JP2019504357A - チップの集積化を用いるフォトニック集積回路 - Google Patents

チップの集積化を用いるフォトニック集積回路 Download PDF

Info

Publication number
JP2019504357A
JP2019504357A JP2018534690A JP2018534690A JP2019504357A JP 2019504357 A JP2019504357 A JP 2019504357A JP 2018534690 A JP2018534690 A JP 2018534690A JP 2018534690 A JP2018534690 A JP 2018534690A JP 2019504357 A JP2019504357 A JP 2019504357A
Authority
JP
Japan
Prior art keywords
optical
optical waveguides
photonic chip
photonic
chip
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2018534690A
Other languages
English (en)
Inventor
チャン,チア−ミン
ヴァリコート,ギレム デ
ヴァリコート,ギレム デ
Original Assignee
アルカテル−ルーセント ユーエスエー インコーポレーテッド
アルカテル−ルーセント ユーエスエー インコーポレーテッド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by アルカテル−ルーセント ユーエスエー インコーポレーテッド, アルカテル−ルーセント ユーエスエー インコーポレーテッド filed Critical アルカテル−ルーセント ユーエスエー インコーポレーテッド
Publication of JP2019504357A publication Critical patent/JP2019504357A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/80Optical aspects relating to the use of optical transmission for specific applications, not provided for in groups H04B10/03 - H04B10/70, e.g. optical power feeding or optical transmission through water
    • H04B10/801Optical aspects relating to the use of optical transmission for specific applications, not provided for in groups H04B10/03 - H04B10/70, e.g. optical power feeding or optical transmission through water using optical interconnects, e.g. light coupled isolators, circuit board interconnections
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/122Basic optical elements, e.g. light-guiding paths
    • G02B6/125Bends, branchings or intersections
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/06Arrangements for controlling the laser output parameters, e.g. by operating on the active medium
    • H01S5/062Arrangements for controlling the laser output parameters, e.g. by operating on the active medium by varying the potential of the electrodes
    • H01S5/0625Arrangements for controlling the laser output parameters, e.g. by operating on the active medium by varying the potential of the electrodes in multi-section lasers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/18Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities
    • H01S5/183Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL]
    • H01S5/18361Structure of the reflectors, e.g. hybrid mirrors
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/12004Combinations of two or more optical elements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0005Switch and router aspects
    • H04Q2011/0037Operation
    • H04Q2011/0041Optical control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0005Switch and router aspects
    • H04Q2011/0052Interconnection of switches
    • H04Q2011/0058Crossbar; Matrix

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Optical Integrated Circuits (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)
  • Semiconductor Lasers (AREA)

Abstract

同じフォトニック集積回路(PIC)パッケージに集積されて所望の電気光学的機能を実現する必要がある異なるフォトニックチップの数を減少させるように、相互に接合され光学的に結合された第1のフォトニックチップ及び第2のフォトニックチップを有するPICを開示する。実施形態の例では、第1のフォトニックチップは、レーザ及び光増幅器などの能動光学部品を含み、III−V族半導体技術を用いて製造され得る。第2のフォトニックチップは、変調器、光検出器及び受動光学部品などの追加の光学部品を含み、CMOS技術を用いて製造され得る。第2のフォトニックチップはまた、第1のフォトニックチップの能動光学部品と第2のフォトニックチップの追加の光学部品との間で種々の光信号を適切に(再度)方向付けて所望の電気光学的機能を実現するように構成された1以上の2×2光カプラを含み得る。【選択図】 図1

Description

本開示は、光通信機器、より具体的ではあるが排他的にではなく、フォトニック集積回路に関する。
本章では、本開示についてより深い理解を容易にするのに役立つような態様を紹介する。したがって、このセクションの記述は、この観点で読まれ、何が従来技術のものであり何が従来技術のものでないかについて認めるように理解されるものではない。
フォトニック集積回路(PIC)は、電気通信、設備及び信号処理の分野において種々のアプリケーションに用いられる。PICは、通常、光学スイッチ、カプラ、ルータ、スプリッタ、マルチプレクサ/デマルチプレクサ、フィルタ、変調器、位相シフタ、レーザ、増幅器、波長変換器、光−電気(O/E)及び電気−光(E/O)信号変換器などのような、種々の回路部品を実施及び/又は相互接続するのに光導波路を使用する。PICは、一般的に、例えば、個別の光学部品に基づく対応する光学システムと比較して、より小型の、よりコスト効率の高い、及び/又はより良好な実効性を有する光学システムの生成を可能とする。少なくともこの理由から、PICの製造に使用するための種々のタイプの集積化が、現在積極的に開発されている。
同じPICパッケージに集積されて所望の電気光学的機能を実現する必要がある異なるフォトニックチップの数を効果的に減少するように、相互に接合され光学的に結合された第1のフォトニックチップ及び第2のフォトニックチップを有するPICの種々の実施形態がここに開示される。実施形態の例では、第1のフォトニックチップは、レーザ及び光増幅器などの能動光学部品を含み、III−V族半導体技術を用いて製造され得る。第2のフォトニックチップは、変調器、光検出器及び受動光学部品などの追加の光学部品を含み、CMOS技術を用いて製造され得る。第2のフォトニックチップはまた、第1のフォトニックチップの能動光学部品と第2のフォトニックチップの追加の光学部品との間で種々の光信号を適切に(再度)方向付けて所望の電気光学的機能を実現するように構成された1以上の2×2光カプラを含み得る。
実施形態によると、PICは、第1の複数の光導波路を有する第1のフォトニックチップ、並びに第2の複数の光導波路及び第3の複数の光導波路を有する第2のフォトニックチップを備え、第2のフォトニックチップは、第1のフォトニックチップに接合されて第2の複数のうちの2以上の光導波路を第1の複数のそれぞれの光導波路に光学的に結合する。第2のフォトニックチップは、第2の複数の第1及び第2の光導波路と第3の複数の第1及び第2の光導波路との間で接続された第1の2×2光カプラを備え、第1の2×2光カプラは、第3の複数の第1の光導波路から受信した光を第1及び第2の部分に分波し、(i)第1の部分を第2の複数の第1の光導波路に及び(ii)第2の部分を第2の複数の第2の光導波路に結合し、光ビームの光が実質的に第3の複数の第1の光導波路に結合されないように、第2の複数の第1及び第2の光導波路から受信した光ビームを第3の複数の第2の光導波路に結合するように構成される。
開示する種々の実施形態の他の態様、構成及び効果は、例として、以下の詳細な説明及び添付の図面からより完全に明らかとなる。
実施形態によるフォトニック集積回路(PIC)のブロック図を示す図である。 実施形態による図1のPICにおいて使用される光カプラの動作を示す図である。 実施形態による図1のPICにおいて使用される光カプラの動作を示す別の図である。 実施形態による図1のPICにおいて使用され得るフォトニックチップの概略上面図を示す図である。 実施形態による図1のPICにおいて使用され得る導波路構造体の概略上面図を示す図である。
フォトニック回路の集積化を介して異なる光学部品を効率よく組み合わせる能力は、産業用フォトニクスの分野において技術を可能とするキーの1つとして広く認識されている。また、所望のすべての電気光学的機能を実現するのに、フォトニックの集積化に単一の材料プラットフォームを用いることが常には実行可能でないことが知られている。例えば、III−V族半導体化合物及び合金は、レーザ及び光増幅器の実施に対して周知の効果をもたらす。しかしながら、III−V族半導体化合物及び合金は、コアとクラッド材料の間にある程度の屈折率コントラストしか与えず、電気通信アプリケーションで用いられるスペクトル帯において比較的高い光伝搬損失に苛まされることがある。その一方で、シリコンによる材料プラットフォームは、同じチップにフォトニック及び超小型電子の回路素子を集積可能な低損失の小型回路をもたらす。対応する製造プロセスは、相補型金属酸化物半導体(CMOS)技術と互換性を有し、それらは正確及び十分に発達しているため、堅調な生産及び比較的低い製造コストをもたらす。ただし、シリコンによる材料プラットフォームは、電気通信アプリケーションに適した実際の光源を未だ与えていない。
これら及び特定の他の問題は、ここで開示するフォトニック集積回路(PIC)の種々の実施形態を用いて対処することができる。実施形態の例では、PICは、単一の集積回路(IC)パッケージにおいてともに接合された少なくとも2つのフォトニックチップを備える。2つのフォトニックチップのうち第1のものは、レーザ及び光増幅器などの能動光学部品を含み、例えば、III−V族半導体技術を用いて製造され得る。2つのフォトニックチップのうち第2のものは、追加の光学部品を含み、例えば、CMOS技術を用いて製造され得る。PICに用いられるチップの集積化及びチップ−チップ光結合は、具体的には、同じICパッケージに集積されて所望の電気光学的機能を実現する必要がある異なるチップの数を減少又は最小化するように設計及び構成され、それによって、必要とされる光学的アライメントの技術的複雑性及び/又は結果として生成されるICパッケージの最終コストを効果的に低下させる。
ここで用いる用語「能動部品」とは、新たな光を生成し及び/又は光信号のパワーを増加させることができるフォトニック回路の部品又は素子のことをいう。能動光学部品の例は、それに限定することなく、半導体レーザ、E/O変換器及び半導体光増幅器(SOA)を含む。用語「受動部品」とは、より一般的には、光信号がそこでいくらか光学的損失を受けるようにして、光パワーを増加させることなく光信号を転送、操作及び/又は処理するように設計されたフォトニック回路の部品又は素子のことをいう。受動光学部品の例は、それに限定することなく、光学スイッチ、カプラ、スプリッタ、フィルタ及び位相シフタを含む。
図1は、実施形態によるPIC100のブロック図を示す。PIC100は、チップ−チップインタフェース構造体110を用いて相互に光学的及び構造的に結合されたフォトニックチップ102及び106を含む。実施形態の例では、PIC100はICパッケージの一部である(図1に明示せず)。
フォトニックチップ102は、基板104を用いて製造される。フォトニックチップ106は、基板108を用いて製造される。実施形態の例では、基板104及び108は異なる化学的組成を有する。例えば、基板104は、III−V族半導体材料又は合金を含み得る。基板108は、シリコン、シリコンオンインシュレータ(SOI)又はシリカを含み得る。基板104及び108に対する他の組合せの基板材料も、種々の代替的実施形態において可能である。
フォトニックチップ102は、複数の光学ゲイン素子120〜120及び対応する複数の光導波路124〜124を備え、ここでkは1より大きい整数である。光学ゲイン素子120は、一般的に、能動光学部品又は光学ゲイン媒体として動作するように構成された半導体材料のピース(例えば、略矩形状のブロック)を含む。実施形態の例では、光学ゲイン素子120に用いられる半導体材料は、種々にドープされたIII−V族半導体及び/又は合金を含み得る。光学ゲイン素子120に用いられる半導体材料は、基板104の半導体材料とは異なっていてもよい。光学ゲイン素子120は、適切に電気的にバイアス印加又はポンピングされた場合には、自然放出、誘導放出及び/又は他の放出メカニズムによって光を発生することができる。光学ゲイン素子120〜120に電気バイアスを印加するのに使用可能な電気接続及び電極は、図示を明確にするため図1には明示しない。そのような電気接続及び電極の構成及び設計は、関連文献において適宜まとめられており当業者には公知である。
フォトニックチップ102のファセット116は、高反射性材料、例えば、金属によって被覆されてそこにミラー112を形成する。動作において、ミラー112は、光学ゲイン素子120〜120から光を受信し、受信した光を光学ゲイン素子に向かって反射して戻す。図示する実施形態では、ミラー112は、ミラーと光学ゲイン素子の間で光を誘導する光導波路118〜118を用いて、光学ゲイン素子120−120に光学的に結合される。代替的実施形態では、光導波路118〜118は省略されることがあり、ミラー112は光学ゲイン素子120〜120の対応する端部ファセットに直接隣接するように置かれてもよい。
ある実施形態では、フォトニックチップ102は、関連技術において公知の以下の構成、(i)多重量子井戸(MQW)光学ゲイン媒体、(ii)埋込型へテロ構造デバイス配置、(iii)チップ−チップインタフェース構造体110の付近又はそこにおける光モードエキスパンダ及び/又はスポットサイズ変換器、(iv)残留ファセット反射率を低下させる傾斜ファセット及びコーティング、(v)比較的高い注入電流に対して構成された電極、及び(vi)精密開裂性、のうちの1以上を有し得る。他のある実施形態では、バルクゲイン媒体及びリッジ導波路構造体も用いられ得る。フォトニックチップ102を実現するのに使用可能なフォトニックチップの例は、例えば、(i)米国特許出願公開第2004/0100689号、(ii)2008年6月11〜13日にオランダのアイントホーフェンで開催された第14回集積光学についての欧州会議(ECIO)の会報pp.29〜32に出版された表題「Hybrid Integration for Advanced Photonic Devices」 のA.Poustieによる論文、(iii)2011年1月6日にIEEE Journal of Lightwave Technologyのpp.554〜570に出版された表題「High−Performance InP−Based Photonic ICs−A Tutorial」のL.A.Coldrenらによる論文において開示され、これらすべてがその全体においてここに参照として取り込まれる。
フォトニックチップ108は複数のフォトニック回路140〜140を備え、ここでmは1より大きい正の整数である。実施形態の例では、m≠kである。ただし、m=kである実施形態も可能である。ある実施形態では、各フォトニック回路140は、他の任意のフォトニック回路140とは機能的及び/又は構造的に異なる場合もある。ある実施形態では、フォトニック回路140〜140のサブセットは、名目上相互に一致するフォトニック回路140を含み得る。フォトニック回路140のある実施形態の例を、図3を参照して以下でより詳細に説明する。
フォトニック回路140は、光導波路132を通じて光を受信して光導波路132及び142の各々を通じて光を出力するように構成される。光導波路142は、フォトニックチップ106のそれぞれの出力ポートに接続される。フォトニック回路140は、光導波路132を通じて光を受信して光導波路132及び142の各々を通じて光を出力するように構成される。光導波路142は、フォトニックチップ106のそれぞれの出力ポートに接続される。フォトニック回路140は、光導波路132を通じて光を受信して光導波路142を通じて光を出力するように構成され、ここでjは正の整数である。光導波路142は、フォトニックチップ106のそれぞれの出力ポートに接続される。ある実施形態では、j=2m−1である。ある実施形態では、いくつかの光導波路142〜142は、なくてもよいし、又は任意の光を出力するように構成されなくてもよい。
フォトニックチップ108は複数の2×2光カプラ130〜130をさらに備え、ここでnは正の整数である。実施形態の例では、n≠k及びn≠mである。ある実施形態では、n=m−1である。動作において、光カプラ130は、対応する対の光導波路128とそれに接続された対応する対の光導波路132との間で光を方向付ける。ある実施形態では、光カプラ130〜130の各々は、例えば、図3を参照して以下に説明するように、マルチモードインタフェース(MMI)カプラを用いて実施され得る。
光カプラ130は、それに接続された光導波路128、128、132及び132を有する。動作において、光カプラ130は、光導波路132を通じてフォトニック回路140から光を受信し、この光を光導波路128及び128の双方に結合してチップ−チップインタフェース構造体110を通じてフォトニックチップ102にさらに結合する。光カプラ130はまた、チップ−チップインタフェース構造体110及び光導波路128/128を通じてフォトニックチップ102から戻る光を受信し、この光を光導波路132に結合してフォトニック回路140にさらに結合する。なお、光カプラ130は、図1の対応する矢印で示すように、(i)光導波路132及び132の各々における単方向性光伝搬並びに(ii)光導波路128及び128の各々における双方向性光伝搬の使用を可能とする。光カプラ130のこの構成のより詳細な説明を、図2A〜2Bを参照して以下に示す。光カプラ130の回路構造の例は、光導波路132及び132の各々における単方向性光伝搬並びに光導波路128及び128の各々における双方向性光伝搬を可能とする構成可能な内部位相シフタの適切な構成を含み、図3に示され、その図面を参照して以下でより詳細に説明される。
光カプラ130は、それに接続された光導波路128j−1、128、132j−1及び132を有する。動作において、光カプラ130は、光導波路132j−1を通じてフォトニック回路140m−1(図1に明示せず)から光を受信し、この光を光導波路128j−1及び128の双方に結合してチップ−チップインタフェース構造体110を通じてフォトニックチップ102にさらに結合する。さらに、光カプラ130は、チップ−チップインタフェース構造体110及び光導波路128j−1/128を通じてフォトニックチップ102から戻る光を受信し、この光を光導波路132に結合してフォトニック回路140にさらに結合する。光カプラ130と同様に、光カプラ130は、図1の対応する矢印で示すように、及び(i)光導波路132j−1及び132の各々における単方向性光伝搬並びに(ii)光導波路128j−1及び128の各々における双方向性光伝搬の使用を可能とする。
チップ−チップインタフェース構造体110は、図1に示すように、フォトニックチップ102の光導波路124及びフォトニックチップ106の対応する光導波路128を光学的に結合するように構成される。より具体的には、チップ−チップインタフェース構造体110は、光導波路124〜124及び光導波路128〜128をそれぞれ相互に光学的に結合するように構成される。チップ−チップインタフェース構造体110はさらに、(i)光導波路124k−1及び128j−1並びに(ii)光導波路124及び128を相互に結合するように構成される。
実施形態の例では、リソグラフ処理が、フォトニックチップ102及び106に光導波路124及び128をそれぞれ製造するのに用いられ得る。対応するリソグラフマスクは、フォトニックチップ102の光導波路124の間のピッチ及びフォトニックチップ106の光導波路128の間のピッチが名目上一致するように設計可能である。この構成によって、効果的にチップ−チップインタフェース構造体110が対応の光導波路124と光導波路128の間に比較的低い挿入損失を有することが可能となる。それはまた、相互に接合するためにフォトニックチップ102及び106を適切に光学的に整列させる処理を大幅に簡略化し、そして、対応するICパッケージにおいてパッケージングする。
ある実施形態では、チップ−チップインタフェース構造体110は、フォトニックチップ102及び106を相互にフリップ−チップ接合するために設計及び構成され得る。代替的なある実施形態では、チップ−チップインタフェース構造体110は、フォトニックチップ102及び106を相互にエッジ−エッジ接合するために設計及び構成可能である。ある実施形態では、チップ−チップインタフェース構造体110は、フォトニックチップ102とフォトニックチップ106の間ですべての光信号転送を取り扱うように構成可能である。ある実施形態では、チップ−チップインタフェース構造体110はフォトニックチップ106の単一エッジ(例えば、ストレートエッジ114)に隣接するモノリシック構造体であるが、フォトニックチップ106の他のエッジはフォトニックチップ102とフォトニックチップ106の間の光信号転送に対して構成された追加的な個別のインタフェース構造体を有さない。
図2A〜2Bは、実施形態の例による光カプラ130(図1)の動作を示す。図示する目的で、光カプラ130の動作を、光カプラ130がMMIカプラを備えた実施形態を参照して以下で説明する。当業者であれば、類似した原理の動作が他の任意の適当な2×2光カプラ、例えば、3dB方向性導波路カプラで実施可能であることを理解するはずである。
図2Aは、光導波路132aが光を受信していない間に光信号202が光導波路132bに適用された場合の、光カプラ130の動作を示す。光導波路132bは、単一モード伝搬を用いて光信号202を誘導する。光カプラ130に用いられるMMIカプラの大きい方の横サイズによって、光信号202はマルチモード光信号としてそれに結合する。そして、MMIカプラにおけるマルチモード干渉によって、(i)光信号202の光パワーの約半分が光信号204として光導波路128aに結合し、及び(ii)光信号202の光パワーの約半分が光信号206として光導波路128bに結合する。MMIカプラにおいて光導波路128aと光導波路128bの終端間の距離は、光信号204及び206が約90度の相対位相シフトを有するような距離である。光導波路128a及び128bは、単一モード伝搬を用いて光信号204及び206を誘導する。
図2Bは、光信号212及び214が光導波路128a及び128bにそれぞれ適用された場合の光カプラ130の動作を示す。より具体的には、光信号212及び214は、ほぼ等しい光パワー及び約90度の相対位相シフトを有する。ただし、光信号212と光信号214の間の位相シフトは、光信号204と光信号206の間の位相シフト(図2A)に対して反対符号を有することになる。この状況では、光カプラ130のMMIカプラにおけるマルチモード干渉によって、光信号212及び214は光導波路132aの終端で強めあうように干渉し、それにより、光信号216をその光導波路に出射する。マルチモード干渉によってさらに、光信号212及び214は光導波路132bの終端で打ち消しあうように干渉し、その結果、光信号はその光導波路に出射されない。
ある実施形態では、光カプラ130は、図2A〜2Bに示す光信号202〜206と光信号212〜214の間の位相関係を与えるように構成された1以上の内部位相シフタ又は導波路の長さを含み得る。光カプラ130のそのような実施形態の例を、図3に示す。代替的なある実施形態では、図2A〜2Bに示す光信号202〜206と光信号212〜214の間の位相関係は、光カプラ130の外部の1以上の位相シフタ又は導波路の長さを用いて形成可能である。
図3は、実施形態によるフォトニックチップ106(図1)として用いられ得るフォトニックチップ300の概略上面図を示す。より具体的には、フォトニックチップ300は、k=j=3、n=1及びm=2に相当するフォトニックチップ106の実施形態を示す。フォトニックチップ300とフォトニックチップ106の対応は図3で用いられる符号によっても示され、フォトニックチップ300の素子のいくつかは図1のフォトニックチップ106の対応する素子と同じ符号を用いて表される。
フォトニックチップ300のエッジ114は、チップ−チップインタフェース構造体110とさらにフォトニックチップ102(ここでも図1参照)に接続されるように構成される。光導波路142は、フォトニックチップ300にはない。実施形態の例では、フォトニックチップ300は、WDMアプリケーションに対する波長可変光送信機を実現するのに用いられ得る。
フォトニックチップ300のフォトニック回路140は、レーザキャビティの受動部分及び出力ミラーを実現する。光導波路128によってフォトニック回路140に光学的に接続されるフォトニックチップ102の光学ゲイン素子120及びミラー112(図1参照)は、このレーザキャビティの能動部分及びバックミラーをそれぞれ提供するのに用いられる。光導波路132は、レーザキャビティ内で発生してフォトニック回路140によってそこから出力された光を光カプラ130に方向付けるように構成される。光カプラ130は、光導波路132を通じて受信した光をほぼ等しい2つの部分に分波し、これら2つの部分を、例えば、図2Aを参照して上記のように光導波路128及び128にそれぞれ適用するように構成される。そして、これらの光の部分の各々は、フォトニックチップ102の光学ゲイン素子120及び120(図1参照)のそれぞれ1つにおいて増幅され、ミラー112によって反射される光に起因して光導波路128及び128を通じて光カプラ130に戻される(ここでも図1参照)。そして、光カプラ130は、例えば、図2Bを参照して上記のように、増幅された光を光導波路132に結合するように動作する。光導波路132は、光カプラ130から受信した光をフォトニック回路140に方向付けるように構成される。図示する実施形態の例では、フォトニックチップ300のフォトニック回路140は、固定の遅延素子308を備える。固定の遅延素子308によって遅延した光は、光導波路142を用いてフォトニックチップ300から出力される。
実施形態の例では、フォトニックチップ300のフォトニック回路140は、図3で示すように、位相シフタ302、304及び304と付される2つのマイクロリング波長フィルタ、並びに相互に光学的に結合されたサニャックループミラー306を備える。フォトニックチップ300のフォトニック回路140は、図3でさらに示すように、位相シフタ302に用いられる種々の電極に電気的に接続された複数の電気コンタクトパッド322〜332、マイクロリング波長フィルタ304及び304並びにサニャックループミラー306をさらに備える。動作において、電気コンタクトパッド322〜332は、フォトニック回路140の図示する素子を適切に構成及び制御するのに用いられ得る外部で発生した電圧を受信するのに用いられる。
サニャックループミラー306の反射率は、例えば、米国特許第9059559号に記載されるように、電気コンタクトパッド330と電気コンタクトパッド332の間に印加される電圧によって制御可能であり、それはその全体においてここに参照として取り込まれる。
サニャックループミラー306は広帯域反射しかもたらさないので、マイクロリング波長フィルタ304及び304によってもたらされる狭帯域波長のフィルタリングは、対応するレーザのレージング波長を選択し、所望であればそれを整調するのにフォトニック回路140において用いられる。本技術分野では公知のように、フィルタ304及び304の各々などのマイクロリング波長フィルタは、中心波長がフィルタの自由スペクトル領域(FSR)によって相互に分離した比較的狭い通過帯域のコームを備えた送信スペクトルを有する。実施形態の例では、マイクロリング波長フィルタ304及び304は、異なるFSRを有するように設計及び構成される。マイクロリング波長フィルタ304に対応する通過帯域コームのスペクトル配列は、電気コンタクトパッド324と電気コンタクトパッド326の間に印加された制御電圧によって制御可能である。マイクロリング波長フィルタ304に対応する通過帯域コームのスペクトル配列は、電気コンタクトパッド328と電気コンタクトパッド330の間に印加された制御電圧によって同様に制御可能である。適切に選択された制御電圧を用いて、マイクロリング波長フィルタ304及び304は少なくとも1つの共通通過帯域を有するように調整可能である。当業者は、マイクロリング波長フィルタ304及び304の共通通過帯域が対応するレーザのレージング波長を決定することを理解するはずである。レージング波長は、マイクロリング波長フィルタ304及び304に印加される制御電圧を適切に変化させることによって調整可能である。レージング波長における出力光パワーは、電気コンタクトパッド322及び324を用いて位相シフタ302に印加される制御電圧を適切に調節することによって最適化(例えば、最大化)され得る。
フォトニックチップ300の光カプラ130は、図3に示すように、相互に光学的に結合された2×2MMIカプラ310及び位相シフタ312を備える。フォトニックチップ300の光カプラ130は、図3にさらに示すように、位相シフタ312に用いられる電極に電気的に接続された電気コンタクトパッド334及び336をさらに備える。光導波路128及び128に対応する光経路の間の相対位相差は、電気コンタクトパッド322及び324を用いて位相シフタ312に印加された制御電圧を変更することによって変更可能である。特に、この制御電圧は、図2A〜2Bを参照して上記の動作のモードを可能とする値に設定され得る。
図4は、実施形態によるチップ−チップインタフェース構造体110(図1)を実現するのに使用可能な導波路構造体400の概略上面図を示す。より具体的には、導波路構造体400のそれぞれのインスタンスは、光導波路124及び128の各々対応する対(ここでも図1参照)を、相互に光学的に結合するのに使用可能である。当業者は、導波路構造体400がフォトニックチップ102とフォトニックチップ106の間に比較的低い光結合損失をもたらすように設計及び構成されることを理解するはずである。
フォトニックチップ102とフォトニックチップ106の間の光の直接の(例えば、導波路構造体400を使用しない)結合は、フォトニックチップ102及び106において光導波路を実現するのに用いられる材料の屈折率の大きな差によって、比較的大きな光学的損失に苛まされることがある。例えば、ケイ素によるフォトニックチップは、通常、III−V族半導体によるフォトニックチップよりも非常に狭い光導波路を有する。図4は、フォトニックチップ106の光導波路128を示すことによるこの導波路の幅の差を、フォトニックチップ102の対応する光導波路124よりも狭くなるように示す。この導波路の幅の差によって、光導波路124及び128において誘導されるモードは大きなサイズ不整合を有することになり、それによって、導波路構造体400又はその機能的均等物を使用することなくこれらの光導波路の間の光転送の処理に大幅な光学的損失を引き起こすことになる。
実施形態の例では、導波路構造体400は、光導波路124及び128の空間的に不整合な誘導光モードを、スポット変換器領域410内で実質上空間的に整合した光モードに変換するように動作する。当業者は、変換された光モードのこの空間的整合によって、導波路構造体400が光導波路124と光導波路128の間の光転送に比較的低い光学的損失を効果的にもたらすことが可能であることを理解するはずである。
光導波路128には、中間の屈折率を有する材料製のより広いクラッディング414に埋め込まれた逆テーパ418が設けられる。逆テーパ418によって、導波路コアの幅は、逆テーパが光導波路128に対応する光モードをサポートできなくなるカットオフ幅に又はそれより狭いテーパ状となる。その結果、光導波路128に対応する光モードは、中間クラッディング414内に閉じ込められた広いモードに拡張及び変換される。
同様の光モード変換が、光導波路124によって誘導される光に対して実施される。より具体的には、光導波路124には、テーパ状部分404を有する広い中間クラッディング406に結合された逆テーパ402が設けられる。逆テーパ402によって、光導波路124に対応する光モードは、中間クラッディング406によって誘導されるより広い光モードに変換される。そして、中間クラッディング406のテーパ状部分404は、クラッディング414によって誘導される光モードのものに対応するサイズにさらに光モード拡張を引き起こす。スポット変換器領域410の幾何学的サイズ(例えば、長さ)は、変換された2つの光モードがフォトニックチップ102とフォトニックチップ106の間の効率的な光転送のためにそこでほぼ最適な空間的重なりを有するなどのように選択される。
図1〜4を参照して上記で開示された実施形態の例によると、第1の複数の光導波路(例えば、図1の124〜124)を有する第1のフォトニックチップ(例えば、図1の102)並びに第2の複数の光導波路(例えば、図1の128〜128)及び第3の複数の光導波路(例えば、図1の132〜132)を有する第2のフォトニックチップ(例えば、図1の106、図3の300)を備えた装置(例えば、図1の100)が提供され、第2のフォトニックチップは、第2の複数の2以上の光導波路を第1の複数のそれぞれの光導波路に光学的に結合するように第1のフォトニックチップに接合される。第2のフォトニックチップは、第2の複数の第1及び第2の光導波路(例えば、図1及び3の128及び128)と、第3の複数の第1及び第2の光導波路(例えば、図1及び3の132及び132)との間に接続された第1の2×2光カプラ(例えば、図1及び3の130)を備え、第1の2×2光カプラは、第3の複数の第1の光導波路から受信した光(例えば、図2Aの202)を第1及び第2の部分(例えば、図2Aの204及び206)に分波して、(i)第1の部分を第2の複数の第1の光導波路、及び(ii)第2の部分を第2の複数の第2の光導波路に結合し、(例えば、図2Bの216で示すように)光ビームの光が実質的に第3の複数の第1の光導波路に結合されなくなる(例えば、図2Bの212及び214の全光パワーの10%未満となる)ように、第2の複数の第1及び第2の光導波路から受信した光ビーム(例えば、図2Bの212及び214)を第3の複数の第2の光導波路に結合するように構成される。
上記装置のある実施形態では、第1の2×2光カプラは、第1の部分及び第2の部分がほぼ(例えば、10%以内で)等しい光パワーを有するように構成される。
任意の上記装置のある実施形態では、(例えば、図2Bの216で示すように)光ビームの実質的にすべての光パワー(例えば、図2Bの212及び214の全光パワーの50%より多く)が第3の複数の第2の光導波路に結合されるように、第1の2×2光カプラは、第2の複数の第1及び第2の導波路から受信した光ビームを第3の複数の第2の光導波路に結合するようにさらに構成される。
任意の上記装置のある実施形態では、第1の2×2光カプラは、第2の複数の第1及び第2の導波路から受信した光ビームの間の相対位相シフトを変更するように構成可能な位相シフタ(例えば、図3の312)を備える。
任意の上記装置のある実施形態では、第1の2×2光カプラは、マルチモード干渉カプラ(例えば、図3の310)をさらに備える。
任意の上記装置のある実施形態では、(例えば、図2Bで示すように)位相シフタは、光ビームが第3の複数の第2の光導波路で強めあうように干渉し、第3の複数の第1の光導波路で打ち消しあうように干渉するように構成される。
任意の上記装置のある実施形態では、第2のフォトニックチップは、第2の複数の第3及び第4の光導波路(例えば、図1の128j−1及び128)と第3の複数の第3及び第4の光導波路(例えば、図1の132j−1及び132)との間で接続された第2の2×2光カプラ(例えば、図1の130)をさらに備え、第2の2×2光カプラは、第3の複数の第3の光導波路から受信した光(例えば、図2Aの202)をそれぞれの第1及び第2の部分(例えば、図2Aの204及び206)に分波して、(i)第1のそれぞれの部分を第2の複数の第3の光導波路に、及び(ii)第2のそれぞれの部分を第2の複数の第4の光導波路に結合し、(例えば、図2Bの216で示すように)それぞれの光ビームの光が実質的に第3の複数の第3の光導波路に結合されなくなる(例えば、図2Bの212及び214の全光パワーの10%未満となる)ように、第2の複数の第3及び第4の光導波路から受信したそれぞれの光ビーム(例えば、図2Bの212及び214)を第3の複数の第4の光導波路に結合するように構成される。
任意の上記装置のある実施形態では、第2の2×2光カプラは、第1の2×2光カプラと名目上一致する。
任意の上記装置のある実施形態では、第1のフォトニックチップは、第1の複数のそれぞれの光導波路のうちの第1のもの(例えば、図1の124)によって第2の複数の第1の光導波路に光学的に結合された第1の光学ゲイン素子(例えば、図1の120)、及び第1の複数のそれぞれの光導波路のうちの第2のもの(例えば、図1の124)によって第2の複数の第2の光導波路に光学的に結合された第2の光学ゲイン素子(例えば、図1の120)を備える。
任意の上記装置のある実施形態では、第1のフォトニックチップは、第1及び第2の光学ゲイン素子における光増幅を用いて光ビームを発生するように構成される。
任意の上記装置のある実施形態では、第1のフォトニックチップは、第1及び第2の光学ゲイン素子の各々がそれぞれの反射光増幅器として動作するように構成されたミラー(例えば、図1の112)をさらに備える。
任意の上記装置のある実施形態では、第1のフォトニックチップは、第1の複数のそれぞれの光導波路のうちの第3のもの(例えば、図1の124)によって第2の複数の第3の光導波路(例えば、図1及び図3の128)に光学的に結合された第3の光学ゲイン素子(例えば、図1の120)をさらに備える。
任意の上記装置のある実施形態では、第2のフォトニックチップは、第2の複数の第3の光導波路と第3の複数の第1の光導波路との間で接続された第1のフォトニック回路(例えば、図1及び図3の140)をさらに備える。
任意の上記装置のある実施形態では、第2のフォトニックチップは、第3の複数の第2の光導波路と第2のフォトニックチップの出力ポート(例えば、図1及び図3の142)との間で接続された第2のフォトニック回路(例えば、図1及び図3の140)をさらに備える。
任意の上記装置のある実施形態では、第1のフォトニック回路は、第3の光学ゲイン素子を含むレーザキャビティの出力ミラーとして動作するように構成される。
任意の上記装置のある実施形態では、第1のフォトニックチップは第1の半導体基板(例えば、図1の104)を備え、第2のフォトニックチップは第2の半導体基板(例えば、図1の108)を備え、第1の半導体基板の化学的組成は第2の半導体基板の化学的組成とは異なる。
任意の上記装置のある実施形態では、第1の半導体基板はIII−V族半導体又は合金を備え、第2の半導体基板はシリコンを備える。
任意の上記装置のある実施形態では、第1のフォトニックチップ及び第2のフォトニックチップはフリップ−チップ接合を用いて相互に接合される。
任意の上記装置のある実施形態では、第1のフォトニックチップ及び第2のフォトニックチップはエッジ−エッジチップ接合を用いて相互に接合される。
任意の上記装置のある実施形態では、第2のフォトニックチップの単一の直線エッジ(例えば、図1及び図3の114)は、(例えば、図1に示すように)第2の複数の光導波路の各光導波路のそれぞれの終端のその場所に位置し、第2の複数の光導波路は第1のフォトニックチップと第2のフォトニックチップの間のすべての光信号転送を取り扱うように構成される。
任意の上記装置のある実施形態では、第1のフォトニックチップ及び第2のフォトニックチップはフォトニック集積回路の構成部品である。
この開示は代表的な実施形態に対する参照を含むが、この明細書は限定的な意味で解釈されることを目的にしていない。説明した実施形態の種々の変形と、さらに本開示の範囲内の他の実施形態とは、本開示が関連する当業者には明らかであり、本開示の原理及び範囲内にあると見なされる。
特に断りがない限り、各数値及び範囲は、単語「約」又は「およそ」が値又は範囲の前にあるかのように近似していると解釈されるべきである。
この開示の性質を説明するために記載及び図示された構成部品の詳細事項、材料及び配置において種々の変更が、例えば、以下の特許請求の範囲において表現されるように、本開示の範囲から逸脱することなく当業者によってなされ得ることがさらに分かる。
ここで「一実施形態」又は「実施形態」を参照するとは、実施形態と関連して説明される特定の構成、構造又は特徴が開示の少なくとも1つの実施形態に含まれ得ることを意味する。明細書の種々の箇所において文言「一実施形態では」とあるのは、同じ実施形態をすべて参照する必要はなく、分離した実施形態も代替的な実施形態も相互に他の実施形態を排除する必要はない。同様のことが、用語「実施」にもいえる。
詳細な説明全体を通じて、図面は、縮尺通りでなく、単に例示的なものであり、本開示を限定することなく説明するために用いられる。高さ、長さ、幅、上部、底部などの用語の使用によって、実施形態の説明を正確に促し、具体的な配向に対して実施形態を限定する意図はない。例えば、高さは、垂直上向きの制約のみ意味するのではなく、図面に示すような三次元構造体の3つの寸法のうちの1つを識別するのに用いられる。そのような「高さ」は、デバイスのレイヤが水平方向なところでは垂直方向となるが、デバイスのレイヤが垂直方向なところでは水平方向となるなどである。同様にして、図面が水平方向のレイヤとして異なるレイヤを示す場合もあるが、そのような配向は説明的なものにすぎず、限定的に解釈されるべきではない。
またこの説明の目的として、用語「結合する」、「結合している」、「結合された」、「接続する」、「接続している」又は「接続された」は、エネルギーが2以上の素子の間で転送可能であり、1以上の追加的な素子の介在が要件とはされないが考えられる本技術分野で公知の又は今後開発される任意の形態のことをいう。逆に、用語「直接結合された」、「直接接続された」などは、そのような追加的な素子がないことを意味する。
説明した実施形態は、すべて例示にすぎず限定的なものを示していないとみなされる。特に、本開示の範囲は、ここでの説明及び図面によらず添付の請求項によって示される。請求項の解釈及び均等性の範囲内にあるすべての変更が、それらの範囲内に含まれる。
説明及び図面は、本開示の原理を説明するにすぎない。したがって、当業者は、ここで明確に説明も図示もしていないが、本開示の原理を採用しその趣旨及び範囲内に含まれる種々の配置を考案可能であることが分かる。さらに、ここで記載されたすべての例は、本開示の原理及び発明人によって本技術の促進に寄与される概念を読者が理解するのを手助けする教育的目的に対してのみ明示することを主に目的としており、そのように具体的に記載された例及び条件に限定されないものとして解釈される。さらに、本開示の原理、態様及び実施形態と、さらにそれらの具体的な例とを記載するここでのすべての記述は、それらの均等物を含むことを目的にしている。
ここでの任意のブロック図が本開示の原理を採用する代表的な回路素子の概念図を示すことは、当業者には分かるはずである。同様にして、任意のフローチャート、フロー図、状態遷移図、疑似コードなどは、コンピュータ可読媒体において実質的に示され得るのでコンピュータ又はプロセッサによって実行され得る種々の処理を示していることが、そのようなコンピュータ又はプロセッサが明示されるか否かに関わらず、当業者には理解されるはずである。

Claims (10)

  1. 第1の複数の光導波路を有する第1のフォトニックチップ、及び
    第2の複数の光導波路及び第3の複数の光導波路を有する第2のフォトニックチップ、
    を備えた装置であって、
    前記第2のフォトニックチップは前記第1のフォトニックチップに接合されて、前記第2の複数の2以上の光導波路を前記第1の複数のそれぞれの光導波路に光学的に結合し、
    前記第2のフォトニックチップが前記第2の複数の第1及び第2の光導波路と、前記第3の複数の第1及び第2の光導波路との間で接続された第1の2×2光カプラを備え、
    前記第1の2×2光カプラが、
    前記第3の複数の前記第1の光導波路から受信した光を第1及び第2の部分に分波し、(i)前記第1の部分を前記第2の複数の前記第1の光導波路に、及び(ii)前記第2の部分を前記第2の複数の前記第2の光導波路に結合し、
    光ビームの光が実質的に前記第3の複数の前記第1の光導波路に結合されないように、前記第2の複数の前記第1及び第2の光導波路から受信した前記光ビームを前記第3の複数の前記第2の光導波路に結合する、
    ように構成された、
    装置。
  2. 前記第1の2×2光カプラは、前記第1の部分及び前記第2の部分がほぼ等しい光パワーを有するように構成された、請求項1に記載の装置。
  3. 前記第1の2×2光カプラが、前記光ビームの実質的にすべてのパワーが光パワーを前記第3の複数の前記第2の光導波路に結合されるように、前記第2の複数の前記第1及び第2の導波路から受信した前記光ビームを前記第3の複数の前記第2の光導波路に結合するようにさらに構成された、請求項1に記載の装置。
  4. 前記第1の2×2光カプラが、前記第2の複数の前記第1及び第2の光導波路から受信した前記光ビームの間の相対位相シフトを変化させるように構成可能な位相シフタを備え、
    前記位相シフタが、前記光ビームに、前記第3の複数の前記第2の光導波路において強めあうように干渉させるとともに前記第3の複数の前記第1の光導波路において打ち消しあうように干渉させる、
    ように構成された、請求項1に記載の装置。
  5. 前記第2のフォトニックチップが、前記第2の複数の第3及び第4の光導波路と、前記第3の複数の第3及び第4の光導波路との間で接続された第2の2×2光カプラをさらに備え、
    前記第2の2×2光カプラが、
    前記第3の複数の前記第3の光導波路から受信した光をそれぞれの第1及び第2の部分に分波し、(i)前記それぞれの第1の部分を前記第2の複数の前記第3の光導波路に、及び(ii)前記それぞれの第2の部分を前記第2の複数の前記第4の光導波路に結合し、
    それぞれの光ビームの光が実質的に前記第3の複数の前記第3の光導波路に結合されないように、前記第2の複数の前記第3及び第4の光導波路から受信した前記それぞれの光ビームを前記第3の複数の前記第4の光導波路に結合する、
    ように構成された、請求項1に記載の装置。
  6. 前記第1のフォトニックチップが、
    前記第1の複数の前記それぞれの光導波路のうちの第1のものによって前記第2の複数の前記第1の光導波路に光学的に結合された第1の光学ゲイン素子、及び
    前記第1の複数の前記それぞれの光導波路のうちの第2のものによって前記第2の複数の前記第2の光導波路に光学的に結合された第2の光学ゲイン素子、
    を備えた、請求項1に記載の装置。
  7. 前記第1のフォトニックチップが、前記第1及び第2の光学ゲイン素子における光増幅を用いて前記光ビームを生成させるように構成され、
    前記第1のフォトニックチップが、前記第1及び第2の光学ゲイン素子の各々にそれぞれの反射光増幅器として動作させるように構成されたミラーをさらに備えた、
    請求項6に記載の装置。
  8. 前記第1のフォトニックチップが、前記第1の複数の前記それぞれの光導波路のうちの第3のものによって、前記第2の複数の第3の光導波路に光学的に結合された第3の光学ゲイン素子をさらに備えた、請求項6に記載の装置。
  9. 前記第2のフォトニックチップが、前記第2の複数の前記第3の光導波路と、前記第3の複数の前記第1の光導波路との間で接続された第1のフォトニック回路をさらに備え、
    前記第2のフォトニックチップが、前記第3の複数の前記第2の光導波路と、前記第2のフォトニックチップの出力ポートとの間で接続された第2のフォトニック回路をさらに備えた、
    請求項8に記載の装置。
  10. 前記第1のフォトニックチップが第1の半導体基板を備え、
    前記第2のフォトニックチップが第2の半導体基板を備え、
    前記第1の半導体基板の化学的組成が前記第2の半導体基板の化学的組成とは異なる、
    請求項1に記載の装置。
JP2018534690A 2015-12-31 2016-12-15 チップの集積化を用いるフォトニック集積回路 Pending JP2019504357A (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US14/985,875 2015-12-31
US14/985,875 US9762334B2 (en) 2015-12-31 2015-12-31 Photonic integrated circuit using chip integration
PCT/US2016/066867 WO2017116735A1 (en) 2015-12-31 2016-12-15 Photonic integrated circuit using chip integration

Publications (1)

Publication Number Publication Date
JP2019504357A true JP2019504357A (ja) 2019-02-14

Family

ID=57714700

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018534690A Pending JP2019504357A (ja) 2015-12-31 2016-12-15 チップの集積化を用いるフォトニック集積回路

Country Status (5)

Country Link
US (1) US9762334B2 (ja)
EP (1) EP3398001A1 (ja)
JP (1) JP2019504357A (ja)
CN (1) CN108369314A (ja)
WO (1) WO2017116735A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2022244229A1 (ja) * 2021-05-21 2022-11-24

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3725089A1 (en) * 2017-12-13 2020-10-21 Telefonaktiebolaget LM Ericsson (publ) Device and method for processing an optical signal
US10649138B2 (en) 2018-09-21 2020-05-12 Nokia Solutions And Networks Oy Optical device having a photonic chip with one or more suspended functional portions
JP7079391B2 (ja) * 2018-10-30 2022-06-02 富士通株式会社 光伝送装置及び光素子
FR3098312B1 (fr) * 2019-07-05 2023-01-06 Almae Tech composant semi-conducteur actif, composant passif à base de silicium, assemblage desdits composants et procédé de couplage entre guides d’ondes
US11476631B2 (en) * 2019-11-24 2022-10-18 Nokia Solutions And Networks Oy Photonic chip integrated with a fiber laser
CN110930896A (zh) * 2019-11-26 2020-03-27 Tcl华星光电技术有限公司 显示面板
US11460372B2 (en) * 2020-09-03 2022-10-04 Ciena Corporation Characterizing integrated photonics devices
CN112992695A (zh) * 2021-04-23 2021-06-18 南京光智元科技有限公司 光子半导体装置及其制造方法
CN115877505B (zh) * 2023-01-06 2023-05-16 之江实验室 一种硅基光电子芯片及电子设备

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000010137A (ja) * 1998-06-24 2000-01-14 Nippon Telegr & Teleph Corp <Ntt> 波長変換器
JP2001109029A (ja) * 1999-10-07 2001-04-20 Nippon Telegr & Teleph Corp <Ntt> 波長変換素子
JP2003179289A (ja) * 2001-10-05 2003-06-27 Nippon Telegr & Teleph Corp <Ntt> 光増幅器
US20100142889A1 (en) * 2008-12-08 2010-06-10 Electronics And Telecommunications Research Institute Wavelength tunable optical interleaver
WO2013145271A1 (ja) * 2012-03-30 2013-10-03 富士通株式会社 光素子、光送信素子、光受信素子、ハイブリッドレーザ、光送信装置
US20150139264A1 (en) * 2013-11-20 2015-05-21 Coriant Advanced Technology, LLC Sagnac loop mirror based laser cavity on silicon photonics platform
JP2015191111A (ja) * 2014-03-28 2015-11-02 学校法人幾徳学園 光分岐挿入装置、光スイッチおよび製造方法

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4887877A (en) 1985-10-09 1989-12-19 Hitachi, Ltd. Optical devices and optical integrated circuits
EP0617303A1 (en) 1993-03-19 1994-09-28 Akzo Nobel N.V. A method of integrating a semiconductor component with a polymeric optical waveguide component, and an electro-optical device comprising an integrated structure so attainable
US6212310B1 (en) * 1996-10-22 2001-04-03 Sdl, Inc. High power fiber gain media system achieved through power scaling via multiplexing
US20080044128A1 (en) 2001-10-09 2008-02-21 Infinera Corporation TRANSMITTER PHOTONIC INTEGRATED CIRCUITS (TxPICs) AND OPTICAL TRANSPORT NETWORK SYSTEM EMPLOYING TxPICs
US20060239612A1 (en) 2002-06-19 2006-10-26 Peter De Dobbelaere Flip-chip devices formed on photonic integrated circuit chips
GB2391703A (en) 2002-08-02 2004-02-11 Kamelian Ltd Semiconductor Optical Device Arrays
EP1426799A3 (en) * 2002-11-29 2005-05-18 Matsushita Electric Industrial Co., Ltd. Optical demultiplexer, optical multi-/demultiplexer, and optical device
US7315672B2 (en) 2003-11-28 2008-01-01 Sumitomo Electric Industries, Ltd. Optical device
KR100637928B1 (ko) * 2004-10-13 2006-10-24 한국전자통신연구원 파장 가변 광송신 모듈
WO2007021041A1 (en) 2005-08-12 2007-02-22 Bongjun Lee Variable optical distributors using multi-mode interference
JP4554633B2 (ja) 2007-03-16 2010-09-29 富士通株式会社 Soaアレイ光モジュール
JP4794505B2 (ja) 2007-06-15 2011-10-19 富士通株式会社 半導体光増幅装置、半導体光増幅システム及び半導体光集積素子
US7995921B2 (en) 2007-08-02 2011-08-09 Infinera Corporation Banded semiconductor optical amplifiers and waveblockers
JP2010219227A (ja) 2009-03-16 2010-09-30 Nec Corp 波長可変レーザとその製造方法
US8494315B2 (en) 2009-12-17 2013-07-23 Alcatel Lucent Photonic integrated circuit having a waveguide-grating coupler
JP2011257513A (ja) 2010-06-08 2011-12-22 Furukawa Electric Co Ltd:The 光90度ハイブリッド
GB2483930A (en) 2010-09-27 2012-03-28 Oclaro Technology Plc Fast wavelength switching
US8222084B2 (en) 2010-12-08 2012-07-17 Skorpios Technologies, Inc. Method and system for template assisted wafer bonding
JP2012163614A (ja) 2011-02-03 2012-08-30 Furukawa Electric Co Ltd:The Soa−plcハイブリッド集積偏波ダイバーシティ回路およびその製造方法
US8600201B2 (en) 2011-02-22 2013-12-03 Oracle International Corporation Optical device with enhanced mechanical strength
US9507086B2 (en) 2011-12-30 2016-11-29 Intel Corporation Optical I/O system using planar light-wave integrated circuit
US9322996B2 (en) 2013-03-07 2016-04-26 Aurrion, Inc. Simultaneous processing of multiple photonic device layers
US9450379B2 (en) 2013-11-20 2016-09-20 Coriant Advanced Technology, LLC Quantum dot SOA-silicon external cavity multi-wavelength laser
US9551832B1 (en) * 2015-10-08 2017-01-24 Oracle International Corporation Optical source with a grating-enhanced resonator

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000010137A (ja) * 1998-06-24 2000-01-14 Nippon Telegr & Teleph Corp <Ntt> 波長変換器
JP2001109029A (ja) * 1999-10-07 2001-04-20 Nippon Telegr & Teleph Corp <Ntt> 波長変換素子
JP2003179289A (ja) * 2001-10-05 2003-06-27 Nippon Telegr & Teleph Corp <Ntt> 光増幅器
US20100142889A1 (en) * 2008-12-08 2010-06-10 Electronics And Telecommunications Research Institute Wavelength tunable optical interleaver
WO2013145271A1 (ja) * 2012-03-30 2013-10-03 富士通株式会社 光素子、光送信素子、光受信素子、ハイブリッドレーザ、光送信装置
US20150139264A1 (en) * 2013-11-20 2015-05-21 Coriant Advanced Technology, LLC Sagnac loop mirror based laser cavity on silicon photonics platform
JP2015191111A (ja) * 2014-03-28 2015-11-02 学校法人幾徳学園 光分岐挿入装置、光スイッチおよび製造方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2022244229A1 (ja) * 2021-05-21 2022-11-24
WO2022244229A1 (ja) * 2021-05-21 2022-11-24 三菱電機株式会社 多波長レーザ装置
JP7317266B2 (ja) 2021-05-21 2023-07-28 三菱電機株式会社 多波長レーザ装置

Also Published As

Publication number Publication date
EP3398001A1 (en) 2018-11-07
US20170195064A1 (en) 2017-07-06
US9762334B2 (en) 2017-09-12
WO2017116735A1 (en) 2017-07-06
CN108369314A (zh) 2018-08-03

Similar Documents

Publication Publication Date Title
JP2019504357A (ja) チップの集積化を用いるフォトニック集積回路
Aalto et al. Open-access 3-μm SOI waveguide platform for dense photonic integrated circuits
US10677991B2 (en) Optical coupler comprising vertically offset waveguide cores
US9377587B2 (en) Fiber optic coupler array
US10168474B2 (en) Method of manufacturing optical input/output device
US11329452B2 (en) Silicon photonics based tunable laser
US20170207600A1 (en) 3d photonic integration with light coupling elements
US8050525B2 (en) Method and system for grating taps for monitoring a DWDM transmitter array integrated on a PLC platform
US10901146B2 (en) Single edge coupling of chips with integrated waveguides
CN108666864B (zh) 混合集成可调谐激光器及光子芯片
JP6820671B2 (ja) 光回路デバイスとこれを用いた光トランシーバ
JP2019101152A (ja) 光ファイバ接続構造
US10509165B2 (en) Optical transposer assembly
JP6393221B2 (ja) 光送信器および光送信装置
Romero-García et al. Misalignment tolerant couplers for hybrid integration of semiconductor lasers with silicon photonics parallel transmitters
US20220229229A1 (en) Surface Emission Optical Circuit and Surface Emission Light Source Using the Same
Aalto et al. Dense photonics integration on a micron-scale SOI waveguide platform
JP7187623B1 (ja) エタロン補償を備えた高帯域幅フォトニック集積回路
WO2023214573A1 (ja) 光検出装置及び光レシーバ
Tanaka et al. High-power flip-chip-bonded silicon hybrid laser for temperature-control-free operation with micro-ring resonator-based modulator
Bogaerts Optical interconnects
JP2010212610A (ja) 波長可変光源、および波長可変光源の製造方法
Stamatiadis et al. The ICT-BOOM project: Photonic routing on a silicon-on-insulator hybrid platform

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180828

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190618

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190619

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190918

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191226

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20200714