JP2019210490A - 積層造形物の製造方法 - Google Patents

積層造形物の製造方法 Download PDF

Info

Publication number
JP2019210490A
JP2019210490A JP2018104432A JP2018104432A JP2019210490A JP 2019210490 A JP2019210490 A JP 2019210490A JP 2018104432 A JP2018104432 A JP 2018104432A JP 2018104432 A JP2018104432 A JP 2018104432A JP 2019210490 A JP2019210490 A JP 2019210490A
Authority
JP
Japan
Prior art keywords
temperature
layer
material layer
predetermined
solidified layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018104432A
Other languages
English (en)
Other versions
JP6556296B1 (ja
Inventor
一朗 新家
Ichiro Araya
一朗 新家
弘至 網岡
Hiroshi Amioka
弘至 網岡
秀二 岡崎
Hideji Okazaki
秀二 岡崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sodick Co Ltd
Original Assignee
Sodick Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sodick Co Ltd filed Critical Sodick Co Ltd
Priority to JP2018104432A priority Critical patent/JP6556296B1/ja
Priority to KR1020180095892A priority patent/KR102151445B1/ko
Priority to TW108132129A priority patent/TW201946767A/zh
Priority to TW107129330A priority patent/TWI724321B/zh
Priority to PT181907833T priority patent/PT3450060T/pt
Priority to EP18190783.3A priority patent/EP3450060B1/en
Priority to US16/114,608 priority patent/US11014164B2/en
Priority to CN201810996865.6A priority patent/CN109622954B/zh
Application granted granted Critical
Publication of JP6556296B1 publication Critical patent/JP6556296B1/ja
Publication of JP2019210490A publication Critical patent/JP2019210490A/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

【課題】意図しないマルテンサイト変態の進行を抑制する積層造形装置、積層造形物の製造方法の提供。【解決手段】三次元造形物を複数の分割層毎に材料層を形成する材料層形成装置と、材料層の照射領域に第1ビームを照射して焼結または溶融させ固化層を形成する第1照射装置と、固化層の少なくとも一部の温度を所定の第1温度または第2温度に調整する温度調整装置とを備え、固化層の少なくとも一部は第1温度となった後第2温度となり、第1温度をT1、第2温度をT2、固化層のマルテンサイト変態開始温度をMs、変態終了温度をMf、三次元造形物が造形後曝される最低温度をTmとすると、下記式、T1≧Mf(1)T1>T2(2)T2≦Ms(3)T1≧Ms(4)T2>Mf(5)T2≦Tm(6)または下記式、T1≧Mf(1)T1>T2(2)T2≦Ms(3)T1≦Ms(7)T2>Mf(5)T2≦Tm(6)が全て満たされる積層造形装置。【選択図】図13

Description

この発明は、積層造形装置および積層造形物の製造方法に関する。
本出願人は、金属の積層造形において、1層または複数層の固化層を形成する毎に意図的にマルテンサイト変態を進行させることで、金属の収縮による引張応力をマルテンサイト変態による圧縮応力で軽減して造形物の残留応力を制御することにより、造形物の変形を抑制可能な積層造形装置および積層造形物の製造方法に係る発明を提案した。具体的には、所定の温度である第1温度をT1、所定の温度である第2温度をT2、固化層のマルテンサイト変態開始温度をMs、固化層のマルテンサイト変態終了温度をMfとすると、T1≧Mf、T1>T2およびT2≦Msの関係式が全て満たされる温度条件で、1層または複数層の固化層を形成する毎に、第1温度まで加熱された固化層を第2温度まで冷却して、マルテンサイト変態を含む変態を進行させる。
特許第6295001号公報
マルテンサイト変態が起こる温度範囲、すなわちマルテンサイト変態開始温度Ms以下かつマルテンサイト変態終了温度Mf以上の温度範囲に、第2温度が含まれる場合においては、造形完了後に、造形物の温度が第2温度未満となった際に、マルテンサイト変態がさらに進行してしまい、意図しない膨張が発生する可能性がある。
本発明はこのような事情に鑑みてなされたものであり、造形完了後に意図しないマルテンサイト変態が進行することを防止した上で、造形物の残留応力を制御する、積層造形装置および積層造形物の製造方法を提供することを主たる目的とするものである。
本発明によれば、造形領域に対して所望の三次元造形物を所定高さで分割してなる複数の分割層毎に材料層を形成する材料層形成装置と、所定の分割層における材料層の所定の照射領域に第1ビームを照射して焼結または溶融させ固化層を形成する第1照射装置と、固化層の少なくとも一部の温度を所定の温度である第1温度または所定の温度である第2温度の少なくとも一方に調整する温度調整装置と、を備え、固化層の少なくとも一部は、第1温度となった後、第2温度となり、第1温度をT1、第2温度をT2、固化層のマルテンサイト変態開始温度をMs、固化層のマルテンサイト変態終了温度をMf、三次元造形物が造形後曝される最低温度をTm、とすると、
下記式の関係が全て満たされる、
T1≧Mf (1)
T1>T2 (2)
T2≦Ms (3)
T1≧Ms (4)
T2>Mf (5)
T2≦Tm (6)
または下記式の関係が全て満たされる、
T1≧Mf (1)
T1>T2 (2)
T2≦Ms (3)
T1≦Ms (7)
T2>Mf (5)
T2≦Tm (6)
積層造形装置が提供される。
また、本発明によれば、造形領域に対して所望の三次元造形物を所定高さで分割してなる複数の分割層毎に材料層を形成する材料層形成工程と、所定の分割層における材料層の所定の照射領域に第1ビームを照射して焼結または溶融させ固化層を形成する固化工程と、固化層の少なくとも一部を所定の温度である第1温度にする第1温調工程と、第1温度となった固化層の少なくとも一部を所定の温度である第2温度にする第2温調工程と、を備え、第1温度をT1、第2温度をT2、固化層のマルテンサイト変態開始温度をMs、固化層のマルテンサイト変態終了温度をMf、三次元造形物が造形後曝される最低温度をTm、とすると、
下記式の関係が全て満たされる、
T1≧Mf (1)
T1>T2 (2)
T2≦Ms (3)
T1≧Ms (4)
T2>Mf (5)
T2≦Tm (6)
または下記式の関係が全て満たされる、
T1≧Mf (1)
T1>T2 (2)
T2≦Ms (3)
T1≦Ms (7)
T2>Mf (5)
T2≦Tm (6)
積層造形物の製造方法が提供される。
本発明に係る積層造形装置および積層造形物の製造方法においては、三次元造形物が造形後曝される最低温度以下に第2温度を設定する。これにより、造形後に三次元造形物の温度が第2温度を下回ることがないため、意図しないマルテンサイト変態の進行を抑制でき、結果として三次元造形物の品質が安定する。
第1の実施形態に係る積層造形装置の概略構成図である。 第1の実施形態に係る照射ユニットの概略構成図である。 第1の温度調整装置の概略構成図である。 第2の温度調整装置の概略構成図である。 第1の実施形態に係る積層造形装置を用いた積層造形方法の説明図である。 第1の実施形態に係る積層造形装置を用いた積層造形方法の説明図である。 第1の実施形態に係る積層造形装置を用いた積層造形方法の説明図である。 第2の実施形態に係る積層造形装置の概略構成図である。 第2の実施形態に係る照射ユニットの概略構成図である。 第2の実施形態に係る積層造形装置における照射領域を示す説明図である。 第2の実施形態に係る積層造形装置における第1ビームおよび第2ビームの走査方法を示す説明図である。 第2の実施形態に係る積層造形装置における走査経路に所定部位Pを含む第1ビームおよび第2ビームの走査を示す説明図である。 温度調整パターンαにおける温度変化の概略図である。 温度調整パターンβにおける温度変化の概略図である。
まず、本発明に係る積層造形装置の構成を説明する。以下に第1の実施形態および第2の実施形態として具体的に示した積層造形装置以外であっても、金属材料からなる材料層を形成し、この材料層の所定箇所にレーザ光または電子ビーム等のビームを照射して照射位置の材料層を焼結または溶融させることを繰り返すことによって、複数の焼結層または溶融層を積層して所望の三次元造形物を造形する積層造形装置であれば本発明は適用可能である。なお、以下においては焼結および溶融を含めて固化と呼び、焼結層および溶融層を含めて固化層と呼ぶ。また、積層造形の方法としては、粉末焼結積層造形方式、粉末溶融積層造形方式、電子ビーム焼結方式、電子ビーム溶融方式、シート積層方式等多種の方法が知られているが、本発明が適用可能であればいずれの方式であってもよい。
[第1の実施形態]
以下、図面を用いて本発明の第1の実施形態について説明する。以下に示す実施形態中で示した各種特徴事項は、互いに組み合わせ可能である。
第1の実施形態に係る積層造形装置は、材料粉体からなる材料層63を形成し、この材料層63の所定箇所に第1ビームL1を照射して照射位置の材料粉体を焼結または溶融させることを繰り返すことによって、複数の固化層65を積層して所望の三次元造形物を造形する積層造形装置である。図1に示すように、本発明の積層造形装置は、チャンバ1と、材料層形成装置2と、照射ユニット3Aと、切削装置4とを有する。
所要の造形領域RMを覆うチャンバ1には、清浄な不活性ガスが供給されるとともに、材料層63の焼結または溶融時に発生するヒュームを含んだ不活性ガスが排出され、所定濃度の不活性ガスが充満される。不活性ガスとは使用する材料と実質的に反応しないガスをいい、例えば窒素またはアルゴンである。
図1に示すように、チャンバ1には、造形領域RMに対して所望の三次元造形物を所定高さで分割してなる複数の分割層毎に材料層63を形成する材料層形成装置2が設けられる。材料層形成装置2は、造形領域RMを有するベース台21と、ベース台21上に配置され水平1軸方向(矢印B方向)に往復移動するリコータヘッド23とを含む。リコータヘッド23の両側面にそれぞれブレードが設けられる。リコータヘッド23は、内部に収容した材料粉体を底面から排出しながら往復移動し、ブレードは排出された材料粉体を平坦化して材料層63を形成する。造形領域RMには、造形テーブル駆動機構27により、上下方向(矢印U方向)に移動可能な造形テーブル25が設けられる。積層造形装置の使用時には、通常は造形テーブル25上に造形プレート61が配置され、その上に1層目の材料層63aが形成される。造形テーブル25の周りには、粉体保持壁29が設けられる。粉体保持壁29と造形テーブル25とによって囲まれる粉体保持空間には、未固化の材料粉体が保持される。なお、造形領域RMは積層造形物が形成可能な領域であり、造形領域RMに材料層63が形成される。また、照射領域RIは、造形領域RM内に存在する固化層65が形成される領域であり、所望の三次元造形物の輪郭形状で囲繞される領域とおおよそ一致する。
照射ユニット3Aが、チャンバ1の上方に設けられる。第1の実施形態に係る照射ユニット3Aは、材料層63の所定の照射領域RIに第1ビームL1を照射して焼結または溶融させ固化層を形成する第1照射装置31と、第1ビームL1を走査する走査手段34とを含む。
第1照射装置31は、図2に示すように、第1光源311と、第1コリメータ313と、第1フォーカス制御ユニット315と、を有する。第1光源311は第1ビームL1を出力する。ここで、第1ビームL1は、材料層63を焼結または溶融可能なレーザ光であって、例えば、CO2レーザ、ファイバーレーザ、またはYAGレーザである。第1コリメータ313は、第1光源311より出力された第1ビームL1を平行光に変換する。第1フォーカス制御ユニット315は、第1光源311より出力された第1ビームL1を集光し所望のスポット径に調整する。
走査手段34は例えばガルバノスキャナであり、ガルバノスキャナは、一対のガルバノミラー34x,34yと、各ガルバノミラー34x,34yをそれぞれ回転させるアクチュエータを備えている。2軸のガルバノミラー34x,34yは、第1光源311より出力された第1ビームL1を制御可能に2次元走査する。ガルバノミラー34x,34yは、それぞれ、不図示の制御装置から入力される回転角度制御信号の大きさに応じて回転角度が制御される。かかる特徴により、ガルバノミラー34x,34yの各アクチュエータに入力する回転角度制御信号の大きさを変化させることによって、所望の位置に第1ビームL1を照射することができる。
ガルバノミラー34x,34yを通過した第1ビームL1は、チャンバ1の上部に設けられた保護ウインドウ11を透過して造形領域RMに形成された材料層63に照射される。また、保護ウインドウ11を覆うように汚染防止装置13が設けられる。汚染防止装置13は、供給された不活性ガスを保護ウインドウ11下に充満させ、また不活性ガスを下方に向かって噴出させるように構成されている。こうして、第1ビームL1の経路からヒュームを排除するとともに、ヒュームによる保護ウインドウ11の汚染を防止する。
切削装置4は、スピンドルヘッド43が設けられた加工ヘッド41を有する。スピンドルヘッド43はエンドミル等の切削工具を取り付けて回転させることができる。加工ヘッド41は、不図示の加工ヘッド駆動機構により、スピンドルヘッド43をチャンバ1内の所望の位置に移動させる。このような切削装置4は、固化層65の表面や不要部分に対して切削加工を行うことができる。
ここで、第1の実施形態に係る積層造形装置は、固化層の少なくとも一部の温度を所定の温度である第1温度T1または所定の温度である第2温度T2の少なくとも一方に調整する温度調整装置を備える。なお、以下においては、温度調整の対象となる固化層、すなわち形成されてから、第1温度T1、第2温度T2の順で行われる温度調整が1度も完了していない固化層を上面層と呼ぶ。なお、温度調整は温度調整装置による能動的な温度操作に限定されない。例えば、材料の組成によっては、周辺雰囲気の温度が第1温度T1または第2温度T2として適当な温度となりうることもありうる。この場合は、温度調整装置は、第1温度T1または第2温度T2の一方のみに調整するものであってもよい。第1の実施形態に係る温度調整装置は、上面層の少なくとも一部の温度を第1温度T1、第2温度T2の順番で調整する。好ましくは、第1の実施形態に係る温度調整装置は、上面層の少なくとも一部の温度を第1温度T1、第2温度T2、第1温度T1の順番で調整する。なお、第1温度T1、第2温度T2、固化層65のマルテンサイト変態開始温度Msおよび固化層65のマルテンサイト変態終了温度Mfにおいては、下記式(1)から(3)の関係が全て満たされる。
T1≧Mf (1)
T1>T2 (2)
T2≦Ms (3)
焼結または溶融後、温度調整される前の上面層は、オーステナイト相を含む状態であって、温度調整により少なくとも一部がマルテンサイト相へと変態する。
温度調整装置は、上面層を第1温度T1または第2温度T2の少なくとも一方に温度調整可能に構成されていればよい。特に、温度調整装置は上面層を第1温度T1に調整する加熱器と、上面層を第2温度T2に調整する冷却器のうち少なくともいずれか一方を有し、好ましくは両者を有する。下記に、温度調整装置の具体例として、第1の温度調整装置51および第2の温度調整装置52を示す。
第1の温度調整装置51は、造形テーブル25の内部に設けられた加熱器51aおよび冷却器51bを有する。加熱器51aは、例えば、電熱器または熱媒体が流通される管路である。冷却器51bは、例えば、熱媒体が流通される管路である。熱媒体としては、水、油、液体窒素等種々の流体が使用可能である。具体的な構成例として、図3に示すように、造形テーブル25は、天板25aおよび3つの支持板25b,25c,25dを備え、天板25aと支持板25bとの間に加熱器51aが、支持板25cと支持板25dとの間に冷却器51bが設けられる。造形テーブル25は、加熱器51aおよび冷却器51bによって第1温度T1および第2温度T2を含む任意の温度に温度調整可能である。なお、造形テーブル駆動機構27の熱変位を防止するため、第1の温度調整装置51と造形テーブル駆動機構27との間に一定の温度に保たれた恒温部が設けられてもよい。以上のように第1の温度調整装置51を構成することで、所望の温度に設定された造形テーブル25の天板51cと接触する造形プレート61および下層の固化層65を介して、上面層を所望の温度に調整することが可能である。
なお、材料層63は焼結または溶融にあたり所定温度に予熱されていることが望ましいが、第1の温度調整装置51は材料層63の予熱装置としての役割も果たす。例えば、第1温度T1が予熱温度として適当である場合、好ましくは、材料層63は第1の温度調整装置51によって第1温度T1に予熱される。
図4に示す第2の温度調整装置52は、上面層をその上方側から第1温度T1に調整する加熱器52aと、上面層をその上方側から第2温度T2に調整する冷却器52bを有する。加熱器52aは、例えば、ハロゲンランプ等の光加熱器である。冷却器52bは、例えば、上面層に対しチャンバ1に充満される不活性ガス等と同種の冷却気体を吹き付ける送風機、またはペルチェ素子等によって冷却された冷却板を上面層に接触させる冷却機構である。このような第2の温度調整装置52によれば、直接上面層を温度調整することができるため、多数層の固化層65を形成した後でも迅速に上面層の温度調整を行うことができる。
前述の通り、温度調整装置は、上面層を第1温度または第2温度の少なくとも一方に温度調整可能に構成されればよく、種々の形態を採用可能である。例えば、温度調整装置として、第1の温度調整装置51および第2の温度調整装置52のうち、一方または両方が設けられてもよい。例えば、温度調整装置は、第1の温度調整装置51の加熱器51aおよび冷却器51bならびに第2の温度調整装置52の加熱器52aおよび冷却器52bを任意の組み合わせで有してよい。温度調整装置は、その他の形態であってもよい。
また、図1に示すように、積層造形装置は、上面層の温度を測定する温度センサ55を有し、温度調整装置はフィードバック制御されてもよい。かかる構成により、より正確に上面層の温度を制御することができる。なお、温度センサ55は、複数設けてもよい。また、温度センサ55は、例えば、赤外線温度センサである。
ここで、第1の実施形態に係る積層造形物の製造方法における各工程について図5から図7を用いて説明する。以下において、造形領域RMに対して所望の三次元造形物を所定高さで分割してなる複数の分割層毎に材料層63を形成する工程を材料層形成工程、材料層63の所定の照射領域RIに第1ビームL1を照射して焼結または溶融させ固化層65を形成する工程を固化工程、上面層の少なくとも一部を所定の温度である第1温度T1にする工程を第1温調工程、第1温度T1となった上面層の少なくとも一部を所定の温度である第2温度T2にする工程を第2温調工程と呼ぶ。なお、前述の通り、第1温調工程および第2温調工程における温度調整は、温度調整装置による能動的な温度操作に限定されない。
前述の通り、材料層63は固化にあたり所定温度に予熱されていることが望ましい。以下において、第1ビームL1が照射される前の材料層63を予熱する工程を予熱工程と呼ぶ。予熱温度は材料の種類に応じて適切な温度に設定されるが、第1温度T1が予熱温度として適当である場合、予熱温度は第1温度T1であってもよい。この場合、予め予熱工程により材料層63が第1温度T1となっているので、第1温調工程において第1温度T1まで昇温する時間を短縮できる。
まず、1回目の材料層形成工程を行う。図5に示すように、造形テーブル25上に造形プレート61を載置し、造形テーブル25の高さを適切な位置に調整する。この状態で材料粉体が充填されているリコータヘッド23を矢印B方向に移動させることによって、造形プレート61上に1層目の材料層63aを形成する。また、1回目の予熱工程は、材料層形成工程の後または平行して行われる。例えば、第1の温度調整装置51によって、造形テーブル25を所定の予熱温度、ここでは第1温度T1に温度調整することで、1層目の材料層63aの予熱が行われる。
次に、1回目の固化工程を行う。1層目の材料層63a中の所定部位に第1ビームL1を照射し1層目の材料層63aのレーザ照射位置を焼結または溶融させることによって、図6に示すように、1層目の固化層65aを得る。
続いて、2回目の材料層形成工程を行う。造形テーブル25の高さを材料層63の所定厚分下げ、リコータヘッド23を矢印B方向に移動させることによって、1層目の固化層65a上に2層目の材料層63bを形成する。また、予熱工程が行われ、2層目の材料層63bの予熱が行われる。
次に、2回目の固化工程を行う。2層目の材料層63b中の所定部位に第1ビームL1を照射し2層目の材料層63bのレーザ照射位置を焼結または溶融させることによって、図7に示すように、2層目の固化層65bを得る。
以上の工程を繰り返すことによって、3層目以降の固化層65が形成される。
第1温調工程は、好ましくは上記の工程と平行して行われる。第1の実施形態では、予熱温度が第1温度T1であるので、固化工程によって形成された固化層65、すなわち上面層は、温度調整装置によって第1温度T1に温度調整され、そのまま第1温度T1に維持される。換言すれば、材料層63に対する予熱工程と上面層に対する第1温調工程が兼ねて行われる。
所定数の固化層65が形成された段階で、第2温調工程が行われる。温度調整装置は、第1温度T1に保持されている上面層を、第2温度T2へと温度調整する。第2温調工程後は次の予熱工程に備えて、温度調整装置は上面層を予熱温度、ここでは第1温度T1に温度調整する。
なお、第1の実施形態のように切削装置4を備える積層造形装置においては、所定数の固化層65を形成する度に、固化層65の端面に対して、スピンドルヘッド43に装着された切削工具によって切削加工を行う切削工程を実施してもよい。好ましくは、第2温調工程後の上面層に対して切削加工が実施される。このようにすれば、マルテンサイト変態を起こし寸法が安定した後の上面層に対して切削を行うことができるので、より高精度に切削を行うことができる。さらに好ましくは、第2温調工程後であって常温に温度調整された上面層に対して切削加工が実施される。このようにすれば、温度による膨張または収縮の影響を抑えて上面層に対して切削を行うことができるので、より高精度に切削を行うことができる。また、焼結または溶融時に発生したスパッタが固化層65の表面に付着し突起部が生成されることがあるが、材料層形成工程時にリコータヘッド23のブレードが突起部に衝突したときは、突起部を除去するために最上位の固化層65の上面に対して切削加工を行ってもよい。
このような材料層形成工程、予熱工程、固化工程、第1温調工程、第2温調工程および切削工程が必要に応じて繰り返し実施され、所望の三次元造形物が形成される。なお、第1温調工程および第2温調工程は固化層65を1層形成する毎に行われてもよいし、複数層形成する毎に行われてもよいし、切削工程の実施に応じてその直前に行われてもよい。前述の通り、第1温調工程は他の工程と平行して行われてもよい。また、第1温調工程および第2温調工程の実施周期は、例えば造形物の形状に応じて、可変に設定してもよい。
[第2の実施形態]
次に、図面を用いて本発明の第2の実施形態について説明する。以下に示す実施形態中で示した各種特徴事項は、互いに組み合わせ可能である。なお、図8に示すように、第1の実施形態と実質的に同等である構成部材には同一の符号を付し、詳細な説明は省略する。具体的に、チャンバ1と、材料層形成装置2と、切削装置4は、第1の実施形態と同等である。
照射ユニット3Bが、チャンバ1の上方に設けられる。図9に示すように、第2の実施形態に係る照射ユニット3Bは、材料層8の所定の照射領域RIに第1ビームL1を照射して焼結または溶融させ固化層65を形成する第1照射装置31と、第1ビームL1によって形成された固化層65に第2ビームL2を照射して所定の温度である第1温度T1に調整する第2照射装置32と、偏光手段33と、第1ビームL1および第2ビームL2を走査する走査手段34とを含む。第1照射装置31は、第1光源311と、第1コリメータ313と、第1フォーカス制御ユニット315と、を有する。また、第2照射装置32は、第2光源321と、第2コリメータ323と、を有する。なお、必要に応じて他の部材を設けてもよく、例えば、第2照射装置32は、第2光源321より出力された第2ビームL2を所望の照射スポット径に調整する第2フォーカス制御ユニットをさらに備えてもよい。
第1光源311は第1ビームL1を出力する。ここで、第1ビームL1は、材料層63を焼結または溶融可能なレーザ光であって、例えば、CO2レーザ、ファイバーレーザ、YAGレーザ等である。第1コリメータ313は、第1光源311より出力された第1ビームL1を平行光に変換する。第1フォーカス制御ユニット315は、第1光源311より出力された第1ビームL1を集光し所望のスポット径に調整する。その後、第1ビームL1は偏光手段33に到達し、偏光された第1ビームL1、ここでは反射光が走査手段34の2軸のガルバノミラー34x,34yへ進行する。
第2光源321は第2ビームL2を出力する。ここで、第2ビームL2は、固化層65、特に上面層を第1温度T1に調整可能なレーザ光であって、例えば、CO2レーザ、ファイバーレーザ、YAGレーザ等である。第2コリメータ323は、第2光源321より出力された第2ビームL2を平行光に変換する。第2ビームL2は偏光手段33に到達し、その透過光が走査手段34の2軸のガルバノミラー34x,34yへ進行する。
以上のような構成により、第2ビームL2は上面層を第1温度T1に調整する。換言すれば、第2実施形態における第3の温度調整装置は、第1ビームL1によって形成された上面層に第2ビームL2を照射して第1温度T1まで調整する第2照射装置32を含む。好ましくは、上面層を第2温度T2に調整する第4の温度調整装置が設けられる。第4の温度調整装置は、例えば、造形テーブル25内に設けられ上面層を第2温度T2に調整可能な冷却器を含む。冷却器は、例えば、熱媒体が流通される管路である。
また、第2実施形態においては、第2ビームL2は第1ビームL1が照射される前の材料層63を予熱することにも使用される。第2ビームL2を予熱に使用する場合、その他の予熱手段は必須ではない。例えば、造形テーブル25に予熱のための加熱器を設けなくてもよい。
好ましくは、第2ビームL2の照射スポットは、第1ビームL1の照射スポットよりも大きく、第1ビームL1の照射スポットを囲繞するように構成される。なお、照射スポットとは照射位置、換言すれば材料層8または固化層65における第1ビームL1および第2ビームL2の形状を意味する。第1ビームL1および第2ビームL2の照射スポットが略円形である場合、第1ビームL1の照射位置における照射スポットの径をd1、第2ビームL2の照射スポットの径をd2とすると、d2/d1は、例えば、10≦d2/d1≦1000である。このような第2ビームL2により、第1ビームL1が照射される前の材料層63の予熱と、第1ビームL1が照射され固化した固化層65、すなわち上面層の第1温度T1への調整を好適に行うことができる。
偏光手段33は、第1ビームL1または第2ビームL2のうち一方を透過させ、他方を一方と同じ光路に偏光させる。偏光手段33は例えばビームスプリッタ等のフィルタである。上述の通り、本実施形態においては、偏光手段33によって偏光した第1ビームL1と、偏光手段33を透過した第2ビームL2が同軸光となって2軸のガルバノミラー34x,34yへ進行するように構成される。このように構成することで、1つの走査手段34によって中心位置を略一致させて第1ビームL1および第2ビームL2を走査することができる。
なお、上述のように、偏光手段33によって偏光した第1ビームL1と、偏光手段33を透過した第2ビームL2が同軸光となって2軸のガルバノミラー34x,34yへ進行するように、第1照射装置31および第2照射装置32を配置した。しかしながら、これらを入れ替えて、偏光手段33を透過した第1ビームL1と、偏光手段33によって偏光した第2ビームL2が同軸光となって2軸のガルバノミラー34x,34yへ進行するように構成してもよい。
走査手段34は例えばガルバノスキャナであり、ガルバノスキャナは、一対のガルバノミラー34x,34yと、各ガルバノミラー34x,34yをそれぞれ回転させるアクチュエータを備えている。2軸のガルバノミラー34x,34yは、第1光源311および第2光源321より出力された第1ビームL1および第2ビームL2を制御可能に2次元走査する。ガルバノミラー34x,34yは、それぞれ、不図示の制御装置から入力される回転角度制御信号の大きさに応じて回転角度が制御される。かかる特徴により、ガルバノミラー34x,34yの各アクチュエータに入力する回転角度制御信号の大きさを変化させることによって、所望の位置に同軸光となった第1ビームL1および第2ビームL2を照射することができる。
ガルバノミラー34x,34yを通過した第1ビームL1および第2ビームL2は、チャンバ1の上部に設けられた保護ウインドウ11を透過して造形領域RMに形成された材料層63に照射される。
ここで、第2の実施形態における第1ビームL1および第2ビームL2の走査方法について説明する。本実施形態では、図10に示すように、各分割層における照射領域RIは所定幅w毎に1以上の分割領域に分割され、各分割領域毎に第1ビームL1および第2ビームL2の走査が行われる。具体的には、図11に矢印で示すように、分割領域における第1ビームL1および第2ビームL2の所定幅w方向の走査が、所定幅wに直交する走査方向sに沿って順に行われる。第2ビームL2の照射スポットは、第1ビームL1の照射スポットよりも大きく、各照射スポットの中心は略同一であるため、照射領域RI上の各部位においては、第1ビームL1よりも第2ビームL2がより長い時間照射されることとなる。なお、上記に示した第1ビームL1および第2ビームL2の走査方法はあくまで一例であり、種々の走査方法が採用可能である。具体的に、上記にはいわゆるラスタ走査の例を示したが、ベクトル走査であってもよいし、それらの組み合わせであってもよい。また、分割領域も任意の手法で設定してよい。
第2の実施形態に係る積層造形装置は、第2照射装置32を少なくとも用いて上面層が第1温度T1に調整され、その後上面層が第2温度T2に調整されることを特徴とする。第2実施形態においても、下記式(1)から(3)の関係が全て満たされる。
T1≧Mf (1)
T1>T2 (2)
T2≦Ms (3)
焼結または溶融後、第2温度T2に調整される前の上面層は、オーステナイト相を含む状態であって、第2温度T2となることにより少なくとも一部がマルテンサイト相へと変態する。なお、第2の実施形態においては、具体的に、上面層は後述の第1温調工程時点での最上位の固化層65である。
以上のように、第3の温度調整装置として第2照射装置32を構成することで、上面層を第1温度T1に調整することが可能である。また、第1温度T1に調整された上面層は、下層の固化層65や造形プレート61および周囲の不活性ガスに放熱されることで第2温度T2に調整される。特に、本実施形態のように、第4の温度調整装置が設けられる場合、例えば、造形テーブル25が第2温度T2と略同一温度に温度調整される場合は、より効率的に上面層を第2温度T2に調整することができる。
また、積層造形装置は、最上位の材料層63または上面層の温度を測定する温度センサ55を有し、温度調整装置はフィードバック制御されてもよい。例えば、第2ビームL2の走査速度、レーザ強度、照射スポット径の大きさがフィードバック制御されてもよい。かかる構成により、より正確に最上位の材料層63または上面層の温度を制御することができる。なお、温度センサ55は、複数設けてもよい。また、温度センサ55は、例えば、赤外線温度センサである。
ここで、第2の実施形態に係る積層造形物の製造方法における各工程について説明する。材料層形成工程、予熱工程、固化工程、第1温調工程、第2温調工程、切削工程の定義は前述の通りである。特に、第2の実施形態においては、第2ビームL2によって予熱工程および第1温調工程が実施される。
まず、材料層形成工程を行う。適切な位置に調整された造形テーブル25上の造形プレート61または固化層65の上に、リコータヘッド23によって材料層63が形成される。
次に、予熱工程、固化工程、第1温調工程および第2温調工程が行われる。予熱工程、固化工程、第1温調工程および第2温調工程は平行して行われるが、ある部位に注目すれば、予熱工程、固化工程、第1温調工程、第2温調工程の順に行われる。ここでは図12における所定部位Pに着目されたい。図12においては、走査経路に所定部位Pを含む所定幅w方向の第1ビームL1および第2ビームL2の走査を概略的に示している。
図12(a)に示す状態では、材料層63の所定部位Pには第1ビームL1および第2ビームL2が照射されていない。ここで、所定部位Pにおいて1回目の予熱工程が行われる。図12(b)に示すように、第1ビームL1および第2ビームL2が走査され、所定部位Pに第2ビームL2が照射される。これによって、所定部位Pが固化に適した温度まで予熱される。なお、各分割領域における走査の始点付近の材料層63が固化に適した温度まで昇温するまで、分割領域において第1ビームL1および第2ビームL2を走査をさせる前に、第2ビームL2を所定時間始点付近の材料層63に照射することが望ましい。
次に、所定部位Pにおいて固化工程が行われる。すなわち、図12(c)に示すように、材料層63中の所定部位Pに第1ビームL1を照射し材料層63のレーザ照射位置を焼結または溶融させる。すなわち、所定部位Pが固化層65の一部となる。
次に、所定部位Pにおいて第1温調工程が行われる。図12(d)に示すように、固化層65となった所定部位Pは第2ビームL2が照射される。所定部位Pは、第2ビームL2の照射によって少なくとも第1温度T1まで達する。なお、各分割領域における走査の終点付近の固化層65が第2温度T2に調整されるときにマルテンサイト変態が起こるように十分第2ビームL2が照射されるまで、第1ビームL1および第2ビームL2が分割領域における走査を終えた後、第2ビームL2を所定時間終点付近の固化層65に照射することが望ましい。また、第1温調工程における第1温度T1に保持される時間および第1温度T1は、使用する金属材料または使用が想定される金属材料に応じて適当な値に設定され、例えば、第2ビームL2の走査速度、レーザ強度、照射スポット径の大きさによって調整可能である。
図12(e)に示すように、第2ビームL2による所定部位Pへの照射が終了した後、所定部位Pにおいて第2温調工程が行われる。所定部位Pは下層の固化層65、造形プレート7、不活性ガス雰囲気等に熱を奪われ、第2温度T2となる。
このような材料層形成工程、予熱工程、固化工程、第1温調工程および第2温調工程と、好ましくは適宜挿入される切削工程が繰り返され、所望の三次元造形物が形成される。なお、上記の製造方法においては予熱工程、固化工程、第1温調工程および第2温調工程を平行して行ったが、各部位において予熱工程、固化工程、第1温調工程、第2温調工程の順に各工程が行われるのであれば、予熱工程、固化工程、第1温調工程および第2温調工程は平行して行われなくてもよい。例えば、1層または複数層の固化層65の形成に係る固化工程を完了する毎に、第1温調工程および第2温調工程を行ってもよい。なお、この場合においては、上面層は第1温調工程時点での最上位の固化層を少なくとも含む当該1層または複数層の固化層65である。
[温度パターン]
第1の実施形態および第2の実施形態として具体的に例示したように、第1温調工程および第2温調工程を含む温度調整を繰り返し行いながら積層造形を行うことで、マルテンサイト変態時の体積膨張によって固化層65の冷却による収縮に起因する引張応力を軽減し、造形物の変形を抑制することが可能である。換言すれば、第1温調工程および第2温調工程を造形途中に複数回実施して、引張応力を軽減しながら固化層の積層を行うことができる。
マルテンサイト変態が起こる温度範囲は、マルテンサイト変態開始温度Ms以下かつマルテンサイト変態終了温度Mf以上である。すなわち、マルテンサイト変態による膨張量、ひいては造形物の残留応力は、第1温度T1、第2温度T2、およびマルテンサイト変態開始温度Ms、マルテンサイト変態終了温度Mf、の関係により制御することができる。また、前述した通り、マルテンサイト変態が起こる温度範囲に第2温度T2が含まれる場合においては、造形完了後に、造形物の温度が第2温度T2未満となった際に、マルテンサイト変態がさらに進行してしまい、意図しない膨張が発生する可能性がある。そこで、三次元造形物が造形後曝される最低温度Tm以下に第2温度T2を設定する。このようにすれば造形物の温度が造形後に第2温度未満になることはないので、造形完了後にマルテンサイト変態が進行することを抑制できる。
すなわち、マルテンサイト変態が起こる温度範囲に第2温度T2が含まれる場合において、図13および図14に示す温度調整パターンが適切である。図13および図14においては、第1の実施形態における温度変化、すなわち所定の分割層における固化層65が固化後、第1温度T1、第2温度T2、第1温度T1の順番で温度調整される温度変化を概略的に表示している。第1の実施形態における各時点における温度変化を具体的に説明すると、まず、材料層63に第1ビームL1が照射され、固化層65が形成される。固化層65の熱は、形成後すぐに下層の固化層65や造形プレート61等に奪われ、固化層65の温度は第1温度T1に維持される(t1)。所定層の固化層65が形成されると(t2)、固化層65は第2温度T2へと調整される(t3)。第2温度T2への温度調整が完了後(t4)、再び固化層65は第1温度T1に昇温される(t5)。なお、前述したように、固化層65の所定部位が少なくとも第1温度T1、第2温度T2の順番で温度調整されればよいので、本開示は図13および図14に示す温度変化に限定されるものではない。図13および図14は、あくまで各関係式を視覚的に表示するための参考図である。また、全ての分割層に係る固化層65について同一のパターンを適用してもよいが、それぞれの分割層に係る固化層65について異なるパターンを個別に適用してもよい。
<パターンα>
パターンαでは、下記式(1)、(2)、(3)、(4)、(5)および(6)をすべて満たす。また、パターンαの所定の固化層65の温度変化の概略図を図13に示す。
T1≧Mf (1)
T1>T2 (2)
T2≦Ms (3)
T1≧Ms (4)
T2>Mf (5)
T2≦Tm (6)
パターンαでは、第1ビームL1の照射による固化層65の温度上昇の影響を考慮する必要がなく、残留応力を抑えた状態で造形を進行することができ、造形終了後に温度を下げることにより圧縮応力を発生させることができる。造形物に適度な圧縮応力を残留させることで、割れの発生を抑制できる。マルテンサイト変態による膨張量が造形時の収縮量よりも十分大きな材料に適する制御方法である。
<パターンβ>
パターンβでは、下記式(1)、(2)、(3)、(5)、(6)および(7)をすべて満たす。また、パターンβの所定の固化層65の温度変化の概略図を図14に示す。
T1≧Mf (1)
T1>T2 (2)
T2≦Ms (3)
T1≦Ms (7)
T2>Mf (5)
T2≦Tm (6)
パターンβでは、正確に温度制御ができる場合には、造形中および造形が完了して温度が下がった後の残留応力を制御することが可能である。マルテンサイト変態による膨張量が造形時の収縮量よりも十分大きな材料に適する制御方法である。
[材料]
前述の各温度パターンは、それぞれ適応可能な材料が限定される。例えば、パターンαの温度調整を行う場合は、温度調整装置による温度制御が可能な範囲に、少なくともマルテンサイト変態開始温度Msが含まれている必要があるが、すべての材料がその条件を満たすわけではない。一方、マルテンサイト変態開始温度Msおよびマルテンサイト変態終了温度Mfは、材料の炭素含有量によって上下することが分かっている。そこで、材料の炭素含有量を調整することで、本願発明のマルテンサイト変態を利用した造形方法を多様な材料に適応することができる。
材料の炭素含有量の調整方法として、例えば、複数の材料を混合してもよい。具体的には、所定の金属である第1金属に対し、相対的に炭素含有量の高い他の金属である第2金属または炭素の少なくとも一方を混合することで、所望のマルテンサイト変態開始温度Msまたはマルテンサイト変態終了温度Mfを有する混合材料を生成してもよい。
[その他の変形例]
第1の実施形態および第2の実施形態に係る積層造形装置は、粉末焼結積層造形方式または粉末溶融積層造形方式による積層造形装置であったが、シート積層方式による積層造形装置であってもよい。シート積層方式においては、材料層形成装置は、造形領域RMに対して所望の三次元造形物を所定高さで分割してなる複数の分割層毎に板状の金属シートを使用して材料層を形成する。すなわち、材料粉体に代えて板状の金属シートを使用して材料層を形成し、材料層の所定箇所に第1ビームL1を照射して金属シートを溶融させることを繰り返すよう構成してもよい。
第1の実施形態および第2の実施形態では、第1ビームL1としてレーザ光を使用したが、固化層65を形成可能であれば他の構成でもよく、例えば、第1ビームL1は電子ビームであってもよい。また、第2の実施形態では、第2ビームL2としてレーザ光を使用したが、固化層65を第1温度T1に調整可能であれば他の構成でもよく、例えば、第2ビームL2は電子ビームであってもよい。
下記式(1)から(3)の関係が全て満たされる限りにおいて、
T1≧Mf (1)
T1>T2 (2)
T2≦Ms (3)
第1温度T1および第2温度T2は造形中一定でなくてよい。例えば、各第1温調工程または第2温調工程毎に第1温度T1および第2温度T2の具体的数値は変化してもよい。
以上の通り、本発明の実施形態および変形例を説明したが、これらは、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。特に、第1の実施形態および第2の実施形態で示した各技術的特徴は、技術的に矛盾が生じない範囲で互いに組み合わせ可能である。これら実施形態および変形例は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれるものである。
2 材料層形成装置
31 第1照射装置
63 材料層
65 固化層
L1 第1ビーム
RI 照射領域
RM 造形領域
この発明は、積層造形物の製造方法に関する。
本発明はこのような事情に鑑みてなされたものであり、造形完了後に意図しないマルテンサイト変態が進行することを防止した上で、造形物の残留応力を制御する、積層造形物の製造方法を提供することを主たる目的とするものである。
また、本発明によれば、用途に応じて変化する三次元造形物が造形後曝される最低温度以下の温度に所定の温度である第2温度を設定する工程と、造形領域に対して所望の三次元造形物を所定高さで分割してなる複数の分割層毎に材料層を形成する材料層形成工程と、所定の分割層における材料層の所定の照射領域に第1ビームを照射して焼結または溶融させ固化層を形成する固化工程と、1層または複数層の固化層の少なくとも一部を所定の温度である第1温度にする第1温調工程と、第1温度となった1層または複数層の固化層の少なくとも一部を所定の温度である第2温度にする第2温調工程と、を備え、前記材料層形成工程、前記固化工程、前記第1温調工程および前記第2温調工程が繰り返し実施され、各々の前記第1温調工程および前記第2温調工程における、第1温度をT1、第2温度をT2、固化層のマルテンサイト変態開始温度をMs、固化層のマルテンサイト変態終了温度をMf、用途に応じて変化する三次元造形物が造形後曝される最低温度をTm、とすると、前記各々の第1温調工程および第2温調工程において、
下記式の関係が全て満たされる、
T1≧Mf (1)
T1>T2 (2)
T2≦Ms (3)
T1≧Ms (4)
T2>Mf (5)
T2≦Tm (6)
または下記式の関係が全て満たされる、
T1≧Mf (1)
T1>T2 (2)
T2≦Ms (3)
T1≦Ms (7)
T2>Mf (5)
T2≦Tm (6)
積層造形物の製造方法が提供される。
本発明に係る積層造形物の製造方法においては、三次元造形物が造形後曝される最低温度以下に第2温度を設定する。これにより、造形後に三次元造形物の温度が第2温度を下回ることがないため、意図しないマルテンサイト変態の進行を抑制でき、結果として三次元造形物の品質が安定する。

Claims (2)

  1. 造形領域に対して所望の三次元造形物を所定高さで分割してなる複数の分割層毎に材料層を形成する材料層形成装置と、
    所定の前記分割層における前記材料層の所定の照射領域に第1ビームを照射して焼結または溶融させ固化層を形成する第1照射装置と、
    前記固化層の少なくとも一部の温度を所定の温度である第1温度または所定の温度である第2温度の少なくとも一方に調整する温度調整装置と、を備え、
    前記固化層の前記少なくとも一部は、前記第1温度となった後、前記第2温度となり、
    前記第1温度をT1、前記第2温度をT2、前記固化層のマルテンサイト変態開始温度をMs、前記固化層のマルテンサイト変態終了温度をMf、前記三次元造形物が造形後曝される最低温度をTm、とすると、
    下記式の関係が全て満たされる、
    T1≧Mf (1)
    T1>T2 (2)
    T2≦Ms (3)
    T1≧Ms (4)
    T2>Mf (5)
    T2≦Tm (6)
    または下記式の関係が全て満たされる、
    T1≧Mf (1)
    T1>T2 (2)
    T2≦Ms (3)
    T1≦Ms (7)
    T2>Mf (5)
    T2≦Tm (6)
    積層造形装置。
  2. 造形領域に対して所望の三次元造形物を所定高さで分割してなる複数の分割層毎に材料層を形成する材料層形成工程と、
    所定の前記分割層における前記材料層の所定の照射領域に第1ビームを照射して焼結または溶融させ固化層を形成する固化工程と、
    前記固化層の少なくとも一部を所定の温度である第1温度にする第1温調工程と、
    前記第1温度となった前記固化層の前記少なくとも一部を所定の温度である第2温度にする第2温調工程と、を備え、
    前記第1温度をT1、前記第2温度をT2、前記固化層のマルテンサイト変態開始温度をMs、前記固化層のマルテンサイト変態終了温度をMf、前記三次元造形物が造形後曝される最低温度をTm、とすると、
    下記式の関係が全て満たされる、
    T1≧Mf (1)
    T1>T2 (2)
    T2≦Ms (3)
    T1≧Ms (4)
    T2>Mf (5)
    T2≦Tm (6)
    または下記式の関係が全て満たされる、
    T1≧Mf (1)
    T1>T2 (2)
    T2≦Ms (3)
    T1≦Ms (7)
    T2>Mf (5)
    T2≦Tm (6)
    積層造形物の製造方法。
JP2018104432A 2017-08-30 2018-05-31 積層造形物の製造方法 Active JP6556296B1 (ja)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP2018104432A JP6556296B1 (ja) 2018-05-31 2018-05-31 積層造形物の製造方法
KR1020180095892A KR102151445B1 (ko) 2017-08-30 2018-08-17 적층 조형 장치 및 적층 조형물의 제조 방법
TW107129330A TWI724321B (zh) 2017-08-30 2018-08-22 層疊造型裝置及層疊造型物的製造方法
TW108132129A TW201946767A (zh) 2017-08-30 2018-08-22 層疊造型裝置及層疊造型物的製造方法
PT181907833T PT3450060T (pt) 2017-08-30 2018-08-24 Aparelho de moldagem por laminação e método para fabricar produto moldado por laminação
EP18190783.3A EP3450060B1 (en) 2017-08-30 2018-08-24 Lamination molding apparatus and method for manufacturing lamination molded product
US16/114,608 US11014164B2 (en) 2017-08-30 2018-08-28 Lamination molding apparatus and method for producing three-dimensional molded object
CN201810996865.6A CN109622954B (zh) 2017-08-30 2018-08-29 层叠造型装置和层叠造型物的制造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018104432A JP6556296B1 (ja) 2018-05-31 2018-05-31 積層造形物の製造方法

Publications (2)

Publication Number Publication Date
JP6556296B1 JP6556296B1 (ja) 2019-08-07
JP2019210490A true JP2019210490A (ja) 2019-12-12

Family

ID=67539810

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018104432A Active JP6556296B1 (ja) 2017-08-30 2018-05-31 積層造形物の製造方法

Country Status (1)

Country Link
JP (1) JP6556296B1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7406460B2 (ja) 2020-06-10 2023-12-27 本田技研工業株式会社 鉄合金の製造方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150064048A1 (en) * 2012-02-27 2015-03-05 Compagnie Generale Des Etablissements Michelin Method and apparatus for producing three-dimensional objects with improved properties
JP6295001B1 (ja) * 2017-08-30 2018-03-14 株式会社ソディック 積層造形装置および積層造形物の製造方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150064048A1 (en) * 2012-02-27 2015-03-05 Compagnie Generale Des Etablissements Michelin Method and apparatus for producing three-dimensional objects with improved properties
JP6295001B1 (ja) * 2017-08-30 2018-03-14 株式会社ソディック 積層造形装置および積層造形物の製造方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7406460B2 (ja) 2020-06-10 2023-12-27 本田技研工業株式会社 鉄合金の製造方法

Also Published As

Publication number Publication date
JP6556296B1 (ja) 2019-08-07

Similar Documents

Publication Publication Date Title
KR102151445B1 (ko) 적층 조형 장치 및 적층 조형물의 제조 방법
JP6295001B1 (ja) 積層造形装置および積層造形物の製造方法
US10828720B2 (en) Foil-based additive manufacturing system and method
JP2019077935A (ja) 三次元造形装置、および三次元造形物の製造方法
US20240091852A1 (en) Method for producing three-dimensional molded object
JP5893112B1 (ja) 積層造形装置
JP6748181B2 (ja) 積層造形装置
JP6560775B1 (ja) 積層造形装置および積層造形物の製造方法
US20200023437A1 (en) Method for producing three-dimensional molded object
US20220134433A1 (en) Additive manufacture
JP6556296B1 (ja) 積層造形物の製造方法
JP2019196523A (ja) 積層造形装置および積層造形方法
JP6564111B1 (ja) 三次元造形物の製造方法
WO2017221912A1 (ja) 三次元形状造形物の製造方法
JP6864056B1 (ja) 積層造形装置
KR102277612B1 (ko) 3차원 형상 조형물의 제조 방법
US20240042525A1 (en) Laser powder bed fusion additive manufacturing methods
JP2020169372A (ja) 三次元形状造形物の積層造形方法
JP6884807B2 (ja) 積層造形装置および積層造形方法
WO2020218449A1 (ja) 三次元形状造形物の製造方法および三次元形状造形物を製造するための装置
JP2022188970A (ja) 積層造形方法
WO2024003336A1 (en) Additive manufacturing process using pulsed laser radiation

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180604

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181210

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20181210

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20181221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190222

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190326

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190523

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190531

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190709

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190709

R150 Certificate of patent or registration of utility model

Ref document number: 6556296

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250