JP2019199539A - タイヤトレッド用ゴム組成物及び空気入りタイヤ - Google Patents
タイヤトレッド用ゴム組成物及び空気入りタイヤ Download PDFInfo
- Publication number
- JP2019199539A JP2019199539A JP2018094721A JP2018094721A JP2019199539A JP 2019199539 A JP2019199539 A JP 2019199539A JP 2018094721 A JP2018094721 A JP 2018094721A JP 2018094721 A JP2018094721 A JP 2018094721A JP 2019199539 A JP2019199539 A JP 2019199539A
- Authority
- JP
- Japan
- Prior art keywords
- group
- conjugated diene
- mass
- general formula
- diene rubber
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Compositions Of Macromolecular Compounds (AREA)
- Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
- Tires In General (AREA)
Abstract
Description
しかし、シリカはゴム成分との親和性が低く、また、シリカ同士の凝集性が高いため、ゴム成分に単にシリカを配合してもシリカが分散せず、転がり性能を向上させる効果が十分に得られないという問題があった。
すなわち、本発明者らは、以下の構成により上記課題が解決できることを見出した。
シリカと、
シランカップリング剤と、
特定変性ブタジエンポリマーとを含有し、
上記シリカの含有量が、上記共役ジエン系ゴム100質量部に対して、30質量部以上であり、
上記シランカップリング剤の含有量が、上記シリカの含有量に対して、3〜30質量%であり、
上記特定共役ジエン系ゴムが、不活性溶媒中で、重合開始剤を用いて、共役ジエン化合物を含む単量体を重合し、活性末端を有する共役ジエン系重合体鎖を得る第1工程と、上記活性末端を有する共役ジエン系重合体鎖に、後述する一般式(1)で表されるポリオルガノシロキサンを、上記第1工程で使用した重合開始剤1モルに対して、上記ポリオルガノシロキサン中のシロキサン構造(−Si−O−)の繰り返し単位数換算で1モル以上の割合にて添加して反応させる第2工程と、上記第2工程で得られるポリオルガノシロキサンを反応させた共役ジエン系重合体鎖に、後述する一般式(2)で表される化合物を反応させる第3工程とを備える共役ジエン系ゴムの製造方法により製造される共役ジエン系ゴムであり、
上記特定変性ブタジエンポリマーが、窒素原子及びケイ素原子を含む官能基を末端に有し、重量平均分子量が1,000以上100,000以下であり、分子量分布が2.0以下である、変性ブタジエンポリマーである、タイヤトレッド用ゴム組成物。
(2) 上記特定変性ブタジエンポリマーの粘度が、変性前のブタジエンポリマーの粘度に対して、150〜240%である、上記(1)に記載のタイヤトレッド用ゴム組成物。ただし、上記粘度は、コーンプレート型粘度計を用いて測定したものとする。
(3) 上記特定変性ブタジエンポリマーの含有量が、上記シリカの含有量に対して、1〜25質量%である、上記(1)又は(2)に記載のタイヤトレッド用ゴム組成物。
(4) 上記特定共役ジエン系ゴムが、
イソプレン単量体単位80〜100質量%および芳香族ビニル単量体単位0〜20質量%を含む重合体ブロック(A)と、
1,3−ブタジエン単量体単位50〜100質量%および芳香族ビニル単量体単位0〜50質量%を含む重合体ブロック(B)とが一続きにして形成された構造を有する、上記(1)〜(3)のいずれかにタイヤトレッド用ゴム組成物。
(5) 上記(1)〜(4)のいずれかに記載のタイヤトレッド用ゴム組成物を用いて製造されたタイヤトレッド部を備える、空気入りタイヤ。
なお、本明細書において「〜」を用いて表される数値範囲は、「〜」の前後に記載される数値を下限値および上限値として含む範囲を意味する。
また、本発明のタイヤトレッド用ゴム組成物に含有される各成分は、1種を単独でも用いても、2種以上を併用してもよい。ここで、各成分について2種以上を併用する場合、その成分について含有量とは、特段の断りが無い限り、合計の含有量を指す。
また、本明細書において、「(メタ)アクリル」は、「アクリル」または「メタクリル」を表す表記であり、「(メタ)アクリロニトリル」は、「アクリロニトリル」または「メタクリロニトリル」を表す表記である。
本発明のタイヤトレッド用ゴム組成物(以下、「本発明の組成物」とも言う)は、
重量平均分子量が100,000超である、特定共役ジエン系ゴムを10質量%以上含む共役ジエン系ゴムと、
シリカと、
シランカップリング剤と、
特定変性ブタジエンポリマーとを含有する。
ここで、上記シリカの含有量は上記共役ジエン系ゴム100質量部に対して30質量部以上であり、上記シランカップリング剤の含有量は上記シリカの含有量に対して3〜30質量%である。
また、上記特定共役ジエン系ゴムは、不活性溶媒中で、重合開始剤を用いて、共役ジエン化合物を含む単量体を重合し、活性末端を有する共役ジエン系重合体鎖を得る第1工程と、上記活性末端を有する共役ジエン系重合体鎖に、後述する一般式(1)で表されるポリオルガノシロキサンを、上記第1工程で使用した重合開始剤1モルに対して、上記ポリオルガノシロキサン中のシロキサン構造(−Si−O−)の繰り返し単位数換算で1モル以上の割合にて添加して反応させる第2工程と、上記第2工程で得られるポリオルガノシロキサンを反応させた共役ジエン系重合体鎖に、後述する一般式(2)で表される化合物を反応させる第3工程とを備える共役ジエン系ゴムの製造方法により製造される共役ジエン系ゴムである。
また、上記特定変性ブタジエンポリマーは、窒素原子及びケイ素原子を含む官能基を末端に有し、重量平均分子量が1,000以上100,000以下であり、分子量分布が2.0以下である、変性ブタジエンポリマーである。
本発明の組成物はこのような構成をとるため、上述した効果が得られるものと考えらえる。その理由は明らかではないが、およそ以下のとおりと推測される。
一方で、本発明の組成物が含有する特定共役ジエン系ゴムはシリカと類似の構造を有するポリオルガノシロキサン構造を有するため、上記ポリオルガノシロキサン構造がシリカと親和し、シリカの凝集を防ぐものと考えられる。また、特定共役ジエン系ゴムはアミノシラン等の窒素原子含有シランに由来する構造も有するため、これがシランカップリング剤とシリカとのシラニゼーションを促進し、シリカの凝集をさらに抑制するものと考えられる。結果として、シリカによる転がり性能を向上する効果が十分に発揮されるとともに、耐摩耗性能及び加工性も良好になるものと考えられる。
本発明の組成物に含有される共役ジエン系ゴムは、重量平均分子量が100,000超である、特定共役ジエン系ゴムを10質量%以上含む共役ジエン系ゴムである。
最初に特定共役ジエン系ゴムについて説明する。
本発明の組成物が含有する特定共役ジエン系ゴムは以下の第1〜3工程を備える共役ジエン系ゴムの製造方法により製造される共役ジエン系ゴムである。
(1)第1工程
不活性溶媒中で、重合開始剤を用いて、共役ジエン化合物を含む単量体を重合し、活性末端を有する共役ジエン系重合体鎖を得る第1工程
(2)第2工程
活性末端を有する共役ジエン系重合体鎖に、後述する一般式(1)で表されるポリオルガノシロキサンを、上記第1工程で使用した重合開始剤1モルに対して、上記ポリオルガノシロキサン中のシロキサン構造(−Si−O−)の繰り返し単位数換算で1モル以上の割合にて添加して反応させる第2工程
(3)第3工程
上記第2工程で得られるポリオルガノシロキサンを反応させた共役ジエン系重合体鎖に、後述する一般式(2)で表される化合物を反応させる第3工程
上述のとおり、第3工程では、第2工程で得られるポリオルガノシロキサンを反応させた共役ジエン系重合体鎖に、後述する一般式(2)で表される化合物を反応させる。ここで、一般式(2)で表される化合物が有するA1が、活性末端を有する共役ジエン系重合体鎖とポリオルガノシロキサンとの反応により生成した反応残基と反応して結合する。しかしながら、後述のとおり、活性末端を有する共役ジエン系重合体鎖とポリオルガノシロキサンとの反応により生成した反応残基は様々な構造をとり得るため、反応残基に一般式(2)で表される化合物が反応した後の構造は極めて複雑であり、その構造を解析することは技術的に不可能であるか、又は、その構造を特定する作業を行うことに著しく過大な経済的支出や時間を要する。そのため、特定共役ジエン系ゴムを「第1〜3工程を備える共役ジエン系ゴムの製造方法により製造される共役ジエン系ゴム」と記載することには、いわゆる「不可能・非実際的事情」が存在する。
第1工程は、不活性溶媒中で、重合開始剤を用いて、共役ジエン化合物を含む単量体を重合し、活性末端を有する共役ジエン系重合体鎖を得る工程である。
まず、第1工程で用いられる各成分等について説明する。
第1工程において、活性末端を有する共役ジエン系重合体鎖を得るために、単量体として用いる共役ジエン化合物としては、特に限定されないが、1,3−ブタジエン、イソプレン、2,3−ジメチル−1,3−ブタジエン、2−フェニル−1,3−ブタジエン、1,3−ペンタジエン、2−メチル−1,3−ペンタジエン、1,3−ヘキサジエン、4,5−ジエチル−1,3−オクタジエン、3−ブチル−1,3−オクタジエンなどを挙げることができる。これらのなかでも、本発明の効果がより優れる理由から、1,3−ブタジエンおよびイソプレンが好ましい。これらの共役ジエン化合物は、1種類を単独で使用しても2種類以上を組合せて用いてもよい。
また、第1工程において、重合に用いる単量体として、共役ジエン化合物とともに芳香族ビニル化合物を用いてもよい。単量体として用いる芳香族ビニル化合物としては、スチレン、メチルスチレン、エチルスチレン、t−ブチルスチレン、α−メチルスチレン、α−メチル−p−メチルスチレン、クロルスチレン、ブロモスチレン、メトキシスチレン、ジメチルアミノメチルスチレン、ジメチルアミノエチルスチレン、ジエチルアミノメチルスチレン、ジエチルアミノエチルスチレン、シアノエチルスチレン、ビニルナフタレンなどが挙げられる。これらのなかでも、本発明の効果がより優れる理由から、スチレンが好ましい。
さらに、第1工程においては、共役ジエン化合物とともに、芳香族ビニル化合物以外の、共役ジエン化合物と共重合可能な化合物(その他の共重合可能な化合物)を用いてもよい。このような共役ジエン化合物と共重合可能な化合物としては、エチレン、プロピレン、1−ブテンなどの鎖状オレフィン化合物;シクロペンテン、2−ノルボルネンなどの環状オレフィン化合物;1,5−ヘキサジエン、1,6−へプタジエン、1,7−オクタジエン、ジシクロペンタジエン、5−エチリデン−2−ノルボルネンなどの非共役ジエン化合物;(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸ブチルなどの(メタ)アクリル酸エステル;(メタ)アクリロニトリル、(メタ)アクリルアミドなどのその他の(メタ)アクリル酸誘導体;などが挙げられる。本発明の効果がより優れる理由から、これらの共役ジエン化合物と共重合可能な化合物は、第1工程で得られる、活性末端を有する共役ジエン系重合体鎖中に、単量体単位として、10質量%以下とするのが好ましく、5質量%以下とするのがより好ましい。
重合に用いる不活性溶媒としては、溶液重合において通常使用されるものであり、重合反応を阻害しないものであれば特に限定されない。不活性溶媒の具体例としては、ブタン、ペンタン、ヘキサン、へプタンなどの鎖状脂肪族炭化水素;シクロペンタン、シクロヘキサンなどの脂環式炭化水素;ベンゼン、トルエン、キシレンなどの芳香族炭化水素;などが挙げられる。これらの不活性溶媒は、1種を単独で用いてもよいし、2種以上を組み合わせて用いてもよい。不活性溶媒の使用量は、特に限定されないが、単量体濃度が、たとえば1〜50質量%となる量であり、本発明の効果がより優れる理由から、好ましくは10〜40質量%となる量である。
重合に用いる重合開始剤としては、共役ジエン化合物を含む単量体を重合させて、活性末端を有する共役ジエン系重合体鎖を与えることができるものであれば、特に限定されない。その具体例としては、有機アルカリ金属化合物、有機アルカリ土類金属化合物、およびランタン系列金属化合物などを主触媒とする重合開始剤を挙げることができる。有機アルカリ金属化合物としては、たとえば、n−ブチルリチウム、sec−ブチルリチウム、t−ブチルリチウム、へキシルリチウム、フェニルリチウム、スチルベンリチウムなどの有機モノリチウム化合物;ジリチオメタン、1,4−ジリチオブタン、1,4−ジリチオ−2−エチルシクロヘキサン、1,3,5−トリリチオベンゼン、1,3,5ートリス(リチオメチル)ベンゼンなどの有機多価リチウム化合物;ナトリウムナフタレンなどの有機ナトリウム化合物;カリウムナフタレンなどの有機カリウム化合物;などが挙げられる。また、有機アルカリ土類金属化合物としては、例えば、ジ−n−ブチルマグネシウム、ジ−n−へキシルマグネシウム、ジエトキシカルシウム、ジステアリン酸カルシウム、ジ−t−ブトキシストロンチウム、ジエトキシバリウム、ジイソプロポキシバリウム、ジエチルメルカプトバリウム、ジ−t−ブトキシバリウム、ジフェノキシバリウム、ジエチルアミノバリウム、ジステアリン酸バリウム、ジケチルバリウムなどが挙げられる。ランタン系列金属化合物を主触媒とする重合開始剤としては、たとえば、ランタン、セリウム、プラセオジム、ネオジム、サマリウム、ガドリニウムなどのランタン系列金属と、カルボン酸、およびリン含有有機酸などとからなるランタン系列金属の塩を主触媒とし、これと、アルキルアルミニウム化合物、有機アルミニウムハイドライド化合物、有機アルミニウムハライド化合物などの助触媒とからなる重合開始剤などが挙げられる。これらの重合開始剤の中でも、本発明の効果がより優れる理由から、有機モノリチウム化合物、および有機多価リチウム化合物が好ましく用いられ、有機モノリチウム化合物がより好ましく用いられ、n−ブチルリチウムが特に好ましく用いられる。
なお、有機アルカリ金属化合物は、予め、ジブチルアミン、ジヘキシルアミン、ジベンジルアミン、ピロリジン、ピペリジン、ヘキサメチレンイミン、およびへプタメチレンイミンなどの2級アミン化合物と反応させて、有機アルカリ金属アミド化合物として使用してもよい。これらの重合開始剤は、1種を単独で用いてもよいし、2種以上を組み合わせて用いてもよい。
なお、R11、および/またはR12がアミノ基の保護基である場合には、アミノ基の保護基が外れることにより、得られる共役ジエン系ゴムを形成する重合体鎖の一方の末端において、後述する一般式(5)におけるR13、および/またはR14が水素原子である構造を導入することができる。
アルコキシアルキル基としては、メトキシメチル基、エトキシメチル基、エトキシエチル基、プロポキシメチル基、ブトキシメチル基、ブトキシエチル基、プロポキシエチル基などが挙げられる。
また、エポキシ基を含有する基としては、たとえば下記一般式(4)で表される基などが挙げられる。
−Z1−Z2−E1 (4)
一般式(4)中、Z1は炭素数1〜10のアルキレン基またはアルキルアリーレン基であり、Z2はメチレン基、硫黄原子または酸素原子であり、E1はグリシジル基である。
R11およびR12が互いに結合して、これらが結合する窒素原子とともに環構造を形成する場合、環構造は、4〜8員環構造であることが好ましい。
なお、R13、R14となりうる水素原子は、アミノ基の保護基が外れることにより、導入される。
重合温度は、通常−80〜+150℃、本発明の効果がより優れる理由から、好ましくは0〜100℃、より好ましくは30〜90℃の範囲である。重合様式としては、回分式、連続式などのいずれの様式をも採用できるが、共役ジエン化合物と芳香族ビニル化合物とを共重合させる場合は、共役ジエン単量体単位と芳香族ビニル単量体単位との結合のランダム性を制御しやすい点で、回分式が好ましい。
共役ジエン化合物を含む単量体を重合するにあたり、得られる共役ジエン系重合体鎖における共役ジエン単量体単位中のビニル結合含有量を調節するために、不活性有機溶媒に極性化合物を添加することが好ましい。極性化合物としては、たとえば、ジブチルエーテル、テトラヒドロフラン、2,2−ジ(テトラヒドロフリル)プロパンなどのエーテル化合物;テトラメチルエチレンジアミンなどの第三級アミン;アルカリ金属アルコキシド;ホスフィン化合物;などが挙げられる。これらのなかでも、本発明の効果がより優れる理由から、エーテル化合物、および第三級アミンが好ましく、第三級アミンがより好ましく、テトラメチルエチレンジアミンが特に好ましい。これらの極性化合物は、1種を単独で用いてもよいし、2種以上を組み合わせて用いてもよい。極性化合物の使用量は、目的とするビニル結合含有量に応じて決定すればよく、重合開始剤1モルに対して、好ましくは0.001〜100モル、より好ましくは0.01〜10モルである。極性化合物の使用量がこの範囲にあると、共役ジエン単量体単位中のビニル結合含有量の調節が容易であり、かつ重合開始剤の失活による不具合も発生し難い。
第1工程で得られる、活性末端を有する共役ジエン系重合体鎖における共役ジエン単量体単位中のビニル結合含有量は、本発明の効果がより優れる理由から、好ましくは1〜90質量%、より好ましくは3〜80質量%、特に好ましくは5〜70質量%である。
第1工程で得られる、活性末端を有する共役ジエン系重合体鎖の重量平均分子量(Mw)は、特に限定されないが、本発明の効果がより優れる理由から、ポリスチレン換算のゲルパーミエーションクロマトグラフィで測定される値として、100,000〜1,000,000が好ましく、150,000〜700,000がより好ましく、150,000〜500,000が特に好ましい。
第1工程は、本発明の効果がより優れる理由から、次のような工程とすることが好ましい。
すなわち、不活性溶媒中で、イソプレン、またはイソプレンおよび芳香族ビニル化合物を含む単量体を、重合開始剤により重合し、イソプレン単量体単位80〜100質量%および芳香族ビニル単量体単位0〜20質量%を含む活性末端を有する重合体ブロック(A)を形成させる工程Aと、
上記活性末端を有する重合体ブロック(A)と、1,3−ブタジエン、または1,3−ブタジエンおよび芳香族ビニル化合物を含む単量体と、を混合して重合反応を継続させ、1,3−ブタジエン単量体単位50〜100質量%および芳香族ビニル単量体単位0〜50質量%を含む活性末端を有する重合体ブロック(B)を、重合体ブロック(A)と一続きにして形成させることにより、活性末端を有する共役ジエン系重合体鎖を得る工程Bと、を備えるものとすることが好ましい。
以下、このような態様について説明する。
工程Aで形成される重合体ブロック(A)は、重合体ブロック(A)中、イソプレン単量体単位80〜100質量%および芳香族ビニル単量体単位0〜20質量%を含むものであればよいが、本発明の効果がより優れる理由から、イソプレン単量体単位85〜95質量%および芳香族ビニル単量体単位5〜15質量%を含むものであることが好ましく、イソプレン単量体単位89〜95質量%および芳香族ビニル単量体単位5〜11質量%を含むものであることがより好ましい。
工程Bで形成される共役ジエン系重合体鎖中の重合体ブロック(B)は、重合体ブロック(B)中、1,3−ブタジエン単量体単位50〜100質量%および芳香族ビニル単量体単位0〜50質量%を含むものであればよいが、本発明の効果がより優れる理由から、1,3−ブタジエン単量体単位52〜95質量%および芳香族ビニル単量体単位5〜48質量%を含むものであることが好ましい。1,3−ブタジエン単量体単位と芳香族ビニル単量体単位との含有割合が上記範囲内にあると、共役ジエン系ゴムの製造がより容易となる。
第2工程は、第1工程にて得られた活性末端を有する共役ジエン系重合体鎖に、下記一般式(1)で表されるポリオルガノシロキサンを、第1工程で使用した重合開始剤1モルに対して、ポリオルガノシロキサン中のシロキサン構造(−Si−O−)の繰り返し単位数換算で1モル以上の割合にて添加して反応させる工程である。
−Z3−Z4−E2 (6)
一般式(6)中、Z3は、炭素数1〜10のアルキレン基、またはアルキルアリーレン基であり、Z4はメチレン基、硫黄原子、または酸素原子であり、E2はエポキシ基を有する炭素数2〜10の炭化水素基である。
第3工程は、第2工程で得られるポリオルガノシロキサンを反応させた共役ジエン系重合体鎖に、下記一般式(2)で表される化合物を反応させる工程である。
特定共役ジエン系ゴムは、本発明の効果がより優れる理由から、共役ジエン単量体単位50〜100質量%を含むものが好ましく、52〜95質量%を含むものがより好ましく、また、芳香族ビニル単量体単位(特にスチレン単量体単位)0〜50質量%を含むものが好ましい。
特定共役ジエン系ゴムにおける共役ジエン単量体単位中のビニル結合含有量は、本発明の効果がより優れる理由から、好ましくは1〜90質量%、より好ましくは3〜80質量%、特に好ましくは5〜70質量%である。
また、特定共役ジエン系ゴムのカップリング率は、特に限定されないが、本発明の効果がより優れる理由から、好ましくは10質量%以上、より好ましくは20質量%以上、特に好ましくは40質量%以上であり、また、好ましくは80質量%以下、より好ましくは75質量%以下、特に好ましくは70質量%以下である。なお、カップリング率は、一般式(1)で表されるポリオルガノシロキサンおよび一般式(2)で表される化合物、ならびに、必要に応じて用いられるカップリング剤やその他の変性剤と反応させる前の活性末端を有する共役ジエン系重合体鎖のピークトップ分子量の1.8倍以上の分子量を有する重合体分子の、最終的に得られた共役ジエン系ゴムの全量に対する質量分率であり、このときの分子量の測定は、ゲルパーミエーションクロマトグラフィによりポリスチレン換算分子量として求めるものとする。
特定共役ジエン系ゴムの重量平均分子量(Mw)は、ポリスチレン換算のゲルパーミエーションクロマトグラフィで測定される値で、100,000超である。なかでも、好ましくは100,000超3,000,000以下、より好ましくは150,000〜2,000,000、特に好ましくは200,000〜1,500,000である。共役ジエン系ゴムの重量平均分子量を上記範囲内とすることにより、共役ジエン系ゴムへのシリカの配合が容易となり、ゴム組成物の加工性をより高めることができ、さらには、本発明の効果がより優れるものとなる。
また、特定共役ジエン系ゴムのムーニー粘度(ML1+4,100℃)は、本発明の効果がより優れる理由から、好ましくは20〜100、より好ましくは30〜90、特に好ましくは35〜80である。なお、共役ジエン系ゴムを油展ゴムとする場合は、その油展ゴムのムーニー粘度を上記の範囲とすることが好ましい。
上述のとおり、共役ジエン系ゴム中の特定共役ジエン系ゴムの含有量は10質量%以上である。
共役ジエン系ゴム中の特定共役ジエン系ゴムの含有量の上限は特に制限されず、100質量%である。共役ジエン系ゴム中の特定共役ジエン系ゴムの含有量は、本発明の効果がより優れる理由から、30〜90質量%であることが好ましく、50〜80質量%であることがより好ましい。
上記共役ジエン系ゴムは特定共役ジエン系ゴム以外のゴム成分(その他のゴム成分)を含有していてもよい。そのようなその他のゴム成分としては、天然ゴム(NR)、イソプレンゴム(IR)、ブタジエンゴム(BR)、スチレンブタジエンゴム(SBR)、アクリロニトリル−ブタジエン共重合ゴム(NBR)、ブチルゴム(IIR)、ハロゲン化ブチルゴム(Br−IIR、Cl−IIR)、クロロプレンゴム(CR)などが挙げられる。なかでも、本発明の効果がより優れる理由から、ブタジエンゴム(BR)であることが好ましい。
その他のゴム成分の重量平均分子量(Mw)は、ポリスチレン換算のゲルパーミエーションクロマトグラフィで測定される値で、100,000超である。なかでも、好ましくは100,000超3,000,000以下、より好ましくは150,000〜2,000,000、特に好ましくは200,000〜1,500,000である。その他のゴム成分の重量平均分子量を上記範囲内とすることにより、共役ジエン系ゴムへのシリカの配合が容易となり、ゴム組成物の加工性をより高めることができ、さらには、本発明の効果がより優れるものとなる。
共役ジエン系ゴム中のその他のゴム成分の含有量は特に制限されないが、本発明の効果がより優れる理由から、0〜50質量%であることが好ましく、10〜40質量%であることがより好ましい。
共役ジエン系ゴムに含まれる全てのゴム成分の重量平均分子量(Mw)は、ポリスチレン換算のゲルパーミエーションクロマトグラフィで測定される値で、100,000超である。なかでも、好ましくは100,000超3,000,000以下、より好ましくは150,000〜2,000,000、特に好ましくは200,000〜1,500,000である。ゴム成分の重量平均分子量を上記範囲内とすることにより、共役ジエン系ゴムへのシリカの配合が容易となり、ゴム組成物の加工性をより高めることができ、さらには、本発明の効果がより優れるものとなる。
本発明の組成物に含有されるシリカは特に制限されず、タイヤ等の用途でゴム組成物に配合されている従来公知の任意のシリカを用いることができる。
上記シリカとしては、例えば、湿式シリカ、乾式シリカ、ヒュームドシリカ、珪藻土などが挙げられる。上記シリカは、1種のシリカを単独で用いても、2種以上のシリカを併用してもよい。
なお、本明細書において、CTAB吸着比表面積は、シリカ表面へのCTAB吸着量をJIS K6217−3:2001「第3部:比表面積の求め方−CTAB吸着法」にしたがって測定した値である。
シリカの含有量の上限は特定に制限されないが、本発明の効果がより優れる理由から、上述した共役ジエン系ゴム100質量部に対して、250質量部以下であることが好ましく、200質量部以下であることがより好ましい。
本発明の組成物に含有されるシランカップリング剤は、加水分解性基および有機官能基を有するシラン化合物であれば特に制限されない。
上記加水分解性基は特に制限されないが、例えば、アルコキシ基、フェノキシ基、カルボキシル基、アルケニルオキシ基などが挙げられる。なかでも、本発明の効果がより優れる理由から、アルコキシ基であることが好ましい。加水分解性基がアルコキシ基である場合、アルコキシ基の炭素数は、本発明の効果がより優れる理由から、1〜16であることが好ましく、1〜4であることがより好ましい。炭素数1〜4のアルコキシ基としては、例えば、メトキシ基、エトキシ基、プロポキシ基などが挙げられる。
(CnH2n+1O)3−Si−CmH2m−S−CO−CkH2k+1 一般式(S)
一般式(S)中、nは1〜3の整数を表し、mは1〜5の整数(好ましくは、2〜4の整数)を表し、kは1〜15の整数(好ましくは、5〜10の整数)を表す。
本発明の組成物に含有される変性ブタジエンポリマーは、窒素原子及びケイ素原子を含む官能基(以下、「特定官能基」とも言う)を末端に有し、重量平均分子量が1,000以上100,000以下であり、分子量分布が2.0以下である、ブタジエンポリマー(ブタジエン重合体)である。
以下、上記変性ブタジエンポリマーを「特定変性BR」とも言う。
その理由は詳細には明らかではないが、特定変性BRが有する特定官能基中の窒素原子及びケイ素原子がシリカと相互作用することでシリカの凝集を防ぐためと考えられる。ここで、本発明者らの検討の結果、変性ブタジエンポリマー(変性BR)のサイズ(重量平均分子量、分子量分布)とシリカの分散性との間に臨界性が見られることが分かっている。これは、変性BRのサイズ(重量平均分子量、分子量分布)が上述した特定の範囲にある場合に、シリカ同士の凝集体の隙間に極めて介入し易くなり、結果として、シリカの分散性が大幅に向上するためと推測される。
上述のとおり、特定変性BRは、窒素原子及びケイ素原子を含む官能基(特定官能基)を末端に有し、重量平均分子量が1,000以上100,000以下であり、分子量分布が2.0以下である、ブタジエンポリマー(変性ブタジエンポリマー)である。
上述のとおり、特定変性BRは、窒素原子及びケイ素原子を含む官能基(特定官能基)を末端に有する。なお、特定官能基は少なくとも1つの末端に有すればよい。
特定官能基は窒素原子及びケイ素原子を含む官能基であれば特に制限されないが、本発明の効果がより優れる理由から、窒素原子をアミノ基(−NR2:Rは水素原子又は炭化水素基)として含むのが好ましく、ケイ素原子をヒドロカルビルオキシシリル基(≡SiOR:Rは炭化水素基)として含むのが好ましい。
上記式(M)中、Lは、2価の有機基を表す。
上記ハロゲン原子としては、例えば、フッ素原子、塩素原子、臭素原子、ヨウ素原子などが挙げられる。
上記ヘテロ原子を有していてもよい炭化水素基のヘテロ原子としては、例えば、酸素原子、窒素原子、硫黄原子、リン原子などが挙げられる。
上記ヘテロ原子を有していてもよい炭化水素基としては、例えば、脂肪族炭化水素基、芳香族炭化水素基、またはこれらを組み合わせた基などが挙げられる。
上記脂肪族炭化水素基は、直鎖状、分岐鎖状、環状のいずれであってもよい。上記脂肪族炭化水素基の具体例としては、直鎖状または分岐状のアルキル基(特に、炭素数1〜30)、直鎖状または分岐状のアルケニル基(特に、炭素数2〜30)、直鎖状または分岐状のアルキニル基(特に、炭素数2〜30)などが挙げられる。
上記芳香族炭化水素基としては、例えば、フェニル基、トリル基、キシリル基、ナフチル基などの炭素数6〜18の芳香族炭化水素基などが挙げられる。
複数あるR1は同一であっても異なっていてもよい。
2価の有機基としては、例えば、脂肪族炭化水素基(例えば、アルキレン基。好ましくは炭素数1〜10)、芳香族炭化水素基(例えば、アリーレン基。好ましくは炭素数6〜18)、−O−、−S−、−SO2−、−N(R)−(R:アルキル基)、−CO−、−NH−、−COO−、−CONH−、またはこれらを組み合わせた基(例えば、アルキレンオキシ基(−CmH2mO−:mは正の整数)、アルキレンオキシカルボニル基、アルキレンカルボニルオキシ基など)などが挙げられる。
Lは、本発明の効果がより優れる理由から、アルキレン基(好ましくは、炭素数1〜10)であることが好ましい。
nは、本発明の効果がより優れる理由から、2であることが好ましい。
mは、本発明の効果がより優れる理由から、1であることが好ましい。
上述のとおり、特定変性BRの重量平均分子量(Mw)は、1,000以上100,000以下である。なかでも、本発明の効果がより優れる理由から、1,000以上50,000以下であることが好ましく、5,000以上15,000以下であることがより好ましい。
特定変性BRの数平均分子量は特定変性BRの重量平均分子量及び分子量分布が特定の範囲にあれば特に制限されないが、本発明の効果がより優れる理由から、1,000以上100,000以下であることが好ましく、1,000以上50,000以下であることがより好ましく、5,000以上15,000以下であることがさらに好ましい。
上述のとおり、特定変性BRの分子量分布(Mw/Mn)は2.0以下である。なかでも、本発明の効果がより優れる理由から、1.7以下であることが好ましく、1.5以下であることがより好ましく、1.3以下であることがさらに好ましい。
下限は特に制限されないが、通常、1.0以上である。
・溶媒:テトラヒドロフラン
・検出器:RI検出器
〔ビニル構造〕
特定変性BRにおいて、ビニル構造の割合(ビニル結合含有量)は特に制限されないが、本発明の効果がより優れる理由から、10〜50質量%であることが好ましく、20〜40質量%であることがより好ましい。
ここで、ビニル構造の割合とは、ブタジエンに由来する繰り返し単位のうち、ビニル構造を有する繰り返し単位が占める割合(質量%)を言う。
特定変性BRにおいて、1,4−トランス構造の割合は特に制限されないが、本発明の効果がより優れる理由から、10〜70質量%であることが好ましく、30〜50質量%であることがより好ましい。
ここで、1,4−トランス構造の割合とは、ブタジエンに由来する全繰り返し単位のうち、1,4−トランス構造を有する繰り返し単位が占める割合(質量%)を言う。
特定変性BRにおいて、1,4−シス構造の割合は特に制限されないが、本発明の効果がより優れる理由から、10〜50質量%であることが好ましく、20〜40質量%であることがより好ましい。
ここで、1,4−シス構造の割合とは、ブタジエンに由来する全繰り返し単位のうち、1,4−シス構造を有する繰り返し単位が占める割合(質量%)を言う。
特定変性BRのガラス転移温度(Tg)は特に制限されないが、本発明の効果がより優れる理由から、−100〜−60℃であることが好ましく、−90〜−70℃であることがより好ましく、−85〜−75℃であることがさらに好ましい。
なお、本明細書において、ガラス転移温度(Tg)は、示差走査熱量計(DSC)を用いて10℃/分の昇温速度で測定し、中点法にて算出したものとする。
特定変性BRの粘度は特に制限されないが、本発明の効果がより優れる理由から、1,000〜10,000mPa・sであることが好ましく、3,000〜6,000mPa・sであることがより好ましい。
また、特定変性BRを変性する前のブタジエンポリマーの粘度は特に制限されないが、本発明の効果がより優れる理由から、500〜5,000mPa・sであることが好ましく、1,500〜3,000mPa・sであることがより好ましい。
また、特定変性BRの粘度は、本発明の効果がより優れる理由から、変性前のブタジエンポリマーの粘度に対して、150〜240%であることが好ましい。以下、変性前の特定変性BRに対する変性後の特性変性BRの粘度を「粘度(変性後/変性前)」とも言う。
なお、本明細書において、粘度は、JIS K5600−2−3に準じて、コーンプレート型粘度計を用いて測定したものとする。
特定変性BRを製造する方法は特に制限されず、従来公知の方法を用いることができる。分子量及び分子量分布を特定の範囲する方法は特に制限されないが、開始剤とモノマーと停止剤との量比、反応温度、及び、開始剤を添加する速度などを調整する方法などが挙げられる。
特定変性BRを製造する方法の好適な態様としては、例えば、有機リチウム化合物を用いてブタジエンを重合し、その後、窒素原子及びケイ素原子を含む求電子剤を用いて重合を停止する方法(以下、「本発明の方法」とも言う)が挙げられる。本発明の方法により得られる特定変性BRを用いた場合、本発明の組成物は、より優れた転がり性能、耐摩耗性能及び加工性を示す。
上記有機リチウム化合物は特に制限されないが、その具体例としては、n−ブチルリチウム、sec−ブチルリチウム、tert−ブチルリチウム、n−プロピルリチウム、iso−プロピルリチウム、ベンジルリチウム等のモノ有機リチウム化合物;1,4−ジリチオブタン、1,5−ジリチオペンタン、1,6−ジリチオヘキサン、1,10−ジリチオデカン、1,1−ジリチオジフェニレン、ジリチオポリブタジエン、ジリチオポリイソプレン、1,4−ジリチオベンゼン、1,2−ジリチオ−1,2−ジフェニルエタン、1,4−ジリチオ−2−エチルシクロヘキサン、1,3,5−トリリチオベンゼン、1,3,5−トリリチオ−2,4,6−トリエチルベンゼン等の多官能性有機リチウム化合物が挙げられる。なかでも、本発明の効果がより優れる理由から、n−ブチルリチウム、sec−ブチルリチウム、tert−ブチルリチウムのモノ有機リチウム化合物が好ましい。
有機リチウム化合物を用いてブタジエンを重合する方法は特定に制限されないが、ブタジエンを含有する有機溶媒溶液に上述した有機リチウム化合物を加え、0〜120℃(好ましくは30〜100℃)の温度範囲で撹拌する方法などが挙げられる。
本発明の方法では、窒素原子及びケイ素原子を含む求電子剤(以下、「特定求電子剤」とも言う)を用いてブタジエンの重合を停止する。特定求電子剤を用いて重合を停止することで、上述した特定官能基を末端に有する変性ブタジエンポリマーが得られる。
特定求電子剤は窒素原子及びケイ素原子を含む化合物であれば特に制限されないが、本発明の効果がより優れる理由から、窒素原子をアミノ基(−NR2:Rは水素原子又は炭化水素基)として含むのが好ましく、ケイ素原子をヒドロカルビルオキシシリル基(≡SiOR:Rは炭化水素基)として含むのが好ましい。
上記式(S)中、Lは、2価の有機基を表す。2価の有機基の具体例及び好適な態様は、上述した式(M)中のLと同じである。
なお、環状シラザンのケイ素原子は求電子性を示すと考えられる。
本発明の組成物において、特定変性BRの含有量は特に制限されないが、本発明の効果がより優れる理由から、上述したシリカの含有量に対して、1〜25質量%であることが好ましく、2.0〜10.0質量%であることがより好ましい。
また、特定変性BRの含有量は、本発明の効果がより優れる理由から、上述した共役ジエン系ゴム100質量部に対して、1質量部以上10質量部未満であることが好ましい。
本発明の組成物は、必要に応じて、上述した成分以外の成分(任意成分)を含有することができる。
そのような成分としては、例えば、シリカ以外の充填剤(例えば、カーボンブラック)、テルペン樹脂(好ましくは、芳香族変性テルペン樹脂)、熱膨張性マイクロカプセル、酸化亜鉛(亜鉛華)、ステアリン酸、老化防止剤、ワックス、加工助剤、プロセスオイル、液状ポリマー、熱硬化性樹脂、加硫剤(例えば、硫黄)、加硫促進剤などのゴム組成物に一般的に使用される各種添加剤などが挙げられる。
本発明の組成物は、本発明の効果がより優れる理由から、カーボンブラックを含有するのが好ましい。
上記カーボンブラックは特に限定されず、例えば、SAF−HS、SAF、ISAF−HS、ISAF、ISAF−LS、IISAF−HS、HAF−HS、HAF、HAF−LS、FEF、GPF、SRF等の各種グレードのものを使用することができる。
上記カーボンブラックの窒素吸着比表面積(N2SA)は特に制限されないが、本発明の効果がより優れる理由から、50〜200m2/gであることが好ましく、70〜150m2/gであることがより好ましい。
ここで、窒素吸着比表面積(N2SA)は、カーボンブラック表面への窒素吸着量をJIS K6217−2:2001「第2部:比表面積の求め方−窒素吸着法−単点法」にしたがって測定した値である。
本発明の組成物の製造方法は特に限定されず、その具体例としては、例えば、上述した各成分を、公知の方法、装置(例えば、バンバリーミキサー、ニーダー、ロールなど)を用いて、混練する方法などが挙げられる。本発明の組成物が硫黄または加硫促進剤を含有する場合は、硫黄および加硫促進剤以外の成分を先に高温(好ましくは100〜160℃)で混合し、冷却してから、硫黄または加硫促進剤を混合するのが好ましい。
また、本発明の組成物は、従来公知の加硫または架橋条件で加硫または架橋することができる。
本発明の空気入りタイヤは、上述した本発明の組成物を用いて製造された空気入りタイヤである。なかでも、本発明の組成物をタイヤトレッド(キャップトレッド)に用いた(配置した)空気入りタイヤであることが好ましい。
図1に、本発明の空気入りタイヤの実施態様の一例を表す空気入りタイヤの部分断面概略図を示すが、本発明の空気入りタイヤは図1に示す態様に限定されるものではない。
また、左右一対のビード部1間においては、繊維コードが埋設されたカーカス層4が装架されており、このカーカス層4の端部はビードコア5およびビードフィラー6の廻りにタイヤ内側から外側に折り返されて巻き上げられている。
また、タイヤトレッド部3においては、カーカス層4の外側に、ベルト層7がタイヤ1周に亘って配置されている。
また、ビード部1においては、リムに接する部分にリムクッション8が配置されている。
なお、タイヤトレッド部3は上述した本発明の組成物により形成されている。
以下のとおり、特定共役ジエン系ゴム1〜5及び比較共役ジエン系ゴム1〜3を製造した。
ここで、特定共役ジエン系ゴム1〜5は上述した第1〜3工程を備える共役ジエン系ゴムの製造方法により製造される共役ジエン系ゴムであり、上述した特定共役ジエン系ゴムに該当する。さらに、特定共役ジエン系ゴム1〜3は第1工程が上述した工程Aと工程Bとを備えるものであり、特定共役ジエン系ゴムがPIブロックを有する。
一方、比較共役ジエン系ゴム1及び3は上述した第1〜2工程を備える(上述した第3工程を備えない)共役ジエン系ゴムの製造方法により製造される共役ジエン系ゴムであり、上述した特定共役ジエン系ゴムに該当しない。また、比較共役ジエン系ゴム2は、ポリオルガノシロキサンの添加量が上述した第2工程を満たさないため、上述した特定共役ジエン系ゴムに該当しない。
窒素置換された800mlアンプル瓶に、シクロヘキサン74.3g、およびテトラメチルエチレンジアミン0.48mmolを添加し、さらに、n−ブチルリチウム4.76mmol(n−ブチルリチウム1モルに対する、極性化合物としてのテトラメチルエチレンジアミンの量が0.10モルとなる量)を添加した。次いで、イソプレン17.3g、及びスチレン1.3gをゆっくりと添加し、50℃のアンプル瓶内で120分反応させることにより、活性末端を有する重合体ブロック(A)を得た。この重合体ブロック(A)の重量平均分子量(Mw)は6,500、分子量分布(Mw/Mn)は1.12、スチレン単量体単位含有量は7.0質量%、イソプレン単量体単位含有量は93.0質量%、およびビニル結合含有量は7.5質量%であった。
窒素置換された100mLアンプル瓶に、シクロヘキサン(35g)、およびテトラメチルエチレンジアミン(1.4mmol)を添加し、さらに、n−ブチルリチウム(4.3mmol)を添加した。次いで、イソプレン(21.6g)、およびスチレン(3.1g)をゆっくりと添加し、50℃のアンプル瓶内で120分反応させることにより、活性末端を有する重合体ブロック(A)を得た。この重合体ブロック(A)について、重量平均分子量、分子量分布、芳香族ビニル単量体単位含有量、イソプレン単量体単位含有量、および1,4−結合含有量を測定したところ、重量平均分子量は8,700、分子量分布は1.10、芳香族ビニル単量体単位含有量は12.6質量%、イソプレン単量体単位含有量は87.4質量%、1,4−結合含有量は58.0質量%であった。
次に、攪拌機付きオートクレーブに、窒素雰囲気下、シクロヘキサン(4000g)、1,3−ブタジエン(474.0g)、およびスチレン(126.0g)を仕込んだ後、上記にて得られた活性末端を有する重合体ブロック(A)を全量加え、50℃で重合を開始した。重合転化率が95%から100%の範囲になったことを確認してから、次いで、上記式(11)で表されるポリオルガノシロキサンを、エポキシ基の含有量が1.42mmol(使用したn−ブチルリチウムの0.33倍モルに相当)となるように、20質量%濃度のキシレン溶液の状態で添加し、30分間反応させた。その後、重合停止剤として、使用したn−ブチルリチウムの2倍モルに相当する量のメタノールを添加して、共役ジエン系ゴムを含有する溶液を得た。この溶液に、老化防止剤(イルガノックス1520、BASF社製)を少量添加し、伸展油としてフッコールエラミック30(新日本石油(株)製)を特定共役ジエン系ゴム100質量部に対して25質量部添加した後、スチームストリッピング法により固形状のゴムを回収した。得られた固形状のゴムをロールにより脱水し、乾燥機中で乾燥を行い、固形状の共役ジエン系ゴムを得た。得られた共役ジエン系ゴムを比較共役ジエン系ゴム1とする。
比較共役ジエン系ゴム1の重量平均分子量、分子量分布、カップリング率、スチレン単量体単位含有量、ビニル結合含有量、および、ムーニー粘度を測定したところ、重量平均分子量は660,000、分子量分布は1.7、カップリング率は12.5質量%、スチレン単量体単位含有量は43質量%、ビニル結合含有量は31質量%、ムーニー粘度(ML1+4,100℃)は58であった。
窒素置換された100mlアンプル瓶に、シクロヘキサン50.0g、およびテトラメチルエチレンジアミン0.66mmolを添加し、さらに、n−ブチルリチウム6.6mmolを添加した。次いで、イソプレン11.61g、およびスチレン0.87gをゆっくりと添加し、50℃のアンプル瓶内で120分間反応させることにより、活性末端を有する重合体ブロック(A)を得た。この重合体ブロック(A)の重量平均分子量(Mw)は3,500、分子量分布(Mw/Mn)は1.10、スチレン単量体単位含有量は7.0質量%、イソプレン単量体単位含有量は93.0質量%、ビニル結合含有量は7.7質量%であった。
攪拌機付きオートクレーブに、窒素雰囲気下、シクロヘキサン800g、テトラメチルエチレンジアミン1.42mmol、1,3−ブタジエン87.6g、およびスチレン32.4gを仕込んだ後、n−ブチルリチウム0.79mmolを加え、60℃で重合を開始した。60分間重合反応を継続し、重合転化率が95%から100%の範囲になったことを確認してから、上記式(11)で表されるポリオルガノシロキサンを、40質量%濃度のキシレン溶液の状態にて、0.16g(ポリオルガノシロキサン中のシロキサン構造(−Si−O−)の繰り返し単位数に換算して、使用したn−ブチルリチウムの0.7倍モルに相当する量)添加し、30分間反応させた。次いで、3−アミノプロピルトリメトキシシラン0.79mmol(使用したn−ブチルリチウムの1.0倍モルに相当する量)を添加し、10分間攪拌させた。その後、重合停止剤として、使用したn−ブチルリチウムの2倍モルに相当する量のメタノールを添加して、共役ジエン系ゴムを含有する溶液を得た。この溶液に、老化防止剤として、イルガノックス1520L(チバスペシャリティーケミカルズ社製)を、共役ジエン系ゴム100部に対して0.15部添加した後、スチームストリッピングにより溶媒を除去し、60℃で24時間真空乾燥して、固形状の共役ジエン系ゴムを得た。得られた共役ジエン系ゴムを比較共役ジエン系ゴム2とする。比較共役ジエン系ゴム2の重量平均分子量(Mw)は430,000、カップリング率は34.4%、スチレン単量体単位含有量は27質量%、ビニル結合含有量は60質量%、ガラス転移温度(Tg)は−22℃、分子量分布(Mw/Mn)は1.4であった。
窒素置換された800mlアンプル瓶に、シクロヘキサン70.0g、およびテトラメチルエチレンジアミン0.77mmolを添加し、さらに、n−ブチルリチウム7.69mmol(nーブチルリチウム1モルに対する、極性化合物としてのテトラメチルエチレンジアミンの量が0.10モルとなる量)を添加した。次いで、イソプレン27.9g、およびスチレン2.1gをゆっくりと添加し、温度50℃としたアンプル瓶内で120分間反応させることにより、活性末端を有する重合体ブロック(A)を得た。この重合体ブロック(A)の重量平均分子量(Mw)は6,500、分子量分布(Mw/Mn)は1.10、スチレン単量体単位含有量は7.0質量%、イソプレン単量体単位含有量は93.0質量%、およびビニル結合含有量は7.7質量%であった。
3−(2−アミノエチルアミノ)プロピルトリメトキシシラン7.69mmolを添加しなかったこと以外は、特定共役ジエン系ゴム3と同様に操作して、固形状の共役ジエン系ゴムを得た。得られた共役ジエン系ゴムを比較共役ジエン系ゴム3とする。比較共役ジエン系ゴム3の重量平均分子量(Mw)は420,000、カップリング率は56.8%、スチレン単量体単位含有量は15質量%、ビニル結合含有量は31質量%、ガラス転移温度(Tg)は−63℃、分子量分布(Mw/Mn)は1.6であった。
攪拌機付きオートクレーブに、窒素雰囲気下、シクロヘキサン800g、1,3−ブタジエン120gを仕込んだ後、n−ブチルリチウム1.00mmolを加え、80℃で重合を開始した。90分間重合反応を継続し、重合転化率が95%から100%の範囲になったことを確認してから、上記式(11)で表されるポリオルガノシロキサン0.32g(ポリオルガノシロキサン中のシロキサン構造(−S−O−)の繰り返し単位数に換算して、使用したn−ブチルリチウムの1.1倍モルに相当する量)を添加し、30分間反応させた。次いで、3−(2−アミノエチルアミノ)プロピルトリメトキシシラン1.00mmol(使用したn−ブチルリチウムの1.0倍モルに相当する量)を添加し、10分間反応させた。その後、重合停止剤として、使用したn−ブチルリチウムの2倍モルに相当する量のメタノールを添加して、共役ジエン系ゴムを含有する溶液を得た。この溶液に、老化防止剤として、イルガノックス1520L(BASF社製)を、共役ジエン系ゴム100部に対して0.15部添加した後、スチームストリッピングにより溶媒を除去し、60℃で24時間真空乾燥して、固形状の共役ジエン系ゴムを得た。得られた共役ジエン系ゴムを特定共役ジエン系ゴム4とする。特定共役ジエン系ゴム4の重量平均分子量(Mw)は490,000、カップリング率は55.5%、ビニル結合含有量は10質量%であった。
攪拌機付きオートクレーブに、窒素雰囲気下、シクロヘキサン800g、テトラメチルエチレンジアミン1.42mmol、1,3−ブタジエン87.6g、およびスチレン32.4gを仕込んだ後、n−ブチルリチウム0.79mmolを加え、60℃で重合を開始した。60分間重合反応を継続し、重合転化率が95%から100%の範囲になったことを確認してから、上記式(11)で表されるポリオルガノシロキサンを、40質量%濃度のキシレン溶液の状態にて、0.26g(ポリオルガノシロキサン中のシロキサン構造(−Si−O−)の繰り返し単位数に換算して、使用したn−ブチルリチウムの1.1倍モルに相当する量)添加し、30分間反応させた。次いで、3−(2−アミノエチルアミノ)プロピルトリメトキシシラン0.79mmol(使用したn−ブチルリチウムの1.0倍モルに相当する量)を添加し、10分間攪拌させた。その後、重合停止剤として、使用したn−ブチルリチウムの2倍モルに相当する量のメタノールを添加して、共役ジエン系ゴムを含有する溶液を得た。この溶液に、老化防止剤として、イルガノックス1520L(チバスペシャリティーケミカルズ社製)を、共役ジエン系ゴム100部に対して0.15部添加した後、スチームストリッピングにより溶媒を除去し、60℃で24時間真空乾燥して、固形状の共役ジエン系ゴムを得た。得られた共役ジエン系ゴムを特定共役ジエン系ゴム5とする。特定共役ジエン系ゴム5の重量平均分子量(Mw)は470,000、カップリング率は54.4%、スチレン単量体単位含有量は27質量%、ビニル結合含有量は59質量%であった。
以下のとおり、特定変性BR1〜2及び比較変性BR1を製造した。
ここで、特定変性BR1〜2は、いずれも、特定官能基に該当する後述する式(m1)で表される官能基を末端に有し、Mwが1000以上100,000以下であり、Mw/Mnが2.0以下である変性BRであるため、上述した「特定変性BR」に該当する。一方、比較変性BR1は、後述する式(m1)で表される官能基を末端に有し、Mwが1000以上100,000以下であるが、Mw/Mnが2.0を超える変性BRであるため、上述した「特定変性BR」に該当しない。
n−BuLi(関東化学製:1.60mol/L(ヘキサン溶液),27mL,43.2mmol)を、1,3−ブタジエン(205g,3786mmol)及び2,2−ジ(2−テトラヒドロフリル)プロパン(東京化成製,0.1mL,0.55mmol)のシクロヘキサン(2.96kg)混合溶液に加えて、室温で6時間攪拌した。反応後、N−トリメチルシリル−1,1−ジメトキシ−2−アザシラシクロペンタン(以下構造)(15g,137mmol)を投入し、重合を停止した。
n−BuLi(関東化学製:1.60mol/L(ヘキサン溶液),17mL,27.2mmol)を、1,3−ブタジエン(256g,4732mmol)及び2,2−ジ(2−テトラヒドロフリル)プロパン(東京化成製,0.1mL,0.55mmol)のシクロヘキサン(3.5kg)混合溶液に加えて、室温で3時間攪拌した。その後、n−BuLiを17mL加えて3時間攪拌した。反応後、N−トリメチルシリル−1,1−ジメトキシ−2−アザシラシクロペンタン(25g,114mmol)を投入し、重合を停止した。得られた溶液を取り出し、減圧下で濃縮した。その濃縮溶液をメタノール(5.0L)に流し込み、メタノール不溶成分を分離した。その結果、上記式(m1)で表される官能基を末端に有する変性BR(特定変性BR2)(740g,Mn=6,300,Mw=9,400,Mw/Mn=1.5)を95%の収率で得た。なお、IR分析によって、シス/トランス/ビニル=24/38/38と見積もられた。また、Tgは−76℃であった。また、粘度(変性後/変性前)は181%であった。
n−BuLi(関東化学製:1.60mol/L(ヘキサン溶液),23.2mL,37.2mmol)を、1,3−ブタジエン(461g,8518mmol)及び2,2−ジ(2−テトラヒドロフリル)プロパン(東京化成製,0.2mL,1.09mmol)のシクロヘキサン(4.20kg)混合溶液に加えて、室温で攪拌した。1時間30分おきに、n−BuLiを23.2mLずつ、合計で92.8mL添加し、反応を開始してから6時間後、N−トリメチルシリル−1,1−ジメトキシ−2−アザシラシクロペンタン(60g,274mmol)を投入し、重合を停止した。得られた溶液を取り出し、減圧下で濃縮した。その濃縮溶液をメタノール(10L)に流し込み、メタノール不溶成分を分離した。その結果、上記式(m1)で表される官能基を末端に有する変性BR(比較変性BR1)(740g,Mn=4,000,Mw=8,800,Mw/Mn=2.2)を97%の収率で得た。なお、IR分析によって、シス/トランス/ビニル=23/38/39と見積もられた。また、Tgは−77℃であった。
下記表1に示す成分を、同表に示す割合(質量部)で配合した。
具体的には、まず、下記表1に示す成分のうち硫黄及び加硫促進剤を除く成分を、1.7リットルの密閉式バンバリーミキサーを用いて140℃付近に温度を上げてから、5分間混合した後に放出し、室温まで冷却してマスターバッチを得た。さらに、上記バンバリーミキサーを用いて、得られたマスターバッチに硫黄及び加硫促進剤を混合し、タイヤトレッド用ゴム組成物を得た。
なお、ゴム成分が油展品である場合、質量部はゴムの正味の量(オイルを除いた量)を表す。
得られたタイヤトレッド用ゴム組成物について下記のとおり評価を行った。
得られたタイヤトレッド用ゴム組成物(未加硫)を金型(15cm×15cm×0.2cm)中で、160℃で40分間プレス加硫して加硫ゴムシートを作製した。
得られた加硫ゴムシートについて、JISK6394:2007に準じ、粘弾性スペクトロメーター(東洋精機製作所社製)を用いて、伸張変形歪率10%±2%、振動数20Hz、温度60℃の条件でtanδ(60℃)を測定した。
結果を表1に示す。結果は比較例1を100とする指数で表した。指数が小さい方が転がり性能(低転がり抵抗性)に優れる。実用上、96以下であることが好ましい。
得られた加硫ゴムシートについて、JIS K6264−1、2:2005に準拠し、ランボーン摩耗試験機(岩本製作所製)を用いて、温度20℃、スリップ率50%の条件で摩耗量を測定した。
結果を表1に示す。結果は比較例1の摩耗量を100として、次式により指数化したものを示した。指数が大きいほど摩耗量が小さく、耐摩耗性能に優れる。実用上、100以上であることが好ましい。
耐摩耗性能=(比較例1の摩耗量/試料の摩耗量)×100
得られたタイヤトレッド用ゴム組成物について、JIS K6300−1:2013に準じ、L形ロータを使用し、予熱時間1分、ロータの回転時間4分、試験温度100℃の条件で、ムーニー粘度を測定した。
結果を表1に示す。結果は比較例1を100とする指数で表した。指数が小さいほど粘度が小さく、加工性に優れる。実用上、100以下であることが好ましい。
・特定共役ジエン系ゴム1:上述のとおり製造した特定共役ジエン系ゴム1
・比較共役ジエン系ゴム1:上述のとおり製造した比較共役ジエン系ゴム1
・特定共役ジエン系ゴム2:上述のとおり製造した特定共役ジエン系ゴム2
・比較共役ジエン系ゴム2:上述のとおり製造した比較共役ジエン系ゴム2
・特定共役ジエン系ゴム3:上述のとおり製造した特定共役ジエン系ゴム3
・比較共役ジエン系ゴム3:上述のとおり製造した比較共役ジエン系ゴム3
・特定共役ジエン系ゴム4:上述のとおり製造した特定共役ジエン系ゴム4
・特定共役ジエン系ゴム5:上述のとおり製造した特定共役ジエン系ゴム5
・BR1220:Nipol BR1220(ブタジエンゴム、ガラス転移温度:−106℃、日本ゼオン社製)
・特定変性BR1:上述のとおり製造した特定変性BR1
・特定変性BR2:上述のとおり製造した特定変性BR2
・比較変性BR1:上述のとおり製造した比較変性BR1
・7000GR:ULTRASIL 7000GR(シリカ、CTAB吸着比表面積:160m2/g、Evonik社製)
・N339:ショウブラックN339(カーボンブラック、キャボットジャパン社製)
・Si69:Si69(シランカップリング剤、ビス(3−トリエトキシシリルプロピル)テトラスルフィド)
・酸化亜鉛:酸化亜鉛3種(正同化学工業社社製)
・ステアリン酸:ビーズステアリン酸(日油社製)
・加工助剤:アクチプラストST(Rhein Chemie社製)
・老化防止剤:オゾノン6C(精工化学社製)
・プロセスオイル:エキストラクト4号S(昭和シェル石油社製)
・硫黄:金華印油入微粉硫黄(硫黄の含有量95.24質量%、鶴見化学工業社製)
・加硫促進剤(CZ):大内新興化学工業社製ノクセラーCZ−G
・加硫促進剤(DPG):1,3−ジフェニルグアニジン(ソクシノールD−G、住友化学工業社製)
実施例1と2との対比(特定変性BRの種類のみが異なる態様同士の対比)から、特定変性BRのMw/Mnが1.3以下である実施例1は、より優れた転がり性能、耐摩耗性能及び加工性を示した。
また、実施例3と6との対比(特定共役ジエン系ゴムの芳香族ビニル単量体単位含有量が同程度の態様同士の対比)から、特定共役ジエン系ゴムがPIブロックを含む実施例3は、より優れた転がり性能、耐摩耗性能及び加工性を示した。
2 サイドウォール部
3 タイヤトレッド部
4 カーカス層
5 ビードコア
6 ビードフィラー
7 ベルト層
8 リムクッション
Claims (5)
- 重量平均分子量が100,000超である、特定共役ジエン系ゴムを10質量%以上含む共役ジエン系ゴムと、
シリカと、
シランカップリング剤と、
特定変性ブタジエンポリマーとを含有し、
前記シリカの含有量が、前記共役ジエン系ゴム100質量部に対して、30質量部以上であり、
前記シランカップリング剤の含有量が、前記シリカの含有量に対して、3〜30質量%であり、
前記特定共役ジエン系ゴムが、不活性溶媒中で、重合開始剤を用いて、共役ジエン化合物を含む単量体を重合し、活性末端を有する共役ジエン系重合体鎖を得る第1工程と、前記活性末端を有する共役ジエン系重合体鎖に、下記一般式(1)で表されるポリオルガノシロキサンを、前記第1工程で使用した重合開始剤1モルに対して、前記ポリオルガノシロキサン中のシロキサン構造(−Si−O−)の繰り返し単位数換算で1モル以上の割合にて添加して反応させる第2工程と、前記第2工程で得られるポリオルガノシロキサンを反応させた共役ジエン系重合体鎖に、下記一般式(2)で表される化合物を反応させる第3工程とを備える共役ジエン系ゴムの製造方法により製造される共役ジエン系ゴムであり、
前記特定変性ブタジエンポリマーが、窒素原子及びケイ素原子を含む官能基を末端に有し、重量平均分子量が1,000以上100,000以下であり、分子量分布が2.0以下である、変性ブタジエンポリマーである、タイヤトレッド用ゴム組成物。
一般式(1)中、R1〜R8は、炭素数1〜6のアルキル基、または炭素数6〜12のアリール基であり、これらは互いに同一であっても相違していてもよい。
一般式(1)中、X1およびX4は、炭素数1〜6のアルキル基、炭素数6〜12のアリール基、炭素数1〜5のアルコキシ基、および、エポキシ基を含有する炭素数4〜12の基からなる群より選ばれるいずれかの基であり、これらは互いに同一であっても相違していてもよい。
一般式(1)中、X2は、炭素数1〜5のアルコキシ基、またはエポキシ基を含有する炭素数4〜12の基であり、複数あるX2は、互いに同一であっても相違していてもよい。
一般式(1)中、X3は、2〜20のアルキレングリコールの繰返し単位を含有する基であり、X3が複数あるときは、それらは互いに同一であっても相違していてもよい。
一般式(1)中、mは3〜200の整数、nは0〜200の整数、kは0〜200の整数であり、m+n+kは3以上である。
一般式(2)中、R9は、ヒドロカルビル基である。
一般式(2)中、A1は、活性末端を有する共役ジエン系重合体鎖とポリオルガノシロキサンとの反応により生成した反応残基と反応しうる基である。
一般式(2)中、A2は、窒素原子を含有する基である。
一般式(2)中、pは0〜2の整数、qは1〜3の整数、rは1〜3の整数、p+q+r=4である。 - 前記特定変性ブタジエンポリマーの粘度が、変性前のブタジエンポリマーの粘度に対して、150〜240%である、請求項1に記載のタイヤトレッド用ゴム組成物。ただし、前記粘度は、コーンプレート型粘度計を用いて測定したものとする。
- 前記特定変性ブタジエンポリマーの含有量が、前記シリカの含有量に対して、1〜25質量%である、請求項1又は2に記載のタイヤトレッド用ゴム組成物。
- 前記特定共役ジエン系ゴムが、
イソプレン単量体単位80〜100質量%および芳香族ビニル単量体単位0〜20質量%を含む重合体ブロック(A)と、
1,3−ブタジエン単量体単位50〜100質量%および芳香族ビニル単量体単位0〜50質量%を含む重合体ブロック(B)とが一続きにして形成された構造を有する、請求項1〜3のいずれか1項にタイヤトレッド用ゴム組成物。 - 請求項1〜4のいずれか1項に記載のタイヤトレッド用ゴム組成物を用いて製造されたタイヤトレッド部を備える、空気入りタイヤ。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018094721A JP7102926B2 (ja) | 2018-05-16 | 2018-05-16 | タイヤトレッド用ゴム組成物及び空気入りタイヤ |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018094721A JP7102926B2 (ja) | 2018-05-16 | 2018-05-16 | タイヤトレッド用ゴム組成物及び空気入りタイヤ |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2019199539A true JP2019199539A (ja) | 2019-11-21 |
JP7102926B2 JP7102926B2 (ja) | 2022-07-20 |
Family
ID=68612941
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2018094721A Active JP7102926B2 (ja) | 2018-05-16 | 2018-05-16 | タイヤトレッド用ゴム組成物及び空気入りタイヤ |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP7102926B2 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2023085309A1 (ja) * | 2021-11-10 | 2023-05-19 | 株式会社Eneosマテリアル | 変性共役ジエン系重合体の製造方法、変性共役ジエン系重合体、重合体組成物、架橋体及びタイヤ |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2017110230A (ja) * | 2016-03-30 | 2017-06-22 | 日本ゼオン株式会社 | ゴム組成物 |
US20180100058A1 (en) * | 2015-06-08 | 2018-04-12 | Continental Reifen Deutschland Gmbh | Rubber mixture and vehicle tires |
-
2018
- 2018-05-16 JP JP2018094721A patent/JP7102926B2/ja active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20180100058A1 (en) * | 2015-06-08 | 2018-04-12 | Continental Reifen Deutschland Gmbh | Rubber mixture and vehicle tires |
JP2017110230A (ja) * | 2016-03-30 | 2017-06-22 | 日本ゼオン株式会社 | ゴム組成物 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2023085309A1 (ja) * | 2021-11-10 | 2023-05-19 | 株式会社Eneosマテリアル | 変性共役ジエン系重合体の製造方法、変性共役ジエン系重合体、重合体組成物、架橋体及びタイヤ |
Also Published As
Publication number | Publication date |
---|---|
JP7102926B2 (ja) | 2022-07-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5716736B2 (ja) | 共役ジエン系ゴム、ゴム組成物、ゴム架橋物、およびタイヤ、ならびに共役ジエン系ゴムの製造方法 | |
JP6331267B2 (ja) | タイヤ用ゴム組成物および空気入りタイヤ | |
JP5845883B2 (ja) | 変性共役ジエン系ゴム組成物の製造方法、ゴム組成物の製造方法、ゴム架橋物の製造方法及びタイヤの製造方法 | |
JP6064953B2 (ja) | タイヤ用ゴム組成物および空気入りタイヤ | |
US20190292289A1 (en) | Method for producing for conjugated-diene-based rubber | |
JP6459307B2 (ja) | タイヤトレッド用ゴム組成物および空気入りタイヤ | |
JP2016037543A (ja) | 共役ジエン系ゴムの製造方法 | |
US10239983B2 (en) | Method for production of conjugated diene rubber | |
JP7389371B2 (ja) | タイヤ用ゴム組成物及びタイヤ | |
JP6332279B2 (ja) | 共役ジエン系ゴムの製造方法 | |
WO2019221182A1 (ja) | タイヤトレッド用ゴム組成物および空気入りタイヤ | |
JP6481634B2 (ja) | タイヤ用ゴム組成物および空気入りタイヤ | |
WO2019221179A1 (ja) | 冬用タイヤトレッド用ゴム組成物および冬用空気入りタイヤ | |
JP6791203B2 (ja) | タイヤトレッド用ゴム組成物および空気入りタイヤ | |
JP6791204B2 (ja) | タイヤトレッド用ゴム組成物および空気入りタイヤ | |
WO2019221184A1 (ja) | タイヤトレッド用ゴム組成物及び空気入りタイヤ | |
JP6791201B2 (ja) | タイヤトレッド用ゴム組成物及び空気入りタイヤ | |
JP6791202B2 (ja) | タイヤトレッド用ゴム組成物および空気入りタイヤ | |
JP6319469B1 (ja) | タイヤトレッド用ゴム組成物及び空気入りタイヤ | |
JP7102926B2 (ja) | タイヤトレッド用ゴム組成物及び空気入りタイヤ | |
JP7417047B2 (ja) | タイヤトレッド用ゴム組成物および空気入りタイヤ | |
JP6791206B2 (ja) | タイヤトレッド用ゴム組成物および空気入りタイヤ | |
JP7106980B2 (ja) | タイヤトレッド用ゴム組成物および空気入りタイヤ | |
JP2019199512A (ja) | 共役ジエン系ゴムの製造方法 | |
WO2019221180A1 (ja) | タイヤトレッド用ゴム組成物および空気入りタイヤ |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20210511 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20220322 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20220329 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20220427 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20220607 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20220620 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 7102926 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |