JP2020001240A - 画像形成装置 - Google Patents

画像形成装置 Download PDF

Info

Publication number
JP2020001240A
JP2020001240A JP2018121818A JP2018121818A JP2020001240A JP 2020001240 A JP2020001240 A JP 2020001240A JP 2018121818 A JP2018121818 A JP 2018121818A JP 2018121818 A JP2018121818 A JP 2018121818A JP 2020001240 A JP2020001240 A JP 2020001240A
Authority
JP
Japan
Prior art keywords
light emitting
data
magnification
emitting element
line
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2018121818A
Other languages
English (en)
Other versions
JP2020001240A5 (ja
Inventor
広高 関
Hirotaka Seki
広高 関
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2018121818A priority Critical patent/JP2020001240A/ja
Priority to PCT/JP2019/025242 priority patent/WO2020004422A1/ja
Publication of JP2020001240A publication Critical patent/JP2020001240A/ja
Publication of JP2020001240A5 publication Critical patent/JP2020001240A5/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/435Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by selective application of radiation to a printing material or impression-transfer material
    • B41J2/447Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by selective application of radiation to a printing material or impression-transfer material using arrays of radiation sources
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/435Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by selective application of radiation to a printing material or impression-transfer material
    • B41J2/447Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by selective application of radiation to a printing material or impression-transfer material using arrays of radiation sources
    • B41J2/45Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by selective application of radiation to a printing material or impression-transfer material using arrays of radiation sources using light-emitting diode [LED] or laser arrays
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G15/00Apparatus for electrographic processes using a charge pattern
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G15/00Apparatus for electrographic processes using a charge pattern
    • G03G15/04Apparatus for electrographic processes using a charge pattern for exposing, i.e. imagewise exposure by optically projecting the original image on a photoconductive recording material
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G21/00Arrangements not provided for by groups G03G13/00 - G03G19/00, e.g. cleaning, elimination of residual charge
    • G03G21/14Electronic sequencing control
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Optics & Photonics (AREA)
  • Printers Or Recording Devices Using Electromagnetic And Radiation Means (AREA)
  • Exposure Or Original Feeding In Electrophotography (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Control Or Security For Electrophotography (AREA)
  • Led Devices (AREA)

Abstract

【課題】副走査方向の倍率の補正を精度良く行うこと。【解決手段】クロック信号に同期して画像データを駆動部303に出力する制御基板415と、クロック信号を生成するクロック生成部422と、感光ドラム102の回転方向の解像度に対応する1ライン分のLine周期信号を生成する同期信号生成部406と、感光ドラム102の回転方向における出力する画像の倍率に応じてクロック信号の周期及びLine周期信号の周期を制御する制御基板415と、を備える。【選択図】図12

Description

本発明は、電子写真方式の画像形成装置に関する。
電子写真方式の画像形成装置であるプリンタでは、LED(Light Emitting Diode)や有機EL(Oganic Electro Luminescence)などを用いた露光ヘッドを使用して感光ドラムを露光し、潜像形成を行う方式が一般的に知られている。露光ヘッドは、感光ドラムの長手方向に配列された発光素子列と、発光素子列からの光を感光ドラム上に結像させるロッドレンズアレイと、から構成される。LEDや有機ELは、発光面からの光の照射方向がロッドレンズアレイと同一方向となる面発光形状を有する構成が知られている。ここで、発光素子列の長さは、感光ドラム上における画像領域幅に応じて決まり、プリンタの解像度に応じて発光素子間の間隔が決まる。例えば、1200dpiのプリンタの場合、画素の間隔は解像度に相当する間隔である21.16μmであり、そのため、発光素子間の間隔も21.16μmに対応する間隔となる。このような露光ヘッドを使用したプリンタでは、レーザビームを回転多面鏡によって偏向されたレーザビームによって感光ドラムを走査するレーザ走査方式のプリンタと比べて、使用する部品数が少ないため、装置の小型化、低コスト化が容易である。また、露光ヘッドを使用したプリンタでは回転多面鏡の回転によって生じる音が低減される。
電子写真方式のプリンタで記録紙に画像を形成する場合、副走査方向の倍率にズレが発生する場合がある。例えば感光ドラムの回転速度と露光ヘッドの発光周期とのズレや、用紙に画像を形成した後、定着器で用紙を挟持搬送することで用紙が熱収縮することでズレが発生する。そこで副走査方向の倍率を補正するために、例えば特許文献1では、画像データを副走査方向に複数の領域に分割し、分割した領域毎に印字率を算出する。そして、算出された印字率に基づいて画像データの副走査方向の倍率を補正する補正量である全体補正量を複数の領域に配分し、領域毎に配分された補正量である部分補正量を満足するように露光ヘッドの発光周期を変化させる。
特許第5625873号公報
前述した従来の方式では、印字率が低い領域が含まれる画像データに対しては副走査方向の倍率補正を精度よく実施できるが、全体的に印字率が高い画像データに対しては、副走査方向の倍率補正を行うことで画像データの濃度が変動してしまう。逆に、画像データの濃度変動を抑えることを優先すると副走査方向の倍率補正を精度よく実施できないという課題がある。
本発明は、このような状況のもとでなされたもので、副走査方向の倍率の補正を精度良く行うことを目的とする。
上述した課題を解決するために、本発明は、以下の構成を備える。
(1)回転駆動される感光体と、前記感光体の回転方向と交差する交差方向においてそれぞれが互いに異なる位置に配列され、前記感光体を露光する複数の発光素子と、前記複数の発光素子を駆動する駆動部と、を備える露光ヘッドと、を備え、前記交差方向における前記複数の発光素子の配列間隔に対応する解像度の画像を形成する画像形成装置であって、クロック信号に同期して画像データを前記駆動部に出力する出力手段と、前記クロック信号を生成する第1の生成手段と、前記感光体の前記回転方向の解像度に対応する1ライン分の周期信号を生成する第2の生成手段と、前記感光体の前記回転方向における出力する画像の倍率に応じて前記クロック信号の周期及び前記周期信号の周期を制御する制御手段と、を備えることを特徴とする画像形成装置。
本発明によれば、副走査方向の倍率の補正を精度良く行うことができる。
実施例1、2の画像形成装置の構成を示す概略断面図 実施例1、2の露光ヘッドと感光ドラムの位置関係を説明する図、及び露光ヘッドの構成を説明する図 実施例1、2の駆動基板の模式図、及び面発光素子アレイチップの構成を説明する図 実施例1、2の制御基板及び露光ヘッドの制御ブロック図 実施例1の倍率補正の有無とクロック周期との関係を示す図 実施例1、2のチップデータ変換部の制御ブロック図、及びタイミングチャート 実施例1、2のチップデータ変換部の画像データの処理を説明する図 実施例1、2の面発光素子アレイチップの回路を説明する図 実施例1、2のシフトサイリスタのゲート電位の分布状態を説明する図 実施例1、2の面発光素子アレイチップの駆動信号波形を示す図 実施例1、2の面発光サイリスタの断面を示す図 実施例1の倍率補正の有無とLine同期信号と画像データとを示すタイムチャート 実施例1の感光ドラム上に形成されるドット形状を示す図 実施例2のクロック周期と光量との関係を示す図、副走査方向の倍率の有無と光量との関係を示す図 その他の実施例のブロック図 その他の実施例のブロック図 実施例1、2のルックアップテーブルを示す図
以下に、図面を参照して本発明の実施の形態について詳細に説明する。
[画像形成装置の構成]
図1は、実施例1における電子写真方式の画像形成装置の構成を示す概略断面図である。図1に示す画像形成装置は、スキャナ機能とプリンタ機能を備える複合機(MFP)であり、スキャナ部100、作像部103、定着部104、給紙/搬送部105、及びこれらを制御するプリンタ制御部(不図示)から構成される。スキャナ部100は、原稿台に置かれた原稿に照明を照射し原稿画像を光学的に読み取り、読み取った画像を電気信号に変換して画像データを作成する。
作像部103は、無端の搬送ベルト111の回転方向(反時計回り方向)に沿って、シアン(C)、マゼンタ(M)、イエロー(Y)、ブラック(K)の順に並べられた、4連の画像形成ステーションを備える。4つの画像形成ステーションは同じ構成を有し、各画像形成ステーションは、矢印方向(時計回り方向)に回転する感光体である感光ドラム102、露光ヘッド106、帯電器107、現像器108を備えている。なお、感光ドラム102、露光ヘッド106、帯電器107、現像器108の添え字a、b、c、dは、それぞれ画像形成ステーションのブラック(K)イエロー(Y)、マゼンタ(M)、シアン(C)に対応する構成であることを示す。なお、以下では、特定の感光ドラム等を指す場合を除き、符号の添え字を省略することとする。
作像部103では、感光ドラム102を回転駆動し、帯電器107によって感光ドラム102を帯電させる。露光手段である露光ヘッド106は、配列されたLEDアレイを画像データに応じて発光し、LEDアレイのチップ面で発光した光を、ロッドレンズアレイによって感光ドラム102上(感光体上)に集光し、静電潜像を形成する。現像器108は、感光ドラム102に形成された静電潜像をトナーで現像する。そして、現像されたトナー像は、記録紙を搬送する搬送ベルト111上の記録紙に転写される。このような一連の電子写真プロセスが各画像形成ステーションで実行される。なお、画像形成時には、シアン(C)の画像形成ステーションでの画像形成が開始されて所定時間が経過した後に、順次、マゼンタ(M)、イエロー(Y)、ブラック(K)の各画像形成ステーションで、画像形成動作が実行される。
図1に示す画像形成装置は、記録紙を給紙するユニットとして、給紙/搬送部105が有する本体内給紙ユニット109a、109b、大容量の給紙ユニットである外部給紙ユニット109c、及び手差し給紙ユニット109dを備えている。画像形成時には、このうち、予め指示された給紙ユニットから記録紙が給紙され、給紙された記録紙はレジストレーションローラ110まで搬送される。レジストレーションローラ110は、上述した作像部103において形成されたトナー像が記録紙に転写されるタイミングで、搬送ベルト111に記録紙を搬送する。搬送ベルト111により搬送される記録紙には、各画像形成ステーションの感光ドラム102上に形成されたトナー像が順次転写される。未定着のトナー像が転写された記録紙は、定着部104へと搬送される。定着部104は、ハロゲンヒータ等の熱源を内蔵し、記録紙上のトナー像を、2つのローラにより加熱・加圧することによって記録紙に定着させる。定着部104によりトナー像が定着された記録紙は、排出ローラ112により画像形成装置の外部に排出される。
ブラック(K)の画像形成ステーションの記録紙搬送方向の下流側には、搬送ベルト111に対向する位置に、検知手段である光学センサ113が配置されている。光学センサ113は、各画像形成ステーション間のトナー像の色ずれ量を導出するため、搬送ベルト111上に形成されたテスト画像の位置の検出を行う。光学センサ113により導出された色ずれ量は、後述する制御基板415(図4参照)に通知され、記録紙上に色ずれのないフルカラートナー像が転写されるように、各色の画像位置が補正される。また、プリンタ制御部(不図示)は、複合機(MFP)全体を制御するMFP制御部(不図示)からの指示に応じて、上述したスキャナ部100、作像部103、定着部104、給紙/搬送部105等を制御しながら、画像形成動作を実行する。
ここでは、電子写真方式の画像形成装置の例として、搬送ベルト111上の記録紙に各画像形成ステーションの感光ドラム102に形成されたトナー像を直接転写する方式の画像形成装置について説明した。本発明は、このような感光ドラム102上のトナー像を直接、記録紙に転写する方式のプリンタに限定されるものではない。例えば、感光ドラム102上のトナー像を中間転写ベルトに転写する一次転写部と、中間転写ベルト上のトナー像を記録紙に転写する二次転写部を備える画像形成装置についても、本発明は適用することができる。
[露光ヘッドの構成]
次に、感光ドラム102に露光を行う露光ヘッド106について、図2を参照して説明する。図2(a)は、露光ヘッド106と感光ドラム102との位置関係を示す斜視図であり、図2(b)は、露光ヘッド106の内部構成と、露光ヘッド106からの光束がロッドレンズアレイ203により感光ドラム102に集光される様子を説明する図である。図2(a)に示すように、露光ヘッド106は、矢印方向に回転する感光ドラム102の上部の、感光ドラム102に対向する位置に、取付け部材(不図示)によって画像形成装置に取り付けられている(図1)。
図2(b)に示すように、露光ヘッド106は、駆動基板202と、駆動基板202に実装された面発光素子アレイ素子群201と、ロッドレンズアレイ203と、ハウジング204とから構成されている。ハウジング204には、ロッドレンズアレイ203と駆動基板202が取り付けられる。ロッドレンズアレイ203は、面発光素子アレイ素子群201からの光束を感光ドラム102上に集光させる。工場では、露光ヘッド106単体で組立て調整作業が行われ、各スポットのピント調整、光量調整が行われる。ここで、感光ドラム102とロッドレンズアレイ203との間の距離、及びロッドレンズアレイ203と面発光素子アレイ素子群201との間の距離が、所定の間隔となるように組立て調整が行われる。これにより、面発光素子アレイ素子群201からの光が感光ドラム102上に結像される。そのため、工場でのピント調整時には、ロッドレンズアレイ203と面発光素子アレイ素子群201との距離が所定の値となるように、ロッドレンズアレイ203の取付け位置の調整が行われる。また、工場での光量調整時には、面発光素子アレイ素子群201の各発光素子を順次発光させていき、ロッドレンズアレイ203を介して感光ドラム102上に集光させた光が所定光量になるように、各発光素子の駆動電流の調整が行われる。
[面発光素子アレイ素子群の構成]
図3は、面発光素子アレイ素子群201を説明する図である。図3(a)は、駆動基板202の面発光素子アレイ素子群201が実装された面の構成を示す模式図であり、図3(b)は、駆動基板202の面発光素子アレイ素子群201が実装された面(第1面)とは反対側の面(第2面)の構成を示す模式図である。
図3(a)に示すように、駆動基板202に実装された面発光素子アレイ素子群201は、29個の面発光素子アレイチップ1〜29が、駆動基板202の長手方向に沿って、千鳥状に2列に配置された構成を有している。なお、図3(a)において、上下方向は第1の方向である副走査方向(感光ドラム102の回転方向)を示し、水平方向は、副走査方向と直交する第2の方向である主走査方向を示す。主走査方向は、感光ドラム102の回転方向と交差する交差方向でもある。各々の面発光素子アレイチップの内部には、計516個の発光点を有する面発光素子アレイチップの各素子が、面発光素子アレイチップの長手方向に所定の解像度ピッチで配列されている。本実施例では、面発光素子アレイチップの各素子のピッチは、第1の解像度である1200dpiの解像度のピッチである約21.16μm(≒2.54cm/1200ドット)となっている。その結果、1つの面発光素子アレイチップ内における516個の発光点の端から端までの配列間隔は、約10.9mm(≒21.16μm×516)である。面発光素子アレイ素子群201は、29個の面発光素子アレイチップから構成されている。面発光素子アレイ素子群201における露光可能な発光素子数は14,964素子(=516素子×29チップ)となり、約316mm(≒約10.9mm×29チップ)の主走査方向の画像幅に対応した画像形成が可能となる。
図3(c)は、長手方向に2列に配置された面発光素子アレイチップのチップ間の境界部の様子を示す図であり、水平方向は、図3(a)の面発光素子アレイ素子群201の長手方向である。図3(c)に示すように、面発光素子アレイチップの端部には、制御信号が入力されるワイヤボンディングパッドが配置されており、ワイヤボンディングパッドから入力された信号により、転送部及び発光素子が駆動される。また、面発光素子アレイチップは、複数の発光素子を有している。面発光素子アレイチップ間の境界部においても、発光素子の長手方向のピッチ(2つの発光素子の中心点と中心点の間隔)は、1200dpiの解像度のピッチである約21.16μmとなっている。また、上下2列に並んだ面発光素子アレイチップは、上下の面発光素子アレイチップの発光点の間隔(図中、矢印Sで示す)が約84μm(1200dpiで4画素分、2400dpiで8画素分の各解像度の整数倍の距離)となるように配置されている。
また、図3(b)に示すように、面発光素子アレイ素子群201が実装された面とは反対側の駆動基板202の面には、駆動部303a、303b、及びコネクタ305が実装されている。駆動部303a、303bは、ドライバICである。コネクタ305の両側に配置された駆動部303a、303bは、それぞれ面発光素子アレイチップ1〜15、面発光素子アレイチップ16〜29を駆動する。駆動部303a、303bは、それぞれパターン304a、304bを介して、コネクタ305と接続されている。コネクタ305には、後述する制御基板415(図4参照)からの駆動部303a、303bを制御する信号線、電源電圧、グランドが接続されており、駆動部303a、303bと接続される。また、駆動部303a、303bからは、それぞれ面発光素子アレイ素子群201を駆動するための配線が駆動基板202の内層を通り、面発光素子アレイチップ1〜15、面発光素子アレイチップ16〜29に接続されている。
[制御基板、露光ヘッドの制御構成]
図4は、画像データを処理し、露光ヘッド106に出力する制御基板415と、制御基板415から入力された画像データに基づいて、感光ドラム102を露光する駆動基板202の制御ブロック図である。以下に説明する各ブロック401〜414は、IC内部のモジュールを示す。駆動基板202については、図4に示す駆動部303aにより制御される面発光素子アレイチップ1〜15について説明する。なお、駆動部303b(図4には不図示)により制御される面発光素子アレイチップ16〜29も、駆動部303aにより制御される面発光素子アレイチップ1〜15と同様の動作を行う。また、説明を簡易化するために、ここでは1つの色の画像処理について説明するが、本実施例の画像形成装置では、同様の処理を4色同時に並列処理される。図4に示す制御基板415は、露光ヘッド106を制御する信号を送信するためのコネクタ416を有している。コネクタ416からは、露光ヘッド106のコネクタ305に接続されたケーブル417、418を介して、それぞれ画像データ、後述するLine同期信号、制御基板415のCPU400からの制御信号が送信される。
[制御基板]
制御基板415は、露光ヘッド106に対して露光ヘッド106を制御するための信号を送信する。この信号は、クロック信号、画像データ、Line同期信号をパラレル−シリアル変換した信号である。この信号は、制御基板415側のコネクタ416から信号を伝送するケーブル417を介して露光ヘッド側のコネクタ305に入力される。また、CPU400の通信信号は、伝送ケーブル418を介して、露光ヘッド106側のコネクタ305に入力される。
制御基板415では、CPU400により、画像データの処理と印刷タイミングの処理が行われる。制御基板415は、画像データ生成部401、ラインデータシフト部402、チップデータ変換部403、チップデータシフト部404、データ送信部405、同期信号生成部406の機能ブロックから構成されている。以下、制御基板415での画像データが処理される順に、各機能ブロックでの処理について説明する。
(画像データ生成部)
データ生成手段である画像データ生成部401は、スキャナ部100又は画像形成装置に接続された外部コンピュータから受信した画像データに対して、CPU400から指示された解像度でディザリング処理を行い、プリント出力のための画像データを生成する。本実施例では、画像データ生成部401は、第2の解像度である2400dpiの解像度でディザリング処理を行うものとする。すなわち、画像データ生成部401が生成する画像データは、2400dpi相当の画素データである。本実施例の2400dpi相当の画素データは1ビットであるものとするが、複数ビットで1画素を表現しても良い。画像データ生成部401が生成する画素データは、副走査方向の2400dpi相当のラインに対応するラインデータである。なお、画像データ生成部401は、1つの集積回路401Aである。
(ラインデータシフト部)
CPU400は、光学センサ113により検知された色ずれ量に基づいて、主走査方向(露光ヘッド106の長手方向)、副走査方向(感光ドラム102の回転方向でもあり、記録紙の搬送方向でもある)の画像シフト量を2400dpi単位で各々決定する。画像シフト量は、例えば、光学センサ113による色ずれ検出用パターン画像の検知結果に基づいて算出される色間の相対的な色ずれ量に基づいて、CPU400によって決定される。そして、CPU400は、補正手段であるラインデータシフト部402に画像シフト量を指示する。ラインデータシフト部402では、CPU400から指示された画像シフト量を基に、記録紙1ページ内の画像領域全域に対して、画像データ生成部401から入力された画像データを2400dpi単位でシフト処理する。なお、ラインデータシフト部402は、記録紙1ページ内の画像領域を複数に分割し、分割された複数の画像領域毎にシフト処理を実行するようにしても良い。
(同期信号生成部)
第2の生成手段である同期信号生成部406は、感光ドラム102の回転速度に同期した信号で、感光ドラム102の回転方向における出力画像の解像度の1ライン分に対応する周期信号(以下、Line同期信号という)を生成する。CPU400は、同期信号生成部406にLine同期信号の周期、すなわち予め定められた感光ドラム102の回転速度に対して、感光ドラム102表面が回転方向(副走査方向)に2400dpiの画素サイズ(約10.5μm)移動する時間を指示する。例えば、副走査方向に200mm/秒の速度で印刷する場合には、CPU400は、Line同期信号の周期(副走査方向1ライン分の周期)を約52.9μs(≒(25.4mm/2400ドット)/200mm)として、同期信号生成部406に指示する。画像形成装置が感光ドラム102の回転速度を検知する検知部(例えば感光ドラムの回転軸に設置したエンコーダ)を有している場合は、CPU400は、検知部の結果(エンコーダが出力する信号の発生周期)に基づいて、副走査方向の感光ドラム102の回転速度を算出し、当該算出結果に基づいてLine同期信号の周期を決定する。一方、感光ドラム102の回転速度を検知する検知部を有していない場合、CPU400は、ユーザが操作部から入力するシートの坪量(g/cm)やシートサイズなどの紙の種類の情報に基づいて、Line同期信号の周期を決定する。
(クロック生成部)
第1の生成手段であるクロック生成部422は、ROM421に格納されている副走査方向の倍率を補正するための補正値(以下、副走査倍率補正値という)に基づき、データ送信部405へ送信するクロック信号の周期(周波数)を作像開始前に決定する。図5に副走査倍率補正値に基づき生成されるクロック信号とLine同期信号との関係を示す。図5には、クロック信号の波形と、クロック信号に基づき生成されるLine周期信号と画像データ(D0、D1、…等)をそれぞれ示し、横軸はいずれも時間を示す。図5(a)は副走査方向の倍率補正を行わない場合、図5(b)は副走査方向の倍率を拡大する場合、図5(c)は副走査方向の倍率を縮小する場合をそれぞれ示している。副走査方向の倍率補正を行わない場合のクロック周期dclk(Tn_clk)を基準の周期とすると、副走査方向の倍率を拡大する場合の第1の周期であるクロック周期dclk(Tm_clk)は長くなる。一方、副走査方向の倍率を縮小する場合の第2の周期であるクロック周期dclk(Tr_clk)は短くなる。クロック周期dclkの1パルスの出力(例えば、D0)は、PWMデータの1ブロック(「0」or「1」)に相当する。
(チップデータ変換部)
チップデータ変換部403は、Line同期信号に同期して、ラインデータシフト部402より、感光ドラム102の副走査方向の1ライン分ずつ、ラインデータの読み出しを行う。そして、チップデータ変換部403は、読み出したラインデータをチップ毎のラインデータに分割するデータ処理を実行する。
図6(a)は、チップデータ変換部403の構成を示すブロック図である。図6(a)において、同期信号生成部406から出力されるLine同期信号は、カウンタ530に入力される。カウンタ530は、入力されるLine同期信号を変調してLine同期信号よりも高周波のCLK信号を生成する周波数変調回路を備えている。カウンタ530は、周波数変調回路の代わりにLine同期信号よりも高周波のクロック信号(CLK)を生成する発振器を内蔵していても良い。以下では、チップデータ変換部403がラインデータシフト部402からラインデータを読み出す構成を例示するが、実施の形態はこれに限られるものではない。すなわち、ラインデータシフト部402にLine同期信号を供給し、かつ上記CLK信号をラインデータシフト部402が内部で生成することによって、ラインデータシフト部402がチップデータ変換部403に対して主体的にラインデータを送信するよう構成しても良い。
カウンタ530はLine同期信号が入力されると、カウント値を0にリセットした後、クロック信号(CLK)(図6(b)参照)のパルス数に同期して、カウンタ値をインクリメントする。カウンタ530が生成するCLK信号の周波数は、チップデータ変換部403がLine同期信号の1周期内に読み出すべき画素データの容量(ビット数)と、後述するチップデータ変換部403のデータ処理速度と、に基づいて設計段階で決定される。例えば、上述したように、面発光素子アレイ素子群201は、副走査方向の1ラインを露光する発光素子を14,964素子(1200dpi換算)有している。一方、画像データ生成部401は、2400dpiの解像度でディザリング処理を行っている。そのため、ラインデータシフト部402から出力される副走査方向の1ライン分の画像データの画素数は、29,928画素(=14,964×(2400dpi/1200dpi))となる。チップデータ変換部403は、Line同期信号の間に、副走査方向1ライン分の画像データを読み出して後述するラインメモリ500への書き込みと、後述するメモリ501〜529への画像データの書き込みを行う。そのため、カウンタ530は、1ラインのラインデータに含まれる画素数(29,928)の2倍の数(59,856)のカウント動作を行う。カウンタ530のカウント値が1〜29,928までの期間をTm1、カウント値が29,929〜59,856までの期間をTm2とする(図6(b)参照)。
READ制御部531は、カウンタ530のカウント値に応じてラインデータをラインデータシフト部402から読み出す。すなわち、READ制御部531は、カウンタ530のカウント値が1〜29,928までの期間Tm1に、主走査方向1ライン分のラインデータ(29,928画素)をラインメモリ500に格納する。また、WR制御部532は、カウンタ530のカウント値が29,929〜59,856の期間Tm2に、ラインメモリ500に格納された副走査方向1ライン分のラインデータをメモリ501〜529に分割して書き込む。メモリ501〜529はラインメモリ500よりも記憶容量の少ないメモリであり、チップ毎に分割されたラインデータ(分割ラインデータ)を記憶する。メモリ501〜529は、面発光素子アレイチップ1〜29に対応して設けられているFIFO(First In First Out:先入れ先出し)メモリである。即ち、メモリ501は面発光素子アレイチップ1に対応するラインデータを記憶し、メモリ502は面発光素子アレイチップ2に対応するラインデータを記憶し、・・・メモリ529は面発光素子アレイチップ29に対応するラインデータを記憶する。
続いて、チップデータ変換部403が実行するラインデータシフト部402から読み出したラインデータのメモリ501〜529への書き込み、及びメモリ501〜529に書き込まれた画像データの出力について説明する。図6(b)は、チップデータ変換部403におけるラインデータの入出力タイミングを説明するタイムチャートである。図6(b)において、Line同期信号は、同期信号生成部406から出力されるパルス信号を示している。また、図中、TL1、TL2、・・・TL10は、副走査方向1ライン分の周期の番号を示している。また、Line同期信号の1周期は、カウンタ530のカウンタ値に応じて、期間Tm1と期間Tm2に分割されている。ラインメモリ500への入力データは、ラインデータシフト部402からの画像データを示しており、周期TL1、TL2、・・・TL10の期間Tm1にラインデータシフト部402から入力される。図5(b)中の1ライン目データとは、副走査方向の1ライン目のラインデータ(主走査方向1ライン分)を指している。同様に、2ライン目データ、・・・10ライン目データとは、それぞれ、副走査方向の2ライン目のラインデータ、・・・副走査方向の10ライン目のラインデータ(主走査方向1ライン分)を指している。
また、図5(b)に示す‘メモリ501への入力データ’は、ラインメモリ500に格納された主走査方向1ライン分のラインデータのうち、面発光素子アレイチップ1に対応するラインデータがメモリ501に書き込まれるタイミングを示している。同様に、メモリ502への入力データ、メモリ503への入力データ、・・・メモリ529への入力データは、それぞれ面発光素子アレイチップ2、3、・・・29に対応するラインデータがメモリ502、503、・・・529それぞれに書き込まれるタイミングを示している。なお、メモリ501への入力データの1ライン目データとは、主走査方向1ライン分の全ラインデータではなく、面発光素子アレイチップ1が対応する主走査方向のラインデータ(分割ラインデータ)を指しており、メモリ502〜メモリ529の入力データについても同様である。
図5(b)に示す‘メモリ501からの出力データ’は、メモリ501に書き込まれたラインデータを面発光素子アレイチップ1に出力するために読み出すタイミングを示している。同様に、図5(b)に示す‘メモリ502からの出力データ’、・・・‘メモリ529からの出力データ’は、それぞれ面発光素子アレイチップ2、・・・面発光素子アレイチップ29に出力するために読み出すタイミングを示している。なお、メモリ501からの出力データの1ライン目データとは、主走査方向1ライン分の全ラインデータではなく、面発光素子アレイチップ1が対応する主走査方向のラインデータ(分割ラインデータ)を指しており、メモリ502〜メモリ529からの出力データについても同様である。
本実施例では、ラインメモリ500から、主走査方向1ライン分のラインデータを順次読み出し、まず、面発光素子アレイチップ1のラインデータを格納するメモリ501への書き込みが行われる。次に、面発光素子アレイチップ2の画像データを格納するメモリ502への書き込みが行われ、以降、面発光素子アレイチップ29の画像データを格納するメモリ529まで順次、書き込みが連続的に行われる。なお、チップデータ変換部403の後段のチップデータシフト部404では、面発光素子アレイチップ単位での副走査方向のデータシフト処理が行われる。そのため、メモリ501〜529には、副走査方向10ライン分のラインデータが格納されるものとする。
更に、メモリ501〜529に格納されるラインデータは、各面発光素子アレイチップに対応する1チップ分のラインデータに加えて、隣接する面発光素子アレイチップの端部の画素データを複写した画素データも併せて格納される。例えば、メモリ502には、次のような画素データが格納される。すなわち、メモリ502には、面発光素子アレイチップ2に対応するラインデータの両端それぞれに、面発光素子アレイチップ1の面発光素子アレイチップ2側の最端部の画素データと、面発光素子アレイチップ3の面発光素子アレイチップ2側の最端部の画素データと、が付加されて格納される。
図7は、ラインメモリ500に格納されたラインデータと、メモリ501〜529に格納される画像データとの関係を説明する図である。図7(a)は、ラインメモリ500に格納された面発光素子アレイチップ毎のラインデータを示す図であり、メモリ501〜529に配列変更される前のラインデータの配列のイメージを示している。ラインメモリ500には、面発光素子アレイチップ(N−1)のラインデータ(ハッチング表示)、面発光素子アレイチップNのラインデータ(白抜き表示)、面発光素子アレイチップ(N+1)のラインデータ(ハッチング表示)が格納されている。
一方、図7(b)は、面発光素子アレイチップNに対応するメモリのラインデータのイメージを示している。上述したように、面発光素子アレイチップに対応するメモリ502〜528には、該当する面発光素子アレイチップのラインデータに、隣接する面発光素子アレイチップの端部の画素データが付加されて格納される。図7(b)に示す面発光素子アレイチップNのラインデータのうち、最も左側の画素データは、面発光素子アレイチップ(N−1)のラインデータに含まれる面発光素子アレイチップNに隣接する端部の画素データである(図中、矢印参照)。一方、図7(b)に示す面発光素子アレイチップNのラインデータのうち、最も右側の画素データは、面発光素子アレイチップ(N+1)のラインデータのうち、面発光素子アレイチップNに隣接する端部の画素データである(図中、矢印参照)。
なお、メモリ501には、面発光素子アレイチップ1に対応するラインデータの端部に面発光素子アレイチップ2の面発光素子アレイチップ1側の最端部の画素データが付加されて格納される。また、メモリ529には、面発光素子アレイチップ29に対応するラインデータの端部に面発光素子アレイチップ28の面発光素子アレイチップ29側の最端部の画素データが付加されて格納される。
このように、本実施例では、面発光素子アレイチップ毎に隣接する面発光素子アレイチップの端部の画素データを、該当の面発光素子アレイチップのラインデータの両端に追加して、メモリ501〜529に格納する。上述したチップデータ変換部403の動作により、主走査方向の1ライン分のラインデータは、面発光素子アレイチップ1〜29に対応して設けられたメモリ501〜529に、隣接する面発光素子アレイの端部の画素データとともに格納される。なお、隣接する面発光素子アレイチップの端部の画素データは、後述するフィルタ処理部408において用いられる。
(チップデータシフト部)
補正手段であるチップデータシフト部404は、CPU400から予め指示された面発光素子アレイチップ毎の副走査方向の画像シフト量に関するデータ(2400dpi単位)に基づいて、メモリ501〜529からのラインデータの相対的な読み出しタイミングを制御する。以下、チップデータシフト部404が実行する副走査方向の画像シフト処理について具体的に説明する。
露光ヘッド長手方向において、偶数番目の各発光素子アレイチップの実装位置にずれがないことが望ましい。同様に、露光ヘッド長手方向において、奇数番目の各発光素子アレイチップの実装位置にずれがないことが望ましい。また、偶数番目の各発光素子アレイチップと奇数番目の各発光素子アレイチップとの副走査方向の実装位置関係は2400dpi相当で所定の画素数(例えば、8画素)であることが設計上好ましい。さらに、各発光素子アレイチップ内における発光素子列の副走査方向の配置位置が固体差を持たず一定であることが好ましい。しかしながら、これらの実装位置や発光素子列の配置位置は誤差を含み、これらの誤差が出力画像の画質の低下を招く恐れがある。
図4に示すメモリ430(ROM)には、駆動基板202に千鳥状に実装された面発光素子アレイチップ1〜29の各発光素子列の副走査方向の相対的な位置関係から演算された補正データが記憶されている。例えば、メモリ430には、副走査方向の位置の基準となる発光素子アレイチップ1の発光素子列に対して、他の発光素子アレイチップ2〜29の各発光素子列が副走査方向に2400dpi相当で何画素ずれて駆動基板202に実装されているかの測定データに基づく補正データが記憶されている。測定データは、駆動基板202に発光素子アレイチップ2〜29を実装した後、測定装置によって各発光素子アレイチップの発光素子を点灯させ、その受光結果に基づいて計測される。CPU400は、画像形成装置の電源がONされたことに応じてメモリ430から読み出した補正データをチップデータシフト部404の内部レジスタに設定する。チップデータシフト部404は、内部レジスタに設定された補正データに基づいてメモリ501〜529に記憶された同一ラインを形成するためのラインデータのシフト処理を行う。例えば、発光素子アレイチップ1の発光素子列に対して発光素子アレイチップ2の発光素子列が2400dpi相当で副走査方向に8画素ずれて駆動基板202に実装されている場合、チップデータシフト部404は、駆動基板202への発光素子アレイチップ1に対応するラインデータの出力タイミングに対して、同一ラインをなす発光素子アレイチップ2に対応するラインデータの出力タイミングが8画素分遅延するように発光素子アレイチップ1に対応するラインデータに対して発光素子アレイチップ2に対応する全ラインデータをシフトさせる。
(データ送信部)
データ送信部405は、露光ヘッド106に対して、上述した一連のラインデータに対するデータ処理を実行した後のラインデータを駆動基板202に送信する。前述した図6(b)を参照して、画像データの送信タイミングについて説明する。図3(a)に示すように、面発光素子アレイチップのうち、奇数番目の面発光素子アレイチップ1、3、5、・・・29は、副走査方向の上流側に配置され、偶数番目の面発光素子アレイチップ2、4、6、・・・28は、副走査方向の下流側に配置されている。図6(b)に示すタイムチャートでは、奇数番目の面発光素子アレイチップ1、29に対応するメモリ501、メモリ529への画像データの書き込みは、最初のLine同期信号の期間(図中、TL1、TL10)で行われる。そして、次のLine同期信号の期間(図中、TL2)で、奇数番目の面発光素子アレイチップ1、29に対応するメモリ501、メモリ529から、副走査方向1ライン目のデータの読み出しが行われる。同様に、更に次のLine同期信号の期間では、奇数番目の面発光素子アレイチップ1、29に対応するメモリ501、メモリ529から、副走査方向2ライン目のデータの読み出しが行われる。そして、10番目のLine同期信号の期間(図中、TL10)で、奇数番目の面発光素子アレイチップ1、29に対応するメモリ501、メモリ529から、副走査方向9ライン目のデータの読み出しが行われる。また、偶数番目の面発光素子アレイチップ2に対応するメモリ502は、メモリ502への画像データの書き込みが行われた期間TL1から、Line同期信号424の9パルス後の期間(図中、TL10)で、メモリ502から画像データの読み出しが行われる。
データ送信部405は、チップデータシフト部404によって処理されたラインデータを駆動基板202に送信する。カウンタ530は、発振器の代わりに、入力されるLine同期信号を変調してLine同期信号よりも高周波のCLK信号を生成する周波数変調回路を備えている。カウンタ530は、周波数変調回路の代わりにLine同期信号よりも高周波のクロック信号(CLK)を生成する発振器を内蔵していても良い。本実施例では、Line同期信号の1周期内でカウント値が59,856(1ラインの画素データ数の2倍の数)以上になるように、クロック信号(図6(b)のCLK)の周波数を定めている。これにより、Line同期信号の1周期の時間内で、ラインメモリ500への画像データの入力(書き込み)、及びラインメモリ500からメモリ501〜529への画像データの出力(書き込み)が可能となる。
一方、メモリ501〜529からのデータの読み出しは、Line同期信号の1周期の期間内に、29個のメモリ501〜529から各面発光素子アレイチップに対応する、主走査方向1ライン分の画像データをパラレルに出力する。そのため、メモリ501〜529からの画像データの読み出し速度は、メモリへの書き込み速度に対して、低速で読み出してもよい。例えば、本実施例では、メモリ501〜529への画像データの書き込み時のパルス数の58倍の長い周期で、メモリ501〜529から画像データを読み出すものとする。
なお、ラインデータシフト部402、チップデータ変換部403、チップデータシフト部404、データ送信部405、同期信号生成部406は、集積回路401Aとは異なる集積回路402Aである。また、CPU400は、集積回路401A及び集積回路402Aとは異なる集積回路である。
[露光ヘッドの駆動部]
(データ受信部)
次に、露光ヘッド106の駆動部303a内部の処理について説明する。データ受信部407は、制御基板415のデータ送信部405から送信されたデータを受信し、それぞれクロック信号420、Line同期信号424、画像データ423を分離する。データ受信部407とデータ送信部405は一般的に知られているパラレルシリアル変換を使用すれば良い。本実施例では、クロック信号420、Line同期信号424、画像データ423をパラレルシリアル変換により駆動部303aへ送信しているが、それぞれパラレルで送信しても良い。また駆動部303aはデータ受信部407で受信したクロック信号を基に動作する。これは駆動部303aにクロック発振器や水晶振動子を不要とすることが可能となるためである。
ここで、データ受信部407、データ送信部405は、Line同期信号に同期して副走査方向のライン単位で、画像データを送受信するものとする。前述したように、チップデータ変換部403では、面発光素子アレイチップ1〜29のチップ毎にデータの配列を行い、以降の処理ブロックは面発光素子アレイチップ1〜29のチップのデータを並列処理する構成となっている。駆動部303aでは、面発光素子アレイチップ1〜15に対応した画像データを受信し、チップ毎に並列に処理可能な回路を有するものとする。
(フィルタ処理部)
変換手段であるフィルタ処理部408では、面発光素子アレイチップ1〜29毎の画像データに対して、主走査方向のフィルタ処理による補間処理を行い、主走査方向の解像度を2400dpiから1200dpiに変換する。
フィルタ処理を行う際に、面発光素子アレイチップの端部の画素の処理を行う場合、隣接する面発光素子アレイチップの画素データがないと、画像が欠落し画像不良を発生させる。そのため、前述したように制御基板415のチップデータ変換部403で、隣接する面発光素子アレイチップの端部側の画素データを加えて、画像データを配列しておくことで、画像の欠落のないフィルタ処理を行うことができる(図7参照)。
(LUT)
続くLUT410は、面発光素子アレイチップ内の発光素子に対応する画素毎の画像データ値(濃度データ値)をルックアップテーブル(Look Up Table)を参照して、データ変換を行う。LUT410では、面発光素子アレイチップの発光時間の応答特性に基づいて、パルス発光させたときの積算光量が所定の値となるように、画素毎のデータ値の変換を行う。例えば、面発光素子アレイチップの発光時間の応答が遅く、積算光量が目標値より小さい場合は、データ値が増えるようにデータ変換を行う。本実施例では、CPU400は、画像形成を開始する前に、ルックアップテーブルに設定される変換テーブルの値を、実験的に得られた発光素子アレイの応答特性に基づいた所定の値に設定するものとする。
図17は、ルックアップテーブルの一例を示す図である。LUT410が(a)から(c)のいずれかを用いて1200dpi相当の画素データをPWM信号に変換する。(a)〜(c)は1200dpi相当の画素データを8ビットのPWMデータに変換するテーブルである。ここで、「000,001,010,011,100」は、それぞれ「濃度0%、濃度25%、濃度50%、濃度75%、濃度100%」を示す1200dpi相当の画素データである。PWMデータの「1」はLEDのONデータ(発光データ)であり、「0」はOFFデータ(非発光データ)を示す。PWMデータがΦW1〜ΦW4に相当する。
(PWM信号生成部、タイミング制御部、制御信号生成部、駆動電圧生成部)
続くPWM信号生成部411では、画素毎のデータ値に応じて面発光素子アレイチップが1画素区間内で発光する発光時間に対応したパルス幅信号(以下、PWM信号という)を生成する。PWM信号を出力するタイミングは、タイミング制御部412により制御される。タイミング制御部412は、制御基板415の同期信号生成部406で生成されたLine同期信号より、各画素の画素区間に対応した同期信号を生成し、PWM信号生成部411に出力する。駆動電圧生成部414は、PWM信号に同期して、面発光素子アレイチップを駆動する駆動電圧を生成する。なお、駆動電圧生成部414は、CPU400によって所定の光量となるように出力信号の電圧レベルを5V中心に調整可能な構成とする。本実施例では、各面発光素子アレイチップは、同時に4つの発光素子を独立して駆動できる構成となっている。駆動電圧生成部414は、面発光素子アレイチップ毎に駆動信号4ライン、露光ヘッド106全体では、千鳥状構成の1ライン(15チップ)×4=60ラインに駆動信号を供給する。各面発光素子アレイチップに供給される駆動信号は、ΦW1〜ΦW4とする(図8参照)。一方、後述するシフトサイリスタ(図8参照)の動作により、順次、面発光素子アレイチップが駆動される。制御信号生成部413は、タイミング制御部412で生成された画素区間に対応する同期信号より、画素毎にシフトサイリスタを転送するための制御信号Φs、Φ1、Φ2を生成する(図8参照)。
[SLED回路の説明]
図8は、本実施例の自己走査型発光素子(Self−Scanning LED:SLED)アレイチップの一部分を抜き出した等価回路である。図8において、Ra、Rgはそれぞれアノード抵抗、ゲート抵抗であり、Tnはシフトサイリスタ、Dnは転送ダイオード、Lnは発光サイリスタを示す。また、Gnは、対応するシフトサイリスタTn、及びシフトサイリスタTnに接続されている発光サイリスタLnの共通ゲートを表している。ここで、nは2以上の整数とする。Φ1は奇数番目のシフトサイリスタTの転送ライン、Φ2は偶数番目のシフトサイリスタTの転送ラインである。ΦW1〜ΦW4は発光サイリスタLの点灯信号ラインであり、それぞれ抵抗RW1〜RW4と接続されている。VGKはゲートラインであり、Φsはスタートパルスラインである。図8に示すように、1個のシフトサイリスタTnに対し、発光サイリスタはL4n−3〜L4nまでの4個が接続されており、同時に4個の発光サイリスタL4n−3〜L4nが点灯可能な構成となっている。
[SLED回路の動作]
次に、図8に示すSLED回路の動作について説明する。なお、図8の回路図において、ゲートラインVGKには5Vが印加されているものとし、転送ラインΦ1、Φ2、及び点灯信号ラインΦW1〜ΦW4に入力される電圧も、同じく5Vとする。図8において、シフトサイリスタTnがオン状態にあるとき、シフトサイリスタTn、及びシフトサイリスタTnに接続されている発光サイリスタLnの共通ゲートGnの電位は約0.2Vまで引き下げられる。発光サイリスタLnの共通ゲートGnと発光サイリスタLn+1の共通ゲートGn+1との間は、結合ダイオードDnで接続されているため、結合ダイオードDnの拡散電位にほぼ等しい電位差が発生する。本実施例では、結合ダイオードDnの拡散電位は約1.5Vであるので、発光サイリスタLn+1の共通ゲートGn+1の電位は、発光サイリスタLnの共通ゲートGnの電位の0.2Vに、拡散電位の1.5Vを加えた1.7V(=0.2V+1.5V)となる。以下、同様に、発光サイリスタLn+2の共通ゲートGn+2の電位は3.2V(=1.7V+1.5V)、発光サイリスタLn+3(不図示)の共通ゲートGn+3(不図示)の電位は4.7V(=3.2V+1.5V)となる。ただし、発光サイリスタLn+4の共通ゲートGn+4以降の電位は、ゲートラインVGKの電圧が5Vであり、これ以上の高い電圧にはならないので、5Vとなる。また、発光サイリスタLnの共通ゲートGnより前(図8の共通ゲートGnよりも左側)の共通ゲートGn−1の電位については、結合ダイオードDn−1が逆バイアス状態になっているため、ゲートラインVGKの電圧がそのまま印加され、5Vとなっている。
図9(a)は、上述したシフトサイリスタTnがオン状態のときの各発光サイリスタLnの共通ゲートGnのゲート電位の分布を示す図であり、共通ゲートGn−1、Gn、Gn+1・・・は、図8中の発光サイリスタLの共通ゲートを指している。また、図9(a)の縦軸は、ゲート電位を示す。各シフトサイリスタTnがオンするために必要な電圧(以下、しきい値電圧と表記)は、各々の発光サイリスタLnの共通ゲートGnのゲート電位に拡散電位(1.5V)を加えたものと、ほぼ同じ電位である。シフトサイリスタTnがオンしているとき、同じシフトサイリスタTnの転送ラインΦ2のラインに接続されているシフトサイリスタの中で、共通ゲートのゲート電位が最も低いのはシフトサイリスタTn+2である。シフトサイリスタTn+2に接続されている発光サイリスタLn+2の共通ゲートGn+2の電位は、先に説明したように3.2V(=1.7V+1.5V)(図9(a))である。したがって、シフトサイリスタTn+2のしきい値電圧は4.7V(=3.2V+1.5V)となる。しかしながら、シフトサイリスタTnがオンしているため、転送ラインΦ2の電位は約1.5V(拡散電位)に引き込まれており、シフトサイリスタTn+2のしきい値電圧より低いために、シフトサイリスタTn+2はオンすることができない。同じ転送ラインΦ2に接続されている他のシフトサイリスタは、シフトサイリスタTn+2よりもしきい値電圧が高いため、同様にオンすることができず、シフトサイリスタTnのみがオン状態を保つことができる。
また、転送ラインΦ1に接続されているシフトサイリスタについては、しきい値電圧が最も低い状態であるシフトサイリスタTn+1のしきい値電圧は3.2V(=1.7V+1.5V)である。そして、次にしきい値電圧の低いシフトサイリスタTn+3(図8では不図示)は6.2V(=4.7V+1.5V)である。この状態で、転送ラインΦ1に5Vが入力されると、シフトサイリスタTn+1のみがオン状態に遷移できる。この状態では、シフトサイリスタTnとシフトサイリスタTn+1が同時にオンした状態である。そのため、シフトサイリスタTn+1から図8の回路図中、右側に設けられたシフトサイリスタTn+2、Tn+3等のゲート電位は、各々、拡散電位(1.5V)分、引き下げられる。ただし、ゲートラインVGKの電圧が5Vであり、発光サイリスタLの共通ゲートの電圧はゲートラインVGKの電圧で制限されるため、シフトサイリスタTn+5より右側のゲート電位は5Vとなる。図9(b)は、このときの各共通ゲートGn−1〜Gn+4のゲート電圧分布を示す図であり、縦軸はゲート電位を示す。この状態で、転送ラインΦ2の電位を0Vに下げると、シフトサイリスタTnがオフし、シフトサイリスタTnの共通ゲートGnの電位がVGK電位まで上昇する。図9(c)は、このときのゲート電圧分布を示す図であり、縦軸はゲート電位を示す。こうして、シフトサイリスタTnからシフトサイリスタTn+1へのオン状態の転送が完了する。
[発光サイリスタの発光動作]
次に、発光サイリスタの発光動作に関して説明する。シフトサイリスタTnのみがオンしているとき、発光サイリスタL4n−3〜L4nまでの4個の発光サイリスタのゲートはシフトサイリスタTnの共通ゲートGnに共通に接続されている。そのため、発光サイリスタL4n−3〜L4nのゲート電位は、共通ゲートGnと同じ0.2Vである。したがって、各々の発光サイリスタのしきい値は1.7V(=0.2V+1.5V)であり、発光サイリスタの点灯信号ラインΦW1〜ΦW4から、1.7V以上の電圧が入力されれば、発光サイリスタL4n−3〜L4nは点灯可能である。したがって、シフトサイリスタTnがオンしているときに、点灯信号ラインΦW1〜ΦW4に点灯信号を入力することにより、発光サイリスタL4n−3〜L4nまでの4個の発光サイリスタを選択的に発光させることが可能である。このとき、シフトサイリスタTnの隣のシフトサイリスタTn+1の共通ゲートGn+1の電位は1.7Vであり、共通ゲートGn+1にゲート接続している発光サイリスタL4n+1〜4n+4のしきい値電圧は3.2V(=1.7V+1.5V)となる。点灯信号ラインΦW1〜ΦW4から入力される点灯信号は5Vであるので、発光サイリスタL4n−3〜4nの点灯パターンと同じ点灯パターンで、発光サイリスタL4n+1〜L4n+4も点灯しそうである。ところが、発光サイリスタL4n−3〜L4nまでの方がしきい値電圧が低いため、点灯信号ラインΦW1〜ΦW4から点灯信号が入力された場合には、発光サイリスタL4n+1〜L4n+4よりも早くオンする。一旦、発光サイリスタL4n−3〜L4nがオンすると、接続されている点灯信号ラインΦW1〜ΦW4が約1.5V(拡散電位)に引き下げられる。そのため、点灯信号ラインΦW1〜ΦW4の電位が、発光サイリスタL4n+1〜L4n+4のしきい値電圧よりも低くなるため、発光サイリスタL4n+1〜L4n+4はオンすることができない。このように、1個のシフトサイリスタTに複数の発光サイリスタLを接続することで、複数個の発光サイリスタLを同時点灯させることができる。
図10は、図8に示すSLED回路の駆動信号のタイミングチャートである。図10では、上から順に、ゲートラインVGK、スタートパルスラインΦs、奇数番目、偶数番目のシフトサイリスタの転送ラインΦ1、Φ2、発光サイリスタの点灯信号ラインΦW1〜ΦW4の駆動信号の電圧波形を表している。なお、各駆動信号は、オン時の電圧は5V、オフ時の電圧は0Vである。また、図10の横軸は時間を示す。また、Tcは、クロック信号Φ1の周期を示し、Tc/2は、周期Tcの半分(=1/2)の周期を示す。
ゲートラインVGKには常に5Vが供給される。また、奇数番目のシフトサイリスタ用のクロック信号Φ1、偶数番目のシフトサイリスタ用のクロック信号Φ2が同じ周期Tcにて入力され、スタートパルスラインの信号Φsは5Vが供給されている。奇数番目のシフトサイリスタ用のクロック信号Φ1が最初に5Vになる少し前に、ゲートラインVGKに電位差をつけるために、スタートパルスラインの信号Φsは0Vに落とされる。これにより、最初のシフトサイリスタTn−1のゲート電位が5Vから1.7Vに引き込まれ、しきい値電圧が3.2Vになって、転送ラインΦ1による信号でオンできる状態になる。転送ラインΦ1に5Vが印加され、最初のシフトサイリスタTn−1がオン状態に遷移してから少し遅れて、スタートパルスラインΦsに5Vが供給され、以降、スタートパルスラインΦsには5Vが供給され続ける。
転送ラインΦ1と転送ラインΦ2は互いのオン状態(ここでは5V)が重なる時間Tovを持ち、略相補的な関係になるように構成される。発光サイリスタ点灯用信号ラインΦW1〜ΦW4は、転送ラインΦ1、Φ2の周期の半分の周期で送信され、対応するシフトサイリスタがオン状態のときに、5Vが印加されると点灯する。例えば期間aでは同一のシフトサイリスタに接続されている4つの発光サイリスタが全て点灯している状態であり、期間bでは3つの発光サイリスタが同時点灯している。また、期間cでは全ての発光サイリスタは消灯状態であり、期間dでは2つの発光サイリスタが同時点灯している。期間eでは点灯する発光サイリスタは1つのみである。
本実施例では1個のシフトサイリスタに接続する発光サイリスタの数は4個としているがこれに限ったものではなく、用途に応じて4個より少なくても多くてもよい。なお、上述した回路では各サイリスタのカソードを共通とする回路について説明したが、アノード共通回路でも適宜極性を反転することで適用可能である。
[面発光サイリスタの構造]
図11は、本実施例の面発光サイリスタ部の概略図である。図11(a)は、メサ(台形)構造922に形成された発光素子が複数配列されている発光素子アレイの平面図(模式図)である。図11(b)は、図11(a)に示すB−B線で、メサ構造922に形成された発光素子を切断したときの断面概略図である。発光素子が形成されたメサ構造922は、所定のピッチ(発光素子間の間隔)(例えば1200dpiの解像度の場合には約21.16μm)で配置されており、各メサ構造922は、素子分離溝924により互いに分離されている。
図11(b)において、900は第一伝導型の化合物半導体基板、902は基板900と同じ第一伝導型のバッファ層、904は第一伝導型の二種類の半導体層の積層で構成される分布ブラッグ反射(DBR)層である。また、906は第1の第一伝導型半導体層、908は第一伝導型とは異なる第1の第二伝導型半導体層、910は第2の第一伝導型半導体層、912は第2の第二伝導型半導体層である。図11(b)に示すように、半導体層906、908、910、912の、伝導型の異なる半導体を交互に積層することで、pnpn型(又はnpnp型)のサイリスタ構造を形成している。本実施例では、基板900にはn型のGaAs基板を用い、バッファ層902にはn型GaAs又はn型のAlGaAs層、DBR層904にはn型の高Al組成のAlGaAsと低Al組成のAlGaAsの積層構造を用いている。DBR層の上の第1の第一伝導型半導体層906にはn型AlGaAs、第1の第二伝導型半導体層908にはp型AlGaAs、第2の第一伝導型半導体層910にはn型AlGaAs、第2の第二伝導型半導体層912にはp型AlGaAsを用いている。
また、メサ構造型の面発光素子では、電流狭窄機構を用い、電流をメサ構造922側面に流さないようにすることで発光効率を向上させている。ここで、本実施例における電流狭窄機構について説明する。図11(b)に示すように、本実施例では第2の第二伝導型半導体層912であるp型AlGaAsの上に、p型のGaP層914を形成し、更にその上にn型の透明導電体であるITO層918を形成している。p型GaP層914は、透明導電体ITO層918と接触する部分の不純物濃度を十分高く形成しておく。発光サイリスタに対して順バイアスを加えたとき(例えば裏面電極926を接地し、表面電極920に正電圧を加えたとき)、p型GaP層914は、透明導電体ITO層918と接触する部分の不純物濃度を十分高く形成されているため、トンネル接合となる。その結果、電流が流れる。このような構造により、p型GaP層914は、n型透明導電体ITO層918と接触する部分に電流を集中させ、電流狭窄機構を形成している。なお、本実施例においては、ITO層918とp型AlGaAs層912との間に層間絶縁層916を設けている。ところが、n型ITO層918とp型AlGaAs層912で形成される付設ダイオードは、発光サイリスタの順方向バイアスに対して逆バイアスになっており、順バイアスしたときに、トンネル接合部以外は基本的に電流が流れない。そのため、n型ITO層918とp型AlGaAs層912で形成される付設ダイオードの逆方向耐圧が必要な用途に対して十分であれば、省略することも可能である。このような構成により、p型GaP層914とn型透明導電体ITO層918とが接触する部分とほぼ同等な部分の下部の半導体積層部が発光し、DBR層904によってそのほとんどの発光が基板900と反対側に反射される。
本実施例における露光ヘッド106は、解像度に応じて発光点の密度(発光素子間の間隔)が決定される。面発光素子アレイチップ内部の各発光素子は、素子分離溝924によってメサ構造922に分離され、例えば1200dpiの解像度で画像形成を行う場合は、隣接する発光素子(発光点)の素子中心間の間隔は21.16μmとなるように配列される。
[副走査方向における倍率調整時のLine同期信号と画像データとの関係]
図12は、データ受信部407から出力されるLine同期信号と画像データとの関係を示す図である。図12で(a)は副走査方向における倍率補正を行わない場合を示し、(b)は副走査方向における倍率を拡大する場合を示し、(c)は副走査方向における倍率を縮小する場合を示す。なお、副走査方向における倍率補正を行わない場合を基準とする。各図には、Line同期信号の波形と、画像データを示す。横軸はいずれも時間を示す。補正を行わない場合のLine同期信号の周期Tnは、Tn_clk×15000であり、倍率を拡大する場合のLine同期信号の周期Tmは、Tm_clk×15000である。また、倍率を縮小する場合のLine同期信号の周期Trは、Tr_clk×15000である。
データ受信部407から出力されるクロック周波数は(a)〜(c)で異なる。言い換えればクロック周期は、(a)ではTn_clk、(b)ではTm_clk、(c)ではTr_clkである(Tm_clk>Tn_clk>Tr_clk)。しかし、Line同期信号間のパルス数は同じ(15000)である。実施例1では、1ラインに必要なクロック数は15000パルスとしている。図12(b)の副走査方向の拡大時は、クロック周波数が低くなる(クロック周期が長くなる)ため、Line同期信号の周期が副走査方向における倍率補正を行わない場合と比較して長くなる。図12(c)の副走査方向の縮小時は、クロック周波数が高くなる(クロック周期が短くなる)ため、Line同期信号の周期が副走査方向における倍率補正を行わない場合と比較して短くなる。その結果、副走査方向の倍率を拡大する場合は感光ドラム102上に形成されるライン間隔が伸び、全体的に画像データの副走査方向は拡大される。一方、副走査方向の倍率を縮小する場合は感光ドラム102上に形成されるライン間隔が縮み、全体的に画像データの副走査方向は縮小される。
制御基板415は、感光ドラム102の回転方向の倍率を、例えばN倍とする倍率補正を行う場合に、クロック信号の周期及びLine周期信号の周期をそれぞれ1/N倍に補正する。
[感光ドラム102上に形成されるドット形状]
図13は副走査方向の倍率補正を行わない場合と倍率補正を行う場合の感光ドラム102上に形成されるドット関係を示す。図13で、(a)は副走査方向の倍率を拡大する場合を示し、(b)は副走査方向の倍率補正を行わない(基準の)場合を示し、(c)は副走査方向の倍率を縮小する場合を示す。図13には、副走査方向の1ライン目と2ライン目を示している。副走査方向の倍率補正を行わない場合を基準として、副走査方向の倍率を拡大する場合は、データ受信部407から出力されるクロック周期(Tm_clk)が長くなっているため、感光ドラム102上に形成されるドットは大きくなる。一方、副走査方向の倍率を縮小する場合は、データ受信部407から出力されるクロック周期(Tr_clk)が短くなっているため、感光ドラム102上に形成されるドットは小さくなる。
上述したとおり、副走査方向の倍率を拡大する場合は、感光ドラム102上に形成されるライン間隔が伸びることになるが、感光ドラム102上に形成されるドットも大きくなっている。このため、画像データの濃度は副走査方向における倍率補正を行わない場合と同様の濃度が保たれる。また、副走査方向の倍率を縮小する場合は、感光ドラム102上に形成されるライン間隔が縮むことになるが、感光ドラム102上に形成されるドットも小さくなっている。このため、画像データの濃度は副走査方向における倍率補正を行わない場合と同様の濃度が保たれる。
以上説明した実施例1においては、副走査方向の倍率を拡大・縮小する場合、クロック生成部422で生成するクロック信号の周期を変更することで副走査方向の倍率補正を可能としている。このため、ライン間隔の伸び又は縮みとともに画像データの濃度変動を抑えることが可能となり、品質の高い画像形成が可能な画像形成装置を提供することができる。
なお、実施例1においては、面発光素子アレイチップを千鳥状に配置した例について述べたが、例えば一列に配列する構成においても、同様に処理することで同様の効果を得ることができる。
なお、図4において、CPU400、集積回路401A、集積回路402Aは、1つの集積回路に含まれていてもよい。更に、CPU400と、集積回路401A及び集積回路402Aと、が異なる集積回路であってもよい。
以上、実施例1によれば、副走査方向の倍率の補正を精度良く行うことができる。
実施例2について、特に実施例1と異なる箇所について図14を用いて詳細に説明する。実施例1で説明したように、クロック生成部422で生成するクロック周期を変更することで副走査方向の倍率補正を行う場合、クロック周期と面発光素子アレイチップの光量がリニアでは無い場合が発生する。その際は、倍率補正に合わせて面発光素子アレイチップの光量を変更することで画像データの濃度を合わせる必要がある。
図14(A)は、クロック周期と面発光素子アレイチップの光量との関係を示す図である。図14(A)で、(a)は副走査方向の倍率を拡大する場合のグラフであり、光量が不足する場合のグラフである。(b)は副走査方向の倍率を縮小した場合のグラフであり、光量が過剰となる場合のグラフである。(c)は実施例2の光量の補正を行ったときのグラフ、をそれぞれ示す。いずれも横軸はクロック周期[ナノ秒(ns)]を示し、縦軸は面発光素子アレイチップの光量を示す。また、図14(B)は、副走査方向の倍率補正を行った場合の、実施例2の光量を示す図であり、横軸に光量を示し、縦軸に副走査方向を示す。図14(B)で、(a)は副走査方向の倍率を拡大したときのグラフであり、(b)は副走査方向の倍率補正を行わない(基準)ときのグラフであり、(c)は副走査方向の倍率を縮小したときのグラフである。
実施例2において、実施例1同様に副走査方向の倍率を拡大する場合、Line同期信号の周期(Tm=Tm_clk×15000)が副走査方向の倍率補正をしない場合と比較して長くなっている。その結果、感光ドラム102上に形成されるライン間隔が伸びるため、1ライン目と2ライン目のドット間隔が広がる。しかしながら、クロック周期(Tm_clk)が長くなったにもかかわらず、クロック周期と面発光素子アレイチップの光量がリニアでは無いため光量が不足する(図14(A)(a))。このため、記録紙に形成される画像データの濃度が、副走査方向における倍率補正を行わない場合と比較して、同様の濃度を得ることができない。そこで実施例2では、感光ドラム102上に形成されるドットを大きくする。更に、光量を上げるために駆動手段である駆動電圧生成部414により、倍率補正を行わない場合の基準の駆動電圧よりも各発光素子の駆動電圧を上げて、第1の駆動電圧とする(第1の駆動電圧>基準の駆動電圧)。
図14(B)に示すように、各発光素子の駆動電圧を上げると、副走査方向の倍率補正をしない場合(図14(B)(b))と比較して、各発光素子の光量が上がる(図14(B)(a))。その結果、クロック周期とともに各発光素子の光量も補正することで、副走査方向における倍率補正を行った場合に、クロック周期と面発光素子アレイチップの光量との関係がリニアになる(図14(A)(c))。このように、実施例2では、クロック周期と各発光素子の光量とを補正することで、副走査方向の感光ドラム102上に形成されるライン間隔は伸びているが感光ドラム102上に形成されるドットの大きさは大きくなる。更に、各発光素子の光量補正を行うことで、更に精度の良い補正が可能となる。
一方、光量がリニアではなく過剰な場合は、駆動電圧生成部414により、倍率補正を行わない場合の基準の駆動電圧よりも各発光素子の駆動電圧を下げて、第2の駆動電圧とすればよい(第2の駆動電圧<基準の駆動電圧)。副走査方向の倍率を縮小する場合、Line同期信号の周期(Tr=Tr_clk×15000)が副走査方向の倍率補正をしない場合と比較して短くなっている。その結果、感光ドラム102上に形成されるライン間隔が縮むため、1ライン目と2ライン目のドット間隔が縮む。しかしながら、クロック周期(Tr_clk)が短くなったにもかかわらず、クロック周期と面発光素子アレイチップの光量がリニアでは無いため光量が過剰となる(図14(A)(b))。このため、記録紙に形成される画像データの濃度が、副走査方向における倍率補正を行わない場合と比較して、同様の濃度を得ることができない。そこで実施例2では、感光ドラム102上に形成されるドットを小さくし、更に、光量を下げるために駆動電圧生成部414により各発光素子の駆動電圧を下げる。
図14(B)に示すように、各発光素子の駆動電圧を下げると、副走査方向の倍率補正をしない場合(図14(B)(b))と比較して、各発光素子の光量が下がる(図14(B)(c))。その結果、クロック周期とともに各発光素子の光量も補正することで、副走査方向における倍率補正を行った場合に、クロック周期と面発光素子アレイチップの光量との関係がリニアになる(図14(A)(c))。このように、実施例2では、クロック周期と各発光素子の光量とを補正することで、副走査方向の感光ドラム102上に形成されるライン間隔は縮んでいるが感光ドラム102上に形成されるドットの大きさは小さくなる。更に、各発光素子の光量補正を行うことで、更に精度の良い補正が可能となる。
なお、光量がリニアではなく光量が不足する場合は、駆動電圧生成部414により各発光素子の駆動電圧を上げれば良い。また、実施例2の副走査方向における倍率調整データに対応した面発光素子アレイチップの光量補正データは、ROM421に予め格納されており、CPU400がROM421から光量補正データを読み出すものとする。CPU400は、ROM421から読み出した面発光素子アレイチップの光量補正データを駆動電圧生成部414に設定し、面発光素子アレイチップの光量を制御する。
以上説明した実施例2においては、副走査方向の倍率を拡大・縮小する場合、クロック生成部422で生成するクロック信号の周期を変更することで副走査方向の倍率補正が可能である。更に、駆動電圧生成部414で各発光素子の駆動電圧を変更することで光量を変更し、感光ドラム102上に形成されるドットサイズを変更する。これにより、画像データの濃度変更を抑えることが可能となる。その結果、品質の高い画像形成が可能な画像形成装置を提供することができる。
以上、実施例2によれば、副走査方向の倍率の補正を精度良く行うことができる。
[図4の変形例]
図4の変形例1として、例えば、図15に示すように、フィルタ処理部408がチップデータシフト部404とデータ送信部405との間にあってもよい。
図4の変形例2として、例えば、図16に示すように、フィルタ処理部408がラインデータシフト部402とチップデータ変換部403との間にあってもよい。
102 感光ドラム
106 露光ヘッド
201 面発光素子アレイ素子群
303 駆動部
415 制御基板
422 クロック生成部

Claims (8)

  1. 回転駆動される感光体と、
    前記感光体の回転方向と交差する交差方向においてそれぞれが互いに異なる位置に配列され、前記感光体を露光する複数の発光素子と、前記複数の発光素子を駆動する駆動部と、を備える露光ヘッドと、
    を備え、前記交差方向における前記複数の発光素子の配列間隔に対応する解像度の画像を形成する画像形成装置であって、
    クロック信号に同期して画像データを前記駆動部に出力する出力手段と、
    前記クロック信号を生成する第1の生成手段と、
    前記感光体の前記回転方向の解像度に対応する1ライン分の周期信号を生成する第2の生成手段と、
    前記感光体の前記回転方向における出力する画像の倍率に応じて前記クロック信号の周期及び前記周期信号の周期を制御する制御手段と、
    を備えることを特徴とする画像形成装置。
  2. 前記制御手段は、
    第1の倍率で画像を形成する場合には、前記第2の生成手段により前記周期信号を第1の周期で生成し、前記第1の生成手段により前記クロック信号を第4の周期で生成し、
    前記第1の倍率よりも大きい第2の倍率で画像を形成する場合には、前記第2の生成手段により前記周期信号を前記第1の周期よりも長い第2の周期で生成し、前記第1の生成手段により前記クロック信号を第4の周期よりも長い第5の周期で生成し、
    前記第1の倍率よりも小さい第3の倍率で画像を形成する場合には、前記第2の生成手段により前記周期信号を前記第1の周期よりも短い第3の周期で生成し、前記第1の生成手段により前記クロック信号を前記第4の周期よりも短い第6の周期で生成することを特徴とする請求項1に記載の画像形成装置。
  3. 前記複数の発光素子を駆動するための駆動電圧を出力する駆動手段を備え、
    前記駆動手段は、前記回転方向の倍率を変化させる際に、前記倍率に応じて前記駆動電圧を変化させることにより前記発光素子の光量を制御することを特徴とする請求項1又は請求項2に記載の画像形成装置。
  4. 前記駆動手段は、前記回転方向の前記画像の倍率を拡大させる場合には前記駆動電圧を、倍率を変化させない場合の基準の駆動電圧よりも高い第1の駆動電圧とし、前記回転方向の倍率を縮小させる場合には前記駆動電圧を前記基準の駆動電圧よりも低い第2の駆動電圧とすることを特徴とする請求項3に記載の画像形成装置。
  5. 前記複数の発光素子は、前記交差方向に前記解像度に相当する間隔で配列されていることを特徴とする請求項1から請求項4のいずれか1項に記載の画像形成装置。
  6. 前記出力手段は、前記複数の発光素子の配列間隔に対応する解像度よりも高い解像度の画像データを前記複数の発光素子の配列間隔に対応する解像度に変換する変換手段を有することを特徴とする請求項5に記載の画像形成装置。
  7. 前記制御手段は、前記回転方向の倍率をN倍とする倍率補正を行う場合に、前記第1の生成手段により生成される前記クロック信号の周期及び前記第2の生成手段により生成される前記周期信号の周期をそれぞれ1/N倍に補正することを特徴とする請求項1から請求項6のいずれか1項に記載の画像形成装置。
  8. 前記周期信号の周期は、前記クロック信号の周期の整数倍であることを特徴とする請求項1から請求項7のいずれか1項に記載の画像形成装置。
JP2018121818A 2018-06-27 2018-06-27 画像形成装置 Pending JP2020001240A (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2018121818A JP2020001240A (ja) 2018-06-27 2018-06-27 画像形成装置
PCT/JP2019/025242 WO2020004422A1 (ja) 2018-06-27 2019-06-25 画像形成装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018121818A JP2020001240A (ja) 2018-06-27 2018-06-27 画像形成装置

Publications (2)

Publication Number Publication Date
JP2020001240A true JP2020001240A (ja) 2020-01-09
JP2020001240A5 JP2020001240A5 (ja) 2021-08-05

Family

ID=68986671

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018121818A Pending JP2020001240A (ja) 2018-06-27 2018-06-27 画像形成装置

Country Status (2)

Country Link
JP (1) JP2020001240A (ja)
WO (1) WO2020004422A1 (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06286213A (ja) * 1993-03-30 1994-10-11 Olympus Optical Co Ltd 記録装置
JP2003127462A (ja) * 2001-10-29 2003-05-08 Nippon Sheet Glass Co Ltd 光書込みヘッドの光量補正方法
JP2003241610A (ja) * 2002-02-14 2003-08-29 Canon Inc 画像形成装置
JP2006159851A (ja) * 2004-12-10 2006-06-22 Konica Minolta Business Technologies Inc 画像形成装置
US20120314014A1 (en) * 2011-06-10 2012-12-13 Xerox Corporation Led print-head driver with integrated process direction compensation
JP2014008743A (ja) * 2012-07-02 2014-01-20 Ricoh Co Ltd 光書き込み制御装置、画像形成装置及び光書き込み制御方法
JP2015030128A (ja) * 2013-07-31 2015-02-16 株式会社リコー 光書き込み制御装置、画像形成装置及び光書き込み制御方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4158308B2 (ja) * 2000-03-01 2008-10-01 富士ゼロックス株式会社 自己走査型発光装置
JP4341612B2 (ja) * 2005-11-14 2009-10-07 セイコーエプソン株式会社 発光装置、駆動回路、駆動方法、電子機器および画像形成装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06286213A (ja) * 1993-03-30 1994-10-11 Olympus Optical Co Ltd 記録装置
JP2003127462A (ja) * 2001-10-29 2003-05-08 Nippon Sheet Glass Co Ltd 光書込みヘッドの光量補正方法
JP2003241610A (ja) * 2002-02-14 2003-08-29 Canon Inc 画像形成装置
JP2006159851A (ja) * 2004-12-10 2006-06-22 Konica Minolta Business Technologies Inc 画像形成装置
US20120314014A1 (en) * 2011-06-10 2012-12-13 Xerox Corporation Led print-head driver with integrated process direction compensation
JP2014008743A (ja) * 2012-07-02 2014-01-20 Ricoh Co Ltd 光書き込み制御装置、画像形成装置及び光書き込み制御方法
JP2015030128A (ja) * 2013-07-31 2015-02-16 株式会社リコー 光書き込み制御装置、画像形成装置及び光書き込み制御方法

Also Published As

Publication number Publication date
WO2020004422A1 (ja) 2020-01-02

Similar Documents

Publication Publication Date Title
KR102462138B1 (ko) 화상 형성 장치
JP7187282B2 (ja) 画像形成装置
JP7143185B2 (ja) 画像形成装置
JP2020175580A (ja) 画像形成装置
US11294297B2 (en) Image forming apparatus with separate light emitting element arrays
JP7342229B2 (ja) 画像形成装置
WO2020004422A1 (ja) 画像形成装置
JP7094800B2 (ja) 画像形成装置
JP7062536B2 (ja) 画像形成装置
JP7130455B2 (ja) 画像形成装置
JP7130469B2 (ja) 画像形成装置
JP7191625B2 (ja) 画像形成装置
US20220179335A1 (en) Image forming apparatus with top emission light emitting device
JP4548064B2 (ja) 発光素子アレイ駆動装置、プリントヘッド
JP2023020189A (ja) 画像形成装置

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210624

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210624

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220315

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220512

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20220628