JP2019534664A - Dc−dc電圧コンバータをバック動作モードから安全動作モードに切り換える制御システム - Google Patents

Dc−dc電圧コンバータをバック動作モードから安全動作モードに切り換える制御システム Download PDF

Info

Publication number
JP2019534664A
JP2019534664A JP2019520785A JP2019520785A JP2019534664A JP 2019534664 A JP2019534664 A JP 2019534664A JP 2019520785 A JP2019520785 A JP 2019520785A JP 2019520785 A JP2019520785 A JP 2019520785A JP 2019534664 A JP2019534664 A JP 2019534664A
Authority
JP
Japan
Prior art keywords
switch
voltage switch
application
command value
precharge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019520785A
Other languages
English (en)
Other versions
JP6746864B2 (ja
Inventor
ケイ. カトラック、カーフェガー
ケイ. カトラック、カーフェガー
Original Assignee
エルジー・ケム・リミテッド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by エルジー・ケム・リミテッド filed Critical エルジー・ケム・リミテッド
Publication of JP2019534664A publication Critical patent/JP2019534664A/ja
Application granted granted Critical
Publication of JP6746864B2 publication Critical patent/JP6746864B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/32Means for protecting converters other than automatic disconnection
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/158Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05FSYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
    • G05F1/00Automatic systems in which deviations of an electric quantity from one or more predetermined values are detected at the output of the system and fed back to a device within the system to restore the detected quantity to its predetermined value or values, i.e. retroactive systems
    • G05F1/10Regulating voltage or current
    • G05F1/46Regulating voltage or current wherein the variable actually regulated by the final control device is dc
    • G05F1/62Regulating voltage or current wherein the variable actually regulated by the final control device is dc using bucking or boosting dc sources
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/08Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/32Means for protecting converters other than automatic disconnection
    • H02M1/325Means for protecting converters other than automatic disconnection with means for allowing continuous operation despite a fault, i.e. fault tolerant converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/158Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
    • H02M3/1588Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load comprising at least one synchronous rectifier element
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0003Details of control, feedback or regulation circuits
    • H02M1/0032Control circuits allowing low power mode operation, e.g. in standby mode
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/157Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators with digital control
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Automation & Control Theory (AREA)
  • Dc-Dc Converters (AREA)

Abstract

本発明の一実施例によれば、DC−DC電圧コンバータをバック動作モードから安全動作モードに切り換える制御システムが提供される。前記DC−DC電圧コンバータは、ハイサイド集積回路とローサイド集積回路を有するDC−DC電圧コンバータ制御回路を備える。前記ハイサイド制御回路は内部に複数の第1FETスイッチを有する。前記ローサイド制御回路は内部に複数の第2FETスイッチを有する。前記制御システムは、デジタル入出力装置、第1アプリケーション、第2アプリケーション及びハードウェア抽象化レイヤを有するマイクロコントローラを含む。前記第1アプリケーションは、前記複数の第1FETスイッチと前記複数の第2FETスイッチを開放動作状態に切り換えるため、第1命令値を前記ハードウェア抽象化レイヤに送信する。

Description

本発明は、DC−DC電圧コンバータをバック(buck)動作モードから安全動作モードに切り換える制御システムに関する。
本出願は、2017年7月31日出願の米国仮出願第62/538,840号及び2018年5月17日出願の米国特許出願第15/982,072号に基づく優先権を主張し、該当出願の明細書及び図面に開示された内容は、すべて本出願に援用される。
DC−DC電圧コンバータは、電力の入力を受けてレベルを有する電力を生成して出力する装置であって、一般に少なくとも1つのスイッチを含む。このとき、前記DC−DC電圧コンバータは、外部の命令に従ってスイッチのデューティサイクルを変更することで、入力される電力と出力される電力の電圧及び電流を制御する。このようなDC−DC電圧コンバータは、命令に従って設定された最大入力電圧、最大出力電圧及び最大出力電流それぞれを入力電力と出力電力が超過しないようにスイッチを制御する。しかし、1つの制御モードによってスイッチを制御する場合、入力電力と出力電力が最大入力電圧、最大出力電圧及び最大出力電流を超過して、DC−DC電圧コンバータの内部回路及び電気負荷が破損される問題点がある。
本発明者は、DC−DC電圧コンバータをバック動作モードから安全動作モードに切り換える、改善された制御システムの必要性を認識した。特に、制御システムは、マイクロコントローラがDC−DC電圧コンバータのDC−DC電圧コンバータ制御回路内で要請されたスイッチを開放動作状態に切り換える制御信号を生成するように命令するため、別個の命令値をハードウェア抽象化レイヤ(Hardware Abstraction Layer;HAL)に送信する多様且つ独立したアプリケーションを用いる。別個の命令値は、ハードウェア抽象化レイヤによって正確な命令値が確実に受信されるように、他の命令値から最小4ハミング距離(Hamming distance)を有する。
その結果、本発明による制御システムは、より安定的にDC−DC電圧コンバータを安全動作モードに切り換えることができる。
本発明の他の目的及び長所は、下記する説明によって理解でき、本発明の実施例によってより明らかに分かるであろう。また、本発明の目的及び長所は、特許請求の範囲に示される手段及びその組合せによって実現することができる。
上記の目的を達成するための本発明の多様な実施例は以下のようである。
本発明の一実施例によれば、DC−DC電圧コンバータをバック動作モードから安全動作モードに切り換える制御システムが提供される。
前記DC−DC電圧コンバータは、ハイサイド集積回路とローサイド集積回路を有するDC−DC電圧コンバータ制御回路を備える。
前記ハイサイド制御回路は、内部に複数の第1FETスイッチを有する。
前記ローサイド制御回路は、内部に複数の第2FETスイッチを有する。
前記制御システムは、デジタル入出力装置、第1アプリケーション、第2アプリケーション及びハードウェア抽象化レイヤを有するマイクロコントローラを含む。
前記第1アプリケーションは、前記複数の第1FETスイッチと前記複数の第2FETスイッチを開放動作状態に切り換えるため、第1命令値を前記ハードウェア抽象化レイヤに送信する。
前記ハードウェア抽象化レイヤは、前記第1命令値が第2命令値と同じであれば、前記ハイサイド集積回路の第1入力ピンと前記ローサイド集積回路の第1入力ピンで受信されて前記複数の第1FETスイッチと前記複数の第2FETスイッチを前記開放動作状態に切り換える第1制御信号を生成するように、前記デジタル入出力装置に命令する。
前記第2アプリケーションは、前記複数の第1FETスイッチと前記複数の第2FETスイッチを前記開放動作状態に切り換えるため、第3命令値を前記ハードウェア抽象化レイヤに送信する。
前記第3命令値は、前記第1命令値から最小4ハミング距離を有する。
前記ハードウェア抽象化レイヤは、前記第3命令値が第4命令値と同じであれば、前記ハイサイド集積回路の第2入力ピンと前記ローサイド集積回路の第2入力ピンで受信されて前記複数の第1FETスイッチと前記複数の第2FETスイッチを前記開放動作状態に切り換える第2制御信号を生成するように、前記デジタル入出力装置に命令する。
前記マイクロコントローラは、ハイサイド集積回路の出力ピンとローサイド集積回路の出力ピンのうち少なくとも1つから第1確認信号を受信する。
前記ハードウェア抽象化レイヤは、前記複数の第1FETスイッチと前記複数の第2FETスイッチのうち少なくとも1つが前記開放動作状態に切り換えられたことを示す前記第1確認信号に基づいて、第3アプリケーションに第5命令値を送信する。
前記マイクロコントローラは、ハイサイド集積回路の出力ピンとローサイド集積回路の出力ピンのうち少なくとも1つから第2確認信号を受信する。
前記ハードウェア抽象化レイヤは、前記複数の第1FETスイッチと前記複数の第2FETスイッチのうち少なくとも1つが前記開放動作状態に切り換えられたことを示す前記第2確認信号に基づいて、第4アプリケーションに第6命令値を送信する。
前記DC−DC電圧コンバータは、高電圧スイッチ、プリチャージ高電圧スイッチ、低電圧スイッチ及びプリチャージ低電圧スイッチをさらに含む。
前記DC−DC電圧コンバータは、前記第1アプリケーションが前記第1命令値を送信する前に、前記高電圧スイッチが閉鎖動作状態であり、前記プリチャージ高電圧スイッチが閉鎖動作状態であり、前記低電圧スイッチが閉鎖動作状態であり、前記プリチャージ低電圧スイッチが閉鎖動作状態である。
前記高電圧スイッチは、両方向MOSFETスイッチであり、前記低電圧スイッチは、両方向MOSFETスイッチである。
本発明の他の実施例によれば、DC−DC電圧コンバータをバック動作モードから安全動作モードに切り換える制御システムが提供される。
前記DC−DC電圧コンバータは、高電圧スイッチとプリチャージ高電圧スイッチを有する。
前記制御システムは、デジタル入出力装置、第1アプリケーション、第2アプリケーション及びハードウェア抽象化レイヤを有するマイクロコントローラを含む。
前記第1アプリケーションは、前記高電圧スイッチを開放動作状態に切り換えるため、第1命令値を前記ハードウェア抽象化レイヤに送信する。
前記ハードウェア抽象化レイヤは、前記第1命令値が第2命令値と同じであれば、前記高電圧スイッチで受信されて前記高電圧スイッチを前記開放動作状態に切り換える第1制御信号を生成するように、前記デジタル入出力装置に命令する。
前記第2アプリケーションは、前記プリチャージ高電圧スイッチを前記開放動作状態に切り換えるため、前記第1命令値から最小4ハミング距離を有する第3命令値を前記ハードウェア抽象化レイヤに送信する。
前記ハードウェア抽象化レイヤは、前記第3命令値が第4命令値と同じであれば、前記プリチャージ高電圧スイッチで受信されて前記プリチャージ高電圧スイッチを前記開放動作状態に切り換える第2制御信号を生成するように、前記デジタル入出力装置に命令する。
前記DC−DC電圧コンバータは、低電圧スイッチ及びプリチャージ低電圧スイッチをさらに含む。
前記DC−DC電圧コンバータは、前記第1アプリケーションが前記第1命令値を送信する前に、前記高電圧スイッチが閉鎖動作状態であり、前記プリチャージ高電圧スイッチが閉鎖動作状態であり、前記低電圧スイッチが閉鎖動作状態であり、前記プリチャージ低電圧スイッチが閉鎖動作状態である。
前記高電圧スイッチは、両方向MOSFETスイッチであり、前記プリチャージ高電圧スイッチは、両方向MOSFETスイッチである。
本発明のさらに他の実施例によれば、DC−DC電圧コンバータをバック動作モードから安全動作モードに切り換える制御システムが提供される。
前記DC−DC電圧コンバータは、低電圧スイッチとプリチャージ低電圧スイッチを有する。
前記制御システムは、デジタル入出力装置、第1アプリケーション、第2アプリケーション及びハードウェア抽象化レイヤを有するマイクロコントローラを含む。
前記第1アプリケーションは、前記低電圧スイッチを開放動作状態に切り換えるため、第1命令値を前記ハードウェア抽象化レイヤに送信する。
前記ハードウェア抽象化レイヤは、前記第1命令値が第2命令値と同じであれば、前記低電圧スイッチで受信されて前記低電圧スイッチを前記開放動作状態に切り換える第1制御信号を生成するように、前記デジタル入出力装置に命令する。
前記第2アプリケーションは、前記プリチャージ低電圧スイッチを前記開放動作状態に切り換えるため、第3命令値を前記ハードウェア抽象化レイヤに送信する。
前記第3命令値は、前記第1命令値から最小4ハミング距離を有する。
前記ハードウェア抽象化レイヤは、前記第3命令値が第4命令値と同じであれば、前記プリチャージ低電圧スイッチで受信されて前記プリチャージ低電圧スイッチを前記開放動作状態に切り換える第2制御信号を生成するように、前記デジタル入出力装置に命令する。
前記DC−DC電圧コンバータは、高電圧スイッチ及びプリチャージ高電圧スイッチをさらに含む。
前記DC−DC電圧コンバータは、前記第1アプリケーションが前記第1命令値を送信する前に、前記高電圧スイッチが閉鎖動作状態であり、前記プリチャージ高電圧スイッチが閉鎖動作状態であり、前記低電圧スイッチが閉鎖動作状態であり、前記プリチャージ低電圧スイッチが閉鎖動作状態である。
前記低電圧スイッチは、両方向MOSFETスイッチであり、前記プリチャージ低電圧スイッチは、両方向MOSFETスイッチである。
本発明の実施例のうち少なくとも1つによれば、制御システムは、マイクロコントローラがDC−DC電圧コンバータのDC−DC電圧コンバータ制御回路内で要請されたスイッチを開放動作状態に切り換える制御信号を生成するように命令するため、別個の命令値をハードウェア抽象化レイヤに送信する多様且つ独立したアプリケーションを用いることで、一部のアプリケーションが動作しなくても安定的にDC−DC電圧コンバータを安全動作モードに切り換えることができる。
本発明の効果は、上記の効果に限定されず、言及されていない他の効果は請求範囲の記載から当業者に明確に理解できるであろう。
本明細書に添付される次の図面は、本発明の望ましい実施例を例示するものであり、発明の詳細な説明とともに本発明の技術的な思想をさらに理解させる役割をするため、本発明は図面に記載された事項だけに限定されて解釈されてはならない。
本発明の一実施例によるDC−DC電圧コンバータのための制御システムを有する自動車の回路図である。 図1のDC−DC電圧コンバータで用いられるDC−DC電圧コンバータ制御回路内のハイサイド集積回路とローサイド集積回路の一部の回路図である。 図1の制御システムでマイクロコントローラによって用いられるメインアプリケーション、第1〜第8アプリケーション及びハードウェア抽象化レイヤのブロック図である。 DC−DC電圧コンバータをバック動作モードから安全動作モードに切り換える方法のフロー図である。 DC−DC電圧コンバータをバック動作モードから安全動作モードに切り換える方法のフロー図である。 DC−DC電圧コンバータをバック動作モードから安全動作モードに切り換える方法のフロー図である。 DC−DC電圧コンバータをバック動作モードから安全動作モードに切り換える方法のフロー図である。 DC−DC電圧コンバータをバック動作モードから安全動作モードに切り換える方法のフロー図である。 DC−DC電圧コンバータをバック動作モードから安全動作モードに切り換える方法のフロー図である。 DC−DC電圧コンバータをバック動作モードから安全動作モードに切り換える方法のフロー図である。 DC−DC電圧コンバータをバック動作モードから安全動作モードに切り換える方法のフロー図である。 DC−DC電圧コンバータをバック動作モードから安全動作モードに切り換える方法のフロー図である。 図3に示された第1アプリケーションによって用いられる命令値の表である。 図3に示された第2アプリケーションによって用いられる命令値の表である。 図3に示された第3アプリケーションによって用いられる命令値の表である。 図3に示された第4アプリケーションによって用いられる命令値の表である。 図3に示された第5アプリケーションによって用いられる命令値の表である。 図3に示された第6アプリケーションによって用いられる命令値の表である。 図3に示された第7アプリケーションによって用いられる命令値の表である。 図3に示された第8アプリケーションによって用いられる命令値の表である。
以下、添付された図面を参照して本発明の望ましい実施例を詳しく説明する。これに先立ち、本明細書及び請求範囲に使われた用語や単語は通常的や辞書的な意味に限定して解釈されてはならず、発明者自らは発明を最善の方法で説明するために用語の概念を適切に定義できるという原則に則して本発明の技術的な思想に応ずる意味及び概念で解釈されねばならない。
したがって、本明細書に記載された実施例及び図面に示された構成は、本発明のもっとも望ましい一実施例に過ぎず、本発明の技術的な思想のすべてを代弁するものではないため、本出願の時点においてこれらに代替できる多様な均等物及び変形例があり得ることを理解せねばならない。
また、本発明の説明において、関連公知構成または機能についての具体的な説明が本発明の要旨を不明瞭にし得ると判断される場合、その詳細な説明は省略する。
明細書の全体に亘って、ある部分がある構成要素を「含む」とは、特に言及しない限り、他の構成要素を排除するものではなく、他の構成要素をさらに含み得ることを意味する。また、明細書に記載された「制御ユニット」のような用語は、少なくとも1つの機能や動作を処理する単位を意味し、ハードウェア、ソフトウェア、またはハードウェアとソフトウェアとの組合せで具現され得る。
さらに、明細書の全体に亘って、ある部分が他の部分と「連結」されているとは、「直接的に連結」されている場合だけでなく、他の素子を介在して「間接的に連結」されている場合も含む。
図1を参照すれば、自動車10が提供される。自動車10は、バッテリー40、コンタクタ42、三相キャパシタバンク48、バッテリースタータージェネレータユニット50、DC−DC電圧コンバータ54、バッテリー56、制御システム58及び電気ライン64、65、68、70、72、74を含む。
図1及び図3を参照すれば、制御システム58の長所は、より安定的にDC−DC電圧コンバータ54をバック動作モードから安全動作モードに切り換えることができるマイクロコントローラ800を備えることである。特に、制御システム58は、マイクロコントローラ800がDC−DC電圧コンバータ54のDC−DC電圧コンバータ制御回路240内で要請されたスイッチを開放動作状態に切り換える制御信号を生成するように命令するため、別個の命令値をハードウェア抽象化レイヤ1018に送信する多様且つ独立したアプリケーションを用いる。別個の命令値は、ハードウェア抽象化レイヤによって正確な命令値が確実に受信されるように、他の命令値から最小4ハミング距離を有する。その結果、本発明による制御システム58は、より安定的にDC−DC電圧コンバータ54を安全動作モードに切り換えることができる。
理解を助けるため、本明細書で使用する幾つかの用語を説明することにする。
「ノード」または「電気ノード」とは、電気回路の一領域または位置である。「信号」は電圧、電流または2進数値である。
バック動作モードは、DC−DC電圧コンバータ54がバッテリー56に電圧を印加するDC−DC電圧コンバータ54の動作モードである。一実施例において、DC−DC電圧コンバータ54がバック動作モードであるとき、コンタクタ42は閉鎖動作状態であり、高電圧スイッチ200は閉鎖動作状態であり、FETスイッチ506、606は要請に応じて切り換えられ、低電圧スイッチ270は閉鎖動作状態である。プリチャージ高電圧スイッチ202は閉鎖動作状態であり得、プリチャージ低電圧スイッチ272は閉鎖動作状態であり得る。
安全動作モードは、DC−DC電圧コンバータ54がバッテリー56またはバッテリー40に電圧を印加しないDC−DC電圧コンバータ54の動作モードである。一実施例において、DC−DC電圧コンバータ54が安全動作モードであるとき、コンタクタ42は開放動作状態であり、高電圧スイッチ200は開放動作状態であり、プリチャージ高電圧スイッチ202は開放動作状態であり、FETスイッチ506、606は開放動作状態であり、低電圧スイッチ270は開放動作状態であり、プリチャージ低電圧スイッチ272は開放動作状態である。
ハードウェア抽象化レイヤ1018は、アプリケーションが詳細なハードウェアレベルより一般的または抽象的なレベルでデジタル入出力装置942及びアナログ−デジタルコンバータ946と相互作用できるようにするプログラム(例えば、ローレベルプログラムまたはアプリケーション)の階層である。
バッテリー40は、正極端子100と負極端子102を含む。一実施例において、バッテリー40は正極端子100と負極端子102との間で48Vdcを生成する。正極端子100は、コンタクタ42の第1側の第1電気ノード124に電気的に連結される。負極端子102は、コンタクタ42の接地に電気的に連結される。
コンタクタ42は、コンタクタコイル120、接点122、第1電気ノード124及び第2電気ノード126を含む。第1電気ノード124は、バッテリー40の正極端子100に電気的に連結される。第2電気ノード126は、三相キャパシタバンク48及びDC−DC電圧コンバータ54の電気ノード210の両方に電気的に連結される。マイクロコントローラ800が電圧ドライバー802、804のそれぞれによって受信される第1制御信号及び第2制御信号を生成するとき、コンタクタコイル81が励磁されて接点122が閉鎖動作状態に変更される。逆に、マイクロコントローラ800が電圧ドライバー802、804のそれぞれによって受信される第3制御信号及び第4制御信号を生成するとき、コンタクタコイル81が非励磁されて接点122が開放動作状態に変更される。一実施例において、第3制御信号及び第4制御信号はそれぞれ接地電圧レベルであり得る。
三相キャパシタバンク48は、バッテリースタータージェネレータユニット50、バッテリー40及びDC−DC電圧コンバータ54からの電気エネルギーの貯蔵及び放出に用いられる。三相キャパシタバンク48は、電気ライン65を通じてコンタクタ42の電気ノード126及びDC−DC電圧コンバータ54の電気ノード210に電気的に連結される。三相キャパシタバンク48は、電気ライン68、70、72を通じてバッテリースタータージェネレータユニット50に電気的に連結される。
バッテリースタータージェネレータユニット50は、電気ライン68、70、72を通じて三相キャパシタバンク48によって受信されるAC電圧を生成する。
DC−DC電圧コンバータ54は、高電圧スイッチ200、プリチャージ高電圧スイッチ202、電気ノード210、212、DC−DC電圧コンバータ制御回路240、低電圧スイッチ270、プリチャージ低電圧スイッチ272、電気ノード280、282、電圧センサ290、292、294、296及び電気ライン310、312を含む。
高電圧スイッチ200は、ノード340及びノード342を含む。一実施例において、高電圧スイッチ200は高電圧両方向スイッチである。勿論、他の実施例において、高電圧スイッチ200は求められる電圧と電流性能を有する他の類型のスイッチに代替され得る。
高電圧スイッチ200は、電気ノード210、212の間でプリチャージ高電圧スイッチ202に電気的に並列連結される。ノード340は電気ノード210に電気的に連結され、ノード342は電気ノード212に電気的に連結される。マイクロコントローラ800が電気ライン908を通じて高電圧スイッチ200によって受信されるか、又は、スイッチ200に動作可能に連結されたDC−DC電圧コンバータ54のコントローラまたはマイクロプロセッサで受信される制御信号を生成するとき、マイクロコントローラ800はスイッチ200が閉鎖動作状態に切り換えられるように誘導する。マイクロコントローラ800が他の制御信号(例えば、接地電圧レベル制御信号)を電気ライン908に生成するとき、マイクロコントローラ800はスイッチ200が開放動作状態に切り換えられるように誘導する。
プリチャージ高電圧スイッチ202は、電気ノード210に電気的に連結されたノード350、及び電気ノード212に電気的に連結されたノード352を有する。マイクロコントローラ800が電気ライン910を通じてプリチャージ高電圧スイッチ202によって受信されるか、又は、プリチャージ高電圧スイッチ202に動作可能に連結されたDC−DC電圧コンバータ54のコントローラまたはマイクロプロセッサによって受信される制御信号を生成するとき、マイクロコントローラ800はプリチャージ高電圧スイッチ202が閉鎖動作状態に切り換えられるように誘導する。マイクロコントローラ800が他の制御信号(例えば、接地電圧レベル制御信号)を電気ライン910に生成するとき、マイクロコントローラ800はプリチャージ高電圧スイッチ202が開放動作状態に切り換えられるように誘導する。一実施例において、プリチャージ高電圧スイッチ202はスイッチである。
図1及び図2を参照すれば、DC−DC電圧コンバータ制御回路240は、端子446、端子448、ハイサイド集積回路450、ローサイド集積回路452、バックモード集積回路454、ノード540、542、544、545、抵抗636及びインダクター637を有する。DC−DCコンバータ制御回路240は端子446で受信したDC電圧を端子448から出力される他のDC電圧に変換することができる。逆に、DC−DCコンバータ制御回路240は端子448で受信したDC電圧を端子446から出力される他のDC電圧に変換することができる。
ハイサイド集積回路450は、内部に入力ピン500、入力ピン502、出力ピン504及びFETスイッチ530、532、534を含む複数の第1FETスイッチ506を含む。入力ピン500は、電気ライン900を通じてマイクロコントローラ800の入出力装置942に電気的に連結される。入力ピン502は、電気ライン902を通じてマイクロコントローラ800のデジタル入出力装置942に電気的に連結される。出力ピン504は、電気ライン916を通じてマイクロコントローラ800のデジタル入出力装置942に電気的に連結される。
FETスイッチ530、532、534は、バックモード集積回路454からFETスイッチ530、532、534によって受信された制御電圧によって制御され、マイクロコントローラ800からピン500、502によって受信された制御電圧によって制御された動作状態(例えば、閉鎖動作状態または開放動作状態)を有する。一実施例において、FETスイッチ530、532、534は、第1端部で高電圧端子446に電気的に連結される。FETスイッチ530は、高電圧端子446とノード540との間に電気的に連結され、ローサイド集積回路452のFETスイッチ630に電気的に直列連結される。FETスイッチ532は、高電圧端子446とノード542との間に電気的に連結され、ローサイド集積回路452のFETスイッチ632に電気的に直列連結される。FETスイッチ534は、高電圧端子446とノード544との間に電気的に連結され、ローサイド集積回路452のFETスイッチ634に電気的に直列連結される。
ハイサイド集積回路450は、入力ピン500でハイ論理レベルを有する制御信号を受信するとき、複数の第1FETスイッチ506を動作可能にする。逆に、ハイサイド集積回路450は、入力ピン500でロー論理レベルを有する制御信号を受信するとき、複数の第1FETスイッチ506のそれぞれのスイッチを開放動作状態に切り換える。また、ハイサイド集積回路450は、入力ピン502でロー論理レベルを有する制御信号を受信するとき、複数の第1FETスイッチ506のそれぞれのスイッチを開放動作状態に切り換える。また、ハイサイド集積回路450が複数の第1FETスイッチ506のそれぞれのスイッチを開放動作状態に切り換えるとき、出力ピン504は複数の第1FETスイッチ506のそれぞれのスイッチが開放動作状態であることを示し、電気ライン916を通じてマイクロコントローラ800のデジタル入出力装置942によって受信される確認信号を出力する。
ローサイド集積回路452は、内部に入力ピン600、入力ピン602、出力ピン604及びFETスイッチ630、632、634を含む複数の第2FETスイッチ606を含む。入力ピン600は、電気ライン900を通じてマイクロコントローラ800のデジタル入出力装置942に電気的に連結される。入力ピン602は、電気ライン902を通じてマイクロコントローラ800のデジタル入出力装置942に電気的に連結される。出力ピン604は、電気ライン916を通じてマイクロコントローラ800のデジタル入出力装置942に電気的に連結される。
FETスイッチ630、632、634は、バックモード集積回路454からFETスイッチ630、632、634によって受信された制御電圧によって制御され、マイクロコントローラ800からピン600、602によって受信された制御電圧によって制御された動作状態(例えば、閉鎖動作状態または開放動作状態)を有する。FETスイッチ630、632、634は、FETスイッチ530、532、534とそれぞれ電気的に直列連結される。FETスイッチ630、632、634は、さらに、電気接地に電気的に連結された抵抗636に電気的に連結される。
ローサイド集積回路452は、入力ピン600にハイ論理レベルを有する制御信号を受信するとき、複数の第2FETスイッチ606を動作可能にする。逆に、ローサイド集積回路452は、入力ピン600にロー論理レベルを有する制御信号を受信するとき、複数の第2FETスイッチ606のそれぞれのスイッチを開放動作状態に切り換える。また、ローサイド集積回路452は、入力ピン602にロー論理レベルを有する制御信号を受信するとき、複数のFETスイッチ606のそれぞれのスイッチを開放動作状態に切り換える。また、ローサイド集積回路452が複数の第2FETスイッチ606のそれぞれのスイッチを開放動作状態に切り換えるとき、出力ピン604は複数の第2FETスイッチ606のそれぞれのスイッチが開放動作状態であることを示し、電気ライン916を通じてマイクロコントローラ800のデジタル入出力装置942によって受信される確認信号を出力する。
インダクター637は、ノード447と電気端子448との間に電気的に連結される。ノード540、542、544はノード447と電気的に連結される。
図1を参照すれば、低電圧スイッチ270は、電気ノード280、282の間でプリチャージ低電圧スイッチ272と電気的に並列連結される。低電圧スイッチ270は、電気ノード280に電気的に連結されたノード760、及び電気ノード282に電気的に連結されたノード762を有する。マイクロコントローラ800が電気ライン904を通じて低電圧スイッチ270によって受信されるか、又は、低電圧スイッチ270に動作可能に連結されたDC−DC電圧コンバータ54のコントローラまたはマイクロプロセッサによって受信される制御信号を生成するとき、マイクロコントローラ800は低電圧スイッチ270が閉鎖動作状態に切り換えられるように誘導する。マイクロコントローラ800が他の制御信号(例えば、接地電圧レベル制御信号)を電気ライン904に生成するとき、マイクロコントローラ800は低電圧スイッチ270が開放動作状態に切り換えられるように誘導する。一実施例において、低電圧スイッチ270はスイッチである。
プリチャージ低電圧スイッチ272は、電気ノード280に電気的に連結されたノード770、及び電気ノード282に電気的に連結されたノード772を有する。マイクロコントローラ800が電気ライン904を通じてプリチャージ低電圧スイッチ272によって受信されるか、又は、プリチャージ低電圧スイッチ272に動作可能に連結されたDC−DC電圧コンバータ54のコントローラまたはマイクロプロセッサによって受信される制御信号を生成するとき、マイクロコントローラ800はプリチャージ低電圧スイッチ272が閉鎖動作状態に切り換えられるように誘導する。マイクロコントローラ800が他の制御信号(例えば、接地電圧レベル制御信号)を電気ライン904に生成するとき、マイクロコントローラ800はスイッチ272が開放動作状態に切り換えられるように誘導する。
電圧センサ290は、電気ノード210及びマイクロコントローラ800に電気的に連結される。電圧センサ290は、電気ノード210の電圧を示し、電気ライン926を通じてマイクロコントローラ800によって受信される電圧測定信号を出力する。
電圧センサ292は、電気ノード212及びマイクロコントローラ800に電気的に連結される。電圧センサ292は、電気ノード212の電圧を示し、電気ライン928を通じてマイクロコントローラ800によって受信される電圧測定信号を出力する。
電圧センサ294は、電気ノード280及びマイクロコントローラ800に電気的に連結される。電圧センサ294は、電気ノード280の電圧を示し、電気ライン922を通じてマイクロコントローラ800によって受信される電圧測定信号を出力する。
電圧センサ296は、電気ノード282及びマイクロコントローラ800に電気的に連結される。電圧センサ296は、電気ノード282の電圧を示し、電気ライン924を通じてマイクロコントローラ800によって受信される電圧測定信号を出力する。
バッテリー56は、正極端子780及び負極端子782を含む。一実施例において、バッテリー56は正極端子780と負極端子782との間で12Vdcを生成する。正極端子780は、DC−DC電圧コンバータ54の電気ノード282に電気的に連結される。負極端子782は、接地に電気的に連結されるが、該接地はバッテリー40と連結された接地と異なり得る。
制御システム58は、DC−DC電圧コンバータ54をバック動作モードから安全動作モードに切り換えるのに用いられる。制御システム58は、マイクロコントローラ800、電圧ドライバー802、804、電圧センサ290、292、294、296及び電気ライン900、902、904、906、908、910、916、918、920、922、924、926、928を含む。
図1及び図3を参照すれば、マイクロコントローラ800は、マイクロプロセッサ940、入出力装置942、メモリ装置944及びアナログデジタルコンバータ946を含む。マイクロコントローラ800は、マイクロプロセッサ940によって実行されるメインアプリケーション1000、第1アプリケーション1002、第2アプリケーション1004、第3アプリケーション1006、第4アプリケーション1008、第5アプリケーション1010、第6アプリケーション1012、第7アプリケーション1014、第8アプリケーション1016及びハードウェア抽象化レイヤ1018をさらに含む。メインアプリケーション1000、第1アプリケーション1002、第2アプリケーション1004、第3アプリケーション1006、第4アプリケーション1008、第5アプリケーション1010、第6アプリケーション1012、第7アプリケーション1014、第8アプリケーション1016及びハードウェア抽象化レイヤ1018はメモリ装置944に貯蔵される。マイクロプロセッサ940は、デジタル入出力装置942、メモリ装置944、アナログデジタルコンバータ946、DC−DC電圧コンバータ54及び電圧ドライバー802、804と動作可能に連結される。
図13〜図20を参照してマイクロコントローラ800によって用いられ、メモリ装置944に貯蔵された表について説明する。
図1及び図13を参照すれば、表1300は、第1アプリケーション1002によって用いられる例示的な命令値を有する。特に、表1300は、DC−DC電圧コンバータ制御回路240内の複数の第1スイッチ506と複数の第2スイッチ606を開放動作状態に切り換えるように命令する命令値「7D」を含む。また、表1300は、DC−DC電圧コンバータ制御回路240内の複数の第1スイッチ506と複数の第2スイッチ606を閉鎖動作状態に切り換えるように命令する命令値「D7」を含む。
図1及び図14を参照すれば、表1310は、第2アプリケーション1004によって用いられる例示的な命令値を有する。特に、表1310は、DC−DC電圧コンバータ制御回路240内の複数の第1スイッチ506と複数の第2スイッチ606を開放動作状態に切り換えるように命令する命令値「B7」を含む。また、表1310は、DC−DC電圧コンバータ制御回路240内の複数の第1スイッチ506と複数の第2スイッチ606を閉鎖動作状態に切り換えるように命令する命令値「7B」を含む。
図1及び図15を参照すれば、表1320は、第3アプリケーション1006によって用いられる例示的な命令値を有する。特に、表1320は、DC−DC電圧コンバータ54内の高電圧スイッチ200を開放動作状態に切り換えるように命令する命令値「81」を含む。また、表1320は、DC−DC電圧コンバータ54内の高電圧スイッチ200を閉鎖動作状態に切り換えるように命令する命令値「18」を含む。
図1及び図16を参照すれば、表1330は、第4アプリケーション1008によって用いられる例示的な命令値を有する。特に、表1330は、DC−DC電圧コンバータ54内の低電圧スイッチ270を開放動作状態に切り換えるように命令する命令値「42」を含む。また、表1330は、DC−DC電圧コンバータ54内の低電圧スイッチ270を閉鎖動作状態に切り換えるように命令する命令値「24」を含む。
図1及び図17を参照すれば、表1340は、第5アプリケーション1010によって用いられる例示的な命令値を有する。特に、表1340は、DC−DC電圧コンバータ54内のプリチャージ高電圧スイッチ202を開放動作状態に切り換えるように命令する命令値「28」を含む。また、表1340は、DC−DC電圧コンバータ54内のプリチャージ高電圧スイッチ202を閉鎖動作状態に切り換えるように命令する命令値「82」を含む。
図1及び図18を参照すれば、表1350は、第6アプリケーション1012によって用いられる例示的な命令値を有する。特に、表1350は、DC−DC電圧コンバータ54内のプリチャージ低電圧スイッチ272を開放動作状態に切り換えるように命令する命令値「14」を含む。また、表1350は、DC−DC電圧コンバータ54内のプリチャージ低電圧スイッチ272を閉鎖動作状態に切り換えるように命令する命令値「41」を含む。
図1及び図19を参照すれば、表1360は、第7アプリケーション1014によって用いられる例示的な確認値を有する。特に、表1360は、DC−DC電圧コンバータ制御回路240内の複数の第1スイッチ506と複数の第2スイッチ606のうち少なくとも1つが開放動作状態に切り換えられたことを示す確認値「EB」を含む。また、表1360は、DC−DC電圧コンバータ制御回路240内の複数の第1スイッチ506と複数の第2スイッチ606のうち少なくとも1つが閉鎖動作状態に切り換えられたことを示す確認値「BE」を含む。
図1及び図20を参照すれば、表1370は、第8アプリケーション1016によって用いられる例示的な確認値を有する。特に、表1370は、DC−DC電圧コンバータ制御回路240内の複数の第1スイッチ506と複数の第2スイッチ606のうち少なくとも1つが開放動作状態に切り換えられたことを示す確認値「DE」を含む。また、表1360は、DC−DC電圧コンバータ制御回路240内の複数の第1スイッチ506と複数の第2スイッチ606のうち少なくとも1つが閉鎖動作状態に切り換えられたことを示す確認値「ED」を含む。
図13〜図20を参照すれば、表1300、1310、1320、1330、1340、1350、1360、1370内のすべての値は他の値から最小4ハミング距離を有する。
図1及び図3〜図12を参照してDC−DC電圧コンバータ54をバック動作モードから安全動作モードに切り換える方法を説明する。
フロー図はメインアプリケーション1000、第1アプリケーション1002、第2アプリケーション1004、第3アプリケーション1006、第4アプリケーション1008、第5アプリケーション1010、第6アプリケーション1012、第7アプリケーション1014及び第8アプリケーション1016を含む。
図4を参照してメインアプリケーション1000を説明する。
段階1030において、マイクロコントローラ800は、DC−DC電圧コンバータ54をバック動作モードから安全動作モードに切り換えるか否かを判断する。段階1030の値が「はい」であれば、前記方法は段階1032に進む。そうでなければ、前記方法は終了する。
段階1032において、マイクロコントローラ800は、第1アプリケーション1002を実行する。段階1032の後、前記方法は段階1034に進む。
段階1034において、マイクロコントローラ800は、第2アプリケーション1004を実行する。段階1034の後、前記方法は段階1036に進む。
段階1036において、マイクロコントローラ800は、第3アプリケーション1006を実行する。段階1036の後、前記方法は段階1038に進む。
段階1038において、マイクロコントローラ800は、第4アプリケーション1008を実行する。段階1038の後、前記方法は段階1040に進む。
段階1040において、マイクロコントローラ800は、第5アプリケーション1010を実行する。段階1040の後、前記方法は段階1042に進む。
段階1042において、マイクロコントローラ800は、第6アプリケーション1012を実行する。段階1042の後、前記方法は段階1044に進む。
段階1044において、マイクロコントローラ800は、第7アプリケーション1014を実行する。段階1044の後、前記方法は段階1046に進む。
段階1046において、マイクロコントローラ800は、第8アプリケーション1016を実行する。段階1046の後、前記方法は終了する。
図1及び図5を参照して、第1アプリケーション1002を説明する。
段階1070において、第1アプリケーション1002は、複数の第1FETスイッチ506と複数の第2FETスイッチ606を開放動作状態に切り換えるため、第1命令値(例えば、図13に示された「7D」)をハードウェア抽象化レイヤ1018に送信する。段階1070の後、前記方法は段階1072に進む。
段階1072において、ハードウェア抽象化レイヤ1018は、第1命令値が第2命令値と同じであるか否かを判断する。段階1072の値が「はい」であれば、前記方法は段階1074に進む。そうでなければ、前記方法はメインアプリケーション1000に戻る。
段階1074において、ハードウェア抽象化レイヤ1018は、ハイサイド集積回路450の第1入力ピン500とローサイド集積回路452の第1入力ピン600で受信されて複数の第1FETスイッチ506と複数の第2FETスイッチ606を開放動作状態に切り換える第1制御信号を生成するように、デジタル入出力装置942に命令する。段階1074の後、前記方法はメインアプリケーション1000に戻る。
図1及び図6を参照して、第2アプリケーション1004を説明する。
段階1090において、第2アプリケーション1004は、複数の第1FETスイッチ506と複数の第2FETスイッチ606を開放動作状態に切り換えるため、第3命令値(例えば、図14に示された「B7」)をハードウェア抽象化レイヤ1018に送信する。第3命令値は第1命令値から最小4ハミング距離を有する。段階1090の後、前記方法は段階1092に進む。
段階1092において、ハードウェア抽象化レイヤ1018は、第3命令値が第4命令値と同じであるか否かを判断する。段階1092の値が「はい」であれば、前記方法は段階1094に進む。そうでなければ、前記方法はメインアプリケーション1000に戻る。
段階1094において、ハードウェア抽象化レイヤ1018は、ハイサイド集積回路450の第2入力ピン502とローサイド集積回路452の第2入力ピン602で受信されて複数の第1FETスイッチ506と複数の第2FETスイッチ606を開放動作状態に切り換える第2制御信号を生成するように、デジタル入出力装置942に命令する。段階1094の後、前記方法はメインアプリケーション1000に戻る。
図1及び図7を参照して、第3アプリケーション1006を説明する。
段階1100において、第3アプリケーション1006は、高電圧スイッチ200を開放動作状態に切り換えるために第5命令値(例えば、図15に示された「81」)をハードウェア抽象化レイヤ1018に送信する。段階1100の後、前記方法は段階1102に進む。
段階1102において、ハードウェア抽象化レイヤ1018は、第5命令値が第6命令値と同じであるか否かを判断する。段階1102の値が「はい」であれば、前記方法は段階1104に進む。そうでなければ、前記方法はメインアプリケーション1000に戻る。
段階1104において、ハードウェア抽象化レイヤ1018は、高電圧スイッチ200で受信されて高電圧スイッチ200を開放動作状態に切り換える第3制御信号を生成するように、デジタル入出力装置942に命令する。段階1104の後、前記方法はメインアプリケーション1000に戻る。
図1及び図8を参照して、第4アプリケーション1008を説明する。
段階1120において、第4アプリケーション1008は、低電圧スイッチ270を開放動作状態に切り換えるために第7命令値(例えば、図16に示された「16」)をハードウェア抽象化レイヤ1018に送信する。第7命令値は第5命令値から最小4ハミング距離を有する。段階1120の後、前記方法は段階1122に進む。
段階1122において、ハードウェア抽象化レイヤ1018は、第7命令値が第8命令値と同じであるか否かを判断する。段階1122の値が「はい」であれば、前記方法は段階1124に進む。そうでなければ、前記方法はメインアプリケーション1000に戻る。
段階1124において、ハードウェア抽象化レイヤ1018は、低電圧スイッチ270で受信されて低電圧スイッチ270を開放動作状態に切り換える第4制御信号を生成するように、デジタル入出力装置942に命令する。段階1124の後、前記方法はメインアプリケーション1000に戻る。
図1及び図9を参照して、第5アプリケーション1010を説明する。
段階1140において、第5アプリケーション1010は、プリチャージ高電圧スイッチ202を開放動作状態に切り換えるために第9命令値(例えば、図17に示された「28」)をハードウェア抽象化レイヤ1018に送信する。段階1140の後、前記方法は段階1142に進む。
段階1142において、ハードウェア抽象化レイヤ1018は、第9命令値が第10命令値と同じであるか否かを判断する。段階1142の値が「はい」であれば、前記方法は段階1144に進む。そうでなければ、前記方法はメインアプリケーション1000に戻る。
段階1144において、ハードウェア抽象化レイヤ1018は、プリチャージ高電圧スイッチ202で受信されてプリチャージ高電圧スイッチ202を開放動作状態に切り換える第5制御信号を生成するように、デジタル入出力装置942に命令する。段階1144の後、前記方法はメインアプリケーション1000に戻る。
図1及び図10を参照して、第6アプリケーション1012を説明する。
段階1160において、第6アプリケーション1012は、プリチャージ低電圧スイッチ272を開放動作状態に切り換えるために第11命令値(例えば、図18に示された「14」)をハードウェア抽象化レイヤ1018に送信する。第11命令値は第9命令値から最小4ハミング距離を有する。段階1160の後、前記方法は段階1162に進む。
段階1162において、ハードウェア抽象化レイヤ1018は、第9命令値が第11命令値と同じであるか否かを判断する。段階1162の値が「はい」であれば、前記方法は段階1164に進む。そうでなければ、前記方法はメインアプリケーション1000に戻る。
段階1164において、ハードウェア抽象化レイヤ1018は、プリチャージ低電圧スイッチ272で受信されてプリチャージ低電圧スイッチ272を開放動作状態に切り換える第6制御信号を生成するように、デジタル入出力装置942に命令する。段階1164の後、前記方法はメインアプリケーション1000に戻る。
図1及び図11を参照して、第7アプリケーション1014を説明する。
段階1180において、マイクロコントローラ800は、ハイサイド集積回路450の出力ピン504とローサイド集積回路452の出力ピン604のうち少なくとも1つから、複数の第1FETスイッチ506と複数の第2FETスイッチ606のうち少なくとも1つが開放動作状態に切り換えられたことを示す第1確認信号を受信する。段階1180の後、前記方法は段階1182に進む。
段階1182において、ハードウェア抽象化レイヤ1018は、複数の第1FETスイッチ506と複数の第2FETスイッチ606のうち少なくとも1つが開放動作状態に切り換えられたことを示す第1確認信号に基づいて、第7アプリケーション1014に第1確認値(図19に示された「EB」)を送信する。段階1182の後、前記方法はメインアプリケーション1000に戻る。
図1及び図12を参照して、第8アプリケーション1016を説明する。
段階1200において、マイクロコントローラ800は、ハイサイド集積回路450の出力ピン504とローサイド集積回路452の出力ピン604のうち少なくとも1つから、複数の第1FETスイッチ506と複数の第2FETスイッチ606のうち少なくとも1つが開放動作状態に切り換えられたことを示す第2確認信号を受信する。段階1200の後、前記方法は段階1202に進む。
段階1202において、ハードウェア抽象化レイヤ1018は、複数の第1FETスイッチ506と複数の第2FETスイッチ606のうち少なくとも1つが開放動作状態に切り換えられたことを示す第2確認信号に基づいて、第8アプリケーション1016に第2確認値(図20に示された「DE」)を送信する。段階1202の後、前記方法はメインアプリケーション1000に戻る。
前記DC−DC電圧コンバータをバック動作モードから安全動作モードに切り換える制御システムは、他の制御システムより実質的な長所を提供する。特に、制御システムは、マイクロコントローラがDC−DC電圧コンバータのDC−DC電圧コンバータ制御回路内で要請されたスイッチを開放動作状態に切り換える制御信号を生成するように命令するため、別個の命令値をハードウェア抽象化レイヤに送信する多様且つ独立したアプリケーションを用いる。別個の命令値は、ハードウェア抽象化レイヤによって正確な命令値が確実に受信されるように、他の命令値から最小4ハミング距離を有する。その結果、本発明による制御システムは、より安定的にDC−DC電圧コンバータを安全動作モードに切り換えることができる。
以上、本発明を単に制限された数の実施例に基づいて説明したが、本発明はこのような実施例に限定されるものではなく、本発明の精神と範囲から逸脱しない範囲内の変形例、代案例、代替例または等価例が可能であることは言うまでのない。また、多様な実施例が上述されたが、本発明はこれら実施例の一部のみを含むこともあり得ることを理解せねばならない。したがって、本発明の特許請求の範囲は上述した説明によって制限されるものではない。
上述された本発明の実施例は装置及び方法のみを通じて具現されるものではなく、本発明の実施例の構成に対応する機能を実現するプログラムまたはそのプログラムが記録された記録媒体を通じても具現でき、このような具現は上述された実施例の記載から本発明が属する技術分野の専門家であれば容易に具現できるであろう。

Claims (11)

  1. 内部に複数の第1FETスイッチを有するハイサイド集積回路と内部に複数の第2FETスイッチを有するローサイド集積回路を有するDC−DC電圧コンバータ制御回路を備えるDC−DC電圧コンバータをバック動作モードから安全動作モードに切り換える制御システムであって、
    デジタル入出力装置、第1アプリケーション、第2アプリケーション及びハードウェア抽象化レイヤを有するマイクロコントローラを含み、
    前記第1アプリケーションは、前記複数の第1FETスイッチと前記複数の第2FETスイッチを開放動作状態に切り換えるため、第1命令値を前記ハードウェア抽象化レイヤに送信し、
    前記ハードウェア抽象化レイヤは、前記第1命令値が第2命令値と同じであれば、前記ハイサイド集積回路の第1入力ピンと前記ローサイド集積回路の第1入力ピンで受信されて前記複数の第1FETスイッチと前記複数の第2FETスイッチを前記開放動作状態に切り換える第1制御信号を生成するように、前記デジタル入出力装置に命令し、
    前記第2アプリケーションは、前記複数の第1FETスイッチと前記複数の第2FETスイッチを前記開放動作状態に切り換えるため、第3命令値を前記ハードウェア抽象化レイヤに送信し、
    前記第3命令値は、前記第1命令値から最小4ハミング距離を有し、
    前記ハードウェア抽象化レイヤは、前記第3命令値が第4命令値と同じであれば、前記ハイサイド集積回路の第2入力ピンと前記ローサイド集積回路の第2入力ピンで受信されて前記複数の第1FETスイッチと前記複数の第2FETスイッチを前記開放動作状態に切り換える第2制御信号を生成するように、前記デジタル入出力装置に命令する、制御システム。
  2. 前記マイクロコントローラは、ハイサイド集積回路の出力ピンとローサイド集積回路の出力ピンのうち少なくとも1つから第1確認信号を受信し、
    前記ハードウェア抽象化レイヤは、前記複数の第1FETスイッチと前記複数の第2FETスイッチのうち少なくとも1つが前記開放動作状態に切り換えられたことを示す前記第1確認信号に基づいて、第3アプリケーションに第5命令値を送信する、請求項1に記載の制御システム。
  3. 前記マイクロコントローラは、ハイサイド集積回路の出力ピンとローサイド集積回路の出力ピンのうち少なくとも1つから第2確認信号を受信し、
    前記ハードウェア抽象化レイヤは、前記複数の第1FETスイッチと前記複数の第2FETスイッチのうち少なくとも1つが前記開放動作状態に切り換えられたことを示す前記第2確認信号に基づいて、第4アプリケーションに第6命令値を送信する、請求項2に記載の制御システム。
  4. 前記DC−DC電圧コンバータは、高電圧スイッチ、プリチャージ高電圧スイッチ、低電圧スイッチ及びプリチャージ低電圧スイッチをさらに含み、
    前記DC−DC電圧コンバータは、前記第1アプリケーションが前記第1命令値を送信する前に、前記高電圧スイッチが閉鎖動作状態であり、前記プリチャージ高電圧スイッチが閉鎖動作状態であり、前記低電圧スイッチが閉鎖動作状態であり、前記プリチャージ低電圧スイッチが閉鎖動作状態である前記バック動作モードにある、請求項1から3のいずれか一項に記載の制御システム。
  5. 前記高電圧スイッチは、両方向MOSFETスイッチであり、
    前記低電圧スイッチは、両方向MOSFETスイッチである、請求項4に記載の制御システム。
  6. 高電圧スイッチ及びプリチャージ高電圧スイッチを有するDC−DC電圧コンバータをバック動作モードから安全動作モードに切り換える制御システムであって、
    デジタル入出力装置、第1アプリケーション、第2アプリケーション及びハードウェア抽象化レイヤを有するマイクロコントローラを含み、
    前記第1アプリケーションは、前記高電圧スイッチを開放動作状態に切り換えるため、第1命令値を前記ハードウェア抽象化レイヤに送信し、
    前記ハードウェア抽象化レイヤは、前記第1命令値が第2命令値と同じであれば、前記高電圧スイッチで受信されて前記高電圧スイッチを前記開放動作状態に切り換える第1制御信号を生成するように、前記デジタル入出力装置に命令し、
    前記第2アプリケーションは、前記プリチャージ高電圧スイッチを前記開放動作状態に切り換えるため、第3命令値を前記ハードウェア抽象化レイヤに送信し、
    前記第3命令値は、前記第1命令値から最小4ハミング距離を有し、
    前記ハードウェア抽象化レイヤは、前記第3命令値が第4命令値と同じであれば、前記プリチャージ高電圧スイッチで受信されて前記プリチャージ高電圧スイッチを前記開放動作状態に切り換える第2制御信号を生成するように、前記デジタル入出力装置に命令する、制御システム。
  7. 前記DC−DC電圧コンバータは、低電圧スイッチ及びプリチャージ低電圧スイッチをさらに含み、
    前記DC−DC電圧コンバータは、前記第1アプリケーションが前記第1命令値を送信する前に、前記高電圧スイッチが閉鎖動作状態であり、前記プリチャージ高電圧スイッチが閉鎖動作状態であり、前記低電圧スイッチが閉鎖動作状態であり、前記プリチャージ低電圧スイッチが閉鎖動作状態である前記バック動作モードにある、請求項6に記載の制御システム。
  8. 前記高電圧スイッチは、両方向MOSFETスイッチであり、
    前記プリチャージ高電圧スイッチは、両方向MOSFETスイッチである、請求項6または7に記載の制御システム。
  9. 低電圧スイッチ及びプリチャージ低電圧スイッチを有するDC−DC電圧コンバータをバック動作モードから安全動作モードに切り換える制御システムであって、
    デジタル入出力装置、第1アプリケーション、第2アプリケーション及びハードウェア抽象化レイヤを有するマイクロコントローラを含み、
    前記第1アプリケーションは、前記低電圧スイッチを開放動作状態に切り換えるため、第1命令値を前記ハードウェア抽象化レイヤに送信し、
    前記ハードウェア抽象化レイヤは、前記第1命令値が第2命令値と同じであれば、前記低電圧スイッチで受信されて前記低電圧スイッチを前記開放動作状態に切り換える第1制御信号を生成するように、前記デジタル入出力装置に命令し、
    前記第2アプリケーションは、前記プリチャージ低電圧スイッチを前記開放動作状態に切り換えるため、第3命令値を前記ハードウェア抽象化レイヤに送信し、
    前記第3命令値は、前記第1命令値から最小4ハミング距離を有し、
    前記ハードウェア抽象化レイヤは、前記第3命令値が第4命令値と同じであれば、前記プリチャージ低電圧スイッチで受信されて前記プリチャージ低電圧スイッチを前記開放動作状態に切り換える第2制御信号を生成するように、前記デジタル入出力装置に命令する、制御システム。
  10. 前記DC−DC電圧コンバータは、高電圧スイッチ及びプリチャージ高電圧スイッチをさらに含み、
    前記DC−DC電圧コンバータは、前記第1アプリケーションが前記第1命令値を送信する前に、前記高電圧スイッチが閉鎖動作状態であり、前記プリチャージ高電圧スイッチが閉鎖動作状態であり、前記低電圧スイッチが閉鎖動作状態であり、前記プリチャージ低電圧スイッチが閉鎖動作状態である前記バック動作モードにある、請求項9に記載の制御システム。
  11. 前記低電圧スイッチは、両方向MOSFETスイッチであり、
    前記プリチャージ低電圧スイッチは、両方向MOSFETスイッチである、請求項9または10に記載の制御システム。
JP2019520785A 2017-07-31 2018-07-27 Dc−dc電圧コンバータをバック動作モードから安全動作モードに切り換える制御システム Active JP6746864B2 (ja)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US201762538840P 2017-07-31 2017-07-31
US62/538,840 2017-07-31
US15/982,072 US10153698B1 (en) 2017-07-31 2018-05-17 Control system for transitioning a DC-DC voltage converter from a buck operational mode to a safe operational mode
US15/982,072 2018-05-17
PCT/KR2018/008573 WO2019027191A1 (ko) 2017-07-31 2018-07-27 Dc-dc 전압 컨버터를 벅 동작 모드에서 안전 동작 모드로 전환하는 제어 시스템

Publications (2)

Publication Number Publication Date
JP2019534664A true JP2019534664A (ja) 2019-11-28
JP6746864B2 JP6746864B2 (ja) 2020-08-26

Family

ID=64502736

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019520785A Active JP6746864B2 (ja) 2017-07-31 2018-07-27 Dc−dc電圧コンバータをバック動作モードから安全動作モードに切り換える制御システム

Country Status (7)

Country Link
US (1) US10153698B1 (ja)
EP (1) EP3509201B1 (ja)
JP (1) JP6746864B2 (ja)
KR (1) KR102172520B1 (ja)
CN (1) CN109792203B (ja)
PL (1) PL3509201T3 (ja)
WO (1) WO2019027191A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11976697B2 (en) 2021-06-02 2024-05-07 Dana Belgium N.V. System and method for controlling a disconnect clutch for a vehicle driveline

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100013453A1 (en) * 2008-07-15 2010-01-21 Samsung Electronics Co., Ltd. Dc/dc converter, computer system having the same, and dc/dc conversion method
JP2010220196A (ja) * 2009-02-20 2010-09-30 Rohm Co Ltd スイッチング出力回路およびスイッチング電源
JP2014504139A (ja) * 2011-09-23 2014-02-13 エルジー・ケム・リミテッド バッテリー充電システムおよびそれを用いた充電方法
EP2789084A1 (en) * 2011-12-09 2014-10-15 Telefonaktiebolaget LM Ericsson (Publ) Method for operating a power converter module and a device therefor
JP2015233379A (ja) * 2014-06-10 2015-12-24 矢崎総業株式会社 スイッチング電源
JP2018110476A (ja) * 2016-12-28 2018-07-12 Vaio株式会社 モバイル機器及び制御回路

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6137280A (en) * 1999-01-22 2000-10-24 Science Applications International Corporation Universal power manager with variable buck/boost converter
US8164932B2 (en) * 2009-02-12 2012-04-24 Apple Inc. Power converter with automatic mode switching
US8278898B2 (en) * 2009-02-13 2012-10-02 Texas Instruments Incorporated Auto-tuning power supply
JP5632191B2 (ja) * 2010-04-28 2014-11-26 パナソニック株式会社 双方向dc/dcコンバータ
DE102012101516A1 (de) * 2012-02-24 2013-08-29 Pilz Gmbh & Co. Kg Sicherheitsschaltvorrichtung mit Netzteil
US9030054B2 (en) * 2012-03-27 2015-05-12 Raytheon Company Adaptive gate drive control method and circuit for composite power switch
EP2899556B1 (en) * 2012-09-10 2018-12-19 Renesas Electronics Corporation Semiconductor device and battery voltage monitoring device
CN103855749B (zh) * 2012-12-07 2016-11-09 天津中兴智联科技有限公司 一种实现嵌入式设备多电池供电的方法及系统
FR3005222B1 (fr) * 2013-04-26 2015-04-17 Valeo Sys Controle Moteur Sas Architecture electronique pour la commande d'un convertisseur de tension continu/alternatif
US10585772B2 (en) * 2013-06-04 2020-03-10 Trw Automotive U.S. Llc Power supply diagnostic strategy
US9584018B2 (en) * 2014-05-08 2017-02-28 Rohm Powervation Limited Method for controlling a DC-to-DC converter
US10193393B2 (en) * 2014-09-16 2019-01-29 Koninklijke Philips N.V. Wireless inductive power transfer
FR3030766B1 (fr) * 2014-12-22 2016-12-23 Continental Automotive France Procede pour etablir un diagnostic fonctionnel d'un convertisseur de tension continu-continu statique devolteur
US20160301249A1 (en) * 2015-04-09 2016-10-13 Infineon Technologies Ag Communicating between galvanically isolated devices using waveguides
US9941790B2 (en) * 2015-08-19 2018-04-10 Qualcomm Incorporated DC-to-DC converter
US9935552B2 (en) * 2016-08-18 2018-04-03 Lg Chem, Ltd. Control system for controlling operational modes of a DC-DC voltage converter

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100013453A1 (en) * 2008-07-15 2010-01-21 Samsung Electronics Co., Ltd. Dc/dc converter, computer system having the same, and dc/dc conversion method
JP2010220196A (ja) * 2009-02-20 2010-09-30 Rohm Co Ltd スイッチング出力回路およびスイッチング電源
JP2014504139A (ja) * 2011-09-23 2014-02-13 エルジー・ケム・リミテッド バッテリー充電システムおよびそれを用いた充電方法
EP2789084A1 (en) * 2011-12-09 2014-10-15 Telefonaktiebolaget LM Ericsson (Publ) Method for operating a power converter module and a device therefor
JP2015233379A (ja) * 2014-06-10 2015-12-24 矢崎総業株式会社 スイッチング電源
JP2018110476A (ja) * 2016-12-28 2018-07-12 Vaio株式会社 モバイル機器及び制御回路

Also Published As

Publication number Publication date
JP6746864B2 (ja) 2020-08-26
EP3509201A1 (en) 2019-07-10
PL3509201T3 (pl) 2022-01-17
WO2019027191A1 (ko) 2019-02-07
CN109792203A (zh) 2019-05-21
EP3509201B1 (en) 2021-11-03
US10153698B1 (en) 2018-12-11
KR20190020150A (ko) 2019-02-27
KR102172520B1 (ko) 2020-10-30
EP3509201A4 (en) 2019-10-16
CN109792203B (zh) 2020-11-20

Similar Documents

Publication Publication Date Title
JP6394421B2 (ja) 半導体スイッチング素子の駆動装置
JP6973739B2 (ja) Dc−dc電圧コンバータをブースト動作モードから安全動作モードに切り換える制御システム
JP6495554B2 (ja) Dc−dc電圧コンバータをバック動作モードから安全動作モードに切り換える制御システム
JP2015019515A (ja) 放電制御装置
JP6626217B2 (ja) Dc−dc電圧コンバータの診断システム
US20100315048A1 (en) Voltage step-up circuit
JP6552747B2 (ja) Dc−dc電圧コンバータの動作モードを制御するための制御システム
JP2019534664A (ja) Dc−dc電圧コンバータをバック動作モードから安全動作モードに切り換える制御システム
WO2015118636A1 (ja) 放電装置
JP2015122943A (ja) 電力変換装置
JP2007159234A (ja) 無停電電源装置
JP6673801B2 (ja) ゲートパルス発生回路およびパルス電源装置
CN109417350B (zh) 控制dc-dc电压转换器电路的控制系统
JP7426397B2 (ja) パワー半導体スイッチの駆動回路に電圧を供給するためのパワーエレクトロニクスデバイスおよび方法
JP6651952B2 (ja) 放電制御装置
JP2010022093A (ja) ハーフブリッジ回路
CN110880398B (zh) 用于低压和中压应用的线圈致动器
US20220376553A1 (en) Power receiving device and wireless power transfer system
JP2004336923A (ja) 電源装置
JP2019176654A (ja) スナバ回路、電力変換システム
CN111837331A (zh) 包括用于连接到电压源的定子逆变器和辅助电气装置的电气系统
JP2020065410A (ja) 充放電制御装置および充放電制御装置付き蓄電池
JPH08331859A (ja) 電力変換器
JP2015149802A (ja) バッテリ制御装置及び制御方法
JP2014082889A (ja) スナバ回路および電力変換回路

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190520

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200701

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200707

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200714

R150 Certificate of patent or registration of utility model

Ref document number: 6746864

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250