JP2019179929A - 三相変圧器 - Google Patents

三相変圧器 Download PDF

Info

Publication number
JP2019179929A
JP2019179929A JP2019115741A JP2019115741A JP2019179929A JP 2019179929 A JP2019179929 A JP 2019179929A JP 2019115741 A JP2019115741 A JP 2019115741A JP 2019115741 A JP2019115741 A JP 2019115741A JP 2019179929 A JP2019179929 A JP 2019179929A
Authority
JP
Japan
Prior art keywords
plate
core
columnar
iron core
phase transformer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019115741A
Other languages
English (en)
Other versions
JP6856707B2 (ja
Inventor
鈔 支
Zhi Chao
鈔 支
前田 拓也
Takuya Maeda
拓也 前田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fanuc Corp
Original Assignee
Fanuc Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fanuc Corp filed Critical Fanuc Corp
Priority to JP2019115741A priority Critical patent/JP6856707B2/ja
Publication of JP2019179929A publication Critical patent/JP2019179929A/ja
Application granted granted Critical
Publication of JP6856707B2 publication Critical patent/JP6856707B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Coils Of Transformers For General Uses (AREA)

Abstract

【課題】本発明は、三相が平衡で漏れ磁束が少なく、効率が高い三相変圧器を提供することを目的とする。【解決手段】実施例に係る三相変圧器は、互いに対向するように配置された第1板状鉄心及び第2板状鉄心と、第1板状鉄心及び第2板状鉄心の間に、第1板状鉄心又は第2板状鉄心と接続するように配置された3の倍数の複数の柱状鉄心であって、該複数の柱状鉄心の中心軸から等距離にある軸を中心として回転対称となる位置に配置されている複数の柱状鉄心と、複数の柱状鉄心に個々に巻回された3の倍数の複数の1次コイル及び複数の2次コイルを含むコイルと、を有する。【選択図】図1

Description

本発明は、三相変圧器に関する。
これまでに複数の巻線が直線上に配置された静止誘導電器が報告されている(例えば、特許文献1)。特許文献1に記載の静止誘導電器は、N相N脚の主磁路(但し、Nは3以上)と、各主脚に巻き回した主巻線を有するとともに、N個の主脚の交点部位でN相の主磁束の何れとも概略直交する方向に大きさが可変な制御磁束を発生させる制御磁束発生手段を設け、当該発生手段により制御磁束の大きさを制御することによりN相リアクタンスを可変する。特許文献1に記載の静止誘導電器は、リアクタンスを可変にする静止誘導電器であるが、三相鉄心の形状が非対称形状で、3つの相の磁路の長さを構造的に同じにすることができず、磁束密度など各種値が完全には均等にならないという問題がある。三相が不平衡なため、通常の発熱以外の発熱や、漏れ磁束が発生すると考えられ、結合係数は約0.3程度となっていると考えられている。一般的な変圧器も同様な鉄心構造をしており、漏れ磁束はノイズの源にもなり、例えば、大型の変圧器においては、カバーで囲われているだけでなく、基本的には近づけないようにフェンスなどの囲いをして、人の立入を禁止している。さらに、変圧器には、今般、地球環境のため効率を高めることが強く求められ、そのためには不必要な漏れ磁束を少なくすることが求められている。
また、三相のコイルが円周上に配置された電力変換器も報告されている(例えば、特許文献2)。特許文献2に記載の電力変換器は、2つの対向するヨーク鉄心と、コイルを巻回させ、ギャップ調整手段が設けられている3本の磁脚鉄心と、コイルを巻回させていない3本の零相用磁脚鉄心と、を備え、2つの対向するヨーク鉄心同士を、3本の磁脚鉄心と、3本の零相用磁脚鉄心とで接続し、3本の磁脚鉄心は、ヨーク鉄心の同心軸を基準として、所定の角度をもって円周上に配置され、3本の零相用磁脚鉄心は、ヨーク鉄心の同心軸を基準として、3本の磁脚鉄心の間に円周上に配置されている。また、3本の零相用磁脚鉄心があり、零相用磁脚鉄心に磁束が流れ、他の相への磁束の流れが少なくなるため、相互インダクタンスが低くなる。そのため、相互インダクタンスの利用に関しては、適した構造ではない。一般的な変圧器においても、相互インダクタンス分の磁束を利用する形であるので、適した構造ではない。
また、特許文献2に記載の電力変換器においては、鉄心は薄板をロール状に巻いた構造を備えており、磁束はロール状に流れやすい。そのため、鉄心において、磁束の流れる経路が最短ではなく、相互インダクタンス及び自己インダクタンスが小さくなりやすい。また、製造上、穴やタップの加工等には適していないという製造上及び組立上の問題がある。そのため、例えば、インダクタンス調整機構(ネジなど)を使用することは難しいという問題がある。さらに、コイルから発生する磁束が外部に漏れるのを防ぐことが難しいという問題がある。すなわち、変圧器は磁気抵抗が小さく、磁束が漏れないことが非常に望まれ、方向性電磁鋼板の使用や鉄心の組立て方など、鉄心においても、様々な工夫がなされている。
特開2016−048741号公報 国際公開第2012/157053号
本発明は、三相が平衡で漏れ磁束が少なく、効率が高い三相変圧器を提供することを目的とする。
実施例に係る三相変圧器は、互いに対向するように配置された第1板状鉄心及び第2板状鉄心と、第1板状鉄心及び第2板状鉄心の間に、第1板状鉄心又は第2板状鉄心と接続するように配置された3の倍数の複数の柱状鉄心であって、該複数の柱状鉄心の中心軸から等距離にある軸を中心として回転対称となる位置に配置されている複数の柱状鉄心と、複数の柱状鉄心に個々に巻回された3の倍数の複数の1次コイル及び2次コイルを含むコイルと、を有する。
実施例に係る三相変圧器によれば、三相が平衡で漏れ磁束が少なく、効率が高い三相変圧器が得られる。
実施例1に係る三相変圧器の斜視図である。 実施例1に係る三相変圧器の平面図である。 実施例1に係る三相変圧器の第1板状鉄心における磁気解析結果を示す図である。 実施例1に係る三相変圧器の鉄心コイルの磁束線図である。 実施例2に係る三相変圧器の斜視図である。 実施例2に係る三相変圧器の第2板状鉄心並びに第2板状鉄心に設けられた柱状鉄心及びコイルの斜視図である。 実施例2に係る三相変圧器において第1板状鉄心を回転させた後の斜視図である。 実施例2に係る三相変圧器において、1次コイルが2次コイルAと組み合わされた場合の三相変圧器の等価回路である。 実施例2に係る三相変圧器において、1次コイルが2次コイルBと組み合わされた場合の三相変圧器の等価回路である。 実施例3に係る三相変圧器の斜視図である。 実施例3に係る三相変圧器のカバーを構成する基材の斜視図である。 実施例3に係る三相変圧器のカバーの斜視図である。 実施例4に係る三相変圧器の断面図である。 実施例5に係る三相変圧器の斜視図である。 実施例5に係る三相変圧器の側面図である。 実施例5の変形例に係る三相変圧器を構成する第1板状鉄心の斜視図である。 実施例5の変形例に係る三相変圧器の斜視図であって、インダクタンスが大きい状態を示す図である。 実施例5の変形例に係る三相変圧器の斜視図であって、インダクタンスが小さい状態を示す図である。 実施例7に係る三相変圧器の斜視図である。 実施例7の変形例に係る三相変圧器の斜視図である。
以下、図面を参照して、本発明に係る三相変圧器について説明する。ただし、本発明の技術的範囲はそれらの実施の形態には限定されず、特許請求の範囲に記載された発明とその均等物に及ぶ点に留意されたい。
まず、実施例1に係る三相変圧器について説明する。図1に実施例1に係る三相変圧器の斜視図を示す。実施例1に係る三相変圧器101は、第1板状鉄心1及び第2板状鉄心2と、複数の柱状鉄心(31,32,33)と、複数の1次コイル(41a,42a,43a)及び複数の2次コイル(41b,42b,43b)を含むコイルと、を有する。1次コイル41a及び2次コイル41bをU相用コイル、1次コイル42a及び2次コイル42bをV相用コイル、1次コイル43a及び2次コイル43bをW相用コイルとして三相変圧器を構成することができる。
第1板状鉄心1及び第2板状鉄心2は、互いに対向するように配置された鉄心である。図1に示した例では第1板状鉄心1及び第2板状鉄心2の形状を円盤状としているが、このような例には限られず、楕円盤状や多角形状でもよい。第1板状鉄心1及び第2板状鉄心2は磁性体から構成されることが好ましい。第1板状鉄心1及び第2板状鉄心2には、後述するギャップ調整機構に用いるネジ穴(1a,1b,1c,2a(図示せず),2b,2c)が設けられている。
複数の柱状鉄心(31,32,33)は、第1板状鉄心1及び第2板状鉄心2の間に、少なくとも第1板状鉄心1及び第2板状鉄心2の一方と接続するように配置された3の倍数の複数の柱状鉄心である。複数の柱状鉄心(31,32,33)は、複数の柱状鉄心の中心軸(31y,32y,33y)から等距離にある軸を中心として回転対称となる位置に配置されている。
複数の1次コイル(41a,42a,43a)及び2次コイル(41b,42b,43b)は、複数の柱状鉄心(31,32,33)に個々に巻回された3の倍数のコイルである。1次コイルの電圧をV1、巻数をN1とし、2次コイルの電圧をV2、巻数をN2とすると、変圧比αは以下の式で求められる。
α=V1/V2=k×N1/N2
ただし、kは1次コイルと2次コイルの結合係数で理想的には1である。
図1に示した例では柱状鉄心の数を3個としたが、このような例には限られない。例えば、柱状鉄心を6本、線対称に配置し、直列または並列に結線し、1つの変圧器としてもよいし、そのまま、6本の配線を設け、2つの変圧器としてもよい。また、単相の場合は柱状鉄心の数を2つとしてもよい。複数の1次コイル(41a,42a,43a)及び複数の2次コイル(41b,42b,43b)は、対向するように配置された第1板状鉄心1及び第2板状鉄心2の端部より内側に配置されていることが好ましい。
図1に示した例では複数の柱状鉄心(31,32,33)の形状を円柱状としたが、楕円柱状または多角柱状としてもよい。
図2に実施例1に係る三相変圧器の平面図を示す。図2は図1に示した三相変圧器を第1板状鉄心1側から見た平面図を示している。複数の柱状鉄心(31,32,33)は、複数の柱状鉄心(31,32,33)の中心軸(31y,32y,33y)から等距離にある軸を回転軸C1として回転対称となる位置に配置されている。図2に示すように、柱状鉄心が3つの場合は、柱状鉄心(31,32,33)は、それぞれの中心軸(31y,32y,33y)が120度ずつずれた位置に回転軸C1に対して回転対称となるように配置される。このような構成とすることにより、三相における非平衡状態をなくすことができる。即ち、三相変圧器に負荷電流を流した場合、1次コイルの磁束と2次コイルの磁束は理想的には打ち消し合うが、三相変圧器が対称形状を有していないとアンバランスや磁束漏れが生じる。本実施例のように三相変圧器を対称形状にすることにより、アンバランスがなくなり、漏れ磁束も少なくなり、効率が良くなる。
また、回転軸C1が第1板状鉄心1または第2板状鉄心2の中心軸と一致していてもよい。
図3に実施例1に係る三相変圧器の第1板状鉄心における三相交流のある位相の磁気解析結果を示す。柱状鉄心31に巻かれた1次コイル41aに最大電流が流れ、柱状鉄心32及び33には、向きが逆で最大電流の半分の電流が流れる位相である。そのため、磁束は柱状鉄心31から、柱状鉄心32及び33へ向かう。柱状鉄心31の周辺で磁束密度が高く、柱状鉄心31から離れるにしたがって磁束密度が低くなっている。第一板状鉄心全体を広く無駄なく利用しており、磁気飽和が緩和され、インダクタンスが下がりにくい。柱状鉄心(31,32,33)には、通常の三相の磁束が発生するため、ある柱状鉄心の磁束は別の柱状鉄心も通ることになり、自己インダクタンスだけでなく、相互インダクタンスも積極的に利用している。従って、インダクタンスは次式によって算出される。
インダクタンス=自己インダクタンス+相互インダクタンス
その結果、相互インダクタンスの磁束を有効に活用することができる。
また、図3に示すように、第1板状鉄心1の中心部も磁束が通るような構成とすることにより、柱状鉄心31から第1板状鉄心1に達した磁束は直線的に他の柱状鉄心(32,33)に流れ、磁束の流れる効率が良く、相互インダクタンスの向上にも繋がる。
図4に柱状鉄心コイルの磁束線図を示す。図4には1次コイル41aが巻回された柱状鉄心31から生じる磁束線61が示されている。図4から、1次コイル(41a,42a,43a)の上部に第1板状鉄心1を配置し、通常、コイル上部から漏れる磁束をどのコイルに対しても拾うことにより、自己インダクタンスだけではなく相互インダクタンスの向上に繋げられることがわかる。また、2次コイル(41b,42b,43b)を設けた第2板状鉄心2に関しても同様である。さらに、磁束漏れを後述するカバーで遮断することができる。
また、図3の磁気解析結果から、柱状鉄心(31,32,33)の周りの磁束や、柱状鉄心間における膨らむような磁束の流れから、柱状鉄心が二つの単相でも、第1板状鉄心1を介して相互インダクタンスを増加させることができることがわかる。
さらに、後述するギャップ調整機構に用いるネジ穴(1a,1b,1c)やタップ穴などは、図3から分かるように、磁束に影響のない位置に設ければ、インダクタンスを小さくすることはない。
また、図3からわかるように、第1板状鉄心1及び第2板状鉄心2は柱状鉄心(31,32,33)の軸方向に電磁鋼板を積層することにより、巻鉄心を使用する場合に比べて磁束が流れやすい構成とすることができる。
第1板状鉄心1及び第2板状鉄心2と柱状鉄心(31,32,33)との結合方法には、本発明の構造では以下の方法が考えられる。
(1)第1板状鉄心1または第2板状鉄心2に凹部を設け柱状鉄心を差込む嵌め合い
(2)柱状鉄心にネジ穴を設け、第1板状鉄心1または第2板状鉄心2に貫通穴を設けるネジ止め
(3)第1板状鉄心1または第2板状鉄心2及び柱状鉄心に穴を設け、ピンを圧入する方法等
例えば、第1板状鉄心1及び第2板状鉄心2に柱状鉄心(31,32,33)を嵌め合わせるための穴を設けておき、この穴に柱状鉄心(31,32,33)を嵌め合わせるようにしてもよい。ただし、用途による変圧器の大きさも鑑み、他の方法により結合させるようにしてもよい。例えば、第1板状鉄心1及び第2板状鉄心2をネジで固定するようにしてもよい。
以上の説明においては、第1板状鉄心1及び第2板状鉄心2に穴が設けられていない構成について説明したが、第1板状鉄心1及び第2板状鉄心2の少なくとも一方の中心部には穴が設けられている構成としてもよい。
また、以上の説明においては、複数の柱状鉄心(31,32,33)にギャップが形成されていない構成について説明したが、複数の柱状鉄心(31,32,33)の少なくとも1つには、第1ギャップを設けて、空気によるギャップにより、インダクタンスを発生させた構成としてもよい。空気は比透磁率が1であり、鉄心の比透磁率と大きく異なることで、一定のインダクタンスを得るために積極的に利用する場合がある。ここで、「第1ギャップ」とは、柱状鉄心を複数の柱状鉄心部分に分離した際に、対向する柱状鉄心部分に形成されるギャップをいう。第1ギャップは、複数の柱状鉄心(31,32,33)の長手方向と直交する面で対向するようにして設けることができる。また、第1ギャップは、複数の柱状鉄心(31,32,33)のそれぞれの1次コイル(41a,42a,43a)が巻回された領域と2次コイル(41b,42b,43b)が巻回された領域の間に設けることが好ましい。また、磁気抵抗は磁路の長さ/透磁率/断面積で求まり、柱状鉄心の透磁率が空気の1000倍程度であるため、ギャップ付き鉄心型変圧器とギャップなし鉄心型変圧器では、前者がギャップを形成する空気層が主たる磁気抵抗となり、鉄心部の磁気抵抗は無視できるのに対して後者は鉄心部の磁気抵抗が主体となる。このようにギャップに空気層を設けるだけでも、透磁率の差により、磁束の流れ方の物性が大きく異なってくることにより、用途が異なってくる。また、鉄心が飽和する時の電流も大きく異なり、ギャップの有無で変圧器としての用途は異なってくる。
変圧器においては、磁束が打ち消し合わない状況が少しでもあると、変圧比だけでなく、電磁波、効率など、さまざまな影響が生じるため、三相交流電流と同様、磁束も3つ足し合わせると常に0になることが求められる。実施例1に係る三相変圧器によれば、柱状鉄心の配置と第1板状鉄心1及び第2板状鉄心2の形状により、3相の磁気抵抗を等しく、かつ小さくでき、三相分、同時に共通に磁束が走る第1板状鉄心1及び第2板状鉄心2において、磁束の合計は0である。また、励磁電流が1次コイルに流れる時は、柱状鉄心に磁束が流れ、漏れ磁束を少なくすることができ、三相分、同時に共通に磁束が走る第1板状鉄心1及び第2板状鉄心2において、磁束の合計は0である。
次に、実施例2に係る三相変圧器について説明する。図5に実施例2に係る三相変圧器の斜視図を示す。図6に実施例2に係る三相変圧器の第2板状鉄心並びに第2板状鉄心に設けられた柱状鉄心及びコイルの斜視図を示す。実施例2に係る三相変圧器102が、実施例1に係る三相変圧器101と異なっている点は、複数の柱状鉄心のそれぞれは、1次コイル(41a,42a,43a)が巻回された第1柱状鉄心部分(31a,32a,33a)及び2次コイルA(41c,42c,43c)が巻回された第2柱状鉄心部分(31b,32b,33b)に分離可能に構成され、第2板状鉄心2は、複数の第3柱状鉄心部分(34,35,36)及び該複数の第3柱状鉄心部分に個々に巻回された、2次コイルAとは巻数が異なる複数の2次コイルB(44,45,46)を有し、第1板状鉄心1または第2板状鉄心2は、回転軸を中心にして回転可能に構成され、1次コイル(41a,42a,43a)と2次コイルA(41c,42c,43c)との組み合わせ及び1次コイル(41a,42a,43a)と2次コイルB(44,45,46)との組み合わせが選択的に変更可能となるように構成されている点である。実施例2に係る三相変圧器102におけるその他の構成は、実施例1に係る三相変圧器101における構成と同様であるので詳細な説明は省略する。
図5に示すように、複数の1次コイル(41a,42a,43a)が巻回された複数の第1柱状鉄心部分(31a,32a,33a)は、複数の2次コイルA(41c,42c,43c)が巻回された複数の第2柱状鉄心部分(31b,32b,33b)とは分離可能に構成されている。複数の第1柱状鉄心部分(31a,32a,33a)は、第1板状鉄心1に固定されている。一方、図6に示すように、複数の第2柱状鉄心部分(31b,32b,33b)及び複数の2次コイルB(44,45,46)が巻回された複数の第3柱状鉄心部分(34,35,36)は第2板状鉄心2に固定されている。
複数の第1柱状鉄心部分(31a,32a,33a)は、複数の第1柱状鉄心部分の中心軸から等距離にある軸を中心として回転対称となる位置に配置されている。図5及び図7に示した例では、複数の第1柱状鉄心部分(31a,32a,33a)は、それぞれの中心軸が120度ずつずれた位置に回転軸に対して回転対称となるように配置されている。
同様に、複数の第2柱状鉄心部分(31b,32b,33b)は、複数の第2柱状鉄心部分の中心軸から等距離にある軸を中心として回転対称となる位置に配置されている。図5〜図7に示した例では、複数の第2柱状鉄心部分(31b,32b,33b)は、それぞれの中心軸が120度ずつずれた位置に回転軸に対して回転対称となるように配置されている。ここで、図5に示すように、第1板状鉄心1を所定の位置に配置させたとき、複数の第1柱状鉄心部分(31a,32a,33a)は、複数の第2柱状鉄心部分(31b,32b,33b)と重なるように配置される。
さらに、複数の第3柱状鉄心部分(34,35,36)は、複数の第3柱状鉄心部分の中心軸から等距離にある軸を中心として回転対称となる位置に配置されている。図5〜図7に示した例では、複数の第3柱状鉄心部分(34,35,36)は、それぞれの中心軸が120度ずつずれた位置に回転軸に対して回転対称となるように配置されている。ここで、図7に示すように、第1板状鉄心1を回転させて他の所定の位置に配置させたとき、複数の第1柱状鉄心部分(31a,32a,33a)は、複数の第3柱状鉄心部分(34,35,36)と重なるように配置されることが好ましい。例えば、複数の第3柱状鉄心部分(34,35,36)は、複数の第2柱状鉄心部分(31b,32b,33b)を60度回転させた位置に配置する。
複数の第1柱状鉄心部分(31a,32a,33a)は、複数の第2柱状鉄心部分(31b,32b,33b)とは分離可能に構成されているため、第1板状鉄心1は第2板状鉄心2に対して回転させることができる。また、第1板状鉄心1は、ネジ穴(1a,1b,1c)を介してネジ等によりカバー52に固定することができる。第1板状鉄心1は、回転させた後に新たな位置でネジ等によりカバー52に固定することができる。
第1板状鉄心1を、回転軸を中心にして回転させることにより、1次コイル(41a,42a,43a)と2次コイルA(41c,42c,43c)との組み合わせ、及び1次コイル(41a,42a,43a)と2次コイルB(44,45,46)との組み合わせが選択的に変更可能となり、変圧比を変えることができる。図5に示した例では、1次コイル(41a,42a,43a)が2次コイルA(41c,42c,43c)と組み合わされている。この時、1次コイルの鉄心と2次コイルAの鉄心は接触した状態である。1次コイルの電圧をV1、巻数をN1とし、2次コイルAの電圧をV2、巻数をN2とすると、変圧比αは、以下の式で求められる。
α=V1/V2=k×N1/N2
ただし、kは1次コイルと2次コイルAの結合係数で理想的には1である。
図7に実施例2に係る三相変圧器において第1板状鉄心1を時計と反対方向に60度回転させた後の斜視図を示す。図7に示した例では、1次コイル(41a,42a,43a)が2次コイルB(44,45,46)と組み合わされている。1次コイルの電圧をV1、巻数をN1とし、2次コイルBの電圧をV3、巻数をN3(≠N2)とすると、変圧比βは、以下の式で求められる。
β=V1/V3=k´×N1/N3
ただし、k´は1次コイルと2次コイルBの結合係数で理想的には1である。
結合係数k及びk´がほぼ等しいとすると、2次コイルAの巻数N2と2次コイルBの巻数N3が異なるため、変圧比αとβは異なる値となる。従って、1次コイルと組み合わせるコイルを2次コイルAと2次コイルBとの間で切り替えることにより、変圧比をαまたはβに切り替えることができる。
なお、1次コイルと2次コイルAが組み合わさり、鉄心が接触した状態の時、2次コイルBの2つの端子は解放される。2次コイルBの鉄心はどの鉄心とも接触していない状態である。実施例2に係る三相変圧器の等価回路を図8A及び図8Bに示す。図8Aは1次コイルが2次コイルAと組み合わされた場合の三相変圧器の等価回路であり、図8Bは1次コイルが2次コイルBと組み合わされた場合の三相変圧器の等価回路である。図8A及び図8Bにおいてk=k´=1としている。鉄心の接触、非接触により、磁気回路として、機能している鉄心と機能していない鉄心ができ、変圧器が機械式に切り替わる形となる。
なお、図5及び図7に示した例では、第1板状鉄心1及び第2板状鉄心2の外周部にカバー52を設けた例を示したが、カバーを設けない構成であっても変圧比を変えることができる。カバー52を設けない場合は、第1板状鉄心1及び第2板状鉄心2をネジ等により直接固定するようにしてもよい。
上記の説明では、3つの柱状鉄心を備えた第1板状鉄心1を回転させることにより、変圧比を変える構成について説明したが、第1板状鉄心1に6つ、またはそれ以上の柱状鉄心を配置してもよい。例えば、第1板状鉄心1に複数の1次コイルBを巻回した複数の第1柱状鉄心部分B(図示せず)を設け、複数の1次コイルBを複数の2次コイルAまたは複数の2次コイルBと組み合わせることにより、変圧比をさらに2通り(γ,δ)に変えることができ、合計4通りに変えることができる。さらに、各コイルに接続された配線の繋ぎ方を直列または並列とすることにより、1つの変圧器とすることもできるし、2つ以上の変圧器とすることもできる。また、例えば、各国により電源電圧が異なっており、変圧器を接続する電気機器または電気機械の移動に伴い、変圧比を変える必要がある。変圧比を変えることを可能とすることにより、変圧比が異なる他の変圧器を新たに用意する必要がなくなり、不必要になる変圧器もなくすことができる。
次に、実施例3に係る三相変圧器について説明する。図9に実施例3に係る三相変圧器の斜視図を示す。実施例3に係る三相変圧器103が、実施例1に係る三相変圧器101と異なっている点は、第1板状鉄心1及び第2板状鉄心2の外周部に設けられ、複数の柱状鉄心(31,32,33)、複数の1次コイル(41a,42a,43a)及び複数の2次コイル(41b,42b,43b)を包囲するカバー5をさらに有する点である。実施例3に係る三相変圧器103におけるその他の構成は、実施例1に係る三相変圧器101における構成と同様であるので詳細な説明は省略する。
変圧器は、柱状鉄心にギャップを設けた場合、ギャップ部分で柱状鉄心の軸方向に大きな吸引力が生じる。また、ギャップなしの変圧器でも、鉄心の磁歪により、音が騒音に繋がると言われている。磁歪は、鉄心中の磁束の変化により、鉄心に応力、変形が生じ、騒音に繋がるとされている。そのため、この吸引力を構造的に支えるため、カバー5を設けることが好ましい。カバー5の材料は鉄、アルミ、及び樹脂のいずれでも良い。あるいは、カバーは磁性体または導体であってもよい。
図10Aに実施例3に係る三相変圧器のカバーを構成する基材の斜視図を示す。基材50には強磁性体シートを用いることが好ましい。強磁性体シートとして、例えば、電磁鋼板を用いることができる。また、基材50の表面には絶縁処理を施すことが好ましい。また、第1板状鉄心1、第2板状鉄心2、複数の柱状鉄心(31,32,33)及びカバー5のうちの少なくとも1つが巻鉄心で構成されるようにしてもよい。
図10Bに実施例3に係る三相変圧器のカバーの斜視図を示す。図10Aに示すような長方形の基材50を第1板状鉄心1及び第2板状鉄心2の外周部に沿って巻くことによって、図10Bに示すような円筒形状のカバー5を形成することができる。径が小さい変圧器の場合は、筒状の部材の回りに、基材50を巻くようにして円筒形状のカバー5を形成することができる。また、カバーは、電磁鋼板の他に、炭素鋼等を用いることもできる。円筒の場合、旋盤で加工しやすいため、安価に、精度良く加工、製造できるという利点もある。また、円筒の場合、同じ外周長で円筒内の体積が最大になり、柱状鉄心やコイル等を最大限配置でき、使用する部材の量を少なくすることができ、製品のライフサイクルの面で合理的であるという点で好ましい。
第1板状鉄心1及び第2板状鉄心2の外周部の形状も円又は楕円であることが好ましい。カバー5と同様、第1板状鉄心1及び第2板状鉄心2も円又は楕円等の単純な形状とすることにより、精度良く、加工し、製造することができる。そのため、精度良く加工された柱状鉄心(31,32,33)、第1板状鉄心1、第2板状鉄心2、カバー5を組み合わせることにより、柱状鉄心間のギャップの管理が容易になり、ギャップの寸法も一定に保ちやすいため、ギャップに働く吸引力によるギャップ長の変動を小さくすることができる。ギャップのない変圧器でも、積層鋼板を積層したり、組立てることにより、小さなギャップや空気層が存在し、磁気抵抗になっており、精度良く加工できる構造により、低減することができる。ただし、カバー5は円筒には限られず、第1板状鉄心1及び第2板状鉄心2の形状は円または楕円形状以外であっても、本機能を発揮することができる。
カバー5を鉄やアルミ等で形成することにより、磁束や電磁波を外部に漏えいしないようにすることができる。カバー5を鉄等の磁性体で形成することにより、磁束の通り道にもなり、漏れ磁束を外部に出さないようにすることができる。即ち、カバー5を鉄等の透磁率の高い材料を用いて作製することにより、柱状鉄心からの磁束が第1板状鉄心1、カバー5、第2板状鉄心2を通る経路を形成することができる。さらに、カバー5を鉄やアルミ等で形成することにより、渦電流を低減させたり、磁束の通り易さを向上させたりすることができる。
カバー5をアルミ等、透磁率は低いが、抵抗率の小さい材料で形成することにより、電磁波を遮断することができる。一般に、三相交流電流は、IGBT素子などのスイッチング素子で作られ、矩形波の電磁波がEMC試験等で問題になることがある。また、カバー5を樹脂等で形成することにより、液体や異物等の侵入を防ぐことができる。
ここで、直流の磁束が三相交流に何からの理由で重畳している場合が考えられる。従来技術では、零相すなわち、三相交流ではなく、直流の磁束の対策のために、零相用磁脚鉄心を設ける例が報告されている。一方、図3の磁気解析結果に示すように、本実施例では外周部のカバー5までは磁束は到達しない。しかしながら、カバー5を磁性体で形成し、直流の磁束が流れた場合、漏れ磁束と同様、アンバランスな磁束がカバーの方まで流れることも考えられる。このような場合に、磁性体で形成されたカバーでアンバランスな磁束を吸収し、悪影響を与えないようにすることも可能である。
なお、図5及び図7に示すように、実施例2に係る三相変圧器にカバー52を設けるようにしてもよい。即ち、第1板状鉄心1及び第2板状鉄心2の外周部に設けられ、複数の第1柱状鉄心部分(31a,32a,33a)、複数の第2柱状鉄心部分(31b,32b,33b)、複数の第3柱状鉄心部分(34,35,36)、複数の1次コイル(41a,42a,43a)、複数の2次コイルA(41c,42c,43c)及び複数の2次コイルB(44,45,46)を包囲するカバー52をさらに有するようにしてもよい。また、第1板状鉄心1、第2板状鉄心2、複数の第1柱状鉄心部分(31a,32a,33a)、複数の第2柱状鉄心部分(31b,32b,33b)、複数の第3柱状鉄心部分(34,35,36)及びカバー52のうちの少なくとも1つが巻鉄心で構成されるようにしてもよい。カバー52は、磁性体または導体であることが好ましい。カバー52を設けることにより、1次コイル、2次コイルA、及び2次コイルBから電磁波が漏えいするのを防止することができる。
次に、実施例4に係る三相変圧器について説明する。図11に実施例4に係る三相変圧器の断面図を示す。図11は図9において複数の1次コイル(41a,42a,43a)が巻かれた複数の柱状鉄心(31,32,33)における任意の位置での第1板状鉄心1と水平な面で切断した断面図を示している。実施例4に係る三相変圧器104が、実施例1に係る三相変圧器101と異なっている点は、複数の柱状鉄心(31,32,33)の中心軸(31y,32y,33y)から等距離にある軸(回転軸C1)を中心軸とするように配置された棒状体6をさらに有する点である。実施例4に係る三相変圧器104におけるその他の構成は、実施例1に係る三相変圧器101における構成と同様であるので詳細な説明は省略する。
棒状体6は、複数の1次コイル(41a,42a,43a)が巻かれた複数の柱状鉄心(31,32,33)の配置と第1板状鉄心1及び第2板状鉄心2の形状から、複数の柱状鉄心(31,32,33)の中心軸(31y,32y,33y)から等距離にある軸(回転軸C1)を中心軸とするように配置することが好ましい。棒状体6は磁性体または導体であることが好ましい。
また、変圧器の場合、複数の柱状鉄心(31,32,33)にギャップを設けた場合、ギャップ間に働く吸引力は大きく、第1板状鉄心1及び第2板状鉄心2の中心を支えることにより、第1板状鉄心1及び第2板状鉄心2の撓みを効果的に抑えることができる。また、吸引力はギャップで向き合う柱状鉄心が引き合う方向にしか働かないため、荷重の向きからも、効果的に撓み(ひいてはギャップの変動)を抑えることができる。
図11に示した例では、三相変圧器104にカバー5及び棒状体6が設けられた構成を示しているが、カバー5を設けずに棒状体6を設けるようにしてもよい。この場合、第1板状鉄心1及び第2板状鉄心2をネジ等により直接固定するようにしてもよい。
さらに、図5に示した三相変圧器において、複数の第1柱状鉄心部分(31a,32a,33a)の中心軸から等距離にある軸を中心軸とする固定補助用の棒状体(図示せず)を設けるようにしてもよい。棒状体は、磁性体または導体であることが好ましい。棒状体を設けることにより、第1板状鉄心1を第2板状鉄心2に対して回転させる際に安定性を向上させることができる。
上記の実施例に係る三相変圧器において、第1板状鉄心1、第2板状鉄心2、複数の柱状鉄心(31,32,33)、及び棒状体6のうちの少なくとも1つは巻鉄心で構成されるようにしてもよい。さらに巻鉄心の中心部には棒状の中心部鉄心が配置されるようにしてもよい。巻鉄心を用いることにより、励磁電流や鉄損を小さくすることができる。
図5に示した三相変圧器において、第1板状鉄心1、第2板状鉄心2、複数の第1柱状鉄心部分(31a,32a,33a)及び複数の第2柱状鉄心部分(31b,32b,33b)及び棒状体(図示せず)のうちの少なくとも1つは巻鉄心で構成されることが好ましい。さらに、巻鉄心の中心部には棒状の中心部鉄心が配置されているようにしてもよい。巻鉄心を用いることにより、励磁電流や鉄損を小さくすることができる。
次に、実施例5に係る三相変圧器について説明する。図12に実施例5に係る三相変圧器の斜視図を示す。図13に実施例5に係る三相変圧器の側面図を示す。実施例5に係る三相変圧器105が、実施例1に係る三相変圧器101と異なっている点は、第1板状鉄心1及び第2板状鉄心2の少なくとも一方と、複数の柱状鉄心(310,320,330)の少なくとも1つとの間に第2ギャップが設けられ、第2ギャップの長さdを調整するギャップ調整機構(71,72,73)が設けられている点である。実施例5に係る三相変圧器105におけるその他の構成は、実施例1に係る三相変圧器101における構成と同様であるので詳細な説明は省略する。
ギャップ調整機構(71,72,73)として、第1板状鉄心1に設けたネジを用いることができる。ネジの先端面がカバー5に当接し、第1板状鉄心1にもネジ穴が設けられている。ギャップ調整機構(71,72,73)であるネジを回転させることにより、第1板状鉄心1を上下に動かすことができる。第1板状鉄心1と複数の柱状鉄心(310,320,330)の先端間に第2ギャップdを形成することができ、第2ギャップdの大きさをネジにより調整することができる。ここで、「第2ギャップ」とは、第1板状鉄心1または第2板状鉄心2と複数の柱状鉄心(310,320,330)の先端との間に形成されるギャップをいう。第2ギャップdの大きさを調整することにより、インダクタンスの大きさの調整を行うことができる。このようにして、異なる大きさのインダクタンスを1つの変圧器で形成することが可能となる。
上述のようにギャップ調整機構(71,72,73)であるネジのみでも第1板状鉄心1を固定することは可能である。しかしながら、第2ギャップdに働く磁気吸引力のために、カバー5にネジ山を切り、第1板状鉄心1にもネジ山を切った穴を設け、第1固定ネジ(81,82,83)にて、第1板状鉄心1とカバー5を固定し、結合を強固にするようにしてもよい。一方、第2固定ネジ(91,92,93)にて、第2板状鉄心2とカバー5を固定し、結合を強固にするようにしてもよい。
ギャップ調整機構として、ネジの代わりに、第1板状鉄心1とカバー5との間にスペーサ等の部材を挟み、固定ネジでギャップを形成するようにしてもよい。
図12及び図13に示した例では、カバー5が設けられた例を示したが、カバー5を設けない場合は、第2板状鉄心2まで、ギャップ調整機構(71,72,73)としてのネジ及び固定ネジ(81,82,83)を通すことにより、上記と同様にギャップを調整することができる。
図14に実施例5の変形例に係る三相変圧器を構成する第1板状鉄心10の斜視図を示す。ギャップ調整機構として、ネジの代わりに、第1板状鉄心10の柱状鉄心(図示せず)と対向する面に図14に示すような突出部(11,12,13)を設ける。突出部(11,12,13)は、第1板状鉄心10の回転の中心C2から距離rの位置に沿って設けられ、径方向の長さが時計回りの向きに短くなるように形成されている。また、第1板状鉄心10には周方向の位置を調整するために複数のネジ穴14が設けられている。第1板状鉄心10を回転させることによって、柱状鉄心と第1板状鉄心10の突出部(11,12,13)との接触面積を意図的に変化させて、インダクタンスの大きさを調整することができる。
図15に実施例5の変形例に係る三相変圧器1051の斜視図であって、インダクタンスが大きい状態を示す。突出部(11,12,13)の径方向の長さが最大となる位置で複数の柱状鉄心(310,320,330)と接している。このときに、インダクタンスが最大となる。
図16に実施例5の変形例に係る三相変圧器1051の斜視図であって、インダクタンスが小さい状態を示す。突出部(11,12,13)の径方向の長さが最小となる位置で複数の柱状鉄心(310,320,330)と接している。このときに、インダクタンスが最小となる。
図15及び図16に示した構成において、第1板状鉄心10、カバー5及び第2板状鉄心2で囲まれた三相変圧器1051の内部を密閉構造とする場合には、部材にて隙間を塞ぐようにしてもよい。密閉構造とすることにより、磁束漏れ、電磁波、粉じん等などの対策をとることができる。
次に、実施例6に係る三相変圧器について説明する。実施例6に係る三相変圧器が、実施例3に係る三相変圧器103と異なっている点は、第1板状鉄心1、第2板状鉄心2及びカバー5に囲まれた部分に絶縁油または磁性流体が充填されている点である。実施例6に係る三相変圧器におけるその他の構成は、実施例3に係る三相変圧器103における構成と同様であるので詳細な説明は省略する。
図9に示すように、第1板状鉄心1、第2板状鉄心2及びカバー5に囲まれた部分に絶縁油または磁性流体を充填させる。例えば、第2板状鉄心2にカバー5を設けた後、絶縁油または磁性流体を充填し、第1板状鉄心1をカバー5に設置する。磁性流体の場合、カバー5の中にコイルなどから発生する磁界により、攪拌される効果もある。発熱源は複数の1次コイル(41a,42a,43a)、複数の2次コイル(41b,42b,43b)、及び複数の1次コイル及び2次コイルが巻回されている複数の柱状鉄心(31,32,33)であり、絶縁油または磁性流体は対流して熱伝導により外部と熱交換を行い、複数の1次コイル、2次コイル、及び複数の柱状鉄心を冷却することができる。
次に、実施例7に係る三相変圧器について説明する。図17に実施例7に係る三相変圧器106の斜視図を示す。実施例7に係る三相変圧器106が、実施例3に係る三相変圧器103と異なっている点は、複数の柱状鉄心(311,321,331)は空芯構造及び開口部311aを備え、該空芯構造及び開口部311aを介して、第1板状鉄心1、第2板状鉄心2及びカバー5に囲まれた部分に絶縁油または磁性流体を循環させる点である。実施例7に係る三相変圧器106におけるその他の構成は、実施例3に係る三相変圧器103における構成と同様であるので詳細な説明は省略する。
複数の柱状鉄心(311,321,331)は、第1板状鉄心1及び第2板状鉄心2を貫通しており、空芯構造は第1板状鉄心1及び第2板状鉄心2の外部に通じている。従って、第1板状鉄心1側から空芯構造を介して絶縁油または磁性流体を流入させ、第2板状鉄心2側から排出することができる。
また、複数の柱状鉄心(311,321,331)の空芯構造には、冷却水や冷却油を流すようにしてもよい。このような構成とすることにより、三相変圧器106の冷却性能を向上させることができる。
さらに、複数の柱状鉄心(311,321,331)は空芯構造及び開口部311aを備え、該空芯構造及び開口部311aを介して、第1板状鉄心1、第2板状鉄心2及びカバー5に囲まれた部分に絶縁油または磁性流体を循環させるようにしてもよい。また効率よく複数の1次コイル(41a,42a,43a)、複数の2次コイル(41b,42b,43b)、及び複数の1次コイル及び2次コイルが巻回されている複数の柱状鉄心(31,32,33)の冷却を行うために、循環中、熱せられた絶縁油または磁性流体を三相変圧器の外部に排出して冷却してから戻すようにしてもよい。図17には、1つの柱状鉄心311に開口部311aを設ける例を示したが、開口部は1つの柱状鉄心に複数個設けてもよいし、複数の柱状鉄心に1つまたは複数の開口部を設けるようにしてもよい。
図18に実施例7の変形例に係る三相変圧器の斜視図を示す。複数の第1柱状鉄心部分(310a,320a,330a)、複数の第2柱状鉄心部分(310b,320b,330b)、及び複数の第3柱状鉄心部分(340,350,360)のそれぞれに空芯構造を設け、該空芯構造を介して、第1板状鉄心1、第2板状鉄心2及びカバー5に囲まれた部分に絶縁油または磁性流体を循環させるようにしてもよい。
また、図17には、複数の柱状鉄心(311,321,331)に巻回されたコイルの配線100も示されている。配線100を三相変圧器106の外部に取り出す接続部51は、磁束に影響しない位置に設けることが好ましい。密閉構造にする場合、接続部51にコネクタやゴムパッキン、接着材等を用いることにより、気密性を保つことができる。磁束すなわち、インダクタンスに影響を与えない位置であれば、接続部51をいずれの場所に設けるようにしてもよい。
1,10 第1板状鉄心
11,12,13 突出部
2 第2板状鉄心
31,32,33 柱状鉄心
31a,32a,33a 第1柱状鉄心部分
31b,32b,33b 第2柱状鉄心部分
34,35,36 第3柱状鉄心部分
41a,42a,43a 1次コイル
41b,42b,43b 2次コイル
41c,42c,43c 2次コイルA
44,45,46 2次コイルB
5,52 カバー
6 棒状体
71,72,73 ギャップ調整機構

Claims (14)

  1. 互いに対向するように配置された第1板状鉄心及び第2板状鉄心と、
    前記第1板状鉄心及び前記第2板状鉄心の間に、前記第1板状鉄心又は前記第2板状鉄心と接続するように配置された3の倍数の複数の柱状鉄心であって、該複数の柱状鉄心の中心軸から等距離にある軸を中心として回転対称となる位置に配置されている複数の柱状鉄心と、
    前記複数の柱状鉄心に個々に巻回された3の倍数の複数の1次コイル及び複数の2次コイルを含むコイルと、
    を有する三相変圧器。
  2. 互いに対向するように配置された第1板状鉄心及び第2板状鉄心と、
    前記第1板状鉄心及び前記第2板状鉄心の間に、前記第1板状鉄心又は前記第2板状鉄心と接続するように配置された3の倍数の複数の柱状鉄心であって、該複数の柱状鉄心の中心軸から等距離にある軸を中心として回転対称となる位置に配置されている複数の柱状鉄心と、
    前記複数の柱状鉄心に個々に巻回された3の倍数の複数の1次コイル及び複数の2次コイルAを含むコイルと、を有し、
    前記複数の柱状鉄心のそれぞれは、前記1次コイルが巻回された第1柱状鉄心部分及び前記2次コイルAが巻回された第2柱状鉄心部分に分離可能に構成され、
    前記第2板状鉄心は、複数の第3柱状鉄心部分及び該複数の第3柱状鉄心部分に個々に巻回された、前記複数の2次コイルAとは巻数が異なる複数の2次コイルBを有し、
    前記第1板状鉄心または前記第2板状鉄心は、前記回転軸を中心にして回転可能に構成され、前記複数の1次コイルと前記複数の2次コイルAとの組み合わせ及び前記複数の1次コイルと前記複数の2次コイルBとの組み合わせが選択的に変更可能となるように構成されている、三相変圧器。
  3. 前記複数の1次コイル及び前記複数の2次コイルは、前記第1板状鉄心及び前記第2板状鉄心の端部より内側に配置されている、請求項1に記載の三相変圧器。
  4. 前記第1板状鉄心及び前記第2板状鉄心の外周部に設けられ、前記複数の柱状鉄心、前記複数の1次コイル及び前記複数の2次コイルを包囲するカバーをさらに有する、請求項1に記載の三相変圧器。
  5. 前記第1板状鉄心及び前記第2板状鉄心の外周部に設けられ、前記複数の第1柱状鉄心部分、前記複数の第2柱状鉄心部分、前記複数の第3柱状鉄心部分、前記複数の1次コイル、前記複数の2次コイルA及び前記複数の2次コイルBを包囲するカバーをさらに有する、請求項2に記載の三相変圧器。
  6. 前記カバーは、磁性体または導体である、請求項4または5に記載の三相変圧器。
  7. 前記第1板状鉄心、前記第2板状鉄心、前記複数の柱状鉄心及び前記カバーのうちの少なくとも1つは巻鉄心で構成される、請求項4乃至6のいずれか一項に記載の三相変圧器。
  8. 前記複数の柱状鉄心の中心軸から等距離にある軸を中心軸とする固定補助用の棒状体をさらに有する、請求項1乃至7のいずれか一項に記載の三相変圧器。
  9. 前記棒状体は、磁性体または導体である、請求項8に記載の三相変圧器。
  10. 前記第1板状鉄心、前記第2板状鉄心、前記複数の柱状鉄心及び前記棒状体のうちの少なくとも1つは巻鉄心で構成される、請求項8または9に記載の三相変圧器。
  11. 前記巻鉄心の中心部には棒状の中心部鉄心が配置されている、請求項10に記載の三相変圧器。
  12. 前記第1板状鉄心及び第2板状鉄心の少なくとも一方と、前記複数の柱状鉄心の少なくとも1つとの間にギャップが設けられ、
    前記ギャップの長さを調整するギャップ調整機構が設けられている、請求項1に記載の三相変圧器。
  13. 前記第1板状鉄心、前記第2板状鉄心及び前記カバーに囲まれた部分に絶縁油または磁性流体が充填されている、請求項4乃至7のいずれか一項に記載の三相変圧器。
  14. 前記複数の柱状鉄心は空芯構造及び開口部を備え、該空芯構造及び開口部を介して、前記第1板状鉄心、前記第2板状鉄心及び前記カバーに囲まれた部分に絶縁油または磁性流体を循環させる、請求項4乃至7のいずれか一項に記載の三相変圧器。
JP2019115741A 2019-06-21 2019-06-21 三相変圧器 Active JP6856707B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019115741A JP6856707B2 (ja) 2019-06-21 2019-06-21 三相変圧器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019115741A JP6856707B2 (ja) 2019-06-21 2019-06-21 三相変圧器

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2017178296A Division JP6577545B2 (ja) 2017-09-15 2017-09-15 三相変圧器

Publications (2)

Publication Number Publication Date
JP2019179929A true JP2019179929A (ja) 2019-10-17
JP6856707B2 JP6856707B2 (ja) 2021-04-07

Family

ID=68278991

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019115741A Active JP6856707B2 (ja) 2019-06-21 2019-06-21 三相変圧器

Country Status (1)

Country Link
JP (1) JP6856707B2 (ja)

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS481343Y1 (ja) * 1972-03-21 1973-01-13
JPS4892872A (ja) * 1972-03-08 1973-12-01
JPS605105U (ja) * 1983-06-11 1985-01-14 東北金属工業株式会社 インダクタンス可変素子
JPH08167527A (ja) * 1994-12-15 1996-06-25 Meidensha Corp 分割形変圧器
JPH09159614A (ja) * 1995-12-11 1997-06-20 Kitashiba Denki Kk タンク内部点検ロボット
JPH10223454A (ja) * 1997-02-07 1998-08-21 Hitachi Ltd 渦電流シールド装置および三相変圧器
JPH118138A (ja) * 1997-06-15 1999-01-12 Mitsutsu Electric Kk 同軸変圧器、同軸変圧器群、多軸同軸変圧器、同軸直交変圧器、移相同軸直交変圧器、移相調整同軸直交変圧器、多相移相調整同軸直交変圧器、同軸直交変圧器群、移相同軸直交変圧器群、相変成同軸直交変圧器、三相単相同軸直交変圧器、多相単相同軸直交変圧器群、可変電圧調整同軸変圧器、可変移相同軸直交変圧器、全変成同軸直交変圧器、消磁装置付変圧器、冷却マニホルド付変圧器、リアクトル
JP2003229315A (ja) * 2002-02-01 2003-08-15 Tohoku Electric Power Co Inc 三相可変インダクタンス装置
JP2011250529A (ja) * 2010-05-25 2011-12-08 Daihen Corp 受配電設備
WO2012137494A1 (ja) * 2011-04-06 2012-10-11 株式会社神戸製鋼所 リアクトルおよび該評価方法
WO2012157053A1 (ja) * 2011-05-16 2012-11-22 株式会社日立製作所 リアクトル装置及びそれを用いた電力変換器
JP2013115407A (ja) * 2011-12-01 2013-06-10 Hitachi Ltd 電気機器
JP2014220435A (ja) * 2013-05-09 2014-11-20 株式会社タムラ製作所 リアクタ
JP2016058513A (ja) * 2014-09-09 2016-04-21 Tmp株式会社 コア及びトランス
CN105529166A (zh) * 2016-02-29 2016-04-27 黄中明 有载无级调压节能变压器

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4892872A (ja) * 1972-03-08 1973-12-01
JPS481343Y1 (ja) * 1972-03-21 1973-01-13
JPS605105U (ja) * 1983-06-11 1985-01-14 東北金属工業株式会社 インダクタンス可変素子
JPH08167527A (ja) * 1994-12-15 1996-06-25 Meidensha Corp 分割形変圧器
JPH09159614A (ja) * 1995-12-11 1997-06-20 Kitashiba Denki Kk タンク内部点検ロボット
JPH10223454A (ja) * 1997-02-07 1998-08-21 Hitachi Ltd 渦電流シールド装置および三相変圧器
JPH118138A (ja) * 1997-06-15 1999-01-12 Mitsutsu Electric Kk 同軸変圧器、同軸変圧器群、多軸同軸変圧器、同軸直交変圧器、移相同軸直交変圧器、移相調整同軸直交変圧器、多相移相調整同軸直交変圧器、同軸直交変圧器群、移相同軸直交変圧器群、相変成同軸直交変圧器、三相単相同軸直交変圧器、多相単相同軸直交変圧器群、可変電圧調整同軸変圧器、可変移相同軸直交変圧器、全変成同軸直交変圧器、消磁装置付変圧器、冷却マニホルド付変圧器、リアクトル
JP2003229315A (ja) * 2002-02-01 2003-08-15 Tohoku Electric Power Co Inc 三相可変インダクタンス装置
JP2011250529A (ja) * 2010-05-25 2011-12-08 Daihen Corp 受配電設備
WO2012137494A1 (ja) * 2011-04-06 2012-10-11 株式会社神戸製鋼所 リアクトルおよび該評価方法
WO2012157053A1 (ja) * 2011-05-16 2012-11-22 株式会社日立製作所 リアクトル装置及びそれを用いた電力変換器
JP2013115407A (ja) * 2011-12-01 2013-06-10 Hitachi Ltd 電気機器
JP2014220435A (ja) * 2013-05-09 2014-11-20 株式会社タムラ製作所 リアクタ
JP2016058513A (ja) * 2014-09-09 2016-04-21 Tmp株式会社 コア及びトランス
CN105529166A (zh) * 2016-02-29 2016-04-27 黄中明 有载无级调压节能变压器

Also Published As

Publication number Publication date
JP6856707B2 (ja) 2021-04-07

Similar Documents

Publication Publication Date Title
JP6577545B2 (ja) 三相変圧器
CN109256266B (zh) 三相电抗器
US10734153B2 (en) Three-phase reactor comprising iron-core units and coils
US11728091B2 (en) Three-phase reactor comprising iron-core units and coils
CN106876123B (zh) 多相电抗器
US10580565B2 (en) Reactor including first end plate and second end plate
KR20120023187A (ko) 리액터
JP2015142095A (ja) 静止誘導機器およびその製造方法
JP6490150B2 (ja) 鉄心およびコイルを備えたリアクトル
JP2019179929A (ja) 三相変圧器
JP6674062B2 (ja) 三相リアクトル
JPH118138A (ja) 同軸変圧器、同軸変圧器群、多軸同軸変圧器、同軸直交変圧器、移相同軸直交変圧器、移相調整同軸直交変圧器、多相移相調整同軸直交変圧器、同軸直交変圧器群、移相同軸直交変圧器群、相変成同軸直交変圧器、三相単相同軸直交変圧器、多相単相同軸直交変圧器群、可変電圧調整同軸変圧器、可変移相同軸直交変圧器、全変成同軸直交変圧器、消磁装置付変圧器、冷却マニホルド付変圧器、リアクトル
JP2009105180A (ja) トランス
JP2008270347A (ja) トランス
JP6407948B2 (ja) 多相変圧器
JP2019041119A (ja) 各相で一定のインダクタンスが得られる多相リアクトル
JP7264740B2 (ja) 外周部鉄心を含むコア本体、そのようなコア本体を含むリアクトルおよび製造方法
JP7436246B2 (ja) 温度検出部を備えたリアクトル
KR102555275B1 (ko) 변압장치용 철심구조
JP2005333057A (ja) 変圧器鉄心及び三相変圧器
JP2019071250A (ja) ロータコア加熱装置
KR20170065077A (ko) 철심 및 이를 구비하는 변압기
TW201628318A (zh) 電磁感應裝置
JP2016104993A (ja) 磁気軸受及び回転電動機

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190621

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190621

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200630

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200803

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210216

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210318

R150 Certificate of patent or registration of utility model

Ref document number: 6856707

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150