JP2020008233A - 冷却装置、及びセンサ装置 - Google Patents

冷却装置、及びセンサ装置 Download PDF

Info

Publication number
JP2020008233A
JP2020008233A JP2018130999A JP2018130999A JP2020008233A JP 2020008233 A JP2020008233 A JP 2020008233A JP 2018130999 A JP2018130999 A JP 2018130999A JP 2018130999 A JP2018130999 A JP 2018130999A JP 2020008233 A JP2020008233 A JP 2020008233A
Authority
JP
Japan
Prior art keywords
container
heat
cooling
cooling device
refrigerant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018130999A
Other languages
English (en)
Other versions
JP7131147B2 (ja
Inventor
波頭 経裕
Tsunehiro Namigashira
経裕 波頭
晃 塚本
Akira Tsukamoto
塚本  晃
田辺 圭一
Keiichi Tanabe
圭一 田辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Superconductivity Sensing Technology Research Association
Fujitsu Ltd
Original Assignee
Superconductivity Sensing Technology Research Association
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Superconductivity Sensing Technology Research Association, Fujitsu Ltd filed Critical Superconductivity Sensing Technology Research Association
Priority to JP2018130999A priority Critical patent/JP7131147B2/ja
Publication of JP2020008233A publication Critical patent/JP2020008233A/ja
Application granted granted Critical
Publication of JP7131147B2 publication Critical patent/JP7131147B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Measuring Magnetic Variables (AREA)
  • Refrigerator Housings (AREA)
  • Containers, Films, And Cooling For Superconductive Devices (AREA)

Abstract

【課題】ノイズの影響を抑制し、かつ長時間の冷却が可能な冷却装置とこれを用いたセンサ装置を提供する。【解決手段】超電導磁気センサを冷却する冷却装置は、開口を有する容器と、前記開口を封止する断熱材と、前記容器の外に配置される冷却ヘッドと、前記断熱材と前記容器の内壁の少なくとも一方を前記冷却ヘッドに熱的に接続する接続手段と、を有する。【選択図】図6

Description

本発明は、冷却装置と、これを用いたセンサ装置に関する。
地磁気観測、資源探査、生体磁気観測などに、SQUID(Superconducting Quantum Interference Device:超電導量子干渉素子)を用いた高感度の磁気センサが使用されている。超電導体のうち、酸化物系の超電導体は液体窒素の沸点である77Kの高温で使用できることから、高温超電導体のSQUIDを用いたセンシング技術の開発が進められている。
SQUIDは、極低温下で適切な動作温度に冷却される。SQUIDは、一般的に冷媒に浸漬されて冷却される。高温超電導SQUIDの場合は、クライオスタット等の真空容器内で液体窒素に浸漬される。ニオブ系等の金属超電導体を用いたSQUIDは、液体ヘリウムや液体水素に浸漬される。SQUIDではノイズの問題から冷凍機をSQUIDの至近に設置することが難しく、冷凍機を用いる場合は冷媒を循環させて再液化する大型の装置に限られているのが現状である。
しかし超電導装置の種類によっては、低温環境を維持するために、容器に冷凍機が設けられている場合もある。液体冷媒は、被冷却物から熱を受け取ることによって、徐々に蒸発する。冷凍機により冷媒を極低温に保つとともに、蒸発した冷媒を再凝縮(または再液化)することで、冷媒の減少を抑制している。
寒剤が収納されたタンクと、前記寒剤を冷却する冷凍機と、前記タンクに配設されており、一端部が前記タンクの外部に延出すると共に他端部が前記タンクの内部で寒剤の液面に向けて延出し、前記タンクの外部の熱を前記タンクの内部に導く導熱部材と、を有する極低温冷却装置が知られている(たとえば、特許文献1参照)。
特開2014−173755号公報
SQUIDは、微弱な磁場を高感度で検出する素子であり、振動ノイズや磁気的なノイズの影響は極力排除したい。そのため、真空ガラスデュワ、FRP(Fiber Reinforced Plastic:繊維強化プラスチック)などの容器内に液体窒素、液体ヘリウム等の冷却材を充填して、SQUIDを間接的に冷却する。
冷却材を用いる場合、熱交換による蒸発により、冷却材が徐々に減少する。システムの小型化と冷却材の保持時間はトレードオフの関係にあり、小型で長時間にわたって冷却環境を維持できる冷却容器は実現していない。たとえば、1リットルの液体窒素で150時間を超える冷却保持時間を保つことは難しい。
ノイズが問題にならない場合は、公知例のように、冷凍機と再液化用のヒータ機構を容器内に導入し得るが、微弱な磁場を高感度に検知する場合は、ノイズの影響が大きくなる構成は望ましくない。
本発明は、ノイズの影響を抑制し、かつ長時間の冷却が可能な冷却装置とこれを用いたセンサ装置の提供を目的とする。
一つの態様では、超電導磁気センサを冷却する冷却装置は、
開口を有する容器と、
前記開口を封止する断熱材と、
前記容器の外に配置される冷却ヘッドと、
前記断熱材と前記容器の内壁の少なくとも一方を前記冷却ヘッドに熱的に接続する接続手段と、
を有する。
ノイズの影響を抑制し、かつ長時間の冷却が可能になる。
一般的なSQUID冷却装置の熱流入の経路を示す図である。 熱流入計測用の容器の形状と諸元を示す図である。 タイプAの容器で、各流入経路の熱入流量を冷媒の減少量の関数としてプロットした図と、冷媒の残存量の変化(計算値と実測値)を示す図である。 タイプBの容器で、各流入経路の熱入流量を冷媒の減少量の関数としてプロットした図と、冷媒の残存量の変化(計算値と実測値)を示す図である。 タイプCの容器で、各流入経路の熱入流量を冷媒の減少量の関数としてプロットした図と、冷媒の残存量の変化(計算値と実測値)を示す図である。 第1実施形態の冷却装置の概略図である。 図6の冷却装置を用いたセンサ装置の概略図である。 第2実施形態の冷却装置の概略図である。 図8の冷却装置を用いたセンサ装置の概略図である。 第3実施形態の冷却装置の概略図である。 図10の冷却装置を用いたセンサ装置の概略図である。
発明者らは、SQUIDのように発熱量の小さい被冷却物を冷却する場合、外部からの熱流入が冷媒の蒸発に大きく関与することをみいだした。SQUID自体の発熱量は数ナノワットであるが、外部からの熱流入は数ワットである。熱流入の経路自体を冷却または遮断することで、冷媒の蒸発を抑制して冷媒の保持時間を長くすることができるはずである。
図1は、一般的なSQUID冷却装置の熱流入の経路を示す図である。容器11の内部に液体窒素などの冷媒21が収容されている。容器11の上端の開口部は、断熱材13で封止されている。断熱材13を貫通するロッド14が容器11の内部に延びており、ロッド14の先端にSQUID20が固定され、冷媒21に浸漬されている。SQUID20は、ロッド14内に挿入された配線16によって、外部の電子回路と接続されている。
容器11は、たとえば、二重の真空ガラスデュワであり、内壁113と外壁111の間の空間115は真空となっている。二重壁の内側に、銀めっき等の輻射シールド112が施されている。
液体の冷媒21は、容器11の上端部まで充填されるが、時間の経過とともに蒸発して液面が低下する。容器11の上端(あるいは断熱材13の下端)から液面までの距離hが増大して、液面の位置が所定のレベル以下になると、冷媒21は補充される。長期にわたる資源探査や地質調査の場合、冷媒21の保持時間は長ければ長い方が望ましい。
容器11への熱流入経路には、主として次の4つの要素がある。容器11を介した熱流入(第1要素)、輻射シールド112を介した熱流入(第2要素)、蒸発した冷媒ガスを介した熱流入(第3要素)、及び断熱材13からの輻射熱(第4要素)である。このような冷却容器への熱流入の経路と影響については、これまで検討されてこなかった。
容器11に真空ガラスを用いる場合、ガラス容器を通した熱流入量をQと表記する。輻射シールド112が銀(Ag)コーティングである場合、Agコーティングを介した熱流入量をQAgと表記する。冷媒21に液体窒素を用いる場合、容器11内の窒素ガスを介した熱入流量をQと表記する。断熱材13からの輻射熱をQと表記する。
後述するように、4つの流入経路からのトータルの熱流入量は、SQUID20自体の発熱量と比較して格段に大きい。一方、熱流入路となりそうな配線16は、リン青銅、電気抵抗用銅マンガン線等の熱伝導の小さい材料で形成され、かつガラスエポキシ等の熱流入の小さいロッド14の中に挿入されている。このため、配線16を介した熱流入は、Agコーティングや窒素ガスを介した熱流入よりも小さい。ただし、ロッド14から露出する部分の配線16は、熱流入経路となり得る。
<予備計測>
予備計測として、容器の形状を変えて、各容器で熱流入を計算する。具体的には、各容器で、流入経路(要素)ごとの熱流入量と、トータルの熱流入量を計算する。
図2は、計測用の容器DWの形状と諸元を示す図である。計測用の容器DWとしてタイプA、タイプB、タイプCの3通りの容器を準備する。いずれのタイプも、円筒形のパイレックス(登録商標)ガラスの真空二重構造のデュワである。容器の内径をφ、厚さをt、内部空間の高さをHとする。冷媒21の減少レベルをhとする。
タイプAは、内径φが115mm、厚さが3.0mm、内部空間の高さHが265mmである。この容器DWの容量は、約2Lであり、アスペクト比(内径φに対する高さHの比)は、約2.3である。
タイプBは、内径φが70mm、厚さが2.4mm、内部空間の高さHが600mmである。この容器DWの容量は、タイプAと同じく約2Lであるが、タイプAと比較して容器の厚さが薄くなり、かつアスペクト比が約8.57と大きくなっている。
タイプCは、内径φが40mm、厚さが2.4mm、内部空間の高さHが700mmである。この容器DWの容量は約0.8Lである。容器は縦長で容量が少なく、アスペクト比は17.5である。
これらの3通りの容器の各々について、上述した4つの流入経路の熱流入量とトータルの熱流入量を計算する。熱流入量は、冷媒21の蒸発量、または液面の減少レベルhから計算する。タイプA〜Cに共通して、冷媒21として液体窒素を用いる。容器DWの開口を封止する断熱材13として、厚さ50mmのスタイロフォーム(登録商標)を用いる。また、すべてのタイプの容器DWに、輻射シールド112として膜厚1μmの銀めっきが施されている。
図3の(A)は、タイプAにおける各要素(流入経路)の熱入流量を、冷媒の液面低下量の関数としてプロットした図である。図3の(B)は、冷媒の残存量の計算値と実測値を時間の関数としてプロットした図である。カーブaはトータルの熱流入を示す。カーブbはガラス容器からの熱流入、カーブcはAgコーティングからの熱流入、カーブdは窒素ガスからの熱流入、カーブeは容器開口部の断熱材13からの熱輻射である。
熱流入の最大の原因は、容器DWのガラスを通した熱伝導であり、液体窒素の液面レベルが下がるにつれ、容器内部の窒素ガスの量が増えて、外部からの熱流入量(または液体窒素の蒸発量)が減少する。一方で、容器DWの開口部の断熱材の表面温度が環境温度に近づき、熱輻射が大きくなる。
図3の(B)を参照すると、時間の経過にともなう液体窒素の残存量は、蒸発量から計算された計算値と実測値とでほぼ一致しており、図3の(A)の計算結果が正しいことを裏付けている。
図4の(A)は、タイプBにおける各要素(流入経路)の熱入流量を冷媒の液面の低下量の関数としてプロットした図である。図4の(B)は、冷媒の残存量の計算値と実測値を時間の関数としてプロットした図である。タイプBの容器は、容量はタイプAと同等であるが、タイプAと比較して容器DWの厚さが薄く、縦に長い形状である。
カーブaはトータルの熱流入を示す。カーブbはガラス容器からの熱流入、カーブcはAgコーティングからの熱流入、カーブdは窒素ガスからの熱流入、カーブeは容器開口部の断熱材13からの熱輻射である。
液体窒素の減少または窒素蒸気の増加にともなう熱流入量の変化の傾向はタイプAと同じであるが、外部からの熱流入の量は、タイプAの容器の半分以下になっている。容器を縦長にしたことで、開口部から容器底面近くの発熱源(SQUID)までの距離が長くなり、開口部からガラスを伝って発熱源の近傍に到達する熱量が小さくなるからと考えられる。また、容器DWの厚さを薄くしたことで、ガラスに蓄積される単位面積当たりの熱量が小さくなる。
ここから、容量が同じ場合に、容器のアスペクト比を3以上、より好ましくは5以上、さらに好ましくは8以上にすることで、液体窒素の蒸発を効果的に防止できることがわかる。容器の強度と熱流入の抑制の双方を考慮すると、容器の厚さを1.0mm以上、3.0mm未満、より好ましくは、1.5mm〜2.5mmの範囲にすることで、容器の強度を維持し、かつ熱流入を低減することができる。
図4の(B)でも、時間の経過にともなう液体窒素の残存量は、計算値と実測値でほぼ一致しており、図4の(A)の計算結果が正しいことを裏付けている。
図5の(A)は、タイプCにおける各要素(流入経路)の熱入流量を冷媒の液面の低下量の関数としてプロットした図である。図5の(B)は冷媒の残存量の計算値と実測値を時間の関数としてプロットした図である。タイプCの容器は、タイプBと同じ厚さであるが、容量はタイプBの半分以下で、アスペクト比がさらに大きくなっている。
カーブaはトータルの熱流入を示す。カーブbはガラス容器からの熱流入、カーブcはAgコーティングからの熱流入、カーブdは窒素ガスからの熱流入、カーブeは容器開口部の断熱材13からの熱輻射である。
液体窒素の減少または窒素蒸気の増大にともなう熱流入量の変化の傾向はタイプA、及びタイプBと同じであるが、熱流入の量は、タイプBよりもさらに小さくなっている。
図5(B)で、時間の経過にともなう液体窒素の残存量は、計算値と実測値でほぼ一致しており、図5(A)の計算結果が正しいことを裏付けている。タイプCの容器の容量はタイプBの容器の容量の半分以下であるにもかかわらず、液体窒素の保持時間はタイプBと同等である。容器の小型化と、冷媒の保持能力の双方が満たされている。
図3〜図5の結果は、容器11の開口から延びる壁面と、開口の封止材の少なくとも一方の熱流路を冷却することで、冷媒の蒸発を抑制し得ることを示唆している。容器の壁面(たとえばガラス壁)を伝う熱流入と、断熱材13からの輻射熱の少なくとも一方を防止すれば、冷媒の蒸発を抑制でき、冷媒の蒸気(たとえば窒素ガス)を介した熱流入も抑制できる。
図3〜図5の結果はまた、容器11の形状と厚さを最適にすることで、熱流入を低減し得ることを示唆している。開口部からの熱伝導経路を長くするか、容器の厚さを薄くすることで、熱流入を低減することができる。
上述した予備計測の結果に基づき、実施形態では、容器11の内壁と、開口部の断熱材の少なくとも一方を冷却して、冷媒の蒸発を防止する。この構成に替えて、またはこの構成と組み合わせて、容器本体のアスペクト比(径に対する高さの比)を3以上にしてもよい。あるいは、真空容器の厚さを1.0mm以上、3.0mm未満にしてもよい。
<第1実施形態>
図6は、第1実施形態の冷却装置110Aの概略図である。冷却装置110Aは、上端に開口116を有する容器11Aと、開口116を封止する断熱材13Aとを有し、容器11Aの内壁と、断熱材13Aの少なくとも一方を冷却する冷却機構が設けられている。
図6の例では、開口116の外側に冷却ヘッド31が配置され、後述する熱伝導体を用いて、容器11Aの開口116の近傍の内壁と、断熱材13Aとが冷却される。冷却ヘッド31は冷凍機30に接続されている。冷凍機30の能力としては、77Kで5W以上の冷凍出力を有することが望ましい。
容器11Aは、たとえばタイプA(図2参照)の真空ガラスデュワである。このガラスデュワは二重構造の真空デュワであり、内壁113と外壁111の間の空間115は真空となっている。二重壁の内側に、銀めっき等の輻射シールド112が施されている。
冷却装置110Aでは、熱流入をできるだけ遮断する観点から、開口116を封止する断熱材13Aに加えて、開口116の周囲を覆う断熱材17も設けられている。冷却ヘッド31は、開口116の外側で、断熱材17で取り囲まれた空間に配置されている。容器11Aの上端部を断熱材17で囲むことで、開口116の外側の温度を77Kに近づけ、その状態を維持することができる。断熱材13Aと断熱材17は、発泡プラスチック系、カーボン系、グラスウール、アルミナ(サファイア)、ジルコニア等、適切な断熱材料を用いることができる。この例では、この例では発泡ポリスチレンを用いている。
断熱材13Aの上面に冷却部材18が設けられ、開口116の近傍の内壁に、冷却部材19が配置されている。冷却部材18と19は、熱伝導性の高いAgめっき銅(またはAgめっき銅合金)で形成された冷却板、冷却シート、冷却体などである。冷却部材18及び19の基材は、純銅のほか、黄銅、リン青銅など、各種の銅合金で形成され得る。
断熱材用の冷却部材18は、熱伝導リボン23aで冷却ヘッド31に接続されている。容器内壁の冷却部材19は、熱伝導リボン23bで冷却ヘッド31に接続されている。熱伝導リボン23aと23bは、たとえばAgめっき銅リボンである。冷却部材18及び19と、熱伝導リボン23a及び23bにより、容器11Aは開口116の外側から冷却される。冷却部材18と19を、熱伝導リボン23aと23bを用いて冷却ヘッド31に熱的に接続することで、冷凍機30の振動が冷却装置110Aに直接伝わることを抑制している。
容器11Aの開口116とその近傍を冷却することで、図3の熱流入経路のうち、支配的な要因である容器壁(ガラス)による熱流入(カーブb)と、断熱材13Aからの熱輻射(カーブe)を抑制することができる。ガラスによる熱流入が抑制されると、容器11Aの真空ガラスデュワに形成されている輻射シールド112からの熱流入(カーブc)も抑制される。被冷却物の発熱量が小さい場合、外部からの熱流入の主要因を遮断することで、冷媒の蒸発量を低減することができる。その結果、冷媒の蒸気による熱流入(カーブd)も低減することができる。
冷却装置110Aのもう一つの特徴として、冷却ヘッド31は容器11Aの開口116の外側にあり、冷凍機30は、開口116からさらに離れた位置に配置される。冷凍機30の振動が容器11Aの内側に伝わりにくい構成になっており、SQUID等の高感度の磁気センサの冷却に適している。
図7は、第1実施形態の冷却装置110Aを用いたセンサ装置10Aの概略図である。センサ装置10Aは、冷却装置110Aと、冷却装置110Aの内部に配置されるSQUID20を有する。容器11Aに冷媒21が充填され、SQUID20は冷媒21に浸漬されて冷却される。
SQUID20は、冷却対象であるセンサ素子の一例であり、その種類、構成を問わない。SQUID20では、1個または2個のジョセフソン接合を有するSQUIDループに、入力コイルとピックアップコイルが磁気的に接続されている。ピックアップコイルとSQUIDコイルは同一平面に配置されていてもよいし、一つの基板上に積層されていてもよい。SQUIDループとピックアップコイルは必ずしも一体的に形成されている必要はなく、SQUIDループと別体で立体的にコイルを巻いたピックアップコイルを用いてもよい。
外来ノイズをキャンセルする観点からは、ピックアップコイルとして互いに逆相に巻かれた一対のコイルを用いるグラジオメータが望ましいが、単相のピックアップコイルを用いてもよい。SQUID20は、複数のSQUIDループを含むマルチSQUIDチップであってもよい。
SQUID20は、ロッド14の下端部に固定されて冷媒21に浸漬されている。ロッド14はガラスエポキシ、サファイア等の熱伝導の小さい材料で形成されている。SQUID20で検出された信号(電流)は、ロッド14内を通る配線16により外部の電子回路に供給される。
SQUID20は、容器11Aの底面の近傍に配置されている。容器11Aの底面を被測定物に向けて測定する場合、SQUID20を容器11Aの底面の近傍に配置するほうが磁場を検知しやすい。実施形態のセンサ装置10Aでは、外来熱による冷媒21の蒸発が抑制されているので、気泡がSQUID20に衝突することによる振動ノイズはほとんど発生しない。SQUID20からのわずかな発熱により微小な気泡が発生し得る場合でも、気泡はSQUID20の上方の液面に向かって上昇するので、SQUID20のセンシング感度の劣化は抑制される。また、SQUIDと冷凍機の間に距離を置いた配置とすることで、冷凍機からSQUIDへのノイズを抑制することができる。
図6と図7に示されるように、容器11Aの開口116の付近でロッド14から引き出される配線16を、冷却ヘッド31で冷却してもよい。ロッド14から露出する部分の配線16は熱流入の経路になり得るからである。配線16を冷却することで、外部からの熱の流入をさらに抑制することができる。
冷却ヘッド31は、容器11Aの外部に配置されており、冷媒21と冷却ヘッド31は直接接触していない。加えて、冷凍機30とロッド14の先端のSQUID20の間の距離は十分に長く設定されている。冷凍機30の振動が冷却装置110Aの内部に伝わりにくい構成となっており、ノイズの影響を抑制することができる。
断熱材13Aに設けられる冷却部材18と、容器内壁に設けられる冷却部材19は、熱伝導リボン23a、23bによって冷却ヘッド31に熱的に接続され、容器11Aの内部への熱流入の主要な経路が冷却されている。これにより、冷凍機30からの直接的な振動の伝達を抑制し、かつ冷媒21の保持時間を長くすることができる。
容器11Aの内径が114mm、厚さが3.0mmの場合、図6の構成の冷却装置110Aを用いることで、初期状態でのトータルの熱流入量は2W程度になる。アスペクト比が小さいタイプAの容器11Aを用いつつ、容器11Aの開口116の断熱材13Aとガラス壁を通した熱流入の経路そのものを冷却することで、トータルの熱流入量を半分以下にすることができる。SQUID20自体の発熱量は数ナノワットオーダーであるから、冷媒21の蒸発が抑制され、長時間の冷却が可能になる。
容器11BをタイプCの容器にした場合、すなわちガラスデュワの内径を40mm、内部空間の高さを700mm、ガラスの厚さを2.4mmにした場合、初期状態でのトータルの熱流入量は0.5Wにまで低減できる。この場合、冷媒21はほとんど蒸発しないか、蒸発量はごくわずかである。冷媒21の補充なしに、センサ装置10Aを長いスパンにわたって使用することができる。
タイプCの容器を用いると、SQUID20と冷凍機30の位置がさらに離れ、ノイズの影響を軽減し、SQUID20の近傍への熱の伝達を抑制することができる。タイプCに替えて、タイプBの容器を用いてもよい。タイプBの容器もタイプAの容器と比較して熱流入の防止効果と、振動の影響の抑制効果が高い。もっとも、図6及び図7の構成を採用することで、いずれのタイプの容器を用いてもノイズの影響が軽減され、かつ長時間にわたって冷却状態を保つことができる。
上述した例では、冷却部材18、19、及び熱伝導リボン23a、23bとして、Agめっき銅またはAgめっき銅合金を用いたが、導電性に異方性を有する高熱伝導性のグラファイトシートを用いてもよい。
特に、地下探査のTEM(Transient Electro-Magnetic:時間領域電磁探査)法などのようにアクティブに磁場が印加される場合は、導電性が異方性のグラファイトシートを用いることが望ましい。熱的な接続手段として導電性異方性の材料を用いることで、システム内に測定を妨げる誘導電流が発生することを防止できる。
断熱材13側の冷却部材18と容器内壁の冷却部材19は、一体的に形成されていてもよい。また、熱的な接続手段として、熱伝導リボン23a、23bに替えて、冷却部材18と冷却部材19の少なくとも一方から冷却ヘッド31に向かって延びる1以上の熱伝導性のリブを設けてもよい。
容器11Aの材料としては、耐熱ガラスのほか、ガラスエポキシ、FRPなども有用である。冷凍機30は、スターリング冷凍機、GM(Gifford-McMahon:ギフォード・マクマホン)冷凍機、パルスチューブ冷凍機など、その種類を問わない。
<第2実施形態>
図8は、第2実施形態の冷却装置110Bの概略図である。冷却装置110Bは、第1実施形態の構成を基本としており、第1実施形態と同じ構成要素には同じ符号を付けて、重複する説明を省略する。
第1実施形態と異なる点は、容器11Bの開口116を封止する断熱材13Bに、真空断熱構造を採用している。この例では、内部が中空の断熱材13Bを用いている。
断熱材13Bは、容器11Bの開口116の形状に合わせた円環状の本体131を有する。本体131の中央には、ロッド14を通す穴134が形成されている。本体131の内部に空間133が形成され、空間133の内部は真空になっている。内部の空間の壁面に輻射シールド132が形成されている。
断熱材13Bの本体131は、パイレックス(登録商標)ガラス、ガラスエポキシ、FRP等、適切な断熱材料で形成されている。内部の輻射シールド132は、たとえばAgコーティングである。
第1実施形態と同様に、開口116を封止する断熱材13Bの表面に冷却部材18が設けられ、容器11Bの内壁に冷却部材19が設けられている。冷却部材18と冷却部材19は、グラファイト、Agめっき銅等の熱伝導リボン23a、24bによって、それぞれ冷却ヘッド31に熱的に接続されている。これにより、断熱材13Bからの熱輻射と、容器11Bの壁面を通る熱流入の経路が冷却され、かつ冷凍機からの直接的な振動の伝達を防止することができる。
断熱材13Bに真空断熱構造を適用することで、断熱材13Bからの輻射熱を効果的に低減することができる。輻射熱の低減により冷媒21の蒸発を抑制し、冷媒蒸気(たとえば窒素ガス)を通した熱伝導も低減することができる。
容器11Bとしては、タイプA〜タイプCのいずれを用いてもよいが、図8の構成をタイプBまたはタイプCの容器形状と組み合わせることで、熱流入の防止効果をいっそう高めることができる。
図9は、第2実施形態の冷却装置110Bを用いたセンサ装置10Bの概略図である。センサ装置10Bは、冷却装置110Bと、冷却装置110Bの内部に配置されるSQUID20を有する。冷却装置110Bの容器11Bに冷媒21が充填され、SQUID20は冷媒21に浸漬されて冷却される。
第1実施形態と同様に、冷却ヘッド31は容器11Aの開口116の外側にあり、冷凍機30は、開口116からさらに離れた位置に配置される。冷凍機30の振動が容器11Bの内側に伝わりにくい構成になっており、SQUID20を用いた高感度のセンサ装置が実現される。
冷却部材18、19と熱伝導リボン23a、23bに、導電性異方性の熱伝導材料が用いられる場合は、センサ装置10BをTEM法等による地下探査に有用に用いることができる。測定を妨げる誘導電流の発生を抑制できることに加えて、冷媒21の保持時間が非常に長いことから、センサ装置10Bを長期間、地中に設置することができる。
<第3実施形態>
図10は、第3実施形態の冷却装置110Cの概略図である。冷却装置110Cは第1実施形態の構成を基本としており、第1実施形態と同じ構成要素には同じ符号を付けて、重複する説明を省略する。
第1実施形態と異なる点は、容器11Cの開口116の近傍の内壁に、表面が波打った領域119が設けられている。表面を波打たせることで、環境温度から冷媒21の表面までの熱伝導距離をかせぐことができる。
熱伝導距離を伸長する表面パターンとしては、波打ちパターンに限定されず、断面形状がミアンダパターン、のこぎり歯状のパターンなどを用いてもよい。容器11Cの開口116から冷媒21の表面までの熱伝達経路を長くすることで、冷媒21への熱の流入を抑制する。
第1実施形態と同様に、開口116を封止する断熱材13Bの表面に冷却部材18が設けられ、冷却部材18は熱伝導リボン23aによって冷却ヘッド31に熱的に接続されている。これにより、断熱材13Bからの熱輻射の経路が冷却され、かつ冷凍機からの直接的な振動の伝達を防止することができる。
第3実施形態では、熱伝導距離を伸長する領域119によって、11C容器の壁面を通る熱の流入が抑制されている。そのため、図10の例では容器11Cの内壁に冷却部材は設けられていないが、第1実施形態、第2実施形態と同様に、容器11Cの内壁の波打ちパターンの表面に、冷却用の薄膜を形成してもよい。冷却用の薄膜として、銅合金と銀の積層膜、グラファイト膜、その他の高熱伝導膜を、スプレー塗布等によって形成することができる。熱伝導リボン23bを用いて、冷却用の薄膜を冷却ヘッド31に熱的に接続してもよい。波打ちパターンによって、開口116の近傍での冷却面積を広くとることができるので、環境温度からの熱の流入を抑制することができる。
容器11Cとして、タイプA〜タイプCのいずれを用いてもよい。図10の構成をタイプBまたはタイプCの容器形状と組み合わせることで、熱流入の防止効果をいっそう高めることができる。
図11は、第3実施形態の冷却装置110Cを用いたセンサ装置10Cの概略図である。センサ装置10Cは、冷却装置110Cと、冷却装置110Cの内部に配置されるSQUID20を有する。冷却装置110Bの容器11Bに冷媒21が充填され、SQUID20は冷媒21に浸漬されて冷却される。
第1実施形態及び第2実施形態と同様に、冷却ヘッド31は容器11Cの開口116の外側にあり、冷凍機30は開口116からさらに離れた位置に配置される。冷凍機30の振動が容器11Cの内側に伝わりにくい構成になっており、SQUID20を用いた高感度のセンサ装置が実現される。
冷却部材18と熱伝導リボン23aに、導電性が異方性の熱伝導材料を用いる場合は、センサ装置10CをTEM法による地下探査に適用することができる。測定を妨げる誘導電流の発生を抑制できることに加えて、冷媒21の保持時間が非常に長いことから、センサ装置10Cを長期間、地中に設置することができる。
上述した第1実施形態から第3実施形態の構成は、適宜組み合わせ可能である。たとえば、第3実施形態の容器11Cの熱伝導経路の伸長構成に、第2実施形態の真空断熱の構成を組み合わせてもよい。第3実施形態の容器11Cの内壁の領域119に冷却膜を設けて熱的な接続手段(熱伝導リボンなど)によって容器11Cの上端部を冷却ヘッド31に接続してもよい。使用環境、使用目的等に応じて、タイプA〜タイプCの適切な容器形状を選択することができる。
被冷却物は、高温超電導SQUIDに限定されず低温超電導のSQUIDであってもよい。冷媒21は被冷却物の動作温度に応じて選択され、液体窒素のほか、液体水素、液体ヘリウム等が用いられる。
実施形態のセンサ装置10と信号処理装置を用いてセンサシステムを構築してもよい。SQUID20は、たとえば配線16によってFLL(Flux-Locked Loop)回路に接続されてもよい。FLL回路はパーソナルコンピュータ等によって制御され、SQUIDを制御し駆動する。FLL回路はSQUID20にバイアス電流をかけ、SQUID20で検知された磁場の変化に対応した電圧信号を出力する。センサ装置10を移動して複数の異なる位置での信号を取得することで、あるいは複数のセンサ装置10から出力信号を収集することで、磁場の分布を高感度に得ることができる。
実施形態のセンサ装置10は、橋梁の劣化診断、資源探査や生産モニタリング、地磁気観察、SQUID顕微鏡、生体磁気測定など、幅広い分野に適用可能である。実施形態のセンサ装置10は長時間の連続運用が可能であり、センシング技術の向上に貢献することができる。
以上の説明に対して、以下の付記を呈示する。
(付記1)
超電導磁気センサを冷却する冷却装置であって、
開口を有する容器と、
前記開口を封止する断熱材と、
前記容器の外に配置される冷却ヘッドと、
前記断熱材と前記容器の内壁の少なくとも一方を前記冷却ヘッドに熱的に接続する接続手段と、
を有することを特徴とする冷却装置。
(付記2)
前記接続手段は、熱伝導性リボンであることを特徴とする付記1に記載の冷却装置。
(付記3)
前記熱伝導性リボンは、導電性に異方性を有するグラファイトシートであることを特徴とする付記2に記載の冷却装置。
(付記4)
前記断熱材は、真空断熱構造を有することを特徴とする付記1〜3のいずれかに記載の冷却装置。
(付記5)
前記容器の前記内壁は、前記開口の近傍に熱伝導距離を伸長する領域を有することを特徴とする付記1〜4のいずれかに記載の冷却装置。
(付記6)
前記容器の内部空間の高さの内径に対するアスペクト比は、3以上であることを特徴とする付記1〜5のいずれかに記載の冷却装置。
(付記7)
前記容器の前記アスペクト比は、5以上であることを特徴とする付記6に記載の冷却装置。
(付記8)
前記断熱材に設けられる第1の冷却部材と、
前記第1の冷却部材を前記冷却ヘッドに熱的に接続する第1の接続手段と、
を有することを特徴とする付記1に記載の冷却装置。
(付記9)
前記開口の近傍で前記容器の内壁に設けられる第2の冷却部材と、
前記第2の冷却部材を前記冷却ヘッドに熱的に接続する第2の接続手段と、
を有することを特徴とする付記1に記載の冷却装置。
(付記10)
前記開口を取り囲む第2の断熱材、
をさらに有し、
前記冷却ヘッドは前記容器の外で、かつ前記第2の断熱材によって形成される空間の中に配置されていることを特徴とする付記1〜9のいずれかに記載の冷却装置。
(付記11)
付記1〜10のいずれかに記載の冷却装置と、
前記容器に充填される冷媒と、
前記容器の中で前記冷媒に浸漬される超電導磁気センサと、
を有することを特徴とするセンサ装置。
(付記12)
前記冷却ヘッドは、前記超電導磁気センサを外部の電子回路に接続する配線を冷却することを特徴とする付記11に記載のセンサ装置。
(付記13)
前記超電導磁気センサは、前記容器の底面近傍に配置されていることを特徴とする付記11または12に記載のセンサ装置。
(付記14)
前記冷媒は、液体窒素であることを特徴とする付記11〜13のいずれかに記載のセンサ装置。
10、10A〜10C センサ装置
11、11A〜11C 容器
13、13A〜13C 断熱材
17 断熱材
18、19 冷却部材
20 SQUID(超電導磁気センサ素子)
21 冷媒
23a、23b 熱伝導リボン(接続手段)
110、110A〜110C 冷却装置
112 輻射シールド
115 空間
116 開口

Claims (8)

  1. 超電導磁気センサを冷却する冷却装置であって、
    開口を有する容器と、
    前記開口を封止する断熱材と、
    前記容器の外に配置される冷却ヘッドと、
    前記断熱材と前記容器の内壁の少なくとも一方を前記冷却ヘッドに熱的に接続する接続手段と、
    を有することを特徴とする冷却装置。
  2. 前記接続手段は、熱伝導性リボンであることを特徴とする請求項1に記載の冷却装置。
  3. 前記熱伝導性リボンは、導電性に異方性を有するグラファイトシートであることを特徴とする請求項2に記載の冷却装置。
  4. 前記断熱材は、真空断熱構造を有することを特徴とする請求項1〜3のいずれか1項に記載の冷却装置。
  5. 前記容器の前記内壁は、前記開口の近傍に熱伝導距離を伸長する領域を有することを特徴とする請求項1〜4のいずれか1項に記載の冷却装置。
  6. 前記容器の内部空間の高さの内径に対するアスペクト比は、3以上であることを特徴とする請求項1〜5のいずれか1項に記載の冷却装置。
  7. 請求項1〜6のいずれか1項に記載の冷却装置と、
    前記容器に充填される冷媒と、
    前記容器の中で前記冷媒に浸漬される超電導磁気センサと、
    を有することを特徴とするセンサ装置。
  8. 前記冷却ヘッドは、前記超電導磁気センサを外部の電子回路に接続する配線を冷却することを特徴とする請求項7に記載のセンサ装置。
JP2018130999A 2018-07-10 2018-07-10 冷却装置、及びセンサ装置 Active JP7131147B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018130999A JP7131147B2 (ja) 2018-07-10 2018-07-10 冷却装置、及びセンサ装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018130999A JP7131147B2 (ja) 2018-07-10 2018-07-10 冷却装置、及びセンサ装置

Publications (2)

Publication Number Publication Date
JP2020008233A true JP2020008233A (ja) 2020-01-16
JP7131147B2 JP7131147B2 (ja) 2022-09-06

Family

ID=69151082

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018130999A Active JP7131147B2 (ja) 2018-07-10 2018-07-10 冷却装置、及びセンサ装置

Country Status (1)

Country Link
JP (1) JP7131147B2 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62140707U (ja) * 1986-02-27 1987-09-05
JPH1197754A (ja) * 1997-09-16 1999-04-09 Hitachi Ltd 超電導量子干渉デバイス格納用極低温容器
JP3867158B2 (ja) * 1998-06-12 2007-01-10 株式会社日立製作所 極低温容器およびそれを用いた磁性測定装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62140707U (ja) * 1986-02-27 1987-09-05
JPH1197754A (ja) * 1997-09-16 1999-04-09 Hitachi Ltd 超電導量子干渉デバイス格納用極低温容器
JP3867158B2 (ja) * 1998-06-12 2007-01-10 株式会社日立製作所 極低温容器およびそれを用いた磁性測定装置

Also Published As

Publication number Publication date
JP7131147B2 (ja) 2022-09-06

Similar Documents

Publication Publication Date Title
US5506200A (en) Compact superconducting magnetometer having no vacuum insulation
JP5942699B2 (ja) 磁気共鳴信号検出モジュール
EP2439754A1 (en) Refrigerator cooling-type superconducting magnet
KR101081482B1 (ko) 저잡음 냉각장치
EP1087187A1 (en) Cryogenic container and magnetism measuring apparatus using it
JP5086920B2 (ja) 極低温格納容器及び極低温装置
US20220330869A1 (en) Dual-helmet magnetoencephalography apparatus
US9823312B2 (en) Apparatus and method for indirectly cooling superconducting quantum interference device
US20230263445A1 (en) Magnetocardiography measuring apparatus
JP7131147B2 (ja) 冷却装置、及びセンサ装置
JP2007522682A (ja) 液化ガスクライオスタット
US20220330870A1 (en) Multimodal position transformation dual-helmet meg apparatus
JP2952552B2 (ja) 超電導機器用電流リード
RU208875U1 (ru) Установка для регистрации магнитных свойств высокотемпературных сверхпроводников в широких диапазонах температур и магнитных полей в непрерывном режиме
JP4519363B2 (ja) 極低温格納容器及びそれを用いた生体磁気計測装置
JPH04194765A (ja) Squidセンサーの冷却方法
JP2010046344A (ja) 生体磁場計測装置
JPH11237456A (ja) 熱シールド体
Ansermet et al. Experimental Methods
JPS61208206A (ja) 超電導マグネツト
Choi et al. Continuous Cooling System for Superconducting Magnets Using a Cryocooler
JP2002232029A (ja) 極低温格納容器
Búran et al. E–I characteristics and critical currents of small Bi-2223/Ag coil thermally stabilized by solid and liquid nitrogen compared to water ice
Thadela et al. Cryogenic Cooling Strategies
JP2001194437A (ja) 磁気計測装置

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180731

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7426

Effective date: 20180731

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20180731

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210330

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20210914

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20210914

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220201

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20220323

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220329

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20220323

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220726

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220808

R150 Certificate of patent or registration of utility model

Ref document number: 7131147

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150