号処理方法であって、
    前記複数の振動子の一部を含む送信開口を設定して前記送信開口の位置によって定まる超音波主照射領域に超音波ビームを送信させる送信イベントを、前記送信開口を送信イベントごとに前記振動子の並ぶ方向にシフトしながら繰り返し実行し、
    各送信イベントに対応して、前記超音波プローブからの信号に基づき、前記超音波プローブの振動子各々に対する受信信号列を生成し、
    前記送信イベントごとに、フォーカス点よりも浅部に位置する深度範囲において深度が浅いほど前記振動子の並ぶ方向の幅が小さくなる形状を有する対象領域を前記超音波主照射領域内に設定し、前記対象領域の複数の観測点について、各観測点から得られた反射超音波に基づく前記受信信号列を整相加算してサブフレーム音響線信号を生成し、
    前記複数のサブフレーム音響線信号に基づき、前記フレーム音響線信号を生成する
    ことを特徴とする超音波信号処理方法。
  13. 複数の振動子を備えた超音波プローブに、被検体に集束型の超音波ビームを送信させる送信イベントを複数回繰り返すとともに、各送信イベントに対応して受波された被検体からの反射超音波に基づく前記超音波プローブからの信号に基づき、複数の音響線信号を合成して合成音響線信号を得る超音波信号処理方法であって、
    前記複数の振動子の一部を含む送信開口を設定して前記送信開口の位置によって定まるフォーカス点で超音波ビームが収束するように超音波主照射領域に超音波ビームを送信させる送信イベントを、前記送信開口を送信イベントごとに前記振動子の並ぶ方向にシフトしながら繰り返し実行し、
    各送信イベントに対応して、前記超音波プローブからの信号に基づき、前記超音波プローブの振動子各々に対する受信信号列を生成し、
    前記送信イベントごとに、前記フォーカス点より浅い所定の深度範囲において深度が浅いほど前記振動子の並ぶ方向の幅が小さくなる形状を有する対象領域を前記超音波主照射領域内に設定し、前記対象領域内の複数の観測点について、各観測点から得られた反射超音波に基づく前記受信信号列を整相加算してサブフレーム音響線信号を生成し、
    前記複数のサブフレーム音響線信号に基づき、前記フレーム音響線信号を生成する
    ことを特徴とする超音波信号処理方法。
JP2018133457A 2018-07-13 2018-07-13 超音波信号処理装置、超音波診断装置、および、超音波信号処理方法 Active JP7124505B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2018133457A JP7124505B2 (ja) 2018-07-13 2018-07-13 超音波信号処理装置、超音波診断装置、および、超音波信号処理方法
US16/460,092 US11744555B2 (en) 2018-07-13 2019-07-02 Ultrasound signal processing device, ultrasound diagnostic device, and ultrasound signal processing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018133457A JP7124505B2 (ja) 2018-07-13 2018-07-13 超音波信号処理装置、超音波診断装置、および、超音波信号処理方法

Publications (2)

Publication Number Publication Date
JP2020010762A true JP2020010762A (ja) 2020-01-23
JP7124505B2 JP7124505B2 (ja) 2022-08-24

Family

ID=69138859

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018133457A Active JP7124505B2 (ja) 2018-07-13 2018-07-13 超音波信号処理装置、超音波診断装置、および、超音波信号処理方法

Country Status (2)

Country Link
US (1) US11744555B2 (ja)
JP (1) JP7124505B2 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL2022682B1 (en) * 2019-03-06 2020-09-17 Novioscan B V Energy efficient simplified analogue phased array transducer for beam steering
JP2022092888A (ja) * 2020-12-11 2022-06-23 コニカミノルタ株式会社 音響レンズ、超音波探触子、及び、超音波診断装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58140657A (ja) * 1982-02-17 1983-08-20 Hitachi Medical Corp 超音波送受波器
JPH02200254A (ja) * 1989-01-30 1990-08-08 Yokogawa Medical Syst Ltd 超音波診断装置
JP2015515902A (ja) * 2012-05-09 2015-06-04 コーニンクレッカ フィリップス エヌ ヴェ 可変パッチ配置を持つ超音波トランスデューサアレイ
US20160278742A1 (en) * 2015-03-27 2016-09-29 Konica Minolta, Inc. Ultrasound signal processing device, ultrasound diagnostic device
JP2018093974A (ja) * 2016-12-09 2018-06-21 コニカミノルタ株式会社 超音波信号処理装置、超音波信号処理方法、及び、超音波診断装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6193659B1 (en) * 1997-07-15 2001-02-27 Acuson Corporation Medical ultrasonic diagnostic imaging method and apparatus
JP5964774B2 (ja) 2013-03-22 2016-08-03 富士フイルム株式会社 超音波診断装置、超音波診断装置の信号処理方法およびプログラム
US10463345B2 (en) * 2014-10-29 2019-11-05 Konica Minolta, Inc. Ultrasound signal processing device and ultrasound diagnostic device
JP6586855B2 (ja) 2014-10-29 2019-10-09 コニカミノルタ株式会社 超音波信号処理装置、及び超音波診断装置
JP6746895B2 (ja) * 2015-11-06 2020-08-26 コニカミノルタ株式会社 超音波診断装置、及び超音波信号処理方法
JP2018029702A (ja) * 2016-08-23 2018-03-01 コニカミノルタ株式会社 超音波信号処理装置、超音波診断装置、および、超音波信号処理方法
WO2018148332A1 (en) * 2017-02-07 2018-08-16 Ultrasense Medical, Inc. Wearable ultrasound device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58140657A (ja) * 1982-02-17 1983-08-20 Hitachi Medical Corp 超音波送受波器
JPH02200254A (ja) * 1989-01-30 1990-08-08 Yokogawa Medical Syst Ltd 超音波診断装置
JP2015515902A (ja) * 2012-05-09 2015-06-04 コーニンクレッカ フィリップス エヌ ヴェ 可変パッチ配置を持つ超音波トランスデューサアレイ
US20160278742A1 (en) * 2015-03-27 2016-09-29 Konica Minolta, Inc. Ultrasound signal processing device, ultrasound diagnostic device
JP2018093974A (ja) * 2016-12-09 2018-06-21 コニカミノルタ株式会社 超音波信号処理装置、超音波信号処理方法、及び、超音波診断装置

Also Published As

Publication number Publication date
JP7124505B2 (ja) 2022-08-24
US11744555B2 (en) 2023-09-05
US20200015787A1 (en) 2020-01-16

Similar Documents

Publication Publication Date Title
JP6380194B2 (ja) 超音波信号処理装置、及び、超音波診断装置
CN108209971B (zh) 超声波信号处理装置和方法以及超声波诊断装置
JP5355924B2 (ja) 超音波診断装置
JP6406019B2 (ja) 超音波信号処理装置、及び超音波診断装置
JP6014643B2 (ja) 超音波診断装置
JP6579231B2 (ja) 超音波画像生成方法、及び超音波診断装置
JP7363636B2 (ja) 超音波診断装置、及び超音波診断装置の制御方法
CN107569254B (zh) 超声波信号处理装置、超声波信号处理方法以及超声波诊断装置
JP6387856B2 (ja) 超音波診断装置、及び超音波診断装置の制御方法
JP2018057560A (ja) 超音波信号処理装置、超音波信号処理方法、及び、超音波診断装置
JP2018110784A (ja) 超音波診断装置、および、その制御方法
JP2018029702A (ja) 超音波信号処理装置、超音波診断装置、および、超音波信号処理方法
JP6665614B2 (ja) 超音波信号処理装置、超音波信号処理方法、及び、超音波診断装置
JP7124505B2 (ja) 超音波信号処理装置、超音波診断装置、および、超音波信号処理方法
JP6708101B2 (ja) 超音波信号処理装置、超音波診断装置、および、超音波信号処理方法
JP7147399B2 (ja) 超音波信号処理装置、超音波診断装置、および、超音波信号処理方法
JP2020025714A (ja) 超音波信号処理方法、及び超音波信号処理装置
JP6562122B2 (ja) 超音波診断装置、及び、超音波画像生成方法
US10702246B2 (en) Ultrasound diagnostic apparatus and an ultrasound signal processing method
JP2019130050A (ja) 超音波信号処理装置、超音波信号処理方法、および、超音波診断装置
JP7020052B2 (ja) 超音波信号処理装置、超音波診断装置、超音波信号処理方法、および、超音波画像表示方法
JP2015186494A (ja) 超音波診断装置
JP6933102B2 (ja) 超音波信号処理装置、及び超音波信号処理方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210322

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220308

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220502

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220712

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220725

R150 Certificate of patent or registration of utility model

Ref document number: 7124505

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150