WO2022244229A1 - 多波長レーザ装置 - Google Patents

多波長レーザ装置 Download PDF

Info

Publication number
WO2022244229A1
WO2022244229A1 PCT/JP2021/019344 JP2021019344W WO2022244229A1 WO 2022244229 A1 WO2022244229 A1 WO 2022244229A1 JP 2021019344 W JP2021019344 W JP 2021019344W WO 2022244229 A1 WO2022244229 A1 WO 2022244229A1
Authority
WO
WIPO (PCT)
Prior art keywords
wavelength
waveguide
output
light
mach
Prior art date
Application number
PCT/JP2021/019344
Other languages
English (en)
French (fr)
Inventor
圭 増山
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2021/019344 priority Critical patent/WO2022244229A1/ja
Priority to JP2023520410A priority patent/JP7317266B2/ja
Priority to CN202180098212.6A priority patent/CN117321866A/zh
Publication of WO2022244229A1 publication Critical patent/WO2022244229A1/ja
Priority to US18/379,369 priority patent/US20240047945A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/14External cavity lasers
    • H01S5/141External cavity lasers using a wavelength selective device, e.g. a grating or etalon
    • H01S5/142External cavity lasers using a wavelength selective device, e.g. a grating or etalon which comprises an additional resonator
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/12004Combinations of two or more optical elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/12007Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind forming wavelength selective elements, e.g. multiplexer, demultiplexer
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/0147Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on thermo-optic effects
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/21Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  by interference
    • G02F1/212Mach-Zehnder type
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/21Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  by interference
    • G02F1/225Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  by interference in an optical waveguide structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/026Monolithically integrated components, e.g. waveguides, monitoring photo-detectors, drivers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/06Arrangements for controlling the laser output parameters, e.g. by operating on the active medium
    • H01S5/068Stabilisation of laser output parameters
    • H01S5/0683Stabilisation of laser output parameters by monitoring the optical output parameters
    • H01S5/0687Stabilising the frequency of the laser
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/50Amplifier structures not provided for in groups H01S5/02 - H01S5/30
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/50Transmitters

Definitions

  • the present disclosure relates to a multi-wavelength laser device.
  • Wavelength Division Multiplexing (WDM) technology bundles multiple optical signals with different wavelengths into a single optical fiber.
  • the signal is transmitted over a single optical fiber.
  • Patent Document 1 describes an external cavity type multi-wavelength laser device.
  • the multi-wavelength laser device is composed of a semiconductor gain chip and two mirrors arranged to sandwich the semiconductor gain chip, and has an external resonator that amplifies light by confining light between the two mirrors. ing.
  • the external cavity has a periodic wavelength filter that extracts multi-wavelength light having periodic peak wavelengths from the confined light, and a wavelength spectral filter that outputs multiple optical signals by dividing the multi-wavelength light by wavelength. is installed.
  • a directional coupler for extracting the multi-wavelength light from the waveguide in the external resonator is sometimes used in order to extract the amplified multi-wavelength light from the external resonator.
  • the directional coupler has wavelength dependence, there is a problem that the output of each peak wavelength in the multi-wavelength light extracted by the directional coupler differs depending on the wavelength.
  • the present disclosure has been made to solve the above-described problems, and provides a technique capable of extracting multi-wavelength light with constant output of each peak wavelength from an external resonator.
  • a multi-wavelength laser device is a multi-wavelength laser device having an external resonator for amplifying light and a first output waveguide for outputting the light amplified by the external resonator, comprising a semiconductor gain chip and , a first input port, a second input port, a first output port, a second output port, and respectively a first input port and a second input port and a first output port and a second a first waveguide and a second waveguide optically connecting to the output port, the first input port optically connecting to the semiconductor gain chip, the second input port a first Mach-Zehnder switch optically connected to one output waveguide, optically connected to the first output port and the second output port of the first Mach-Zehnder switch, and from the first Mach-Zehnder switch a periodic wavelength mirror that partially reflects the input light to output multi-wavelength light having periodic peak wavelengths to the first Mach-Zehnder switch; is installed on the opposite side to form an external reson
  • multi-wavelength light with constant output of each peak wavelength can be extracted from the external resonator.
  • FIG. 1 is a block diagram showing the configuration of a multi-wavelength laser device 100 according to Embodiment 1;
  • FIG. 1 is a schematic diagram showing the configuration of a multi-wavelength laser device 100 according to Embodiment 1;
  • FIG. FIG. 4 is a diagram showing another multi-wavelength laser device having a configuration different from that of the multi-wavelength laser device 100 according to Embodiment 1;
  • FIG. 4 shows series transmission characteristics of a Si wire waveguide ring resonator and a loop mirror in another multi-wavelength laser device shown in FIG. 4 shows transmission characteristics of multi-wavelength light from the first input port to the second input port of the Mach-Zehnder switch and the ring resonator type periodic wavelength mirror of the multi-wavelength laser device according to the first embodiment.
  • FIG. 2 is a block diagram showing the configuration of a multi-wavelength laser device according to Embodiment 2;
  • FIG. FIG. 3 is a schematic diagram showing the configuration of a multi-wavelength laser device according to Embodiment 2;
  • FIG. 11 is a schematic diagram showing the configuration of a multi-wavelength laser device according to Embodiment 3;
  • FIG. 1 is a block diagram showing the configuration of a multi-wavelength laser device 100 according to Embodiment 1.
  • FIG. 2 is a schematic diagram showing the configuration of the multi-wavelength laser device 100 according to the first embodiment.
  • the multi-wavelength laser device 100 includes a reflector 1, a gain section 2, a phase controller 3, a Mach-Zehnder switch 4 (first Mach-Zehnder switch), a periodic wavelength mirror 5, and an output waveguide. 6.
  • the multi-wavelength laser device 100 has an external resonator for amplifying light and an output waveguide 6 (first output waveguide) for outputting the light amplified by the external resonator.
  • the external resonator is composed of a reflector 1 , a gain 2 and a periodic wavelength mirror 5 .
  • the multi-wavelength laser device 100 is an external resonator-type multi-wavelength laser device that has a periodic wavelength mirror 5 in an external resonator and can oscillate at multiple wavelengths simultaneously.
  • a multi-wavelength laser that simultaneously oscillates signal lights of N wavelengths ( ⁇ 1 to ⁇ N ) is shown as an example (N is a positive integer of 2 or more).
  • a gain section 2 is arranged between the reflection section 1 and the periodic wavelength mirror 5 in the multi-wavelength laser device 100 .
  • a phase control section 3 and a Mach-Zehnder switch 4 are arranged in series between the gain section 2 and the periodic wavelength mirror 5 in the multi-wavelength laser device 100 .
  • Gain section 2 is a semiconductor gain chip. More specifically, the gain section 2 is for example a quantum dot gain chip comprising a quantum dot gain medium.
  • the reflection section 1 is installed on the side opposite to the Mach-Zehnder switch 4 side with respect to the gain section 2 , thereby forming an external resonator together with the gain section 2 and the periodic wavelength mirror 5 .
  • Reflecting section 1 reflects light that has passed through gain section 2 toward gain section 2 .
  • the reflection section 1 may be a cleaved end face of the quantum dot gain chip.
  • a facet coated with a high reflection film is preferable for the gain section 2 .
  • the gain section 2 may be a waveguide element such as a loop mirror or a DBR mirror.
  • the phase control section 3 is installed between the gain section 2 and the Mach-Zehnder switch 4 .
  • the phase control unit 3 controls the phase of the passing multi-wavelength light. More specifically, the phase control unit 3 is an element that gives a phase change to the optical waveguide by a thermo-optical effect or the like.
  • the multi-wavelength laser device 100 does not have to include the phase control unit 3, the multi-wavelength laser device 100 includes the phase control unit 3 because it is expected to improve the stability of the oscillation wavelength of the external cavity laser. It is preferable to have
  • the Mach-Zehnder switch 4 has a first input port, a second input port, a first output port, a second output port, and respectively the first input port, the second input port and the first output port. and a first waveguide and a second waveguide optically connecting to the second output port. That is, the Mach-Zehnder switch 4 is a Mach-Zehnder type switch having 2 ⁇ 2 input/output ports.
  • a first input port of the Mach-Zehnder switch 4 is optically connected to the gain section 2 . More specifically, in Embodiment 1, the first input port of Mach-Zehnder switch 4 is optically connected to gain section 2 via phase control section 3 . A second input port of Mach-Zehnder switch 4 is optically connected to output waveguide 6 .
  • the periodic wavelength mirror 5 is optically connected to the first output port and the second output port of the Mach-Zehnder switch 4 .
  • the periodic wavelength mirror 5 outputs multi-wavelength light having periodic peak wavelengths to the Mach-Zehnder switch 4 by partially reflecting the light input from the Mach-Zehnder switch 4 .
  • the periodic wavelength mirror 5 is an element that reflects only light with periodic peak wavelengths.
  • the periodic wavelength mirror 5 is composed of a 1 ⁇ 2 optical coupler and a ring resonator.
  • the periodic wavelength mirror 5 may be composed of a 2 ⁇ 2 optical coupler and a ring resonator.
  • the two waveguides branched by the 1 ⁇ 2 optical coupler are installed so as to be close to the ring resonator.
  • the FSR (free spectral range) of the ring resonator of the periodic wavelength mirror 5 is designed to match the wavelength spacing of the desired WDM communication standard.
  • a heater or the like is installed on the waveguide of the ring resonator in the periodic wavelength mirror 5 .
  • the periodic wavelength mirror 5 is configured to be able to adjust the wavelength intervals of the periodic peak wavelengths of the reflected multi-wavelength light. ing.
  • the Mach-Zehnder switch 4 changes the phase difference between the multi-wavelength light passing through the first waveguide and the multi-wavelength light passing through the second waveguide, thereby allowing The output branching ratio between the multi-wavelength light output to the gain section 2 and the multi-wavelength light output from the second input port to the output waveguide 6 can be adjusted.
  • the Mach-Zehnder switch 4 provides a phase difference between the first waveguide and the second waveguide by the thermo-optical effect or the like, so that the output is guided at an arbitrary branch ratio. It is possible to control the output split ratio to wave path 6 .
  • optical coupling can be achieved at a desired branching ratio by applying a simple directional coupler.
  • the output of each peak wavelength in the multi-wavelength light extracted by the coupler will differ depending on the wavelength.
  • the Mach-Zehnder switch 4 even if a directional coupler having wavelength dependence is applied to the input/output part, the multi-wavelength light output from the second input port to the output waveguide 6 does not have wavelength dependence. is reduced.
  • the Mach-Zehnder switch 4 By adjusting the output branching ratio of the Mach-Zehnder switch 4, the internal loss of the external resonator can be varied.
  • the Mach-Zehnder switch 4 is preferably designed so that the output branching ratio becomes a desired value when no power is applied. .
  • the multi-wavelength laser device 100 When a current is applied to the gain section 2, light of a wavelength corresponding to the FSR of the ring resonator of the periodic wavelength mirror 5 resonates between the periodic wavelength mirror 5 and the reflection section 1, thereby increasing the gain exceeding the internal loss. is output from the second input port of the Mach-Zehnder switch 4 to the output waveguide 6 .
  • the periodic wavelength mirror 5 transmits light other than light with wavelengths at regular intervals ⁇ , multi-wavelength light having periodic peak wavelengths at regular intervals ⁇ can resonate and oscillate simultaneously.
  • the output branching ratio of the Mach-Zehnder switch 4 by adjusting the output branching ratio of the Mach-Zehnder switch 4 by the method described above while monitoring the multi-wavelength light from the output waveguide 6, the internal loss of the external resonator at a desired applied current is minimized, and the output You can maximize your power.
  • the above-described wavelength dependence can be reduced, so that variations in the output power of the multi-wavelength laser output for each wavelength can be suppressed.
  • FIG. 3 shows another multi-wavelength laser device having a configuration different from that of the multi-wavelength laser device 100 according to the first embodiment.
  • FIG. 3 Another multi-wavelength laser device shown in FIG. 3 has a configuration in which a gain section and a periodic wavelength filter are installed between two reflection sections. Of the two reflectors in FIG. 3, the right reflector reflects part of the power of the light that has passed through the periodic wavelength filter, while transmitting the remaining power. Therefore, the waveguide opposite to the waveguide connected to the periodic wavelength filter in the reflecting portion functions as an output waveguide.
  • the directional coupler of the loop mirror has wavelength dependence.
  • the output of each peak wavelength in wavelength light varies for each wavelength.
  • FIG. 3 shows a ring resonator of a Si wire waveguide as a periodic wavelength filter of another multi-wavelength laser device shown in FIG. 3, and a loop mirror is used as a reflecting portion on the right side in FIG.
  • FIG. 4 shows series transmission characteristics of a Si wire waveguide ring resonator and a loop mirror in another multi-wavelength laser device shown in FIG.
  • FIG. 4 shows series transmission characteristics of a Si wire waveguide ring resonator and a loop mirror in another multi-wavelength laser device shown in FIG.
  • FIG. 5 shows the flow from the first input port of the Mach-Zehnder switch 4 to the second input port in the Mach-Zehnder switch 4 and the ring resonator type periodic wavelength mirror 5 of the multi-wavelength laser device 100 according to the first embodiment. shows the transmission characteristics of multi-wavelength light.
  • the configuration of the ring resonator is the same, and the transmission characteristics are calculated by simulation under the condition that the transmittance of the loop mirror and the branching ratio of the Mach-Zehnder switch are both 50%.
  • the vertical axis indicates transmittance (dB) and the horizontal axis indicates wavelength (nm).
  • the transmittance increases toward the longer wavelength side due to the wavelength dependence of the loop mirror.
  • the graphs shown in FIG. 5 it can be seen that relatively flat transmission characteristics are obtained.
  • multi-wavelength light with constant output of each peak wavelength can be extracted from the external resonator.
  • the multi-wavelength laser device 100 has an external resonator for amplifying light and an output waveguide 6 for outputting the light amplified by the external resonator.
  • a gain section 2 which is a semiconductor gain chip, a first input port, a second input port, a first output port, a second output port, and a first input port and a second a first waveguide and a second waveguide for optically connecting between the input port of the gain section 2 and the first output port and the second output port, the first input port being the gain section 2 a Mach-Zehnder switch 4 optically connected to the second input port optically connected to the output waveguide 6;
  • a periodic wavelength mirror 5 for outputting multi-wavelength light having periodic peak wavelengths to the Mach-Zehnder switch 4 by partially reflecting the light input from the Mach-Zehnder switch 4, and the Mach-Zehnder gain section 2 as a reference.
  • the reflection section 1 forms an external resonator together with the gain section 2 and the periodic wavelength mirror 5 , and reflects the light that has passed through the gain section 2 toward the gain section 2 .
  • the Mach-Zehnder switch 4 changes the phase difference between the multi-wavelength light passing through the first waveguide and the multi-wavelength light passing through the second waveguide, so that the gain section from the first input port 2 and the multi-wavelength light output from the second input port to the output waveguide 6 can be adjusted.
  • the Mach-Zehnder switch 4 changes the phase difference between the multi-wavelength light passing through the first waveguide and the multi-wavelength light passing through the second waveguide, so that the gain section from the first input port 2 and the multi-wavelength light output from the second input port to the output waveguide 6 can be adjusted.
  • the oscillation characteristics must be within the wavelength grid defined by the standard.
  • a conventional multi-wavelength laser device that can simultaneously oscillate multi-wavelength light by installing a periodic wavelength filter in the external cavity of an external cavity quantum dot laser
  • the central wavelength of the periodic wavelength filter fluctuates due to manufacturing errors.
  • a wavelength spectral filter is installed in series with a periodic wavelength filter in an external resonator, and light that has passed through a monitor port provided in the wavelength spectral filter and light that has passed through a transmission port of the periodic wavelength filter. is used for wavelength tuning.
  • the wavelength spectral filter is inserted in the external resonator, the internal loss of the external resonator increases, resulting in a problem of reduced output power.
  • multi-wavelength light having a constant output of each peak wavelength is emitted from the external resonator without increasing the internal loss of the external resonator. can be taken out. It is also possible to monitor and adjust each peak wavelength of the extracted multi-wavelength light.
  • FIG. 6 is a block diagram showing the configuration of the multi-wavelength laser device 101 according to the second embodiment.
  • FIG. 7 is a schematic diagram showing the configuration of a multi-wavelength laser device 101 according to the second embodiment. As shown in FIGS.
  • the multi-wavelength laser device 101 includes a second Mach-Zehnder switch 11, an optical coupler 14, a photodetector 15 ( 1st photodetector), a plurality of ring filters 16, and a plurality of photodetectors 17 (a plurality of second photodetectors).
  • the first Mach-Zehnder switch 10 shown in FIGS. 6 and 7 has the same function as the Mach-Zehnder switch 4 described in the first embodiment.
  • the multi-wavelength laser device 101 according to the second embodiment is an external cavity type multi-wavelength laser device capable of simultaneous oscillation at multiple wavelengths, which is obtained by adding a wavelength monitoring mechanism to the configuration of the multi-wavelength laser device 100 according to the first embodiment. is.
  • the multi-wavelength laser device 101 further has an output waveguide 12 (second output waveguide), a monitor waveguide 13, an output monitor waveguide 18, and a wavelength monitor waveguide 19 as waveguides.
  • 6 and 7 show an example of a multi-wavelength laser that simultaneously oscillates N wavelengths of signal light ( ⁇ 1 to ⁇ N ) (N is a positive integer equal to or greater than 2).
  • the second Mach-Zehnder switch 11 has a first input port, a second input port, a first output port, a second output port, and respectively the first and second input ports and the first and a first waveguide and a second waveguide optically connecting between the output port of and the second output port. That is, the second Mach-Zehnder switch 11 is a Mach-Zehnder type switch having 2 ⁇ 2 input/output ports like the first Mach-Zehnder switch 10 .
  • a first input port of the second Mach-Zehnder switch 11 is optically connected to the first Mach-Zehnder switch 10 via an output waveguide 6 .
  • a first output port of the second Mach-Zehnder switch 11 is optically connected to the output waveguide 12 .
  • a second output port of the second Mach-Zehnder switch 11 is optically connected to the monitor waveguide 13 .
  • the second Mach-Zehnder switch 11 detects the phase difference between the multi-wavelength light passing through the first waveguide of the second Mach-Zehnder switch 11 and the multi-wavelength light passing through the second waveguide of the second Mach-Zehnder switch 11.
  • the branching ratio is adjustable. That is, the second Mach-Zehnder switch 11, like the first Mach-Zehnder switch 10, provides an arbitrary output by giving a phase difference between the first waveguide and the second waveguide by the thermo-optic effect or the like. It is possible to control the power of the multi-wavelength light output from the output port by the branch ratio.
  • the optical coupler 14 has an input port optically connected to the second Mach-Zehnder switch 11 via the monitor waveguide 13 , a first output port optically connected to the output monitor waveguide 18 , and a wavelength monitor waveguide 19 . has a second output port in optical communication with the . That is, the optical coupler 14 is a 1 ⁇ 2 optical coupler.
  • the optical coupler 14 splits the multi-wavelength light input from the second Mach-Zehnder switch 11 and outputs the split light to an output monitor waveguide 18 and a wavelength monitor waveguide 19, respectively.
  • Photodetector 15 is optically coupled to optical coupler 14 via output monitor waveguide 18 .
  • the photodetector 15 detects multi-wavelength light input from the output monitor waveguide 18 .
  • Each of the plurality of ring filters 16 is optically connected to the wavelength monitor waveguide 19 . More specifically, in Embodiment 2, the plurality of ring filters 16 are N ring resonators, and the wavelength monitor waveguide 19 is optically connected to the N ring resonators in series. there is
  • a plurality of ring filters 16 each extract light of a predetermined wavelength from the multi-wavelength light input from the wavelength monitor waveguide 19 . More specifically, in Embodiment 2, the plurality of ring filters 16 are a plurality of ring resonators, and each ring resonator extracts light having a wavelength conforming to the WDM communication standard. , where the wavelengths are drop wavelengths ( ⁇ 1 , ⁇ 2 , . . . , ⁇ N ) that are different for each ring resonator.
  • the plurality of photodetectors 17 are connected to corresponding ring filters of the plurality of ring filters 16, respectively.
  • the plurality of photodetectors 17 respectively detect light extracted by corresponding ring filters of the plurality of ring filters 16 .
  • the periodic wavelength mirror 5 can adjust the wavelength intervals of the periodic peak wavelengths of the multi-wavelength light output to the first Mach-Zehnder switch 10, as in the first embodiment. More specifically, in Embodiment 2, a heater or the like is installed on the waveguide of the ring resonator in the periodic wavelength mirror 5 . Thus, by changing the refractive index of the waveguide by the thermo-optic effect, the periodic wavelength mirror 5 is configured to be able to adjust the wavelength intervals of the periodic peak wavelengths of the reflected multi-wavelength light. ing.
  • the multi-wavelength laser device 101 When a current is applied to the gain section 2, light of a wavelength corresponding to the FSR of the ring resonator of the periodic wavelength mirror 5 is generated by resonance between the periodic wavelength mirror 5 and the reflection section 1, thereby reducing the internal loss.
  • the light of the wavelength for which the excess gain is obtained is output from the second input port of the first Mach-Zehnder switch 10 to the output waveguide 6 .
  • the periodic wavelength mirror 5 transmits light other than light with wavelengths at regular intervals ⁇ , multi-wavelength light having periodic peak wavelengths at regular intervals ⁇ can resonate and oscillate simultaneously.
  • the output branching ratio of the second Mach-Zehnder switch 11 is adjusted by the method described above so that the multi-wavelength light passes through the monitor waveguide 13 (bus waveguide).
  • the internal loss of the external resonator is reduced to the desired applied current. Adjust the internal loss to achieve the maximum output power at Thereby, the output power of the multi-wavelength laser device 101 can be maximized.
  • the above-described wavelength interval in the periodic wavelength mirror 5 is adjusted so that the oscillation wavelength of the multi-wavelength laser device 101 conforms to the WDM standard.
  • Each of the plurality of ring filters 16 optically connected to the wavelength monitor waveguide 19 according to the second embodiment is designed to drop light of wavelengths conforming to the WDM standard. Therefore, when the periodic peak wavelengths of the multi-wavelength light output from the multi-wavelength laser device 101, which is an external cavity laser, conform to the WDM standard, the plurality of photodetectors 17 (N in FIG. 7) photodetectors 17) are maximized.
  • the periodic wavelength intervals that define the oscillation wavelengths of external cavity multi-wavelength lasers usually have offsets due to manufacturing errors.
  • the periodic wavelength mirror 5 by adjusting the refractive index of the ring resonator of the periodic wavelength mirror 5 with a heater so that each monitor current is maximized while monitoring the plurality of photodetectors 17, the periodic wavelength mirror 5 reflects light.
  • the offset is adjusted so that the wavelength intervals of the periodic peak wavelengths of the multi-wavelength light conform to the WDM standard.
  • the optical output to the monitor waveguide 13 is no longer necessary. Therefore, by adjusting the output branching ratio of the second Mach-Zehnder switch 11, all the power is branched to the output waveguide 12. Adjust so that By the above operation, the multi-wavelength laser device 101 of the external cavity type laser has an oscillation wavelength conforming to the WDM standard, and the output power of the multi-wavelength light output from the multi-wavelength laser device 101 can be maximized.
  • Embodiment 3 describes a configuration for adjusting the plurality of ring filters 16 described in Embodiment 2.
  • FIG. Embodiment 3 will be described below with reference to the drawings. It should be noted that configurations having functions similar to those of the configuration described in Embodiment 1 or Embodiment 2 are denoted by the same reference numerals, and description thereof will be omitted.
  • FIG. 8 is a schematic diagram showing the configuration of the multi-wavelength laser device 102 according to the third embodiment. As shown in FIG. 8, the multi-wavelength laser device 102 includes a photodetector 20 (third photodetector) and a plurality of light sources 21 in addition to the configuration of the multi-wavelength laser device 101 according to Embodiment 2. I have.
  • the multi-wavelength laser device 102 according to the third embodiment has a configuration in which the wavelength monitor mechanism of the multi-wavelength laser device 101 according to the second embodiment includes an adjustment mechanism for the ring filter 16, which is a ring resonator for wavelength monitoring. have.
  • the ring filter 16 for wavelength monitoring is manufactured according to the design. A configuration for adjusting the case will be described.
  • FIG. 8 shows an example of a multi-wavelength laser device that simultaneously oscillates signal lights of N wavelengths ( ⁇ 1 to ⁇ N ).
  • the plurality of light sources 21 are optically connected to corresponding ring filters of the plurality of ring filters 16, respectively.
  • the multiple light sources 21 output light of predetermined wavelengths to the corresponding ring filters.
  • each of the plurality of light sources 21 is a tunable laser diode (TLD).
  • TLD tunable laser diode
  • Each of the plurality of light sources 21 is optically connected to the end of the waveguide opposite to the end connected to the photodetector 17 of the corresponding wavelength monitoring ring filter 16 .
  • the connection between the waveguide and the light source 21 may be end face coupling via a fiber, or may be coupling by a grating coupler. It is particularly preferred to arrange the N grating couplers in an array when the connection is coupling by a section rating coupler.
  • the photodetector 20 detects light output from each of the plurality of light sources 21 and extracted by the corresponding ring filter among the plurality of ring filters 16 . More specifically, in Embodiment 3, the photodetector 20 is optically connected to the terminal end of the wavelength monitor waveguide 19 in which a plurality of ring filters 16 are arranged in series.
  • a plurality of ring filters 16 according to Embodiment 3 are each capable of adjusting the wavelength of light to be extracted. More specifically, in Embodiment 3, heaters and the like are installed on the waveguides of the plurality of ring filters 16 . Thus, by changing the refractive index of the waveguide by the thermo-optic effect, each of the plurality of ring filters 16 is configured to be able to adjust the wavelength of light to be extracted.
  • the operation of the multi-wavelength laser device 102 according to the third embodiment will be described below.
  • the light source 21 of PD1 in FIG. the light is applied to the ring filter 16 of RR1 in FIG.
  • Light applied to the ring filter 16 of RR1 in FIG. the heater value is adjusted so that the monitor current of the photodetector 20 becomes maximum.
  • the wavelength desired to be used in the multi-wavelength laser device 102 that is, the light of the wavelength ⁇ 2 adjacent to the shortest wavelength (or the longest wavelength) ⁇ 1 among the wavelengths conforming to the WDM standard is shown in FIG.
  • the light source 21 of PD2 is caused to output, and the light is applied to the ring filter 16 of RR2 in FIG.
  • Light applied to the ring filter 16 of RR2 in FIG. the heater value is adjusted so that the monitor current of the photodetector 20 becomes maximum.
  • Adjusting the wavelength of light extracted by the ring filter 16 for each monitor wavelength (each ring filter 16 from RR1 to RRN) by repeating the same work as the above work from wavelength ⁇ 3 to wavelength ⁇ N . can be done.
  • the state of the multi-wavelength laser device 102 is exactly the same as the state of the multi-wavelength laser device 101 according to the second embodiment, so the subsequent operations are also not possible. It can be implemented in the same manner as the second form. It should be noted that it is possible to freely combine each embodiment, modify any component of each embodiment, or omit any component from each embodiment.
  • the multi-wavelength laser device can extract multi-wavelength light with a constant output of each peak wavelength from an external resonator, so it can be used for technologies using multi-wavelength light.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Nonlinear Science (AREA)
  • Electromagnetism (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Semiconductor Lasers (AREA)

Abstract

多波長レーザ装置(100)におけるマッハツェンダスイッチ(4)は、第1の導波路を通過する多波長光と第2の導波路を通過する多波長光との位相差を変化させることにより、第1の入力ポートから利得部(2)に出力される多波長光と第2の入力ポートから出力導波路(6)に出力される多波長光との出力分岐比を調整可能である

Description

多波長レーザ装置
 本開示は、多波長レーザ装置に関する。
 光通信システムにおける大容量光伝送を実現するために、波長多重通信(WDM : Wavelength Division Multiplexing)技術は、1本の光ファイバ中に、波長の異なる複数の光信号を束ねることにより、複数の光信号を1本の光ファイバで送信する。
 WDM技術の例として、特許文献1には、外部共振器型の多波長レーザ装置が記載されている。当該多波長レーザ装置は、半導体利得チップ、及び当該半導体利得チップを挟むように配置された2つのミラーから構成され、当該2つのミラー間に光を閉じ込めることにより光を増幅させる外部共振器を備えている。外部共振器には、閉じ込められた光から周期的なピーク波長を有する多波長光を抽出する周期波長フィルタと、多波長光を波長毎に分けることにより複数の光信号を出力する波長分光フィルタとが設置されている。
特開2018-85475号公報
 上述のような外部共振器において、増幅された多波長光を外部共振器から取り出すために、外部共振器内の導波路から多波長光を取り出す方向性結合器を用いる場合がある。しかし、方向性結合器は、波長依存性を有するため、方向性結合器によって取り出された多波長光における各ピーク波長の出力は、波長に応じて異なってしまうという問題がある。
 本開示は、上記のような問題点を解決するためになされたものであり、外部共振器から、各ピーク波長の出力が一定である多波長光を取り出すことができる技術を提供する。
 本開示に係る多波長レーザ装置は、光を増幅させる外部共振器、及び外部共振器が増幅させた光を出力する第1の出力導波路を有する多波長レーザ装置であって、半導体利得チップと、第1の入力ポート、第2の入力ポート、第1の出力ポート、第2の出力ポート、並びに、それぞれが第1の入力ポート及び第2の入力ポートと第1の出力ポート及び第2の出力ポートとの間を光学的に接続する第1の導波路及び第2の導波路、を有し、第1の入力ポートが半導体利得チップに光学的に接続し、第2の入力ポートが第1の出力導波路に光学的に接続している第1のマッハツェンダスイッチと、第1のマッハツェンダスイッチの第1の出力ポート及び第2の出力ポートと光学的に接続し、第1のマッハツェンダスイッチから入力された光を部分的に反射することにより、周期的なピーク波長を有する多波長光を第1のマッハツェンダスイッチに出力する周期波長ミラーと、半導体利得チップを基準として第1のマッハツェンダスイッチ側とは反対側に設置されることにより、半導体利得チップ及び周期波長ミラーとともに外部共振器を構成し、半導体利得チップを通過した光を半導体利得チップに向かって反射する反射部と、を備え、第1のマッハツェンダスイッチは、第1の導波路を通過する多波長光と第2の導波路を通過する多波長光との位相差を変化させることにより、第1の入力ポートから半導体利得チップに出力される多波長光と第2の入力ポートから第1の出力導波路に出力される多波長光との出力分岐比を調整可能である。
 本開示によれば、外部共振器から、各ピーク波長の出力が一定である多波長光を取り出すことができる。
実施の形態1に係る多波長レーザ装置100の構成を示すブロック図である。 実施の形態1に係る多波長レーザ装置100の構成を示す概略図である。 実施の形態1に係る多波長レーザ装置100と異なる構成を有する別の多波長レーザ装置を示す図である。 図3が示す別の多波長レーザ装置におけるSi細線導波路のリング共振器とループミラーの直列透過特性を示す。 実施の形態1に係る多波長レーザ装置のマッハツェンダスイッチ及びリング共振器型の周期波長ミラーにおける、マッハツェンダスイッチの第1の入力ポートから第2の入力ポートへの多波長光の透過特性を示す。 実施の形態2に係る多波長レーザ装置の構成を示すブロック図である。 実施の形態2に係る多波長レーザ装置の構成を示す概略図である。 実施の形態3に係る多波長レーザ装置の構成を示す概略図である。
 以下、本開示をより詳細に説明するため、本開示を実施するための形態について、添付の図面に従って説明する。
実施の形態1.
 図1は、実施の形態1に係る多波長レーザ装置100の構成を示すブロック図である。図2は、実施の形態1に係る多波長レーザ装置100の構成を示す概略図である。図1及び図2が示すように、多波長レーザ装置100は、反射部1、利得部2、位相制御部3、マッハツェンダスイッチ4(第1のマッハツェンダスイッチ)、周期波長ミラー5、及び出力導波路6を備えている。
 多波長レーザ装置100は、光を増幅させる外部共振器、及び当該外部共振器が増幅させた光を出力する出力導波路6(第1の出力導波路)を有する。当該外部共振器は、反射部1、利得部2及び周期波長ミラー5から構成される。
 より具体的には、多波長レーザ装置100は、外部共振器内に周期波長ミラー5を備え、多波長で同時発振しうる外部共振器型多波長レーザ装置である。なお、図1及び図2の例では、N波長の信号光(λ~λ)を同時発振する多波長レーザを例に挙げて示している(Nは2以上の正の整数)。多波長レーザ装置100における、反射部1と周期波長ミラー5との間には、利得部2が配置されている。また、多波長レーザ装置100における、利得部2と周期波長ミラー5との間には、位相制御部3及びマッハツェンダスイッチ4が直列に配置されている。
 利得部2は、半導体利得チップである。より具体的には、利得部2は、例えば、量子ドット利得媒質を備える量子ドット利得チップである。
 反射部1は、利得部2を基準としてマッハツェンダスイッチ4側とは反対側に設置されることにより、利得部2及び周期波長ミラー5とともに外部共振器を構成する。反射部1は、利得部2を通過した光を利得部2に向かって反射する。
 例えば、利得部2が量子ドット利得チップである場合、反射部1は、当該量子ドット利得チップの劈開端面でもよい。しかし、利得部2としては、そのような劈開端面よりも、例えば、高反射膜コーティングされた端面のほうが好ましい。利得部2は、ループミラー、又はDBRミラー等の導波路素子であってもよい。
 位相制御部3は、利得部2とマッハツェンダスイッチ4との間に設置されている。位相制御部3は、通過する多波長光の位相を制御する。より具体的には、位相制御部3は、光導波路に熱光学効果等によって位相変化を与える素子である。なお、多波長レーザ装置100は、位相制御部3を備えていなくてもよいが、外部共振器型レーザの発振波長の安定性向上を見込めるため、多波長レーザ装置100は、位相制御部3を備えることが好ましい。
 マッハツェンダスイッチ4は、第1の入力ポート、第2の入力ポート、第1の出力ポート、第2の出力ポート、並びに、それぞれが第1の入力ポート及び第2の入力ポートと第1の出力ポート及び第2の出力ポートとの間を光学的に接続する第1の導波路及び第2の導波路、を有している。つまり、マッハツェンダスイッチ4は、2×2の入出力ポートを備えるマッハツェンダー型のスイッチである。
 マッハツェンダスイッチ4が有する第1の入力ポートは、利得部2に光学的に接続している。より詳細には、実施の形態1では、マッハツェンダスイッチ4が有する第1の入力ポートは、位相制御部3を介して利得部2に光学的に接続している。マッハツェンダスイッチ4が有する第2の入力ポートは、出力導波路6に光学的に接続している。
 周期波長ミラー5は、マッハツェンダスイッチ4の第1の出力ポート及び第2の出力ポートと光学的に接続している。周期波長ミラー5は、マッハツェンダスイッチ4から入力された光を部分的に反射することにより、周期的なピーク波長を有する多波長光をマッハツェンダスイッチ4に出力する。
 より具体的には、実施の形態1では、周期波長ミラー5は、周期的なピーク波長の光のみを反射する素子である。周期波長ミラー5は、1×2光カプラ及びリング共振器によって構成される。なお、周期波長ミラー5は、2×2光カプラとリング共振器によって構成されてもよい。1×2光カプラによって分岐した2つの導波路は、それぞれ、リング共振器に近接するように設置されている。周期波長ミラー5のリング共振器のFSR(free spectral range)は、所望のWDM通信規格の波長間隔に一致するように設計されている。また、周期波長ミラー5内のリング共振器の導波路上には、ヒータ等が設置されている。これにより、熱光学効果によって当該導波路の屈折率を変化させることで、周期波長ミラー5は、反射する多波長光が有する周期的なピーク波長の波長間隔を調整することができるように構成されている。
 以下で、マッハツェンダスイッチ4の機能についてより詳細に説明する。マッハツェンダスイッチ4は、上述の第1の導波路を通過する多波長光と上述の第2の導波路を通過する多波長光との位相差を変化させることにより、上述の第1の入力ポートから利得部2に出力される多波長光と上述の第2の入力ポートから出力導波路6に出力される多波長光との出力分岐比を調整可能である。
 より具体的には、実施の形態1では、マッハツェンダスイッチ4は、熱光学効果等によって第1の導波路と第2の導波路との間に位相差を与えることで任意の分岐比で出力導波路6への出力分岐比を制御することが可能である。
 例えば、Si細線導波路では、単純な方向性結合器を適用することによって所望の分岐比率で光結合することができるが、方向性結合器は、原理的に波長依存性を有し、方向性結合器によって取り出された多波長光における各ピーク波長の出力は、波長に応じて異なってしまう。一方で、マッハツェンダスイッチ4では、入出力部に波長依存性のある方向性結合器を適用しても、第2の入力ポートから出力導波路6に出力される多波長光に関しては、波長依存性が低減される。マッハツェンダスイッチ4の出力分岐比を調整することによって、外部共振器の内部損失を変動させることができる。しかし、マッハツェンダスイッチ4の出力分岐比調整のための消費電力を低減させるためには、マッハツェンダスイッチ4は、電力無印加時の出力分岐比が所望の値になるように設計されていることが好ましい。
 以下で、実施の形態1に係る多波長レーザ装置100の動作について説明する。利得部2に電流を印加すると、周期波長ミラー5のリング共振器のFSRに対応する波長の光が周期波長ミラー5と反射部1との間で共振が発生し、これにより内部損失を超える利得を得られた波長の光が、マッハツェンダスイッチ4の第2の入力ポートから出力導波路6に出力される。ここで、周期波長ミラー5において一定間隔Δλの波長の光以外の光は透過していってしまうため、一定間隔Δλの周期的なピーク波長を有する多波長光が共振し同時発振しうる。
 そして、出力導波路6からの多波長光をモニタしながら、上述の方法によりマッハツェンダスイッチ4の出力分岐比を調整することによって、所望の印加電流における外部共振器の内部損失を最小化させ、出力パワーを最大化させることができる。
 また、周期波長ミラー5及びマッハツェンダスイッチ4を利用することによって、上述の波長依存性を低減させることができるため、多波長レーザ出力の波長毎の出力パワーのばらつきを抑制することができる。
 以下で、実施の形態1に係る多波長レーザ装置100による波長依存性低減効果について説明するために、多波長レーザ装置100と異なる構成を有する別の多波長レーザ装置と比較する。図3は、実施の形態1に係る多波長レーザ装置100と異なる構成を有する別の多波長レーザ装置を示す図である。
 図3が示す別の多波長レーザ装置では、2つの反射部の間に、利得部及び周期波長フィルタが設置された構成である。図3における2つの反射部のうちの右側の反射部は、周期波長フィルタを通過した光の一部のパワーを反射する一方で、残りのパワーを透過する。そのため、当該反射部における周期波長フィルタに接続する導波路とは反対側の導波路が出力導波路として機能する。
 例えば、Si細線導波路を用いたループミラーによって、図3における右側の反射部を構成した場合、ループミラーの方向性結合器は、波長依存性を有するため、方向性結合器によって取り出された多波長光における各ピーク波長の出力は、波長毎にばらついてしまう。
 以下で、図3が示す別の多波長レーザ装置の透過特性と、実施の形態1に係る多波長レーザ装置100の透過特性とを比較する。なお、以下では、図3が示す別の多波長レーザ装置の周期波長フィルタとしてSi細線導波路のリング共振器を用い、図3における右側の反射部としてループミラーを用いたものとする。図4は、図3が示す別の多波長レーザ装置におけるSi細線導波路のリング共振器とループミラーの直列透過特性を示す。一方で、図5は、実施の形態1に係る多波長レーザ装置100のマッハツェンダスイッチ4及びリング共振器型の周期波長ミラー5における、マッハツェンダスイッチ4の第1の入力ポートから第2の入力ポートへの多波長光の透過特性を示す。ただし、図4と図5の各例では、リング共振器の構成は同一として、ループミラーの透過率とマッハツェンダスイッチの分岐比率とがともに50%となる条件で透過特性をシミュレーションにより計算している。図4及び図5において、縦軸は、透過率(dB)を示し、横軸は、波長(nm)を示す。
 図4が示すグラフと図5が示すグラフとを比較すると理解できるように、図4が示すグラフでは、ループミラーの波長依存性によって長波長側になるほど透過率が上昇してしまっている一方で、図5が示すグラフでは、比較的にフラットな透過特性が得られていることがわかる。つまり、実施の形態1に係る多波長レーザ装置100では、外部共振器から、各ピーク波長の出力が一定である多波長光を取り出すことができる。
 以上のように、実施の形態1に係る多波長レーザ装置100は、光を増幅させる外部共振器、及び当該外部共振器が増幅させた光を出力する出力導波路6を有する多波長レーザ装置100であって、半導体利得チップである利得部2と、第1の入力ポート、第2の入力ポート、第1の出力ポート、第2の出力ポート、並びに、それぞれが第1の入力ポート及び第2の入力ポートと第1の出力ポート及び第2の出力ポートとの間を光学的に接続する第1の導波路及び第2の導波路、を有し、当該第1の入力ポートが利得部2に光学的に接続し、当該第2の入力ポートが出力導波路6に光学的に接続しているマッハツェンダスイッチ4と、マッハツェンダスイッチ4の第1の出力ポート及び第2の出力ポートと光学的に接続し、マッハツェンダスイッチ4から入力された光を部分的に反射することにより、周期的なピーク波長を有する多波長光をマッハツェンダスイッチ4に出力する周期波長ミラー5と、利得部2を基準としてマッハツェンダスイッチ4側とは反対側に設置されることにより、利得部2及び周期波長ミラー5とともに外部共振器を構成し、利得部2を通過した光を利得部2に向かって反射する反射部1と、を備え、マッハツェンダスイッチ4は、第1の導波路を通過する多波長光と第2の導波路を通過する多波長光との位相差を変化させることにより、第1の入力ポートから利得部2に出力される多波長光と第2の入力ポートから出力導波路6に出力される多波長光との出力分岐比を調整可能である。
 上記の構成によれば、マッハツェンダスイッチ4の出力分岐比を調整することにより、外部共振器から、各ピーク波長の出力が一定である多波長光を取り出すことができる。
 例えば、特許文献1に記載の多波長レーザ装置をWDM伝送に用いる場合、発振特性が規格で定められた波長グリッド内に収まっている必要がある。外部共振器型量子ドットレーザの外部共振器内に周期波長フィルタを設置して多波長光を同時発振しうる従来の多波長レーザ装置においては、周期波長フィルタが製造誤差により中心波長が変動するため、温度制御する方法、又は周期波長フィルタ上に形成した抵抗成分に電力を印加する方法などの対策を行うことによって中心波長を制御する必要がある。従って、発振波長を調整するための波長モニタ機構が必須となる。特許文献1では、外部共振器内に波長分光フィルタを周期波長フィルタに対して直列に設置し、波長分光フィルタに設けたモニタ用のポートを通過した光と周期波長フィルタの透過ポートを通過した光を用いて波長調整している。しかし、外部共振器中に波長分光フィルタを挿入しているため外部共振器の内部損失が増大し、結果、出力パワーの低下が発生してしまうという問題がある。
 しかし、実施の形態1に係る多波長レーザ装置100の構成によれば、外部共振器の内部損失を増加させることなしに、外部共振器から、各ピーク波長の出力が一定である多波長光を取り出すことができる。そして、取り出した多波長光の各ピーク波長をモニタし、調整することも可能である。
実施の形態2.
 実施の形態2では、多波長光の各ピーク波長の出力をモニタする構成について説明する。
 以下で、実施の形態2について図面を参照して説明する。なお、実施の形態1で説明した構成と同様の機能を有する構成については同一の符号を付し、その説明を省略する。図6は、実施の形態2に係る多波長レーザ装置101の構成を示すブロック図である。図7は、実施の形態2に係る多波長レーザ装置101の構成を示す概略図である。図6及び図7が示すように、多波長レーザ装置101は、実施の形態1に係る多波長レーザ装置100の構成に加えて、第2のマッハツェンダスイッチ11、光カプラ14、光検出器15(第1の光検出器)、複数のリングフィルタ16、及び複数の光検出器17(複数の第2の光検出器)をさらに備えている。なお、図6及び図7が示す第1のマッハツェンダスイッチ10は、実施の形態1で説明したマッハツェンダスイッチ4と同じ機能を有する。
 実施の形態2に係る多波長レーザ装置101は、実施の形態1に係る多波長レーザ装置100の構成に、波長モニタ機構を追加した、多波長で同時発振しうる外部共振器型多波長レーザ装置である。多波長レーザ装置101は、導波路として、出力導波路12(第2の出力導波路)、モニタ導波路13、出力モニタ導波路18、及び波長モニタ導波路19をさらに有する。なお、図6及び図7では、N波長の信号光(λ~λ)を同時発振する多波長レーザを例に挙げて示している(Nは2以上の正の整数)。
 第2のマッハツェンダスイッチ11は、第1の入力ポート、第2の入力ポート、第1の出力ポート、第2の出力ポート、並びに、それぞれが第1の入力ポート及び第2の入力ポートと第1の出力ポート及び第2の出力ポートとの間を光学的に接続する第1の導波路及び第2の導波路、を有する。つまり、第2のマッハツェンダスイッチ11は、第1のマッハツェンダスイッチ10と同様に2×2の入出力ポートを備えるマッハツェンダー型のスイッチである。
 第2のマッハツェンダスイッチ11が有する第1の入力ポートは、出力導波路6を介して第1のマッハツェンダスイッチ10と光学的に接続している。第2のマッハツェンダスイッチ11が有する第1の出力ポートは、出力導波路12に光学的に接続している。第2のマッハツェンダスイッチ11が有する第2の出力ポートは、モニタ導波路13と光学的に接続している。
 第2のマッハツェンダスイッチ11は、第2のマッハツェンダスイッチ11の第1の導波路を通過する多波長光と第2のマッハツェンダスイッチ11の第2の導波路を通過する多波長光との位相差を変化させることにより、第2のマッハツェンダスイッチ11の第1の出力ポートから出力導波路12に出力される多波長光と第2の出力ポートからモニタ導波路13に出力される多波長光との出力分岐比を調整可能である。つまり、第2のマッハツェンダスイッチ11は、第1のマッハツェンダスイッチ10と同様に、熱光学効果等によって第1の導波路と第2の導波路との間に位相差を与えることよって、任意の出力分岐比で出力ポートから出力される多波長光のパワーを制御することが可能である。
 光カプラ14は、モニタ導波路13を介して第2のマッハツェンダスイッチ11と光学的に接続する入力ポート、出力モニタ導波路18と光学的に接続する第1の出力ポート、及び波長モニタ導波路19と光学的に接続する第2の出力ポートを有する。つまり、光カプラ14は、1×2光カプラである。光カプラ14は、第2のマッハツェンダスイッチ11から入力された多波長光を分岐させ、出力モニタ導波路18及び波長モニタ導波路19にそれぞれ出力する。
 光検出器15は、出力モニタ導波路18を介して光カプラ14と光学的に接続している。光検出器15は、出力モニタ導波路18から入力された多波長光を検出する。
 複数のリングフィルタ16は、それぞれが、波長モニタ導波路19と光学的に接続されている。より具体的には、実施の形態2では、複数のリングフィルタ16は、N個のリング共振器であり、波長モニタ導波路19は、N個のリング共振器に直列で光学的に接続している。
 複数のリングフィルタ16は、それぞれ、波長モニタ導波路19から入力された多波長光から所定の波長の光を抽出する。より具体的には、実施の形態2では、複数のリングフィルタ16は、複数のリング共振器であり、各リング共振器は、抽出する光の波長がWDM通信の規格に従った波長となるように構成され、当該波長は、リング共振器毎に異なるドロップ波長(λ,λ,…,λ)である。
 複数の光検出器17は、それぞれ、複数のリングフィルタ16のうちの対応するリングフィルタに接続している。複数の光検出器17は、それぞれ、複数のリングフィルタ16のうちの対応するリングフィルタが抽出した光を検出する。
 実施の形態2に係る周期波長ミラー5は、実施の形態1と同様に、第1のマッハツェンダスイッチ10に出力する多波長光が有する周期的なピーク波長の波長間隔を調整可能である。より具体的には、実施の形態2では、周期波長ミラー5内のリング共振器の導波路上には、ヒータ等が設置されている。これにより、熱光学効果によって当該導波路の屈折率を変化させることで、周期波長ミラー5は、反射する多波長光が有する周期的なピーク波長の波長間隔を調整することができるように構成されている。
 以下で、実施の形態2に係る多波長レーザ装置101の動作について説明する。利得部2に電流を印加すると、周期波長ミラー5のリング共振器のFSRに対応する波長の光が周期波長ミラー5と反射部1との間で共振することにより発生し、これにより内部損失を超える利得を得られた波長の光が、第1のマッハツェンダスイッチ10の第2の入力ポートから出力導波路6に出力される。ここで、周期波長ミラー5において一定間隔Δλの波長の光以外の光は透過していってしまうため、一定間隔Δλの周期的なピーク波長を有する多波長光が共振し同時発振しうる。
 上述の方法により第2のマッハツェンダスイッチ11の出力分岐比を調整し、多波長光がモニタ導波路13(バス導波路)を通過するように調整する。次に、光検出器15をモニタし、光検出器15の電流が最大となるように第1のマッハツェンダスイッチ10の分岐比を調整することにより、外部共振器の内部損失を、所望の印加電流において最大出力パワーを実現する内部損失に調整する。これにより、多波長レーザ装置101の出力パワーを最大化することができる。
 次に、多波長レーザ装置101の発振波長がWDM規格に従った波長になるように、周期波長ミラー5における上述の波長間隔を調整する。実施の形態2に係る波長モニタ導波路19にそれぞれ光学的に接続した複数のリングフィルタ16は、それぞれ、WDM規格に従った波長の光をドロップするように設計されている。そのため、外部共振器型レーザである多波長レーザ装置101が出力する多波長光が有する周期的なピーク波長がWDM規格に従った波長である場合、複数の光検出器17(図7ではN個の光検出器17)の各モニタ電流が最大化される。
 しかし、通常、外部共振器型多波長レーザの発振波長を規定する周期的な波長間隔は、製造誤差によってオフセットを持つ。ここで、複数の光検出器17をそれぞれモニタしながら各モニタ電流が最大となるように、周期波長ミラー5のリング共振器の屈折率をヒータにより調整させることによって、周期波長ミラー5が反射する多波長光が有する周期的なピーク波長の波長間隔がWDM規格に従った波長間隔になるようにオフセットを調整する。
 ピーク波長の調整が完了後は、モニタ導波路13への光出力は不要になるため、第2のマッハツェンダスイッチ11の上述の出力分岐比を調整することによって出力導波路12に全パワーが分岐するように調整する。以上の動作によって、外部共振器型レーザの多波長レーザ装置101がWDM規格に従った発振波長をもち、多波長レーザ装置101が出力する多波長光の出力パワーを最大化することができる。
実施の形態3.
 実施の形態3では、実施の形態2で説明した複数のリングフィルタ16を調整する構成について説明する。
 以下で、実施の形態3について図面を参照して説明する。なお、実施の形態1又は実施の形態2で説明した構成と同様の機能を有する構成については同一の符号を付し、その説明を省略する。図8は、実施の形態3に係る多波長レーザ装置102の構成を示す概略図である。図8が示すように、多波長レーザ装置102は、実施の形態2に係る多波長レーザ装置101の構成に加えて、光検出器20(第3の光検出器)、及び複数の光源21を備えている。
 実施の形態3に係る多波長レーザ装置102は、実施の形態2に係る多波長レーザ装置101の波長モニタ機構において、波長モニタ用のリング共振器であるリングフィルタ16の調整機構を備えた構成を有する。実施の形態2では、波長モニタ用のリングフィルタ16が設計通り製作されていた場合の実施形態を説明したが、実施の形態3では、製造誤差などによりリングフィルタ16のドロップ波長が変動してしまった場合に調整するための構成を説明する。なお、図8では、N波長の信号光(λ~λ)を同時発振する多波長レーザ装置を例に挙げて示している。
 複数の光源21は、それぞれ、複数のリングフィルタ16のうちの対応するリングフィルタに光学的に接続されている。複数の光源21は、当該対応するリングフィルタに所定の波長の光を出力する。
 より具体的には、実施の形態3では、複数の光源21は、それぞれ、波長可変光源(TLD:Tunable Laser Diode)である。複数の光源21は、それぞれ、対応する波長モニタ用のリングフィルタ16の光検出器17に接続している導波路の端部とは反対側の端部に光学的に接続している。ここで、当該導波路と光源21との接続は、ファイバを介した端面結合でもよいし、グレーティングカプラによる結合でもよい。当該接続が区レーティングカプラによる結合である場合、特に、N個のグレーティングカプラをアレイ状に配置することが好ましい。
 光検出器20は、複数の光源21がそれぞれ出力し、複数のリングフィルタ16のうちの対応するリングフィルタが抽出した光を検出する。より具体的には、実施の形態3では、光検出器20は、複数のリングフィルタ16が直列配置される波長モニタ導波路19の終端部に光学的に接続されている。
 実施の形態3に係る複数のリングフィルタ16は、それぞれ、抽出する光の波長を調整可能である。より具体的には、実施の形態3では、複数のリングフィルタ16の導波路上には、ヒータ等が設置されている。これにより、熱光学効果によって当該導波路の屈折率を変化させることで、複数のリングフィルタ16は、それぞれ、抽出する光の波長を調整することができるように構成されている。
 以下で、実施の形態3に係る多波長レーザ装置102の動作について説明する。まず、多波長レーザ装置102で利用したい波長、すなわちWDM規格に従った波長のうちで最も短波側の波長(又は最も長波側の波長)λの光を図8におけるPD1の光源21に出力させ、当該光を図8におけるRR1のリングフィルタ16に印加する。図8におけるRR1のリングフィルタ16に印加された光は、波長モニタ導波路19を介して光検出器20に到達する。そして、図8におけるRR1のリングフィルタ16のヒータを利用して加熱しながら、光検出器20のモニタ電流が最大となるようにヒータ値を調整する。
 次に、多波長レーザ装置102で利用したい波長、すなわちWDM規格に従った波長のうちで最も短波側の波長(又は最も長波側の波長)λに隣接する波長λの光を図8におけるPD2の光源21に出力させ、当該光を図8におけるRR2のリングフィルタ16に印加する。図8におけるRR2のリングフィルタ16に印加された光は、波長モニタ導波路19を介して光検出器20に到達する。そして、図8におけるRR2のリングフィルタ16のヒータを利用して加熱しながら、光検出器20のモニタ電流が最大となるようにヒータ値を調整する。
 上記の作業と同様の作業を、波長λから波長λまで繰り返すことによって、各モニタ波長用のリングフィルタ16(RR1からRRNまでの各リングフィルタ16)が抽出する光の波長を調整することができる。各リングフィルタ16のヒータ値を固定した後は、多波長レーザ装置102の状態は、実施の形態2に係る多波長レーザ装置101の状態と全く同様の状態になるので、以降の動作も実施の形態2と同様に実施することができる。
 なお、各実施の形態の自由な組み合わせ、あるいは各実施の形態の任意の構成要素の変形、もしくは各実施の形態において任意の構成要素の省略が可能である。
 本開示に係る多波長レーザ装置は、外部共振器から、各ピーク波長の出力が一定である多波長光を取り出すことができるため、多波長光を用いる技術に利用可能である。
 1 反射部、2 利得部、3 位相制御部、4 マッハツェンダスイッチ、5 周期波長ミラー、6 出力導波路、10 第1のマッハツェンダスイッチ、11 第2のマッハツェンダスイッチ、12 出力導波路、13 モニタ導波路、14 光カプラ、15 光検出器、16 リングフィルタ、17 光検出器、18 出力モニタ導波路、19 波長モニタ導波路、20 光検出器、21 光源、100,101,102 多波長レーザ装置。

Claims (7)

  1.  光を増幅させる外部共振器、及び当該外部共振器が増幅させた光を出力する第1の出力導波路を有する多波長レーザ装置であって、
     半導体利得チップと、
     第1の入力ポート、第2の入力ポート、第1の出力ポート、第2の出力ポート、並びに、それぞれが当該第1の入力ポート及び当該第2の入力ポートと当該第1の出力ポート及び当該第2の出力ポートとの間を光学的に接続する第1の導波路及び第2の導波路、を有し、当該第1の入力ポートが前記半導体利得チップに光学的に接続し、当該第2の入力ポートが前記第1の出力導波路に光学的に接続している第1のマッハツェンダスイッチと、
     前記第1のマッハツェンダスイッチの第1の出力ポート及び第2の出力ポートと光学的に接続し、前記第1のマッハツェンダスイッチから入力された光を部分的に反射することにより、周期的なピーク波長を有する多波長光を前記第1のマッハツェンダスイッチに出力する周期波長ミラーと、
     前記半導体利得チップを基準として前記第1のマッハツェンダスイッチ側とは反対側に設置されることにより、前記半導体利得チップ及び前記周期波長ミラーとともに前記外部共振器を構成し、前記半導体利得チップを通過した光を前記半導体利得チップに向かって反射する反射部と、を備え、
     前記第1のマッハツェンダスイッチは、前記第1の導波路を通過する多波長光と前記第2の導波路を通過する多波長光との位相差を変化させることにより、前記第1の入力ポートから前記半導体利得チップに出力される多波長光と前記第2の入力ポートから前記第1の出力導波路に出力される多波長光との出力分岐比を調整可能であることを特徴とする、多波長レーザ装置。
  2.  前記半導体利得チップと前記第1のマッハツェンダスイッチとの間に設置され、通過する多波長光の位相を制御する位相制御部をさらに備えていることを特徴とする、請求項1に記載の多波長レーザ装置。
  3.  第2の出力導波路、モニタ導波路、出力モニタ導波路、及び波長モニタ導波路をさらに有し、
     第1の入力ポート、第2の入力ポート、第1の出力ポート、第2の出力ポート、並びに、それぞれが当該第1の入力ポート及び当該第2の入力ポートと当該第1の出力ポート及び当該第2の出力ポートとの間を光学的に接続する第1の導波路及び第2の導波路、を有し、当該第1の入力ポートが前記第1の出力導波路を介して前記第1のマッハツェンダスイッチと光学的に接続し、当該第1の出力ポートが前記第2の出力導波路に光学的に接続し、当該第2の出力ポートが前記モニタ導波路と光学的に接続している第2のマッハツェンダスイッチと、
     前記モニタ導波路を介して前記第2のマッハツェンダスイッチと光学的に接続する入力ポート、前記出力モニタ導波路と光学的に接続する第1の出力ポート、及び前記波長モニタ導波路と光学的に接続する第2の出力ポートを有し、前記第2のマッハツェンダスイッチから入力された多波長光を分岐させ、前記出力モニタ導波路及び前記波長モニタ導波路にそれぞれ出力する光カプラと、
     前記出力モニタ導波路を介して前記光カプラと光学的に接続し、前記出力モニタ導波路から入力された多波長光を検出する第1の光検出器と、
     それぞれが、前記波長モニタ導波路と光学的に接続され、前記波長モニタ導波路から入力された多波長光から所定の波長の光を抽出する複数のリングフィルタと、
     それぞれが、前記複数のリングフィルタのうちの対応するリングフィルタが抽出した光を検出する複数の第2の光検出器と、をさらに備え、
     前記第2のマッハツェンダスイッチは、前記第2のマッハツェンダスイッチの第1の導波路を通過する多波長光と前記第2のマッハツェンダスイッチの第2の導波路を通過する多波長光との位相差を変化させることにより、前記第2のマッハツェンダスイッチの第1の出力ポートから前記第2の出力導波路に出力される多波長光と前記第2の出力ポートから前記モニタ導波路に出力される多波長光との出力分岐比を調整可能であることを特徴とする、請求項1に記載の多波長レーザ装置。
  4.  前記周期波長ミラーは、前記第1のマッハツェンダスイッチに出力する多波長光が有する周期的なピーク波長の波長間隔を調整可能であることを特徴とする、請求項3に記載の多波長レーザ装置。
  5.  それぞれが、前記複数のリングフィルタのうちの対応するリングフィルタに光学的に接続され、当該対応するリングフィルタに所定の波長の光を出力する複数の光源と、
     前記複数の光源がそれぞれ出力し、前記複数のリングフィルタのうちの対応するリングフィルタが抽出した光を検出する第3の光検出器と、をさらに備えていることを特徴とする、請求項3に記載の多波長レーザ装置。
  6.  前記複数のリングフィルタは、それぞれ、抽出する光の波長を調整可能であることを特徴とする、請求項5に記載の多波長レーザ装置。
  7.  前記半導体利得チップは、量子ドット利得媒質を備えていることを特徴とする、請求項1から請求項6の何れか1項に記載の多波長レーザ装置。
PCT/JP2021/019344 2021-05-21 2021-05-21 多波長レーザ装置 WO2022244229A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/JP2021/019344 WO2022244229A1 (ja) 2021-05-21 2021-05-21 多波長レーザ装置
JP2023520410A JP7317266B2 (ja) 2021-05-21 2021-05-21 多波長レーザ装置
CN202180098212.6A CN117321866A (zh) 2021-05-21 2021-05-21 多波长激光装置
US18/379,369 US20240047945A1 (en) 2021-05-21 2023-10-12 Multiwavelength laser device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/019344 WO2022244229A1 (ja) 2021-05-21 2021-05-21 多波長レーザ装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/379,369 Continuation US20240047945A1 (en) 2021-05-21 2023-10-12 Multiwavelength laser device

Publications (1)

Publication Number Publication Date
WO2022244229A1 true WO2022244229A1 (ja) 2022-11-24

Family

ID=84140337

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/019344 WO2022244229A1 (ja) 2021-05-21 2021-05-21 多波長レーザ装置

Country Status (4)

Country Link
US (1) US20240047945A1 (ja)
JP (1) JP7317266B2 (ja)
CN (1) CN117321866A (ja)
WO (1) WO2022244229A1 (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000221548A (ja) * 1999-01-28 2000-08-11 Nippon Telegr & Teleph Corp <Ntt> 位相共役光発生装置
WO2005096462A1 (ja) * 2004-03-31 2005-10-13 Nec Corporation 波長可変レーザ
WO2013145195A1 (ja) * 2012-03-28 2013-10-03 富士通株式会社 光半導体デバイス
US20150180201A1 (en) * 2013-11-20 2015-06-25 Coriant Advanced Technology, LLC Quantum dot soa-silicon external cavity multi-wavelength laser
JP2018085475A (ja) * 2016-11-25 2018-05-31 富士通株式会社 多波長レーザ装置及び波長多重通信システム
JP2019504357A (ja) * 2015-12-31 2019-02-14 アルカテル−ルーセント ユーエスエー インコーポレーテッド チップの集積化を用いるフォトニック集積回路
JP2019087572A (ja) * 2017-11-02 2019-06-06 富士通株式会社 波長可変光源、及び光半導体装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5315792B2 (ja) 2008-05-26 2013-10-16 富士通株式会社 光変調器
JP6570418B2 (ja) 2015-10-23 2019-09-04 国立大学法人東京工業大学 多波長変調器

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000221548A (ja) * 1999-01-28 2000-08-11 Nippon Telegr & Teleph Corp <Ntt> 位相共役光発生装置
WO2005096462A1 (ja) * 2004-03-31 2005-10-13 Nec Corporation 波長可変レーザ
WO2013145195A1 (ja) * 2012-03-28 2013-10-03 富士通株式会社 光半導体デバイス
US20150180201A1 (en) * 2013-11-20 2015-06-25 Coriant Advanced Technology, LLC Quantum dot soa-silicon external cavity multi-wavelength laser
JP2019504357A (ja) * 2015-12-31 2019-02-14 アルカテル−ルーセント ユーエスエー インコーポレーテッド チップの集積化を用いるフォトニック集積回路
JP2018085475A (ja) * 2016-11-25 2018-05-31 富士通株式会社 多波長レーザ装置及び波長多重通信システム
JP2019087572A (ja) * 2017-11-02 2019-06-06 富士通株式会社 波長可変光源、及び光半導体装置

Also Published As

Publication number Publication date
CN117321866A (zh) 2023-12-29
JP7317266B2 (ja) 2023-07-28
US20240047945A1 (en) 2024-02-08
JPWO2022244229A1 (ja) 2022-11-24

Similar Documents

Publication Publication Date Title
JP5772989B2 (ja) レーザ素子
JP6540214B2 (ja) 多波長レーザ光源及び波長多重通信システム
US7962045B2 (en) Optical transmitter having a widely tunable directly modulated laser and periodic optical spectrum reshaping element
US6091744A (en) Wavelength selectable source for wavelength division multiplexed applications
US8885675B2 (en) Wavelength variable laser device, and method and program for controlling the same
JP5029364B2 (ja) 波長可変フィルタおよび波長可変レーザ
US20170353001A1 (en) Tunable laser
US20160156149A1 (en) Tunable laser and tunable laser module
US9436022B2 (en) Modulated light source
JP2006278770A (ja) 波長可変レーザ
JP4332067B2 (ja) 波長可変レーザ装置
AU2006200889A1 (en) Wavelength tunable laser
JP6801395B2 (ja) 多波長レーザ装置及び波長多重通信システム
JP2009278015A (ja) 平面光波回路及びこれを備えた波長可変レーザ装置
US9966724B2 (en) Laser and method of controlling laser
CN113937617B (zh) 一种多波长激光器
JPH1146046A (ja) シングルモードレーザ
WO2020107315A1 (zh) 两段式dbr激光器及单片集成阵列光源芯片
US8995480B2 (en) Tunable laser module
CN107611777A (zh) 一种灵活波长的窄线宽半导体外腔激光器及控制方法
WO2015085544A1 (zh) 一种激光器
JP7317266B2 (ja) 多波長レーザ装置
CN111684674B (zh) 波长可变激光器以及光模块
WO2020105168A1 (ja) 波長多重通信システム及び波長多重通信システムの調整方法
JPH1168233A (ja) 可変波長レーザ光源

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21940843

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023520410

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 202180098212.6

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21940843

Country of ref document: EP

Kind code of ref document: A1