JP2019218602A - Roughened copper foil, copper clad laminate and printed wiring board - Google Patents

Roughened copper foil, copper clad laminate and printed wiring board Download PDF

Info

Publication number
JP2019218602A
JP2019218602A JP2018116815A JP2018116815A JP2019218602A JP 2019218602 A JP2019218602 A JP 2019218602A JP 2018116815 A JP2018116815 A JP 2018116815A JP 2018116815 A JP2018116815 A JP 2018116815A JP 2019218602 A JP2019218602 A JP 2019218602A
Authority
JP
Japan
Prior art keywords
copper foil
roughened
copper
thickness
treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018116815A
Other languages
Japanese (ja)
Other versions
JP6985745B2 (en
Inventor
眞 細川
Makoto Hosokawa
眞 細川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Namics Corp
Original Assignee
Namics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Namics Corp filed Critical Namics Corp
Priority to JP2018116815A priority Critical patent/JP6985745B2/en
Priority to PCT/JP2019/020038 priority patent/WO2019244541A1/en
Priority to KR1020207035610A priority patent/KR20210020899A/en
Priority to CN201980035293.8A priority patent/CN112204171B/en
Priority to TW108118108A priority patent/TWI808183B/en
Publication of JP2019218602A publication Critical patent/JP2019218602A/en
Application granted granted Critical
Publication of JP6985745B2 publication Critical patent/JP6985745B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/60Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using alkaline aqueous solutions with pH greater than 8
    • C23C22/63Treatment of copper or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/78Pretreatment of the material to be coated
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/82After-treatment
    • C23C22/83Chemical after-treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C26/00Coating not provided for in groups C23C2/00 - C23C24/00
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F11/00Inhibiting corrosion of metallic material by applying inhibitors to the surface in danger of corrosion or adding them to the corrosive agent
    • C23F11/08Inhibiting corrosion of metallic material by applying inhibitors to the surface in danger of corrosion or adding them to the corrosive agent in other liquids
    • C23F11/10Inhibiting corrosion of metallic material by applying inhibitors to the surface in danger of corrosion or adding them to the corrosive agent in other liquids using organic inhibitors
    • C23F11/14Nitrogen-containing compounds
    • C23F11/149Heterocyclic compounds containing nitrogen as hetero atom
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D1/00Electroforming
    • C25D1/04Wires; Strips; Foils
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/60Electroplating characterised by the structure or texture of the layers
    • C25D5/605Surface topography of the layers, e.g. rough, dendritic or nodular layers
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/09Use of materials for the conductive, e.g. metallic pattern
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2222/00Aspects relating to chemical surface treatment of metallic material by reaction of the surface with a reactive medium
    • C23C2222/20Use of solutions containing silanes

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Metallurgy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Laminated Bodies (AREA)
  • Manufacturing Of Printed Wiring (AREA)
  • Parts Printed On Printed Circuit Boards (AREA)
  • Chemical Treatment Of Metals (AREA)
  • Electroplating Methods And Accessories (AREA)

Abstract

To provide a roughened copper foil capable of improving significantly heat-proof peel strength with a thermoplastic resin having a low dielectric constant.SOLUTION: A roughened copper foil has, at least on one side, a roughened surface constituted of a needle crystal and/or a plate crystal containing cuprous oxide and/or copper oxide. In the roughened surface of the roughened copper foil, the thickness of cuprous oxide determined by a continuous electrochemical reduction analysis (SERA) is 71-300 nm, and further the thickness of copper oxide determined by the continuous electrochemical reduction analysis (SERA) is 0-20 nm.SELECTED DRAWING: None

Description

本発明は、粗化処理銅箔、銅張積層板及びプリント配線板に関する。   The present invention relates to a roughened copper foil, a copper-clad laminate, and a printed wiring board.

ファインピッチ回路の形成に適したプリント配線板銅箔として、酸化処理及び還元処理(以下、酸化還元処理と総称することがある)を経て形成された微細凹凸を粗化処理面として備えた粗化処理銅箔が提案されている。   As a printed wiring board copper foil suitable for forming fine pitch circuits, roughening with fine irregularities formed as a roughened surface through oxidation and reduction (hereinafter sometimes collectively referred to as oxidation-reduction) Treated copper foil has been proposed.

例えば、特許文献1(国際公開第2014/126193号)には、最大長さが500nm以下の銅複合化合物からなる針状の微細凹凸で形成した粗化処理層を表面に備えた表面処理銅箔が開示されている。また、特許文献2(国際公開第2015/040998号)には、銅複合化合物からなる最大長さが500nm以下のサイズの針状の凸状部より形成された微細凹凸を有する粗化処理層と、当該粗化処理層の表面にシランカップリング剤処理層とを少なくとも一面に備えた銅箔が開示されている。これらの文献の粗化処理銅箔によれば、粗化処理層の微細凹凸によるアンカー効果により絶縁樹脂基材との良好な密着性を得ることができると共に、良好なエッチングファクターを備えたファインピッチ回路の形成が可能になるとされている。特許文献1及び2に開示される微細凹凸を有する粗化処理層はいずれも、アルカリ脱脂等の予備処理を行った後、酸化還元処理を経て形成されている。こうして形成される微細凹凸は銅複合化合物の針状結晶及び/又は板状結晶で構成される特有の形状を有するものであり、かかる微細凹凸を備えた粗化処理面は、微細銅粒の付着により形成された粗化処理面や、エッチングにより凹凸が付与された粗化処理面よりも概して微細である。   For example, Patent Document 1 (International Publication No. WO 2014/126193) discloses a surface-treated copper foil having a roughened layer formed on the surface with needle-like fine irregularities formed of a copper composite compound having a maximum length of 500 nm or less. Is disclosed. Patent Document 2 (International Publication No. 2015/040998) discloses a roughening treatment layer having fine irregularities formed of needle-like convex portions having a maximum length of 500 nm or less and made of a copper composite compound. There is disclosed a copper foil provided with at least one surface of a silane coupling agent treatment layer on the surface of the roughening treatment layer. According to the roughened copper foil described in these documents, it is possible to obtain good adhesion to the insulating resin base material by the anchor effect due to the fine irregularities of the roughened layer, and fine pitch having a good etching factor. It is said that a circuit can be formed. Each of the roughening layers having fine irregularities disclosed in Patent Literatures 1 and 2 is formed through an oxidation-reduction treatment after performing a preliminary treatment such as alkali degreasing. The fine irregularities formed in this way have a specific shape composed of needle-like crystals and / or plate-like crystals of the copper composite compound. The surface is generally finer than the roughened surface formed by the process described above and the roughened surface provided with irregularities by etching.

一方、近年の携帯用電子機器等の高機能化に伴い、大量の情報の高速処理をすべく信号の高周波化が進んでおり、高周波用途に適したプリント配線板が求められている。このような高周波用プリント配線板には、高周波信号を品質低下させずに伝送可能とするために、伝送損失の低減が望まれる。プリント配線板は配線パターンに加工された銅箔と絶縁樹脂基材とを備えたものであるが、伝送損失は、銅箔に起因する導体損失と、絶縁樹脂基材に起因する誘電体損失とから主としてなる。したがって、絶縁樹脂基材に起因する誘電体損失を低減すべく、低誘電率の熱可塑性樹脂を用いることができれば好都合である。しかしながら、ポリテトラフルオロエチレン(PTFE)等のフッ素樹脂や液晶ポリマー(LCP)樹脂に代表されるような低誘電率の熱可塑性樹脂は、熱硬化性樹脂とは異なり、化学的な活性が低く、それ故銅箔との密着力が低いとの問題がある。   On the other hand, with the advancement of functions of portable electronic devices and the like in recent years, the frequency of signals has been increased in order to process a large amount of information at high speed, and printed wiring boards suitable for high frequency applications have been demanded. For such a high-frequency printed wiring board, it is desired to reduce transmission loss in order to transmit a high-frequency signal without deteriorating the quality. The printed wiring board is provided with a copper foil processed into a wiring pattern and an insulating resin base material, but transmission loss is caused by a conductor loss caused by the copper foil and a dielectric loss caused by the insulating resin base material. Mainly from. Therefore, it would be advantageous if a low dielectric constant thermoplastic resin could be used to reduce dielectric loss due to the insulating resin substrate. However, unlike a thermosetting resin, a thermoplastic resin having a low dielectric constant such as a fluororesin such as polytetrafluoroethylene (PTFE) or a liquid crystal polymer (LCP) resin has low chemical activity, Therefore, there is a problem that adhesion to the copper foil is low.

かかる問題に対処した銅張積層板の製造方法として、粗化処理銅箔の粗化処理面の酸化状態を制御することで、熱可塑性樹脂との密着力を向上させる手法が提案されている。例えば、特許文献3(国際公開第2017/150043号)には、酸化銅及び亜酸化銅を含む針状結晶で構成される微細凹凸を備えた粗化処理面を有する粗化処理銅箔に熱可塑性樹脂シートを貼り付けて銅張積層板を製造する方法が開示されており、この粗化処理面は連続電気化学還元分析(SERA)により決定される酸化銅厚さが1〜20nmであり、かつ、SERAにより決定される亜酸化銅厚さが15〜70nmであることが記載されている。この方法によれば、粗化処理銅箔の粗化処理面と熱可塑性樹脂との親和性を高められる結果、高い剥離強度を実現できるとされている。   As a method of manufacturing a copper-clad laminate that addresses such a problem, a method of improving the adhesion to a thermoplastic resin by controlling the oxidation state of a roughened surface of a roughened copper foil has been proposed. For example, Patent Literature 3 (International Publication No. WO 2017/150043) discloses that a roughened copper foil having a roughened surface having fine irregularities formed of needle-like crystals containing copper oxide and cuprous oxide is heated. A method of manufacturing a copper-clad laminate by attaching a plastic resin sheet is disclosed, wherein the roughened surface has a copper oxide thickness of 1 to 20 nm determined by continuous electrochemical reduction analysis (SERA), Further, it is described that the thickness of cuprous oxide determined by SERA is 15 to 70 nm. According to this method, the affinity between the roughened surface of the roughened copper foil and the thermoplastic resin can be increased, so that a high peel strength can be realized.

国際公開第2014/126193号International Publication No. WO 2014/126193 国際公開第2015/040998号WO 2015/040998 国際公開第2017/150043号International Publication No. 2017/150043

ところで、近年の自動車分野において、衝突防止機能等の安全運転支援システムの普及が急速に進んでおり、かかるシステムにおいてミリ波センサーが活用されている。それ故、ミリ波センサー等に用いられる高周波用プリント配線板の需要も高まっているといえる。この点、車載用ミリ波センサーは、エンジン周囲の高温条件下等で使用されている。したがって、このような過酷な環境下で用いられる機器に搭載されるプリント配線板には、高い信頼性を維持する観点から、長時間高温(例えば150℃)に曝された後においても、銅箔と樹脂との間で高い密着力が保持されることが望まれる。しかしながら、従来の粗化処理銅箔を熱可塑性樹脂と貼り付けた場合、長時間の加熱により密着力の低下を招くことがあり、更なる改善が望まれている。   By the way, in the field of automobiles in recent years, a safe driving support system such as a collision prevention function is rapidly spreading, and a millimeter wave sensor is used in such a system. Therefore, it can be said that the demand for a high-frequency printed wiring board used for a millimeter wave sensor or the like is increasing. In this regard, in-vehicle millimeter wave sensors are used under high temperature conditions around the engine. Therefore, from the viewpoint of maintaining high reliability, a printed wiring board mounted on a device used in such a severe environment has a copper foil even after being exposed to a high temperature (for example, 150 ° C.) for a long time. It is desired that high adhesion is maintained between the resin and the resin. However, when the conventional roughened copper foil is adhered to a thermoplastic resin, heating for a long time may cause a decrease in adhesion, and further improvement is desired.

本発明者は、今般、針状結晶及び/又は板状結晶で構成される粗化処理面を有する粗化処理銅箔において、連続電気化学還元分析(SERA)により決定される亜酸化銅厚さ及び酸化銅厚さをそれぞれ所定の範囲内に制御することで、低誘電率の熱可塑性樹脂に対する耐熱剥離強度が有意に向上するとの知見を得た。   The present inventor has now found that, in a roughened copper foil having a roughened surface composed of needle-like crystals and / or plate-like crystals, the thickness of cuprous oxide determined by continuous electrochemical reduction analysis (SERA) It has been found that by controlling the thickness of the copper oxide and the thickness of the copper oxide within a predetermined range, the heat-resistant peel strength of a thermoplastic resin having a low dielectric constant is significantly improved.

したがって、本発明の目的は、低誘電率の熱可塑性樹脂に対する耐熱剥離強度を有意に向上することが可能な粗化処理銅箔を提供することにある。   Accordingly, an object of the present invention is to provide a roughened copper foil capable of significantly improving the heat-resistant peel strength of a thermoplastic resin having a low dielectric constant.

本発明の一態様によれば、
亜酸化銅及び/又は酸化銅を含む針状結晶及び/又は板状結晶で構成される粗化処理面を少なくとも一方の側に有する粗化処理銅箔であって、
前記粗化処理面は、連続電気化学還元分析(SERA)により決定される亜酸化銅厚さが71〜300nmであり、かつ、連続電気化学還元分析(SERA)により決定される酸化銅厚さが0〜20nmである、粗化処理銅箔が提供される。
According to one aspect of the present invention,
A roughened copper foil having at least one side of a roughened surface composed of acicular crystals and / or plate-like crystals containing cuprous oxide and / or copper oxide,
The roughened surface has a thickness of 71 to 300 nm of cuprous oxide determined by continuous electrochemical reduction analysis (SERA) and a thickness of copper oxide determined by continuous electrochemical reduction analysis (SERA). A roughened copper foil having a thickness of 0 to 20 nm is provided.

本発明の他の一態様によれば、
前記粗化処理銅箔と、
前記粗化処理銅箔の少なくとも一方の側に設けられる絶縁樹脂基材と、
を備えた、銅張積層板が提供される。
According to another aspect of the present invention,
Said roughened copper foil,
An insulating resin substrate provided on at least one side of the roughened copper foil,
There is provided a copper-clad laminate comprising:

本発明の他の一態様によれば、前記粗化処理銅箔を備えたプリント配線板が提供される。   According to another aspect of the present invention, there is provided a printed wiring board including the roughened copper foil.

粗化処理銅箔
本発明による銅箔は粗化処理銅箔である。この粗化処理銅箔は少なくとも一方の側に粗化処理面を有する。粗化処理面は針状結晶及び/又は板状結晶で構成される。これらの針状結晶及び/又は板状結晶が微細凹凸を形成して粗化処理面を形成している。針状結晶及び/又は板状結晶は亜酸化銅(CuO)及び所望により酸化銅(CuO)を含む。すなわち、亜酸化銅は必須成分であり、酸化銅は任意成分である。そして、この粗化処理面は、連続電気化学還元分析(SERA)により決定される亜酸化銅厚さが71〜300nmであり、かつ、連続電気化学還元分析(SERA)により決定される酸化銅厚さが0〜20nmである。このように、連続電気化学還元分析(SERA)により決定される亜酸化銅厚さ及び酸化銅厚さをそれぞれ上記範囲内に制御することで、低誘電率の熱可塑性樹脂に対する耐熱剥離強度を有意に向上することができる。すなわち、前述のとおり、従来の粗化処理銅箔を熱可塑性樹脂と貼り付けた場合、エンジン周囲の高温条件等の過酷な環境での長時間の加熱により密着力の低下を招きうる。かかる高温処理に伴う銅箔及び樹脂間の剥離強度(すなわち耐熱剥離強度)の低下は、銅箔を構成する銅の樹脂基材中への拡散により生じると考えられる。銅の拡散防止は、銅箔表面に亜鉛やニッケル等の金属防錆処理を施すことにより一般的に行われるが、ポリテトラフルオロエチレン(PTFE)等の熱可塑性樹脂に対しては銅の拡散を十分に防止できない。これに対して、本発明の粗化処理銅箔は、その粗化処理面に連続電気化学還元分析(SERA)により厚さ換算で決定される所定量の亜酸化銅を含んでおり、純銅(Cu)と比較して安定な亜酸化銅が拡散防止層として機能することにより、熱可塑性樹脂中への銅の拡散を効果的に抑制するものと考えられる。さらに、粗化処理面を構成する亜酸化銅は電気を通さない不導体成分のため、熱可塑性樹脂との密着力を向上すべく粗度を比較的大きくしても、高周波信号伝送において問題となる銅箔の表皮効果による信号劣化が生じにくい。その結果、本発明の粗化処理銅箔を低誘電率の熱可塑性樹脂と貼り合わせて銅張積層板又はプリント配線板とした場合に、高周波信号の伝送損失を有意に低減しながら、優れた耐熱剥離強度を発揮することが可能となる。
Roughened copper foil The copper foil according to the present invention is a roughened copper foil. The roughened copper foil has a roughened surface on at least one side. The roughened surface is composed of needle-like crystals and / or plate-like crystals. These needle-like crystals and / or plate-like crystals form fine irregularities to form a roughened surface. The needle-like crystals and / or plate-like crystals contain cuprous oxide (Cu 2 O) and optionally copper oxide (CuO). That is, cuprous oxide is an essential component, and copper oxide is an optional component. The roughened surface has a cuprous oxide thickness determined by continuous electrochemical reduction analysis (SERA) of 71 to 300 nm and a copper oxide thickness determined by continuous electrochemical reduction analysis (SERA). Is from 0 to 20 nm. As described above, by controlling the thickness of the cuprous oxide and the thickness of the copper oxide determined by the continuous electrochemical reduction analysis (SERA) to fall within the above ranges, the heat-resistant peel strength with respect to the thermoplastic resin having a low dielectric constant is significantly increased. Can be improved. That is, as described above, when a conventional roughened copper foil is bonded to a thermoplastic resin, a long-term heating in a severe environment such as a high temperature condition around an engine may cause a decrease in adhesion. It is considered that the decrease in the peel strength between the copper foil and the resin (that is, the heat-resistant peel strength) due to the high-temperature treatment is caused by the diffusion of copper constituting the copper foil into the resin base material. Copper diffusion is generally prevented by subjecting the copper foil surface to a metal rust preventive treatment such as zinc or nickel. However, copper diffusion is prevented for thermoplastic resins such as polytetrafluoroethylene (PTFE). It cannot be prevented enough. On the other hand, the roughened copper foil of the present invention contains a predetermined amount of cuprous oxide determined in terms of thickness by continuous electrochemical reduction analysis (SERA) on the roughened surface, and the pure copper ( It is considered that cuprous oxide, which is more stable than Cu), functions as a diffusion preventing layer, thereby effectively suppressing the diffusion of copper into the thermoplastic resin. Furthermore, the cuprous oxide that constitutes the roughened surface is a nonconductive component that does not conduct electricity, so even if the roughness is relatively large to improve the adhesion to the thermoplastic resin, there is a problem in high-frequency signal transmission. Signal degradation due to the skin effect of the resulting copper foil is unlikely to occur. As a result, when the roughened copper foil of the present invention is bonded to a thermoplastic resin having a low dielectric constant to form a copper-clad laminate or a printed wiring board, while significantly reducing the transmission loss of a high-frequency signal, It is possible to exhibit heat-resistant peel strength.

上記観点から、粗化処理銅箔の粗化処理面は、連続電気化学還元分析(SERA)により決定される亜酸化銅厚さが71〜300nmであり、好ましくは100〜300nm、より好ましくは120〜300nm、さらに好ましくは200〜300nm、特に好ましくは250〜300nmである。また、粗化処理銅箔の粗化処理面は、連続電気化学還元分析(SERA)により決定される酸化銅厚さが0〜20nmであり、好ましくは1〜20nm、より好ましくは2〜15nm、さらに好ましくは3〜10nmである。こうすることで、粗化処理銅箔に望ましい耐酸性を付与しながら、熱可塑性樹脂との耐熱剥離強度をより一層向上することができる。   From the above viewpoint, the roughened surface of the roughened copper foil has a cuprous oxide thickness of 71 to 300 nm, preferably 100 to 300 nm, more preferably 120, as determined by continuous electrochemical reduction analysis (SERA). 300300 nm, more preferably 200-300 nm, particularly preferably 250-300 nm. The roughened surface of the roughened copper foil has a copper oxide thickness of 0 to 20 nm, preferably 1 to 20 nm, more preferably 2 to 15 nm, as determined by continuous electrochemical reduction analysis (SERA). More preferably, it is 3 to 10 nm. By doing so, it is possible to further improve the heat-resistant peel strength with the thermoplastic resin while imparting the desired acid resistance to the roughened copper foil.

上述の酸化銅厚さ及び亜酸化銅厚さを決定するためのSERA分析は、市販のSERA分析装置(例えばECIテクノロジー社製のQC−100)を用いて、例えば以下の手順で行うことができる。まず、分析のために粗化処理銅箔8.0mmの領域をO−リングガスケットで隔離し、ホウ酸緩衝液を注入し、窒素で飽和させる。上記領域に30μA/cmの電流密度Iを印加し、−0.40V〜−0.60Vに現れるCuO還元反応、及び−0.60V〜−0.85Vに現れるCuO還元反応にかかる時間を計測し、それぞれt及びt(秒)とする。CuO及びCuOの各々の厚さT(nm)はファラデーの法則から求まる定数Kを用い、T=K・I・tの式に基づき算出する。なお、CuOに関する定数Kの値は6.53×10−5(cm/A・sec)であり、CuOについてのKの値は2.45×10−4(cm/A・sec)である。 The above-mentioned SERA analysis for determining the copper oxide thickness and the cuprous oxide thickness can be performed, for example, by the following procedure using a commercially available SERA analyzer (for example, QC-100 manufactured by ECI Technology). . First, an area of 8.0 mm 2 of the roughened copper foil is separated by an O-ring gasket for analysis, a borate buffer is injected, and saturated with nitrogen. Above region by applying a 30 .mu.A / cm 2 of current density I d, according to the CuO reduction appearing in -0.40V~-0.60V appearing Cu 2 O reduction, and -0.60V~-0.85V The time is measured, and they are set as t 1 and t 2 (second), respectively. The thickness T (nm) of each of CuO and Cu 2 O is calculated based on the equation of T = K · Id · t using a constant K obtained from Faraday's law. The value of the constant K for CuO is 6.53 × 10 −5 (cm 3 / A · sec), and the value of K for Cu 2 O is 2.45 × 10 −4 (cm 3 / A · sec). ).

粗化処理銅箔の粗化処理面を構成する針状結晶及び/又は板状結晶は、酸化還元処理を経て形成されうるものであり、典型的には、針状結晶及び/又は板状結晶が銅箔面に対して略垂直及び/又は斜め方向に生い茂った形状(例えば芝生状)に観察されるものである。針状結晶及び板状結晶は互いに明確に区別できる必要はなく、針状のようにも見える板状結晶であってもよいし、板状のようにも見える針状結晶であってもよい。   The needle-like crystals and / or plate-like crystals constituting the roughened surface of the roughened copper foil can be formed through an oxidation-reduction treatment, and typically, needle-like crystals and / or plate-like crystals. Are observed in a shape (for example, a lawn shape) that grows substantially perpendicularly and / or diagonally to the copper foil surface. The needle-like crystal and the plate-like crystal do not need to be clearly distinguishable from each other, and may be a plate-like crystal that looks like a needle or a needle-like crystal that looks like a plate.

粗化処理銅箔は粗化処理面を両側に有するのが好ましい。すなわち、粗化処理銅箔は、樹脂と貼り合わせることが予定されている面のみならず、その反対側の面にも上述の粗化処理面を有するのが好ましい。こうすることで、当該反対側の面において優れたレーザー加工性を実現することができる。これは、粗化処理面を構成する亜酸化銅は純銅と比較してCOレーザーの吸収率が良いこと、及び針状結晶及び/又は板状結晶によってもたらされる凹凸形状に起因してCOレーザーを輻射により吸収する効果も得られることによるものと考えられる。したがって、銅張積層板における銅箔にCOレーザーを直接照射してビアホールを形成するダイレクトレーザー穴開け加工を行う際に、当該レーザー照射を施す面を上述の粗化処理面とすることにより、銅箔表面に黒化処理等の前処理を施すことなく穴開け加工を行うことが可能となり、生産性が極めて向上する。 The roughened copper foil preferably has roughened surfaces on both sides. That is, the roughened copper foil preferably has the above-described roughened surface not only on the surface to be bonded to the resin but also on the opposite surface. By doing so, excellent laser workability can be realized on the opposite surface. This is because the cuprous oxide constituting the roughened surface has a higher CO 2 laser absorptivity than pure copper and the unevenness of the CO 2 due to needle-like crystals and / or plate-like crystals. It is considered that the effect of absorbing the laser by radiation is also obtained. Therefore, when performing direct laser drilling processing to form a via hole by directly irradiating the copper foil in the copper clad laminate with a CO 2 laser, by making the surface subjected to the laser irradiation the above-described roughened surface, Drilling can be performed without performing a pretreatment such as a blackening treatment on the copper foil surface, and the productivity is greatly improved.

粗化処理銅箔の厚さは特に限定されないが、0.1〜70μmが好ましく、より好ましくは0.5〜18μmである。なお、本発明の粗化処理銅箔は、通常の銅箔の表面に粗化処理を行ったものに限らず、キャリア付銅箔の銅箔表面に粗化処理を行ったものであってもよい。   The thickness of the roughened copper foil is not particularly limited, but is preferably 0.1 to 70 μm, and more preferably 0.5 to 18 μm. In addition, the roughened copper foil of the present invention is not limited to the one in which the surface of a normal copper foil is subjected to the roughening treatment, and the one in which the roughening treatment is performed on the copper foil surface of the copper foil with a carrier. Good.

粗化処理銅箔は、粗化処理面に有機防錆層を有するのが好ましい。有機防錆層は特に限定されないが、トリアゾール化合物及びシランカップリング剤の少なくともいずれか一方を含むのが好ましい。トリアゾール化合物の例としては、ベンゾトリアゾール、カルボキシベンゾトリアゾール、メチルベンゾトリアゾール、アミノトリアゾール、ニトロベンゾトリアゾール、ヒドロキシベンゾトリアゾール、クロロベンゾトリアゾール、エチルベンゾトリアゾール、ナフトトリアゾールが挙げられる。シランカップリング剤の例としては、3−グリシドキシプロピルトリメトキシシラン、3−グリシドキシプロピルメチルジメトキシシラン等のエポキシ官能性シランカップリング剤、又は3−アミノプロピルトリエトキシシラン、3−アミノプロピルトリメトキシシラン、N−2(アミノエチル)3−アミノプロピルトリメトキシシラン、N−フェニル−3−アミノプロピルトリメトキシシラン等のアミノ官能性シランカップリング剤、又は3−メルカプトプロピルトリメトキシシラン等のメルカプト官能性シランカップリング剤、又はビニルトリメトキシシラン、ビニルフェニルトリメトキシシラン等のビニル官能性シランカップリング剤、又は3−メタクリロキシプロピルトリメトキシシラン等のメタクリル官能性シランカップリング剤、又は3−アクリロキシプロピルトリメトキシシラン等のアクリル官能性シランカップリング剤、又はイミダゾールシラン等のイミダゾール官能性シランカップリング剤、又はトリアジンシラン等のトリアジン官能性シランカップリング剤等が挙げられる。有機防錆層はトリアゾール化合物を含むのがより好ましく、トリアゾール化合物の好ましい例としてはベンゾトリアゾール(BTA)及びカルボキシベンゾトリアゾール(CBTA)が挙げられる。BTA、CBTA等のトリアゾール化合物を含む有機防錆層は、粗化処理銅箔と密着させる熱可塑性樹脂がフッ素系樹脂である場合に特に好ましい。トリアゾール化合物がより好ましい理由としては次のことが挙げられる。トリアゾール化合物は粗化処理表面の亜酸化銅と銅錯体を形成することにより、通常の銅箔に形成した場合と比べ、表面により緻密に成分が付着するため、優れた防錆機能を発揮できると考えられる。そのため、粗化処理銅箔の長期保管時における酸化銅厚さ及び亜酸化銅厚さを上述した所定の範囲内に維持しやすくすることができる。また、高温等の過酷な環境下に曝された場合、トリアゾール化合物を含む有機防錆層により表面の微細凹凸が維持されるため、高い信頼性を維持することができると考えられる。   The roughened copper foil preferably has an organic antirust layer on the roughened surface. The organic rust preventive layer is not particularly limited, but preferably contains at least one of a triazole compound and a silane coupling agent. Examples of the triazole compound include benzotriazole, carboxybenzotriazole, methylbenzotriazole, aminotriazole, nitrobenzotriazole, hydroxybenzotriazole, chlorobenzotriazole, ethylbenzotriazole, and naphthotriazole. Examples of silane coupling agents include epoxy-functional silane coupling agents such as 3-glycidoxypropyltrimethoxysilane, 3-glycidoxypropylmethyldimethoxysilane, or 3-aminopropyltriethoxysilane, 3-amino Amino-functional silane coupling agents such as propyltrimethoxysilane, N-2 (aminoethyl) 3-aminopropyltrimethoxysilane, N-phenyl-3-aminopropyltrimethoxysilane, or 3-mercaptopropyltrimethoxysilane Mercapto-functional silane coupling agent, or vinyl-functional silane coupling agent such as vinyltrimethoxysilane, vinylphenyltrimethoxysilane, or methacryl-functional silane coupling agent such as 3-methacryloxypropyltrimethoxysilane Or 3-acryloxypropyltrimethoxysilane acrylic-functional silane coupling agent such as, or imidazole functional silane coupling agent such as imidazole silane, or triazine functional silane coupling agents such as triazine silane. The organic rust preventive layer more preferably contains a triazole compound, and preferable examples of the triazole compound include benzotriazole (BTA) and carboxybenzotriazole (CBTA). The organic rust-preventive layer containing a triazole compound such as BTA and CBTA is particularly preferable when the thermoplastic resin adhered to the roughened copper foil is a fluororesin. The reason why a triazole compound is more preferable is as follows. By forming a copper complex with cuprous oxide on the roughened surface, the triazole compound adheres components more densely to the surface than when formed on a normal copper foil, so that it can exhibit an excellent rust prevention function. Conceivable. Therefore, it is possible to easily maintain the thickness of the copper oxide and the thickness of the cuprous oxide during the long-term storage of the roughened copper foil within the above-described predetermined ranges. In addition, when exposed to a severe environment such as a high temperature, the organic rust-preventive layer containing a triazole compound maintains fine irregularities on the surface, so that high reliability can be maintained.

製造方法
本発明による粗化処理銅箔は、あらゆる方法によって製造されたものであってよいが、酸化還元処理を経て製造されるのが好ましい。以下、本発明による粗化処理銅箔の好ましい製造方法の一例を説明する。この好ましい製造方法は、銅箔を用意する工程と、上記銅箔に特定の有機物を付着させる工程と、有機物が付着された銅箔の表面に対して酸化処理及び還元処理を順次行う粗化工程(酸化還元処理)とを含んでなる。
Manufacturing Method The roughened copper foil according to the present invention may be manufactured by any method, but is preferably manufactured through an oxidation-reduction treatment. Hereinafter, an example of a preferred method for producing a roughened copper foil according to the present invention will be described. This preferred manufacturing method includes a step of preparing a copper foil, a step of attaching a specific organic substance to the copper foil, and a roughening step of sequentially performing an oxidation treatment and a reduction treatment on the surface of the copper foil to which the organic substance is attached. (Oxidation-reduction treatment).

(1)銅箔の準備
粗化処理銅箔の製造に使用する銅箔としては電解銅箔及び圧延銅箔の双方の使用が可能であり、より好ましくは電解銅箔である。また、銅箔は、無粗化の銅箔であってもよいし、予備的粗化を施したものであってもよい。銅箔の厚さは特に限定されないが、0.1〜70μmが好ましく、より好ましくは0.5〜18μmである。銅箔がキャリア付銅箔の形態で準備される場合には、銅箔は、無電解銅めっき法及び電解銅めっき法等の湿式成膜法、スパッタリング及び化学蒸着等の乾式成膜法、又はそれらの組合せにより形成したものであってもよい。
(1) Preparation of Copper Foil As the copper foil used for the production of the roughened copper foil, both an electrolytic copper foil and a rolled copper foil can be used, and more preferably an electrolytic copper foil. Further, the copper foil may be a non-roughened copper foil or may be a pre-roughened copper foil. The thickness of the copper foil is not particularly limited, but is preferably 0.1 to 70 μm, more preferably 0.5 to 18 μm. When the copper foil is prepared in the form of a copper foil with a carrier, the copper foil is a wet film forming method such as an electroless copper plating method and an electrolytic copper plating method, a dry film forming method such as sputtering and chemical vapor deposition, or It may be formed by a combination thereof.

粗化処理が行われることになる銅箔の表面は、ISO25178に準拠して測定される最大高さSzが1.5μm以下であるのが好ましく、より好ましくは、1.2μm以下、さらに好ましくは1.0μm以下である。上記範囲内であると、本発明の粗化処理銅箔に望ましい表面プロファイルを実現しやすくなる。Szの下限値は特に限定されないが、Szは0.1μm以上が好ましく、より好ましくは0.2μm以上、さらに好ましくは0.3μm以上である。   The surface of the copper foil to be subjected to the roughening treatment preferably has a maximum height Sz measured in accordance with ISO25178 of 1.5 μm or less, more preferably 1.2 μm or less, and still more preferably. It is 1.0 μm or less. When it is in the above range, it becomes easy to realize a desired surface profile for the roughened copper foil of the present invention. Although the lower limit of Sz is not particularly limited, Sz is preferably 0.1 μm or more, more preferably 0.2 μm or more, and further preferably 0.3 μm or more.

(2)有機物付着処理
上記銅箔の表面に特定の有機物を付着させる。有機物の付着は酸洗処理の中で行うのが好ましい。例えば、銅箔を特定の有機物が添加された酸洗溶液に浸漬した後、水洗するのが好ましい。こうすることにより、銅箔表面に特定の有機物を付着させることができ、後述する酸化還元処理工程において、樹脂との密着性及びレーザー加工性に有利な表面性状を有する粗化処理銅箔を得ることが可能となる。酸洗溶液に添加する有機物は、銅表面に被膜を形成する活性有機硫黄化合物のスルホン酸又はその塩が好ましい。活性有機硫黄化合物のスルホン酸又はその塩の好ましい例としては、ビス−(3−スルホプロピル)ジスルフィド、3−メルカプト−1−プロパンスルホン酸、3−(N,N−ジメチルチオカルバモイル)−チオプロパンスルホン酸、3−[(アミノ−イミノメチル)チオ]−1−プロパンスルホン酸、o−エチルジチオカーボネート−S−(3−スルホプロピル)−エステル、3−(ベンゾチアゾリル−2−メルカプト)−プロピル−スルホン酸、エチレンジチオジプロピルスルホン酸、チオグリコール酸、チオリン酸−o−エチル−ビス−(ω−スルホプロピル)エステルジナトリウム塩、チオリン酸−トリス−(ω−スルホプロピル)エステルトリナトリウム塩等が挙げられる。酸洗溶液における活性有機硫黄化合物のスルホン酸又はその塩(例えばビス−(3−スルホプロピル)ジスルフィド)の好ましい濃度は25〜200ppmであり、より好ましくは50〜150ppmである。酸洗溶液は硫酸系水溶液であるのが好ましく、硫酸系水溶液の硫酸濃度は特に限定されないが好ましくは1〜20体積%である。また、銅箔の硫酸系水溶液の浸漬時間は特に限定されないが好ましくは2秒〜2分である。
(2) Organic substance adhesion treatment A specific organic substance is adhered to the surface of the copper foil. The attachment of the organic substance is preferably performed during the pickling treatment. For example, it is preferable that the copper foil is immersed in a pickling solution to which a specific organic substance is added, and then washed with water. By doing so, a specific organic substance can be adhered to the copper foil surface, and in the oxidation-reduction treatment step described below, a roughened copper foil having a surface property advantageous for adhesion to a resin and laser workability is obtained. It becomes possible. The organic substance added to the pickling solution is preferably a sulfonic acid of an active organic sulfur compound or a salt thereof, which forms a film on the copper surface. Preferred examples of the sulfonic acid or a salt thereof of the active organic sulfur compound include bis- (3-sulfopropyl) disulfide, 3-mercapto-1-propanesulfonic acid, and 3- (N, N-dimethylthiocarbamoyl) -thiopropane. Sulfonic acid, 3-[(amino-iminomethyl) thio] -1-propanesulfonic acid, o-ethyldithiocarbonate-S- (3-sulfopropyl) -ester, 3- (benzothiazolyl-2-mercapto) -propyl-sulfone Acid, ethylenedithiodipropylsulfonic acid, thioglycolic acid, thiophosphoric acid-o-ethyl-bis- (ω-sulfopropyl) ester disodium salt, thiophosphoric acid-tris- (ω-sulfopropyl) ester trisodium salt and the like. No. The preferred concentration of the active organic sulfur compound sulfonic acid or a salt thereof (for example, bis- (3-sulfopropyl) disulfide) in the pickling solution is 25 to 200 ppm, more preferably 50 to 150 ppm. The pickling solution is preferably a sulfuric acid aqueous solution, and the sulfuric acid concentration of the sulfuric acid aqueous solution is not particularly limited, but is preferably 1 to 20% by volume. Further, the immersion time of the copper foil in the sulfuric acid-based aqueous solution is not particularly limited, but is preferably 2 seconds to 2 minutes.

(3)酸化還元処理
こうして、上記酸洗処理を行った銅箔の表面に対して、酸化処理及び還元処理を順次行う湿式による粗化工程を施すのが好ましい。特に、溶液を用いた湿式法で銅箔の表面に酸化処理を施すことで、銅箔表面に酸化銅(酸化第二銅)を含有する銅化合物を形成する。その後、当該銅化合物を還元処理して酸化銅の一部又は全部を亜酸化銅(酸化第一銅)に転換させることにより、亜酸化銅及び酸化銅(存在する場合)を含有する銅複合化合物からなる針状結晶及び/又は板状結晶で構成される微細凹凸を銅箔の表面に形成することができる。ここで、微細凹凸は、銅箔の表面を湿式法で酸化処理した段階で、酸化銅を主成分とする銅化合物により形成される。そして、当該銅化合物を還元処理したときに、この銅化合物により形成された微細凹凸の形状を概ね維持したまま、酸化銅の一部又は全部が亜酸化銅に転換されて、亜酸化銅及び酸化銅(存在する場合)を含有する銅複合化合物からなる微細凹凸となる。このように銅箔の表面に湿式法で適正な酸化処理を施した後に、還元処理を施すことで、微細凹凸の形成が可能となる。
(3) Oxidation-reduction treatment The surface of the copper foil that has been subjected to the above-mentioned pickling treatment is preferably subjected to a wet roughening step of sequentially performing an oxidation treatment and a reduction treatment. In particular, a copper compound containing copper oxide (copper oxide) is formed on the surface of the copper foil by subjecting the surface of the copper foil to oxidation treatment by a wet method using a solution. Thereafter, the copper compound is subjected to a reduction treatment to convert a part or all of the copper oxide into cuprous oxide (cuprous oxide), thereby obtaining a copper composite compound containing cuprous oxide and copper oxide (if present). Fine irregularities composed of needle-like crystals and / or plate-like crystals composed of the following can be formed on the surface of the copper foil. Here, the fine irregularities are formed by a copper compound containing copper oxide as a main component at a stage where the surface of the copper foil is oxidized by a wet method. Then, when the copper compound is subjected to a reduction treatment, part or all of the copper oxide is converted to cuprous oxide while substantially maintaining the shape of the fine irregularities formed by the copper compound, and the cuprous oxide and the oxide Fine irregularities are formed of a copper composite compound containing copper (if present). By subjecting the surface of the copper foil to an appropriate oxidation treatment by a wet method and then to a reduction treatment, fine irregularities can be formed.

(3a)酸化処理
上記酸洗処理が施された銅箔に対して水酸化ナトリウム溶液等のアルカリ溶液を用いて酸化処理を行う。アルカリ溶液(酸化処理液)には、銅箔を微細に腐食させる機能と、腐食により溶出した銅イオンを再析出させる機能がある。したがって、アルカリ溶液で銅箔の表面を処理することにより、酸化銅を主成分とする銅複合化合物からなる針状結晶及び/又は板状結晶で構成される微細凹凸を銅箔の表面に形成することができる。このとき、上述のように銅箔上に予め特定の有機物を付着させておくことで、アルカリ溶液による銅箔の腐食及び再析出の密度が疎になり、腐食及び再析出が一部分に集中すると考えられる。その結果、通常の酸化処理では作製が困難な、樹脂との密着性及びレーザー加工性に有利な表面性状を有する粗化処理銅箔を得ることが可能となる。アルカリ溶液の温度は60〜85℃が好ましく、アルカリ溶液のpHは10〜14が好ましい。また、アルカリ溶液は酸化の観点から塩素酸塩、亜塩素酸塩、次亜塩素酸塩、過塩素酸塩を含むのが好ましく、その濃度は100〜500g/Lが好ましい。酸化処理は電解銅箔をアルカリ溶液に浸漬することにより行うのが好ましく、その浸漬時間(すなわち酸化時間)は10秒〜20分が好ましく、より好ましくは30秒〜10分である。
(3a) Oxidation treatment The copper foil that has been subjected to the above-mentioned pickling treatment is subjected to an oxidation treatment using an alkali solution such as a sodium hydroxide solution. The alkaline solution (oxidizing solution) has a function of finely corroding the copper foil and a function of reprecipitating copper ions eluted by the corrosion. Therefore, by treating the surface of the copper foil with an alkaline solution, fine irregularities composed of needle-like crystals and / or plate-like crystals composed of a copper composite compound containing copper oxide as a main component are formed on the surface of the copper foil. be able to. At this time, by attaching a specific organic substance on the copper foil in advance as described above, the density of corrosion and re-deposition of the copper foil by the alkaline solution becomes low, and the corrosion and re-deposition are considered to be concentrated on a part. Can be As a result, it becomes possible to obtain a roughened copper foil having a surface property that is difficult to produce by ordinary oxidation treatment and that is advantageous for adhesion to resin and laser workability. The temperature of the alkaline solution is preferably from 60 to 85 ° C, and the pH of the alkaline solution is preferably from 10 to 14. Further, the alkali solution preferably contains chlorate, chlorite, hypochlorite, and perchlorate from the viewpoint of oxidation, and the concentration thereof is preferably 100 to 500 g / L. The oxidation treatment is preferably performed by immersing the electrolytic copper foil in an alkaline solution, and the immersion time (that is, the oxidation time) is preferably from 10 seconds to 20 minutes, and more preferably from 30 seconds to 10 minutes.

酸化処理に用いるアルカリ溶液は酸化抑制剤をさらに含むのが好ましい。すなわち、アルカリ溶液により銅箔の表面に対して酸化処理を施した場合、上記微細凹凸の凸状部が過度に成長し、所望の長さを超える場合があり、所望の微細凹凸を形成することが困難になる。そこで、上記微細凹凸を形成するために、銅箔表面における酸化を抑制可能な酸化抑制剤を含むアルカリ溶液を用いることが好ましい。好ましい酸化抑制剤の例としては、アミノ系シランカップリング剤が挙げられる。アミノ系シランカップリング剤を含むアルカリ溶液を用いて銅箔表面に酸化処理を施すことで、当該アルカリ溶液中のアミノ系シランカップリング剤が銅箔の表面に吸着し、アルカリ溶液による銅箔表面の酸化を抑制することができる。その結果、酸化銅の針状結晶及び/又は板状結晶の成長を抑制することができ、所望の微細凹凸を備えた望ましい粗化処理面を形成することができる。アミノ系シランカップリング剤の具体例としては、N−2−(アミノエチル)−3−アミノプロピルメチルジメトキシシラン、N−2−(アミノエチル)−3−アミノプロピルトリメトキシシラン、3−アミノプロピルトリメトキシシラン、3−アミノプロピルトリエトキシシラン、3−トリエトキシシリル−N−(1,3−ジメチル−ブチリデン)プロピルアミン、N−フェニル−3−アミノプロピルトリメトキシシラン等が挙げられ、特に好ましくはN−2−(アミノエチル)−3−アミノプロピルトリメトキシシランである。これらはいずれもアルカリ性溶液に溶解し、アルカリ性溶液中に安定に保持されると共に、上述した銅箔表面の酸化を抑制する効果を発揮する。アルカリ溶液におけるアミノ系シランカップリング剤(例えばN−2−(アミノエチル)−3−アミノプロピルトリメトキシシラン)の好ましい濃度は0.01〜20g/Lであり、より好ましくは0.02〜20g/Lである。   The alkali solution used for the oxidation treatment preferably further contains an oxidation inhibitor. That is, when an oxidation treatment is performed on the surface of the copper foil with an alkaline solution, the convex portions of the fine irregularities may grow excessively, and may exceed a desired length. Becomes difficult. Therefore, in order to form the fine irregularities, it is preferable to use an alkaline solution containing an oxidation inhibitor capable of suppressing oxidation on the copper foil surface. Examples of preferred oxidation inhibitors include amino-based silane coupling agents. By performing an oxidation treatment on the copper foil surface using an alkaline solution containing an amino-based silane coupling agent, the amino-based silane coupling agent in the alkaline solution is adsorbed on the surface of the copper foil, and the surface of the copper foil is exposed to the alkaline solution. Oxidation can be suppressed. As a result, the growth of needle-like crystals and / or plate-like crystals of copper oxide can be suppressed, and a desired roughened surface having desired fine irregularities can be formed. Specific examples of the amino-based silane coupling agent include N-2- (aminoethyl) -3-aminopropylmethyldimethoxysilane, N-2- (aminoethyl) -3-aminopropyltrimethoxysilane, and 3-aminopropyl Trimethoxysilane, 3-aminopropyltriethoxysilane, 3-triethoxysilyl-N- (1,3-dimethyl-butylidene) propylamine, N-phenyl-3-aminopropyltrimethoxysilane and the like are particularly preferable. Is N-2- (aminoethyl) -3-aminopropyltrimethoxysilane. All of these dissolve in the alkaline solution, are stably maintained in the alkaline solution, and exert the effect of suppressing the oxidation of the copper foil surface described above. The preferred concentration of the amino-based silane coupling agent (for example, N-2- (aminoethyl) -3-aminopropyltrimethoxysilane) in the alkaline solution is 0.01 to 20 g / L, more preferably 0.02 to 20 g. / L.

(3b)還元処理
上記酸化処理が施された銅箔(以下、酸化処理銅箔という)に対して還元処理液を用いて還元処理を行う。還元処理により酸化銅の一部又は全部を亜酸化銅(酸化第一銅)に転換させることで、亜酸化銅及び酸化銅(存在する場合)を含有する銅複合化合物からなる針状結晶及び/又は板状結晶で構成される微細凹凸を銅箔の表面に形成することができる。この還元処理は、酸化処理銅箔に還元処理液を接触させることにより行えばよく、還元処理液中に酸化処理銅箔を浸漬させる手法や、酸化処理銅箔に還元処理液をシャワーで掛ける手法により行うのが好ましく、その処理時間は2〜60秒が好ましく、より好ましくは5〜30秒である。なお、好ましい還元処理液はジメチルアミンボラン水溶液であり、この水溶液はジメチルアミンボランを10〜40g/Lの濃度で含有するのが好ましい。また、ジメチルアミンボラン水溶液は炭酸ナトリウムと水酸化ナトリウムを用いてpH12〜14に調整されるのが好ましい。このときの水溶液の温度は特に限定されず、室温であってよい。こうして還元処理を行った銅箔は水洗し、乾燥するのが好ましい。
(3b) Reduction Treatment A reduction treatment is performed on the copper foil that has been subjected to the oxidation treatment (hereinafter referred to as an oxidation-treated copper foil) using a reduction treatment liquid. By converting a part or all of the copper oxide into cuprous oxide (cuprous oxide) by the reduction treatment, needle-like crystals comprising a copper composite compound containing cuprous oxide and copper oxide (if present) and / or Alternatively, fine irregularities composed of plate crystals can be formed on the surface of the copper foil. This reduction treatment may be performed by bringing a reduction treatment liquid into contact with the oxidation treatment copper foil, and a method of dipping the oxidation treatment copper foil in the reduction treatment liquid or a method of showering the oxidation treatment copper foil with the reduction treatment liquid. The treatment time is preferably 2 to 60 seconds, more preferably 5 to 30 seconds. The preferred reduction treatment liquid is an aqueous solution of dimethylamine borane, and this aqueous solution preferably contains dimethylamine borane at a concentration of 10 to 40 g / L. The aqueous dimethylamine borane solution is preferably adjusted to pH 12 to 14 using sodium carbonate and sodium hydroxide. The temperature of the aqueous solution at this time is not particularly limited, and may be room temperature. It is preferable that the copper foil subjected to the reduction treatment is washed with water and dried.

(4)防錆処理
所望により、銅箔に有機防錆剤で防錆処理を施し、有機防錆層を形成してもよい。これにより、粗化処理銅箔の粗化処理面において、SERAによって厚さ換算で決定される亜酸化銅及び酸化銅の各量がそれぞれ所定の範囲内に制御された状態で維持することができ、その維持された状態で粗化処理面に絶縁樹脂基材を貼り付けることが容易となる。また、耐湿性、耐薬品性及び接着剤等との密着性等を向上することもできる。有機防錆層は特に限定されないが、トリアゾール化合物及びシランカップリング剤の少なくともいずれか一方を含むのが好ましい。トリアゾール化合物の例としては、ベンゾトリアゾール、カルボキシベンゾトリアゾール、メチルベンゾトリアゾール、アミノトリアゾール、ニトロベンゾトリアゾール、ヒドロキシベンゾトリアゾール、クロロベンゾトリアゾール、エチルベンゾトリアゾール、及びナフトトリアゾールが挙げられ、特に好ましくはベンゾトリアゾールである。シランカップリング剤の例としては、3−グリシドキシプロピルトリメトキシシラン、3−グリシドキシプロピルメチルジメトキシシラン等のエポキシ官能性シランカップリング剤、又は3−アミノプロピルトリエトキシシラン、3−アミノプロピルトリメトキシシラン、N−2(アミノエチル)3−アミノプロピルトリメトキシシラン、N−フェニル−3−アミノプロピルトリメトキシシラン等のアミノ官能性シランカップリング剤、又は3−メルカプトプロピルトリメトキシシラン等のメルカプト官能性シランカップリング剤、又はビニルトリメトキシシラン、ビニルフェニルトリメトキシシラン等のビニル官能性シランカップリング剤、又は3−メタクリロキシプロピルトリメトキシシラン等のメタクリル官能性シランカップリング剤、又は3−アクリロキシプロピルトリメトキシシラン等のアクリル官能性シランカップリング剤、又はイミダゾールシラン等のイミダゾール官能性シランカップリング剤、又はトリアジンシラン等のトリアジン官能性シランカップリング剤等が挙げられる。有機防錆層は、トリアゾール化合物やシランカップリング剤等の有機防錆剤を適宜希釈して塗布し、乾燥させることにより形成することができる。
(4) Rust prevention treatment If desired, a copper foil may be subjected to a rust prevention treatment with an organic rust preventive agent to form an organic rust preventive layer. Thereby, on the roughened surface of the roughened copper foil, each amount of cuprous oxide and copper oxide determined in terms of thickness by SERA can be maintained in a controlled state within a predetermined range. In this state, it is easy to attach the insulating resin substrate to the roughened surface. Further, moisture resistance, chemical resistance, adhesion to an adhesive or the like can be improved. The organic rust preventive layer is not particularly limited, but preferably contains at least one of a triazole compound and a silane coupling agent. Examples of triazole compounds include benzotriazole, carboxybenzotriazole, methylbenzotriazole, aminotriazole, nitrobenzotriazole, hydroxybenzotriazole, chlorobenzotriazole, ethylbenzotriazole, and naphthotriazole, particularly preferably benzotriazole. is there. Examples of silane coupling agents include epoxy-functional silane coupling agents such as 3-glycidoxypropyltrimethoxysilane, 3-glycidoxypropylmethyldimethoxysilane, or 3-aminopropyltriethoxysilane, 3-amino Amino-functional silane coupling agents such as propyltrimethoxysilane, N-2 (aminoethyl) 3-aminopropyltrimethoxysilane, N-phenyl-3-aminopropyltrimethoxysilane, or 3-mercaptopropyltrimethoxysilane Mercapto-functional silane coupling agent, or vinyl-functional silane coupling agent such as vinyltrimethoxysilane, vinylphenyltrimethoxysilane, or methacryl-functional silane coupling agent such as 3-methacryloxypropyltrimethoxysilane Or 3-acryloxypropyltrimethoxysilane acrylic-functional silane coupling agent such as, or imidazole functional silane coupling agent such as imidazole silane, or triazine functional silane coupling agents such as triazine silane. The organic rust preventive layer can be formed by appropriately diluting and applying an organic rust preventive such as a triazole compound or a silane coupling agent, and then drying.

銅張積層板
本発明の粗化処理銅箔は銅張積層板の作製に用いられるのが好ましい。すなわち、本発明の好ましい態様によれば、上記粗化処理銅箔と、この粗化処理銅箔の粗化処理面に設けられる絶縁樹脂基材とを備えた銅張積層板が提供される。粗化処理銅箔は絶縁樹脂基材の片面に設けられてもよいし、両面に設けられてもよい。絶縁樹脂基材はプリプレグ及び/又は樹脂シートであるのが好ましい。プリプレグとは、合成樹脂板、ガラス板、ガラス織布、ガラス不織布、紙等の基材に合成樹脂を含浸させた複合材料の総称である。一方、樹脂シートはカットされたシート片であってもよいし、ロールから引き出された長尺シートであってもよく、その形態は特に限定されない。また、絶縁樹脂基材には絶縁性を向上させる等の観点からシリカ、アルミナ等の各種無機粒子からなるフィラー粒子等が含有されていてもよい。絶縁樹脂基材の厚さは特に限定されないが、1〜1000μmが好ましく、より好ましくは2〜400μmであり、さらに好ましくは3〜200μmである。絶縁樹脂基材は複数の層で構成されていてよい。
Roughening treatment of copper foil copper-clad laminate present invention is preferably used for manufacturing the copper-clad laminate. That is, according to a preferred embodiment of the present invention, there is provided a copper-clad laminate including the above-described roughened copper foil and an insulating resin substrate provided on a roughened surface of the roughened copper foil. The roughened copper foil may be provided on one surface of the insulating resin substrate, or may be provided on both surfaces. The insulating resin substrate is preferably a prepreg and / or a resin sheet. The prepreg is a general term for a composite material in which a base material such as a synthetic resin plate, a glass plate, a glass woven fabric, a glass nonwoven fabric, and paper is impregnated with a synthetic resin. On the other hand, the resin sheet may be a cut sheet piece or a long sheet drawn from a roll, and the form is not particularly limited. Further, the insulating resin base material may contain filler particles composed of various inorganic particles such as silica and alumina from the viewpoint of improving the insulating property. The thickness of the insulating resin substrate is not particularly limited, but is preferably 1 to 1000 μm, more preferably 2 to 400 μm, and further preferably 3 to 200 μm. The insulating resin substrate may be composed of a plurality of layers.

高周波用途に適した銅張積層板を提供する観点から、絶縁樹脂基材は熱可塑性樹脂を含むのが好ましく、より好ましくは、絶縁樹脂基材に含まれる樹脂成分の大半(例えば50重量%以上)又は殆ど(例えば80重量%以上若しくは90重量%以上)が熱可塑性樹脂である。熱可塑性樹脂の好ましい例としては、ポリサルフォン(PSF)、ポリエーテルサルフォン(PES)、非晶ポリアリレート(PAR)、液晶ポリマー(LCP)、ポリエーテルエーテルケトン(PEEK)、熱可塑性ポリイミド(PI)、ポリアミドイミド(PAI)、フッ素樹脂、ポリアミド(PA)、ナイロン、ポリアセタール(POM)、変性ポリフェニレンエーテル(m−PPE)、ポリエチレンテレフタレート(PET)、グラスファイバー強化ポリエチレンテレフタレート(GF−PET)、シクロオレフィン(COP)、及びこれらの任意の組合せが挙げられる。望ましい誘電正接及び優れた耐熱性の観点から、熱可塑性樹脂のより好ましい例としては、ポリサルフォン(PSF)、ポリエーテルサルフォン(PES)、非晶ポリアリレート(PAR)、液晶ポリマー(LCP)、ポリエーテルエーテルケトン(PEEK)、熱可塑性ポリイミド(PI)、ポリアミドイミド(PAI)、フッ素樹脂、及びそれらの任意の組合せが挙げられる。低誘電率の観点から、特に好ましい熱可塑性樹脂はフッ素樹脂である。フッ素樹脂の好ましい例としては、ポリテトラフルオロエチレン(PTFE)、テトラフルオロエチレン・パーフルオロアルキルビニルエーテル共重合体(PFA)、テトラフルオロエチレン・ヘキサフルオロプロピレン共重合体(FEP)、テトラフルオロエチレン−エチレン共重合体(ETFE)、及びそれらの任意の組合せが挙げられる。なお、絶縁樹脂基材の粗化処理銅箔への貼り付けは、加熱しながらプレスすることにより行うのが好ましく、こうすることで熱可塑性樹脂を軟化させて粗化処理面の微細凹凸に入り込ませることができる。その結果、微細凹凸(特に針状結晶及び/又は板状結晶)の樹脂への食い込みによるアンカー効果により銅箔と樹脂との密着性を確保することができる。   From the viewpoint of providing a copper-clad laminate suitable for high-frequency applications, the insulating resin base preferably contains a thermoplastic resin, and more preferably, most of the resin components contained in the insulating resin base (for example, 50% by weight or more) ) Or almost (for example, 80% by weight or more or 90% by weight or more) is a thermoplastic resin. Preferred examples of the thermoplastic resin include polysulfone (PSF), polyethersulfone (PES), amorphous polyarylate (PAR), liquid crystal polymer (LCP), polyetheretherketone (PEEK), and thermoplastic polyimide (PI). , Polyamide imide (PAI), fluororesin, polyamide (PA), nylon, polyacetal (POM), modified polyphenylene ether (m-PPE), polyethylene terephthalate (PET), glass fiber reinforced polyethylene terephthalate (GF-PET), cycloolefin (COP), and any combination thereof. From the viewpoints of desirable dielectric loss tangent and excellent heat resistance, more preferable examples of the thermoplastic resin include polysulfone (PSF), polyethersulfone (PES), amorphous polyarylate (PAR), liquid crystal polymer (LCP), and polystyrene. Examples include ether ether ketone (PEEK), thermoplastic polyimide (PI), polyamide imide (PAI), fluoroplastics, and any combination thereof. From the viewpoint of a low dielectric constant, a particularly preferred thermoplastic resin is a fluororesin. Preferred examples of the fluororesin include polytetrafluoroethylene (PTFE), tetrafluoroethylene / perfluoroalkyl vinyl ether copolymer (PFA), tetrafluoroethylene / hexafluoropropylene copolymer (FEP), and tetrafluoroethylene-ethylene. Copolymer (ETFE), and any combination thereof. In addition, it is preferable that the insulating resin base material is bonded to the roughened copper foil by pressing while heating, so that the thermoplastic resin is softened to enter the fine irregularities on the roughened surface. Can be made. As a result, the adhesion between the copper foil and the resin can be ensured by the anchor effect due to the penetration of the fine irregularities (especially needle-like crystals and / or plate-like crystals) into the resin.

プリント配線板
本発明の粗化処理銅箔はプリント配線板の作製に用いられるのが好ましい。すなわち、本発明の好ましい態様によれば、上記粗化処理銅箔を備えたプリント配線板が提供される。プリント配線板に関する具体例としては、本発明の銅張積層板に回路形成した片面又は両面プリント配線板や、これらを多層化した多層プリント配線板等が挙げられる。多層プリント配線板は、内層基板に熱可塑性樹脂層を介して銅箔を貼り付けた多層銅張積層板に回路形成したものであってもよく、さらにビルドアップ層を形成したものであってもよい。また、回路形成方法は、サブトラクティブ法であってもよいし、モディファイド・セミアディティブ(MSAP)法であってもよい。本発明の粗化処理銅箔を備えたプリント配線板は、信号周波数10GHz以上の高周波帯域で用いられる自動車用アンテナ、携帯電話基地局アンテナ、高性能サーバー、衝突防止用レーダー等の用途で用いられる高周波基板として好適に用いられる。特に、本発明のプリント配線板は、上記粗化処理銅箔を備えることにより、銅箔と熱可塑性樹脂との耐熱剥離強度に優れるものであり、それ故、車載用ミリ波センサーといった、高温条件下で使用される機器等に用いられる高周波基板に極めて適する。
Printed Wiring Board The roughened copper foil of the present invention is preferably used for producing a printed wiring board. That is, according to a preferred embodiment of the present invention, there is provided a printed wiring board provided with the roughened copper foil. Specific examples of the printed wiring board include a single-sided or double-sided printed wiring board in which a circuit is formed on the copper-clad laminate of the present invention, and a multilayer printed wiring board in which these are multilayered. The multilayer printed wiring board may be one in which a circuit is formed on a multilayer copper-clad laminate in which copper foil is adhered to an inner layer substrate via a thermoplastic resin layer, and further one in which a build-up layer is formed. Good. The circuit forming method may be a subtractive method or a modified semi-additive (MSAP) method. The printed wiring board provided with the roughened copper foil of the present invention is used in applications such as an automobile antenna, a mobile phone base station antenna, a high-performance server, and a collision prevention radar which are used in a high frequency band of a signal frequency of 10 GHz or more. It is suitably used as a high-frequency substrate. In particular, the printed wiring board of the present invention is provided with the above-described roughened copper foil, and is excellent in heat-resistant peel strength between the copper foil and the thermoplastic resin. Very suitable for high-frequency boards used in equipment used below.

本発明を以下の例によってさらに具体的に説明する。   The present invention will be more specifically described by the following examples.

例1〜4
(1)粗化処理銅箔の作製
(1a)電解銅箔の作製
銅電解液として以下に示される組成の硫酸酸性硫酸銅溶液を用い、陰極にチタン製の回転電極を用い、陽極にはDSA(寸法安定性陽極)を用いて、溶液温度45℃、電流密度55A/dmで電解し、厚さ18μmの電解銅箔を得た。この電解銅箔の析出面及び電極面の最大高さSzをISO25178に準拠してレーザー顕微鏡(株式会社キーエンス製、VK−X100)を用いて測定したところ、析出面のSzが0.8μm、電極面のSzが1.2μmであった。
<硫酸酸性硫酸銅溶液の組成>
‐ 銅濃度:80g/L
‐ 硫酸濃度:260g/L
‐ ビス(3−スルホプロピル)ジスルフィド濃度:30mg/L
‐ ジアリルジメチルアンモニウムクロライド重合体濃度:50mg/L
‐ 塩素濃度:40mg/L
Examples 1-4
(1) Preparation of roughened copper foil (1a) Preparation of electrolytic copper foil A sulfuric acid-acidic copper sulfate solution having the composition shown below was used as a copper electrolyte, a titanium rotary electrode was used as a cathode, and DSA was used as an anode. Electrolysis was performed at a solution temperature of 45 ° C. and a current density of 55 A / dm 2 using a (dimensionally stable anode) to obtain an electrolytic copper foil having a thickness of 18 μm. When the maximum height Sz of the deposition surface and the electrode surface of this electrolytic copper foil was measured using a laser microscope (manufactured by Keyence Corporation, VK-X100) in accordance with ISO25178, the deposition surface had an Sz of 0.8 μm and the electrode had a thickness of 0.8 μm. The Sz of the surface was 1.2 μm.
<Sulfuric acid acidic copper sulfate solution composition>
-Copper concentration: 80g / L
-Sulfuric acid concentration: 260 g / L
-Bis (3-sulfopropyl) disulfide concentration: 30 mg / L
-Diallyl dimethyl ammonium chloride polymer concentration: 50 mg / L
-Chlorine concentration: 40mg / L

(1b)有機物付着処理
上記得られた電解銅箔を液温40℃、ビス(3−スルホプロピル)ジスルフィド濃度が100ppm、硫酸濃度が10体積%の有機物含有硫酸水溶液に23秒間(例1及び2)又は5分間(例3及び4)浸漬した後、水洗した。
(1b) Organic substance adhesion treatment The above-obtained electrolytic copper foil was placed in an organic substance-containing sulfuric acid aqueous solution having a liquid temperature of 40 ° C, a bis (3-sulfopropyl) disulfide concentration of 100 ppm, and a sulfuric acid concentration of 10% by volume for 23 seconds (Examples 1 and 2). ) Or for 5 minutes (Examples 3 and 4) and then washed with water.

(1c)粗化処理(酸化還元処理)
上記酸洗処理が施された電解銅箔の両面に対して、以下に示される粗化処理(酸化還元処理)を行った。すなわち、以下に示される酸化処理及び還元処理をこの順に行った。
(1c) Roughening treatment (redox treatment)
Roughening treatment (oxidation-reduction treatment) shown below was performed on both surfaces of the electrolytic copper foil subjected to the above pickling treatment. That is, the oxidation treatment and the reduction treatment shown below were performed in this order.

<酸化処理>
上記酸洗処理が施された電解銅箔に対して酸化処理を行った。この酸化処理は、当該電解銅箔を液温75℃、pH=12、亜塩素酸濃度が100〜500g/L、N−2−(アミノエチル)−3−アミノプロピルトリメトキシシラン濃度が10g/Lの水酸化ナトリウム溶液に、3分間(例1及び3)又は10分間(例2及び4)浸漬させることにより行った。こうして、電解銅箔の両面に、銅複合化合物からなる針状結晶及び/又は板状結晶で構成される微細凹凸を形成した。
<Oxidation treatment>
An oxidation treatment was performed on the electrolytic copper foil subjected to the pickling treatment. In this oxidation treatment, the electrolytic copper foil is heated at a liquid temperature of 75 ° C., a pH of 12, a chlorite concentration of 100 to 500 g / L, and an N-2- (aminoethyl) -3-aminopropyltrimethoxysilane concentration of 10 g / L. This was done by immersing in L of sodium hydroxide solution for 3 minutes (Examples 1 and 3) or 10 minutes (Examples 2 and 4). Thus, fine irregularities composed of needle-like crystals and / or plate-like crystals made of a copper composite compound were formed on both surfaces of the electrolytic copper foil.

<還元処理>
上記酸化処理が施された試料に対して還元処理を行った。この還元処理は、上記酸化処理により微細凹凸が形成された試料を、炭酸ナトリウムと水酸化ナトリウムを用いてpH=13に調整したジメチルアミンボラン濃度が10〜40g/Lの水溶液に1分間浸漬することにより行った。このときの水溶液の温度は室温とした。こうして還元処理を行った試料を水洗し、乾燥した。これらの工程により、電解銅箔の両面の酸化銅の一部を還元して亜酸化銅とし、酸化銅及び亜酸化銅を含む銅複合化合物からなる微細凹凸を有する粗化処理面とした。こうして、針状結晶及び/又は板状結晶で構成される粗化処理面を両側に有する粗化処理銅箔を得た。
<Reduction processing>
A reduction treatment was performed on the sample subjected to the oxidation treatment. In this reduction treatment, the sample on which the fine irregularities are formed by the oxidation treatment is immersed in an aqueous solution having a dimethylamine borane concentration of 10 to 40 g / L adjusted to pH = 13 using sodium carbonate and sodium hydroxide for 1 minute. It was done by doing. The temperature of the aqueous solution at this time was room temperature. The sample thus reduced was washed with water and dried. Through these steps, part of the copper oxide on both sides of the electrolytic copper foil was reduced to cuprous oxide, and a roughened surface having fine irregularities made of a copper composite compound containing copper oxide and cuprous oxide was obtained. Thus, a roughened copper foil having a roughened surface composed of needle-like crystals and / or plate-like crystals on both sides was obtained.

(1d)有機防錆層の形成
上記得られた粗化処理銅箔に対して有機防錆層の形成を行った。この有機防錆層の形成は、粗化処理銅箔を有機防錆剤としてベンゾトリアゾールを6g/Lの濃度で含む水溶液に液温25℃で30秒間浸漬した後、180℃の熱風に10秒間曝して乾燥させることにより行った。
(1d) Formation of an organic rust preventive layer An organic rust preventive layer was formed on the roughened copper foil obtained above. This organic rust preventive layer is formed by immersing the roughened copper foil as an organic rust preventive in an aqueous solution containing benzotriazole at a concentration of 6 g / L at a liquid temperature of 25 ° C. for 30 seconds, and then in hot air of 180 ° C. for 10 seconds. Exposure was performed by drying.

(2)粗化処理銅箔の評価
作製された粗化処理銅箔について、以下に示される各種評価を行った。
(2) Evaluation of Roughened Copper Foil Various evaluations shown below were performed on the prepared roughened copper foil.

<SERA測定>
粗化処理銅箔の粗化処理面を連続電気化学還元分析(SERA)により酸化銅(CuO)厚さと亜酸化銅(CuO)厚さを測定した。このSERA分析には、測定装置としてECIテクノロジー社製のQC−100を用いた。手順は以下のとおりとした。まず、分析のために粗化処理銅箔8.0mmの領域をO−リングガスケットで隔離し、ホウ酸緩衝液を注入し、窒素で飽和させた。上記領域に30μA/cmの電流密度Iを印加し、−0.40V〜−0.60Vに現れるCuO還元反応、及び−0.60V〜−0.85Vに現れるCuO還元反応にかかる時間を計測し、それぞれt及びt(秒)とした。CuO及びCuOの各々の厚さT(nm)はファラデーの法則から求まる定数Kを用い、T=K・I・tの式に基づき算出した。なお、CuOに関する定数Kの値は6.53×10−5(cm/A・sec)であり、CuOについての定数Kの値は2.45×10−4(cm/A・sec)である。上記定数KはK=M/(z・F・ρ)(式中、Mは分子量であり、zは電荷数であり、Fはファラデー定数であり、ρは密度である)の式に基づき算出した。
<SERA measurement>
The thickness of copper oxide (CuO) and the thickness of cuprous oxide (Cu 2 O) were measured on the roughened surface of the roughened copper foil by continuous electrochemical reduction analysis (SERA). In this SERA analysis, QC-100 manufactured by ECI Technology was used as a measuring device. The procedure was as follows. First, an area of 8.0 mm 2 of the roughened copper foil was separated by an O-ring gasket for analysis, a borate buffer was injected, and saturated with nitrogen. Above region by applying a 30 .mu.A / cm 2 of current density I d, according to the CuO reduction appearing in -0.40V~-0.60V appearing Cu 2 O reduction, and -0.60V~-0.85V The time was measured and set as t 1 and t 2 (sec), respectively. The thickness T (nm) of each of CuO and Cu 2 O was calculated based on the equation of T = K · Id · t using a constant K obtained from Faraday's law. The value of the constant K for CuO is 6.53 × 10 −5 (cm 3 / A · sec), and the value of the constant K for Cu 2 O is 2.45 × 10 −4 (cm 3 / A · sec). sec). The constant K is calculated based on the following equation: K = M / (z · F · ρ) (where M is the molecular weight, z is the number of charges, F is the Faraday constant, and ρ is the density). did.

すなわち、CuOに関する定数K(=6.53×10−5(cm/A・sec))は、K=M/(z・F・ρ)の式に、次の値を入力して算出した。
M(分子量)=79.545(g/mol)
z(電荷数)=2(CuO+HO+2e→Cu+2OH
F(ファラデー定数)=96494(C/mol)=96500(A・sec/mol)
ρ(密度)=6.31(g/cm
That is, the constant K (= 6.53 × 10 −5 (cm 3 / A · sec)) relating to CuO was calculated by inputting the following value to the equation of K = M / (z · F · ρ). .
M (molecular weight) = 79.545 (g / mol)
z (number of charges) = 2 (CuO + H 2 O + 2e → Cu + 2OH )
F (Faraday constant) = 96494 (C / mol) = 96500 (Asec / mol)
ρ (density) = 6.31 (g / cm 3 )

また、CuOに関する定数K(=2.45×10−4(cm/A・sec))は、K=M/(z・F・ρ)の式に、次の値を入力して算出した。
M(分子量)=143.09(g/mol)
z(電荷数)=1(CuO+HO+2e→2Cu+2OH
F(ファラデー定数)=96494(C/mol)=96500(A・sec/mol)
ρ(密度)=6.04(g/cm
Further, a constant K (= 2.45 × 10 −4 (cm 3 / A · sec)) relating to Cu 2 O is obtained by inputting the following value to the equation of K = M / (z · F · ρ). Calculated.
M (molecular weight) = 143.09 (g / mol)
z (number of charges) = 1 (Cu 2 O + H 2 O + 2e → 2Cu + 2OH )
F (Faraday constant) = 96494 (C / mol) = 96500 (Asec / mol)
ρ (density) = 6.04 (g / cm 3 )

<粗化処理面(微細凹凸)の観察>
粗化処理銅箔の粗化処理面を構成する微細凹凸(析出面側)の表面及び断面をSEMで観察したところ、例1〜4のいずれにおいても、粗化処理面は無数の板状のようにも見える針状結晶で構成される微細凹凸からなることが確認された。
<Observation of roughened surface (fine irregularities)>
When the surface and cross section of the fine irregularities (deposition surface side) constituting the roughened surface of the roughened copper foil were observed by SEM, in any of Examples 1 to 4, the roughened surface was innumerable plate-like. It was confirmed that it consisted of fine irregularities composed of needle-like crystals that seemed to look like.

<熱可塑性樹脂(PTFE)に対する常態剥離強度>
熱可塑性樹脂基材として、PTFE基材(RO3003 Bondply、ROGERS Corporation製、厚さ125μm)を用意した。このPTFE基材に、上記SERA測定が行われた直後の粗化処理銅箔(厚さ18μm)をその粗化処理面が当該基材と当接するように積層し、真空プレス機を使用して、プレス圧2.4MPa、温度370℃、プレス時間30分の条件でプレスして銅張積層板を作製した。次に、この銅張積層板にエッチング法により、0.4mm幅の剥離強度測定用直線回路を備えた試験基板を作製した。こうして形成した直線回路を、JIS C 5016−1994のA法(90°剥離)に準拠してPTFE基材から引き剥がして、常態剥離強度(kgf/cm)を測定した。この測定は、卓上材料試験機(STA−1150、株式会社オリエンテック製)を用いて行った。結果は表1に示されるとおりであった。
<Normal peel strength for thermoplastic resin (PTFE)>
A PTFE substrate (RO3003 Bondply, manufactured by ROGERS Corporation, thickness 125 μm) was prepared as a thermoplastic resin substrate. A roughened copper foil (thickness: 18 μm) immediately after the SERA measurement is performed is laminated on the PTFE base material such that the roughened surface is in contact with the base material, and a vacuum press machine is used. Pressing was performed under the conditions of a press pressure of 2.4 MPa, a temperature of 370 ° C., and a press time of 30 minutes to produce a copper-clad laminate. Next, a test substrate having a 0.4 mm-width linear circuit for peel strength measurement was prepared on the copper-clad laminate by an etching method. The linear circuit thus formed was peeled off from the PTFE substrate in accordance with the method A (90 ° peeling) of JIS C 5016-1994, and the normal peel strength (kgf / cm) was measured. This measurement was performed using a desktop material tester (STA-1150, manufactured by Orientec Co., Ltd.). The results were as shown in Table 1.

<熱可塑性樹脂(PTFE)に対する耐熱剥離強度>
0.4mm幅の剥離強度測定用直線回路を備えた試験基板をオーブンに入れて150℃又は171℃で10日間加熱したこと以外は、上述したPTFEに対する常態剥離強度と同様の手順により、PTFEに対する耐熱剥離強度(kgf/cm)を測定した。結果は表1に示されるとおりであった。なお、UL規格によって求められる耐熱剥離強度の望ましい値は、上記いずれの条件においても0.36kgf/cm以上である。
<Heat-resistant peel strength against thermoplastic resin (PTFE)>
Except that the test substrate equipped with a 0.4 mm width peel strength measuring linear circuit was placed in an oven and heated at 150 ° C. or 171 ° C. for 10 days, the same procedure as in the normal peel strength for PTFE described above was applied to PTFE. The heat-resistant peel strength (kgf / cm) was measured. The results were as shown in Table 1. Note that a desirable value of the heat-resistant peel strength determined by the UL standard is 0.36 kgf / cm or more under any of the above conditions.

<レーザー加工性>
上記(1)で得られた粗化処理銅箔を用いてレーザー加工性評価用積層体を以下のように作成した。まず、熱可塑性樹脂としてPTFE基材(RO3003 Bondply、ROGERS Corporation製、厚さ125μm)を用意した。次いで、このPTFE基材の両面に上記(1)で得られた粗化処理銅箔をその粗化処理面が当該基材と当接するように積層し、真空プレスを使用して、プレス圧2.4MPa、温度370℃、プレス時間30分の条件でプレスし、レーザー加工性評価用積層体を得た。なお、上記(1)で得られた粗化処理銅箔の両面には同様の粗化処理が施されているため、粗化処理銅箔のPTFE基材との密着面及び当該密着面と反対側の面には同様の粗化処理面が存在する。得られたレーザー加工性評価用積層体に対して、炭酸ガスレーザーを用いて、マスク径2.0mm、パルス幅14μsec.、パルスエネルギー19.3mJ、オフセット0.8、レーザー光径153μm、狙い径70μmの条件で、一方の粗化処理銅箔側からレーザー加工を施し、当該粗化処理銅箔及び熱可塑性樹脂を貫通して他方の粗化処理銅箔に到達するビアホールを各例につき100穴ずつ形成した。形成したビアホールの加工径を計測し、狙い径近傍(70μm±5μm)のビアホール径の割合を算出して、以下の基準で格付け評価した。結果は表1に示されるとおりであった。
‐評価A:70μm±5μmのビアホール径の割合が80%以上
‐評価B:70μm±5μmのビアホール径の割合が60%以上80%未満
‐評価C:70μm±5μmのビアホール径の割合が60%未満
<Laser workability>
Using the roughened copper foil obtained in (1) above, a laminate for evaluating laser workability was prepared as follows. First, a PTFE base material (RO3003 Bondply, manufactured by ROGERS Corporation, thickness 125 μm) was prepared as a thermoplastic resin. Next, the roughened copper foil obtained in the above (1) is laminated on both surfaces of the PTFE base material such that the roughened surface is in contact with the base material, and a pressing pressure of 2 is applied using a vacuum press. Pressing was performed under the conditions of 0.4 MPa, a temperature of 370 ° C., and a pressing time of 30 minutes to obtain a laminate for evaluating laser workability. In addition, since both surfaces of the roughened copper foil obtained in the above (1) are subjected to the same roughening treatment, the roughened copper foil has a close contact surface with the PTFE substrate and a surface opposite to the close contact surface. A similar roughened surface exists on the side surface. Using a carbon dioxide laser, a mask diameter of 2.0 mm and a pulse width of 14 μsec. Under the conditions of pulse energy of 19.3 mJ, offset of 0.8, laser beam diameter of 153 μm, and target diameter of 70 μm, laser processing is performed from one of the roughened copper foil side and penetrates the roughened copper foil and thermoplastic resin. Then, a via hole reaching the other roughened copper foil was formed by 100 holes in each example. The processing diameter of the formed via hole was measured, the ratio of the via hole diameter near the target diameter (70 μm ± 5 μm) was calculated, and the rating was evaluated based on the following criteria. The results were as shown in Table 1.
-Evaluation A: Ratio of via hole diameter of 70 μm ± 5 μm is 80% or more-Evaluation B: Ratio of via hole diameter of 70 μm ± 5 μm is 60% or more and less than 80%-Evaluation C: Ratio of via hole diameter of 70 μm ± 5 μm is 60% Less than

例5(比較)
上記(1b)の有機物付着処理の代わりに、電解銅箔を液温40℃、硫酸濃度が10体積%の硫酸水溶液に23秒間浸漬した後、水洗することからなる、有機物を添加しない酸洗処理を行ったこと以外は、例1と同様にして粗化処理銅箔の作製及び評価を行った。結果は表1に示されるとおりであった。
Example 5 (comparison)
Instead of the organic substance adhering treatment of the above (1b), the electrolytic copper foil is immersed in a sulfuric acid aqueous solution having a liquid temperature of 40 ° C. and a sulfuric acid concentration of 10% by volume for 23 seconds, and then washed with water. The production and evaluation of the roughened copper foil were performed in the same manner as in Example 1 except that the above-described steps were performed. The results were as shown in Table 1.

例6(比較)
上記(1b)の有機物付着処理の代わりに、電解銅箔を液温40℃、硫酸濃度が10体積%の硫酸水溶液に23秒間浸漬した後、水洗することからなる、有機物を添加しない酸洗処理(有機物非添加)を行ったこと以外は、例2と同様にして粗化処理銅箔の作製及び評価を行った。結果は表1に示されるとおりであった。
Example 6 (comparison)
Instead of the organic substance adhering treatment of the above (1b), the electrolytic copper foil is immersed in a sulfuric acid aqueous solution having a liquid temperature of 40 ° C. and a sulfuric acid concentration of 10% by volume for 23 seconds, and then washed with water. Preparation and evaluation of a roughened copper foil were performed in the same manner as in Example 2 except that (no organic substance was added). The results were as shown in Table 1.

例7(比較)
上記(1b)の有機物付着処理の代わりに、電解銅箔を液温40℃、硫酸濃度が10体積%の硫酸水溶液に23秒間浸漬した後、水洗することからなる、有機物を添加しない酸洗処理を行ったこと、及び上記(1d)の有機防錆層の代わりに以下に示す手順で無機防錆層を形成したこと以外は、例1と同様にして粗化処理銅箔の作製及び評価を行った。結果は表1に示されるとおりであった。
Example 7 (comparison)
Instead of the organic substance adhering treatment of the above (1b), the electrolytic copper foil is immersed in a sulfuric acid aqueous solution having a liquid temperature of 40 ° C. and a sulfuric acid concentration of 10% by volume for 23 seconds, and then washed with water. Was performed, and the production and evaluation of the roughened copper foil were performed in the same manner as in Example 1 except that the inorganic rust preventive layer was formed in the following procedure in place of the organic rust preventive layer of (1d). went. The results were as shown in Table 1.

(無機防錆層の形成)
粗化処理銅箔に対して、無機防錆処理及びクロメート処理からなる防錆処理を行った。まず、無機防錆処理として、ピロリン酸浴を用い、ピロリン酸カリウム濃度80g/L、亜鉛濃度0.2g/L、ニッケル濃度2g/L、液温40℃、電流密度0.5A/dmで亜鉛−ニッケル合金防錆処理を行った。次いで、クロメート処理として、亜鉛−ニッケル合金防錆処理の上に、更にクロメート層を形成した。このクロメート処理は、クロム酸濃度が1g/L、pH=11、溶液温度25℃、電流密度1A/dmで行った。こうして、粗化処理銅箔の両面に無機防錆層を形成した。
(Formation of inorganic rust prevention layer)
The roughened copper foil was subjected to an anticorrosion treatment comprising an inorganic anticorrosion treatment and a chromate treatment. First, as an inorganic rust preventive treatment, a pyrophosphate bath was used at a potassium pyrophosphate concentration of 80 g / L, a zinc concentration of 0.2 g / L, a nickel concentration of 2 g / L, a liquid temperature of 40 ° C., and a current density of 0.5 A / dm 2 . A zinc-nickel alloy rust prevention treatment was performed. Next, as a chromate treatment, a chromate layer was further formed on the zinc-nickel alloy rust preventive treatment. The chromate treatment was performed at a chromic acid concentration of 1 g / L, a pH of 11, a solution temperature of 25 ° C., and a current density of 1 A / dm 2 . Thus, an inorganic rust-proof layer was formed on both surfaces of the roughened copper foil.



Figure 2019218602
Figure 2019218602

Claims (10)

亜酸化銅及び/又は酸化銅を含む針状結晶及び/又は板状結晶で構成される粗化処理面を少なくとも一方の側に有する粗化処理銅箔であって、
前記粗化処理面は、連続電気化学還元分析(SERA)により決定される亜酸化銅厚さが71〜300nmであり、かつ、連続電気化学還元分析(SERA)により決定される酸化銅厚さが0〜20nmである、粗化処理銅箔。
A roughened copper foil having at least one side of a roughened surface composed of acicular crystals and / or plate-like crystals containing cuprous oxide and / or copper oxide,
The roughened surface has a thickness of 71 to 300 nm of cuprous oxide determined by continuous electrochemical reduction analysis (SERA) and a thickness of copper oxide determined by continuous electrochemical reduction analysis (SERA). A roughened copper foil having a thickness of 0 to 20 nm.
前記粗化処理面の亜酸化銅厚さが100〜300nmである、請求項1に記載の粗化処理銅箔。   The roughened copper foil according to claim 1, wherein a thickness of the cuprous oxide on the roughened surface is 100 to 300 nm. 前記粗化処理面の酸化銅厚さが1〜20nmである、請求項1又は2に記載の粗化処理銅箔。   The roughened copper foil according to claim 1, wherein the roughened copper oxide has a thickness of 1 to 20 nm. 前記粗化処理面を両側に有する、請求項1〜3のいずれか一項に記載の粗化処理銅箔。   The roughened copper foil according to any one of claims 1 to 3, having the roughened surface on both sides. 前記粗化処理面に有機防錆層を有する、請求項1〜4のいずれか一項に記載の粗化処理銅箔。   The roughened copper foil according to any one of claims 1 to 4, wherein the roughened surface has an organic rust preventive layer. 前記有機防錆層がトリアゾール化合物及びシランカップリング剤の少なくともいずれか一方を含む、請求項5に記載の粗化処理銅箔。   The roughened copper foil according to claim 5, wherein the organic rust preventive layer contains at least one of a triazole compound and a silane coupling agent. 前記有機防錆層がトリアゾール化合物を含む、請求項5に記載の粗化処理銅箔。   The roughened copper foil according to claim 5, wherein the organic rust preventive layer contains a triazole compound. 請求項1〜7のいずれか一項に記載の粗化処理銅箔と、
前記粗化処理銅箔の前記少なくとも一方の側に設けられる絶縁樹脂基材と、
を備えた、銅張積層板。
A roughened copper foil according to any one of claims 1 to 7,
An insulating resin substrate provided on the at least one side of the roughened copper foil,
, A copper-clad laminate.
前記絶縁樹脂基材が熱可塑性樹脂を含む、請求項8に記載の銅張積層板。   The copper clad laminate according to claim 8, wherein the insulating resin base material includes a thermoplastic resin. 請求項1〜7のいずれか一項に記載の粗化処理銅箔を備えたプリント配線板。
A printed wiring board comprising the roughened copper foil according to claim 1.
JP2018116815A 2018-06-20 2018-06-20 Roughened copper foil, copper-clad laminate and printed wiring board Active JP6985745B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2018116815A JP6985745B2 (en) 2018-06-20 2018-06-20 Roughened copper foil, copper-clad laminate and printed wiring board
PCT/JP2019/020038 WO2019244541A1 (en) 2018-06-20 2019-05-21 Roughened copper foil, copper clad laminate and printed wiring board
KR1020207035610A KR20210020899A (en) 2018-06-20 2019-05-21 Harmonized copper foil, copper clad laminate and printed wiring board
CN201980035293.8A CN112204171B (en) 2018-06-20 2019-05-21 Coarsening copper foil, copper-clad laminate and printed circuit board
TW108118108A TWI808183B (en) 2018-06-20 2019-05-24 Coarse treatment of copper foil, copper-clad laminates and printed wiring boards

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018116815A JP6985745B2 (en) 2018-06-20 2018-06-20 Roughened copper foil, copper-clad laminate and printed wiring board

Publications (2)

Publication Number Publication Date
JP2019218602A true JP2019218602A (en) 2019-12-26
JP6985745B2 JP6985745B2 (en) 2021-12-22

Family

ID=68982857

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018116815A Active JP6985745B2 (en) 2018-06-20 2018-06-20 Roughened copper foil, copper-clad laminate and printed wiring board

Country Status (5)

Country Link
JP (1) JP6985745B2 (en)
KR (1) KR20210020899A (en)
CN (1) CN112204171B (en)
TW (1) TWI808183B (en)
WO (1) WO2019244541A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6806405B1 (en) * 2020-04-27 2021-01-06 ナミックス株式会社 Composite copper member
WO2021220524A1 (en) * 2020-04-27 2021-11-04 ナミックス株式会社 Composite copper member
WO2022091804A1 (en) * 2020-11-02 2022-05-05 ナミックス株式会社 Multilayer substrate wiring and method for manufacturing same
KR20230125209A (en) 2020-12-25 2023-08-29 가부시끼가이샤 레조낙 Manufacturing method of laminated board and wiring board

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190116158A (en) 2019-08-23 2019-10-14 삼성전기주식회사 Multilayered electronic component
EP4234758A1 (en) * 2020-10-21 2023-08-30 Asahi Kasei Kabushiki Kaisha Method for manufacturing conductive pattern-provided structure
CN116745462A (en) * 2021-03-25 2023-09-12 纳美仕有限公司 Method for producing laminate
JPWO2022224684A1 (en) * 2021-04-20 2022-10-27

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017056534A1 (en) * 2015-09-30 2017-04-06 三井金属鉱業株式会社 Roughened copper foil, copper clad laminate, and printed circuit board
WO2017150043A1 (en) * 2016-03-03 2017-09-08 三井金属鉱業株式会社 Production method for copper-clad laminate plate

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3123109B2 (en) * 1991-05-09 2001-01-09 凸版印刷株式会社 Multilayer wiring board and its manufacturing method
DE69915395D1 (en) * 1999-09-29 2004-04-08 Europa Metalli Spa AN ELECTROCHEMICAL METHOD FOR PRODUCING AN INORGANIC COVER LAYER ON A COPPER SURFACE
JP4908257B2 (en) * 2007-02-16 2012-04-04 旭化成イーマテリアルズ株式会社 LAMINATE AND METHOD FOR PRODUCING LAMINATE
TWI543862B (en) 2013-02-14 2016-08-01 三井金屬鑛業股份有限公司 Surface-treated copper foil and copper clad laminate using the same
MY182166A (en) 2013-09-20 2021-01-18 Namics Corp Copper foil, copper foil with carrier foil, and copper-clad laminate
MY186397A (en) * 2015-07-29 2021-07-22 Namics Corp Roughened copper foil, copper-clad laminate, and printed wiring board
TWI616336B (en) * 2016-03-03 2018-03-01 三井金屬鑛業股份有限公司 Method for manufacturing copper-clad laminate

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017056534A1 (en) * 2015-09-30 2017-04-06 三井金属鉱業株式会社 Roughened copper foil, copper clad laminate, and printed circuit board
WO2017150043A1 (en) * 2016-03-03 2017-09-08 三井金属鉱業株式会社 Production method for copper-clad laminate plate

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6806405B1 (en) * 2020-04-27 2021-01-06 ナミックス株式会社 Composite copper member
WO2021220524A1 (en) * 2020-04-27 2021-11-04 ナミックス株式会社 Composite copper member
WO2022091804A1 (en) * 2020-11-02 2022-05-05 ナミックス株式会社 Multilayer substrate wiring and method for manufacturing same
KR20230125209A (en) 2020-12-25 2023-08-29 가부시끼가이샤 레조낙 Manufacturing method of laminated board and wiring board

Also Published As

Publication number Publication date
JP6985745B2 (en) 2021-12-22
KR20210020899A (en) 2021-02-24
WO2019244541A1 (en) 2019-12-26
TW202002731A (en) 2020-01-01
CN112204171B (en) 2023-09-29
CN112204171A (en) 2021-01-08
TWI808183B (en) 2023-07-11

Similar Documents

Publication Publication Date Title
JP6985745B2 (en) Roughened copper foil, copper-clad laminate and printed wiring board
KR101846141B1 (en) Manufacturing method of copper clad laminate
KR102490491B1 (en) Roughened copper foil, copper-clad laminate, and printed wiring board
TWI719567B (en) Roughened copper foil, copper foil with carrier, copper clad laminate and printed wiring board
US10280501B2 (en) Roughened copper foil, copper clad laminate, and printed circuit board
TWI616336B (en) Method for manufacturing copper-clad laminate
JP6178035B1 (en) Method for producing copper clad laminate
KR102382750B1 (en) Method for producing surface-treated copper foil, copper clad laminate and printed wiring board
TWI599279B (en) Copper foil for laser processing, copper foil with carrier foil for laser processing, copper clad laminate and method for manufacturing printed wiring board
JP6087028B1 (en) Roughening copper foil, copper clad laminate and printed wiring board
KR20230159393A (en) Carrier equipped with copper foil, copper clad laminate and printed wiring board
KR101400778B1 (en) Copper foil for laser hole drilling, copper-clad laminate and preparation method of the foil
JP2020164975A (en) Surface-treated copper foil, copper-cladded laminate plate, and printed wiring board
JP2003124589A (en) Copper foil for printed circuit board

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20190415

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20190415

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210305

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211116

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211118

R150 Certificate of patent or registration of utility model

Ref document number: 6985745

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150