JP2019164929A - 蓄電装置の製造方法 - Google Patents

蓄電装置の製造方法 Download PDF

Info

Publication number
JP2019164929A
JP2019164929A JP2018052113A JP2018052113A JP2019164929A JP 2019164929 A JP2019164929 A JP 2019164929A JP 2018052113 A JP2018052113 A JP 2018052113A JP 2018052113 A JP2018052113 A JP 2018052113A JP 2019164929 A JP2019164929 A JP 2019164929A
Authority
JP
Japan
Prior art keywords
power storage
storage module
restraint
separator
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2018052113A
Other languages
English (en)
Inventor
直人 守作
Naoto Morisaku
直人 守作
浩生 植田
Hiromi Ueda
浩生 植田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Industries Corp
Original Assignee
Toyota Industries Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Industries Corp filed Critical Toyota Industries Corp
Priority to JP2018052113A priority Critical patent/JP2019164929A/ja
Publication of JP2019164929A publication Critical patent/JP2019164929A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Secondary Cells (AREA)
  • Battery Mounting, Suspending (AREA)

Abstract

【課題】重量の増加を回避しつつ、セパレータの過圧縮状態を回避できる蓄電装置の製造方法を提供する。
【解決手段】蓄電装置1の製造方法は、セパレータ13を介してバイポーラ電極14が積層された電極積層体11を含んで構成される一又は複数の蓄電モジュール4を備えた蓄電装置1の製造方法であって、蓄電モジュール4を電極積層体11の積層方向に拘束した状態において、蓄電モジュール4を充放電するコンディショニング工程P3と、コンディショニング工程P3の後、蓄電モジュール4を積層方向に拘束する拘束工程P4と、を備え、コンディショニング工程P3終了時における蓄電モジュール4への積層方向の第1の拘束圧L1に比べて、拘束工程P4終了時における蓄電モジュール4への積層方向の第2の拘束圧L2を小さくする。
【選択図】図6

Description

本発明は、蓄電装置の製造方法に関する。
蓄電装置の一種として、セパレータを介して複数の電極が積層された積層体を含んで構成される蓄電モジュールを備える蓄電装置が知られている。かかる蓄電装置としては、例えば特許文献1に記載の電池パックがある。この従来の蓄電装置では、電極の積層体が拘束部により積層方向に拘束されている。これにより、蓄電モジュールに対して所定の拘束圧が付加されている。
特開2007−122977号公報
上述したような蓄電装置では、例えば充放電等によって蓄電モジュールの内圧の上昇が生じることがある。かかる内圧の上昇が生じると、蓄電モジュールは拘束部によって積層方向に拘束されているので、蓄電モジュールの内圧の上昇に応じて蓄電モジュール内のセパレータの圧縮が進行することがある。蓄電モジュールの寿命が到来する前に、セパレータが過圧縮状態になると、蓄電モジュールの抵抗の増大、又は電極間の短絡といった問題が生じるおそれがある。
本発明は、上記課題の解決のためになされたものであり、セパレータの過圧縮状態を回避できる蓄電装置の製造方法を提供することを目的とする。
本発明の一側面に係る蓄電装置の製造方法は、セパレータを介して電極が積層された積層体を含んで構成される一又は複数の蓄電モジュールを備えた蓄電装置の製造方法であって、蓄電モジュールを積層体の積層方向に拘束した状態において、蓄電モジュールを充放電するコンディショニング工程と、コンディショニング工程の後、蓄電モジュールを積層方向に拘束する拘束工程と、を備え、コンディショニング工程終了時における蓄電モジュールへの積層方向の第1の拘束圧に比べて、拘束工程終了時における蓄電モジュールへの積層方向の第2の拘束圧を小さくする。
この蓄電装置の製造方法では、この蓄電装置の製造方法では、コンディショニング工程終了時における蓄電モジュールの第1の拘束圧に比べて、拘束工程終了時における蓄電モジュールの第2の拘束圧を緩和する。これにより、製造される蓄電モジュールでは、セパレータの厚さが内圧の上昇及び電極の膨張によるセパレータの圧縮分を加味した厚さとなるため、内圧の上昇及び電極の膨張によってセパレータが過圧縮状態となることを抑制できる。したがって、蓄電装置に寿命が到来する前に、蓄電モジュールの抵抗の増大、又は電極間の短絡の発生といった問題が発生することを抑制できる。
また、この蓄電装置の製造方法は、コンディショニング工程と拘束工程との間に、蓄電モジュールの拘束状態を解放する解放工程を更に備えてもよい。この場合、一旦第1の拘束圧による拘束を開放することで、第2の拘束圧の設定を容易に実施できる。
また、コンディショニング工程を、常温よりも低い温度の環境下で実施してもよい。コンディショニング工程において、蓄電モジュールは、常温よりも低い温度の環境下で拘束されていてもよい。この場合、セパレータのクリープ変形を抑制できる。したがって、コンディショニング工程に続く拘束工程において、セパレータの厚さをコンディショニング工程前の状態に復帰させることができる。これにより、第2の拘束圧の設定を容易に実施できる。
また、コンディショニング工程終了時における蓄電モジュールへの積層方向の第1の拘束寸法に比べて、拘束工程終了時における蓄電モジュールへの積層方向の第2の拘束寸法を大きくしてもよい。拘束寸法を用いて拘束圧の管理を行うことで、蓄電モジュールの第1及び第2の拘束圧の設定を容易に実施できる。
本発明によれば、重量の増加を回避しつつ、セパレータの過圧縮状態を回避できる。
蓄電装置の一実施形態を示す概略断面図である。 蓄電モジュールの内部構成を示す概略断面図である。 蓄電装置の製造方法の一実施形態を示すフローチャートである。 蓄電装置の製造工程を示す概略断面図である。 蓄電装置の製造工程を示す概略断面図である。 蓄電装置の製造時から寿命の到来時までのセパレータの厚さを時系列データで示すグラフである。
以下、図面を参照しながら、本発明の一側面に係る蓄電装置の製造方法の好適な実施形態について詳細に説明する。なお、本発明はこれらの例示に限定されるものではなく、特許請求の範囲によって示され、特許請求の範囲と均等の意味及び範囲内でのすべての変更が含まれることが意図される。以下の説明では、図面の説明において同一の要素には同一の符号を付し、重複する説明を適宜省略する。
図1は、蓄電装置の一実施形態を示す概略断面図である。同図に示す蓄電装置1は、例えばフォークリフト、ハイブリッド自動車、電気自動車等の各種車両のバッテリとして用いられる装置である。蓄電装置1は、複数の蓄電モジュール4を積層してなる蓄電モジュール積層体2と、蓄電モジュール積層体2に対して拘束圧を付加する拘束部3とを備えて構成されている。
蓄電モジュール積層体2は、複数(本実施形態では3体)の蓄電モジュール4と、複数の蓄電モジュール4間にそれぞれ配置された複数の導電板5とによって構成されている。蓄電モジュール4は、複数のバイポーラ電極14(後述する図2参照)を備えたバイポーラ型の蓄電モジュールであり、積層方向から見て矩形状をなしている。蓄電モジュール4は、例えばニッケル水素二次電池、リチウムイオン二次電池等の二次電池、或いは電気二重層キャパシタである。以下の説明では、ニッケル水素二次電池を例示する。
積層方向に隣り合う複数の蓄電モジュール4同士は、導電板5を介して電気的に接続されている。導電板5は、蓄電モジュール積層体2の積層端に位置する蓄電モジュール4の外側にもそれぞれ配置されている。これらの積層端の導電板5は、蓄電モジュール積層体2の集電板25として機能する。一方の積層端に位置する蓄電モジュール4の外側に配置された導電板5には、正極端子6が接続されている。また、他方の積層端に位置する蓄電モジュール4の外側に配置された導電板5には、負極端子7が接続されている。正極端子6及び負極端子7は、例えば導電板5の縁部から積層方向に交差する方向に引き出されている。正極端子6及び負極端子7により、蓄電装置1の充放電が実施される。
各導電板5の内部には、空気等の冷媒を流通させる複数の流路5aが設けられている。各流路5aは、例えば積層方向と、正極端子6及び負極端子7の引き出し方向とにそれぞれ直交する方向に互いに平行に延在している。これらの流路5aに冷媒を流通させることで、導電板5は、複数の蓄電モジュール4同士を電気的に接続する接続部材としての機能のほか、蓄電モジュール4で発生した熱を放熱する放熱板としての機能を併せ持つ。なお、図1の例では、積層方向から見た導電板5の面積は、蓄電モジュール4の面積よりも小さいが、放熱性の向上の観点から、導電板5の面積は、蓄電モジュール4の面積と同じであってもよく、蓄電モジュール4の面積よりも大きくてもよい。
拘束部3は、蓄電モジュール積層体2を積層方向に挟む一対の拘束板8と、一対の拘束板8同士を締結する複数の締結ボルト(締結部材)9及び複数のナット(締結部材)10とを含んで構成されている。拘束板8は、積層方向から見た蓄電モジュール4及び導電板5の面積よりも一回り大きい面積を有する矩形の板である。拘束板8の内側面(蓄電モジュール積層体2側の面)には、電気絶縁性を有するフィルムFが配置されている。フィルムFにより、蓄電モジュール積層体2と拘束板8とが電気的に絶縁されている。
拘束板8の縁部には、蓄電モジュール積層体2よりも外側となる位置に複数の挿通孔8aが設けられている。複数の挿通孔8aは、積層方向から見て、各拘束板8の周縁部に沿って所定の間隔で並んでいる。各締結ボルト9は、一方の拘束板8の各挿通孔8aから他方の拘束板8の各挿通孔8aに向かって通され、他方の拘束板8の各挿通孔8aから突出した各締結ボルト9の先端部分には、各ナット10が螺合されている。これにより、一対の拘束板8の縁部同士が締結され、蓄電モジュール4及び導電板5が一対の拘束板8によって挟持され、蓄電モジュール積層体2としてユニット化される。また、蓄電モジュール積層体2に対して積層方向に拘束圧が付加される。
図2は、蓄電モジュール4の内部構成を示す概略断面図である。同図に示すように、蓄電モジュール4は、電極積層体11と、電極積層体11を封止する封止体12とを備えて構成されている。
電極積層体11は、セパレータ13を介して複数のバイポーラ電極14を積層することによって構成されている。バイポーラ電極14は、一方面15a側に正極16が形成され、かつ他方面15b側に負極17が形成された電極板15からなる電極である。電極積層体11において、一のバイポーラ電極14の正極16は、セパレータ13を挟んで積層方向に隣り合う一方のバイポーラ電極14の負極17と対向している。また、電極積層体11において、一のバイポーラ電極14の負極17は、セパレータ13を挟んで積層方向に隣り合う他方のバイポーラ電極14の正極16と対向している。
電極積層体11の積層端の一方には、負極終端電極18が配置され、電極積層体11の積層端の他方には、正極終端電極19が配置されている。負極終端電極18は、内面側(積層方向の中心側)に負極17が形成された電極板15によって構成されており、正極終端電極19は、内面側(積層方向の中心側)に正極16が形成された電極板15によって構成されている。負極終端電極18の負極17は、セパレータ13を介して積層端の一方のバイポーラ電極14の正極16と対向している。正極終端電極19の正極16は、セパレータ13を介して積層端の他方のバイポーラ電極14の負極17と対向している。負極終端電極18の電極板15及び正極終端電極19の電極板15は、蓄電モジュール4に隣接する導電板5(図1参照)に対して電気的に接続されている。
電極板15は、例えばニッケルからなる矩形の金属箔である。電極板15の縁部15cは、正極活物質及び負極活物質が塗工されない未塗工領域となっており、当該未塗工領域は、封止体12に埋没して保持されている。正極16を構成する正極活物質としては、例えば水酸化ニッケルが挙げられる。また、負極17を構成する負極活物質としては、例えば水素吸蔵合金が挙げられる。本実施形態では、電極板15の他方面15bにおける負極17の形成領域は、電極板15の一方面15aにおける正極16の形成領域に対して一回り大きくなっている。
セパレータ13は、例えばシート状に形成されている。セパレータ13を形成する材料としては、ポリエチレン(PE)、ポリプロピレン(PP)等のポリオレフィン系樹脂からなる多孔質フィルム、ポリプロピレン、ポリエチレンテレフタレート(PET)、メチルセルロース等からなる織布又は不織布等が例示される。また、セパレータ13は、フッ化ビニリデン樹脂化合物で補強されたものであってもよい。
封止体12は、例えば絶縁性の樹脂によって矩形の筒状に形成されている。封止体12を構成する樹脂材料としては、例えばポリプロピレン(PP)、ポリフェニレンサルファイド(PPS)、又は変性ポリフェニレンエーテル(変性PPE)などが挙げられる。封止体12は、バイポーラ電極14の積層によって形成される電極積層体11の側面を取り囲むように構成されている。
封止体12は、各バイポーラ電極14の電極板15の縁部15cに沿ってそれぞれ設けられた一次封止体21と、一次封止体21の全体を外側から包囲するように設けられた二次封止体22とによって構成されている。一次封止体21は、例えば樹脂の射出成形によって形成され、電極板15の一方面15a側の縁部15c(未塗工領域)において、電極板15の全ての辺にわたって連続的に設けられている。本実施形態では、一次封止体21は、電極板15の一方面15a側から端面15d側に回り込むように設けられ、例えば溶着によって一方面15a及び端面15dに対して結合されている。
一次封止体21は、積層方向に隣り合う複数のバイポーラ電極14間を封止するほか、積層方向に隣り合う各バイポーラ電極14の複数の電極板15間のスペーサとして機能する。複数の電極板15間には、一次封止体21の複数の電極板15間に位置する部分の厚さによって規定される内部空間Vが形成されている。当該内部空間Vには、例えば水酸化カリウム水溶液等のアルカリ溶液からなる電解液(不図示)が収容されている。
二次封止体22は、例えば樹脂の射出成形によって形成され、電極積層体11における積層方向の全長にわたって延在している。二次封止体22は、例えば射出成型時の熱により、一次封止体21の外表面に溶着されている。封止体12において、内部空間Vに収容された電解液は、積層方向に隣り合う一次封止体21間を通り得るが、一次封止体21と二次封止体22との溶着部分で封止されている。
以上の構成を備える蓄電装置1の製造方法について、図3〜図6を参照しながら説明する。図3は、蓄電装置1の製造方法を示すフローチャートである。図4及び図5は、蓄電装置1の製造工程を示す概略断面図である。本実施形態では、封止工程P1、コンディショニング工程P2、及び解放工程P3を、複数の蓄電モジュール4のそれぞれについて実施する。また、これらの工程を経た複数の蓄電モジュール4を積層した状態(蓄電モジュール積層体2を構成した状態)で拘束工程P4を実施する。
まず、封止体12にて電極積層体11を封止し、蓄電モジュール4を得る(封止工程P1)。封止工程P1の実施後、封止体12に設けた注入口を介して電極積層体11の内部空間Vに向けて電解液を注入する。次に、図4に示されるように、拘束治具50を用意し、蓄電モジュール4を拘束治具50により積層方向に所定の拘束圧で拘束する。本実施形態では、例えば蓄電モジュール4の拘束寸法によって拘束圧を調整する。すなわち、本実施形態では、蓄電モジュール4の拘束圧が所定の拘束圧となるように、拘束状態における蓄電モジュール4の積層方向の寸法を規定する。
蓄電モジュール4の拘束に用いる拘束治具50は、例えば拘束部3と同等の構成を有し、蓄電モジュール4を積層方向に挟む一対の拘束板51と、一対の拘束板51同士を締結する複数の締結ボルト52及び複数のナット53とを含んで構成されている。拘束板51は、積層方向から見た蓄電モジュール4の面積よりも一回り大きい面積を有する矩形の板である。拘束板51の内側面(蓄電モジュール4側の面)には、電気絶縁性を有するフィルムFが配置されている。フィルムFにより、蓄電モジュール4と拘束板51とが電気的に絶縁されている。拘束板51の縁部には、蓄電モジュール4よりも外側となる位置に複数の挿通孔51aが設けられている。
蓄電モジュール4を拘束治具50により拘束する際、一方の拘束板51の挿通孔51aから他方の拘束板51の挿通孔51aに向かって締結ボルト52を通し、他方の拘束板51の挿通孔51aから突出した締結ボルト52の先端部分にナット53を螺合し、一対の拘束板51の縁部同士を締結する。ナット53に対する締結ボルト52の締付量を調整することにより、蓄電モジュール4における拘束寸法を調整することができる。
次に、蓄電モジュール4を拘束した状態において、蓄電モジュール4を充放電する(コンディショニング工程P2)。蓄電モジュール4の充放電は、例えば10サイクル程度実施される。また、蓄電モジュール4の充放電は、常温(25℃)よりも低温の環境下で実施されることが好ましい。これにより、セパレータ13のクリープ変形を抑制できる。また、コンディショニング工程P2の実施時間を短縮することによって、セパレータ13のクリープ変形の抑制を図ることも可能である。コンディショニング工程P2終了時における蓄電モジュール4の拘束圧は、第1の拘束圧L1となり、このときの蓄電モジュール4の拘束寸法は、第1の拘束寸法S1となる。
次に、図5に示されるように、蓄電モジュール4から拘束治具50を取り外し、蓄電モジュール4の拘束状態を解放する(解放工程P3)。すなわち、蓄電モジュール4の第1の拘束圧L1での拘束を解放し、蓄電モジュール4に拘束圧が付与されない状態とする。
次に、図1に示されるように、複数の蓄電モジュール4を積層して蓄電モジュール積層体2を形成し、蓄電モジュール積層体2を拘束部3によって拘束する(拘束工程P4)。具体的には、拘束工程P4終了時における蓄電モジュール4の拘束圧が第1の拘束圧L1よりも小さい第2の拘束圧L2となるように、拘束部3を用いて蓄電モジュール積層体2の各蓄電モジュール4を積層方向に拘束する。本実施形態では、例えば蓄電モジュール4の拘束寸法によって拘束圧を調整する。すなわち、本実施形態では、拘束工程P4終了時における蓄電モジュール4の拘束圧が第2の拘束圧L2となるように、拘束状態における蓄電モジュール4の積層方向の寸法を規定する。第1の拘束圧L1での拘束状態における蓄電モジュール4の拘束寸法は、第2の拘束寸法S2となる。
蓄電モジュール積層体2を拘束部3により拘束する際、一方の拘束板8の挿通孔8aから他方の拘束板8の挿通孔8aに向かって締結ボルト9を通し、他方の拘束板8の挿通孔8aから突出した締結ボルト9の先端部分にナット10を螺合し、一対の拘束板8の縁部同士を締結する。このとき、ナット10に対する締結ボルト9の締付量を調整することにより、蓄電モジュール4における拘束寸法を調整することができる。
拘束工程P4では、蓄電モジュール4の拘束状態を、コンディショニング工程P2終了時における蓄電モジュール4の拘束状態よりも緩和する。具体的には、コンディショニング工程P2終了時における蓄電モジュール4の第1の拘束圧L1に比べて、拘束工程P4終了時における蓄電モジュール4の第2の拘束圧L2を小さくする。すなわち、コンディショニング工程P2終了時における蓄電モジュール4の第1の拘束寸法S1に比べて、拘束工程P4終了時における蓄電モジュール4の第2の拘束寸法S2を大きくする。
続いて、蓄電モジュール4の拘束圧とセパレータ13の厚さとの関係を図6を参照しながら説明する。図6は、蓄電装置1の製造時から寿命の到来時までのセパレータ13の厚さを時系列データで示すグラフである。図6において、縦軸はセパレータ13の厚さを示しており、横軸は時間を示している。また、図6において、セパレータ13の厚さtAは、蓄電モジュール4の使用時の最適範囲の下限値を示しており、セパレータ13の厚さtBは、蓄電モジュール4の使用時の最適範囲の上限値を示している。図6に示されるように、セパレータ13の初期の状態(蓄電モジュール4に組み込まれる前の状態)における厚さt0は、蓄電モジュール4の使用時の最適範囲の上限値である厚さtBよりも厚くなっている。
コンディショニング工程P2では、蓄電モジュール4の積層方向の拘束によって、セパレータ13は積層方向に圧縮される。このため、コンディショニング工程P2開始時におけるセパレータ13の厚さt1は、セパレータ13の初期状態における厚さt0に比べて薄くなり、蓄電モジュール4の使用時の最適範囲内となる。蓄電モジュール4を拘束した状態にて蓄電モジュール4を充放電すると、蓄電モジュール4の電極厚み(バイポーラ電極14の厚み)が増加する。
蓄電モジュール4の電極厚みが増加すると、蓄電モジュール4の電極厚みの増加に応じてセパレータ13の圧縮が進行する。このため、コンディショニング工程P2では、蓄電モジュール4の充放電の実行によって、セパレータ13の厚さが、コンディショニング工程P2開始時におけるセパレータ13の厚さt1から減少する。その結果、コンディショニング工程P2終了時におけるセパレータ13の厚さt2は、コンディショニング工程P2開始時におけるセパレータ13の厚さt1に比べて小さくなり、蓄電モジュール4の使用時の最適範囲の下限値tAに近づく。
コンディショニング工程P2に続く解放工程P3では、蓄電モジュール4の第1の拘束圧L1(図4参照)での拘束状態が解放され、セパレータ13の圧縮状態が解放される。このため、解放工程P3終了時におけるセパレータ13の厚さt3は、コンディショニング工程P2終了時におけるセパレータ13の厚さt2に比べて厚くなり、コンディショニング工程P2の開始時におけるセパレータ13の厚さt1よりも厚くなる。解放工程P3終了時のセパレータ13の厚さt3は、例えば蓄電モジュール4の使用時の最適範囲の上限値tB付近の値となる。
解放工程P3に続く拘束工程P4では、蓄電モジュール4を積層方向に拘束するので、セパレータ13は再び積層方向に圧縮される。このため、拘束工程P4終了時におけるセパレータ13の厚さt4は、解放工程P3終了時におけるセパレータ13の厚さt3に比べて小さい。ここで、上述したように、コンディショニング工程P2終了時における蓄電モジュール4の第1の拘束圧L1に比べて、拘束工程P4終了時における蓄電モジュール4の第2の拘束圧L2は小さい。このため、拘束工程P4終了時におけるセパレータ13の圧縮状態は、コンディショニング工程P2終了時におけるセパレータ13の圧縮状態に比べて緩和される。その結果、拘束工程P4終了時におけるセパレータ13の厚さt4は、コンディショニング工程P2終了時におけるセパレータ13の厚さt2よりも大きくなる。なお、拘束工程P4終了時におけるセパレータ13の厚さt4は、コンディショニング工程P2開始時におけるセパレータ13の厚さt1との関係においては、特に制限はない。例えば、セパレータ13の厚さt4は、セパレータ13の厚さt1より大きくても小さくてもよく、同じであってもよい。
拘束工程P4の後、蓄電装置1の使用を開始すると、蓄電装置1の充放電の繰り返しの実行により蓄電モジュール4の電極厚みが徐々に増加し、蓄電モジュール4の電極厚みの増加に応じてセパレータ13の圧縮が進行する。しかしながら、蓄電装置1の寿命の到来時におけるセパレータ13の厚さt5は、蓄電装置1の使用時の最適範囲の下限値の厚さtBを下回ることはなく、蓄電装置1の使用期間の全期間にわたって最適範囲内に収まっている。
以上に説明した、蓄電装置1の製造方法によって得られる効果を説明する。この蓄電装置1の製造方法では、上述したように、コンディショニング工程P2終了時における蓄電モジュール4の第1の拘束圧L1に比べて、拘束工程P4終了時における蓄電モジュール4の第2の拘束圧L2を緩和する。これにより、製造される蓄電モジュール4では、セパレータの厚さが電極厚みの増加によるセパレータ13の圧縮分を加味した厚さでセパレータ13の厚さとなるため、電極厚みの増加によってセパレータ13が過圧縮状態となることを抑制できる。したがって、蓄電装置1に寿命が到来する前に、蓄電モジュール4の抵抗の増大、又はバイポーラ電極14間の短絡の発生といった問題が発生することを抑制できる。
また、この蓄電装置1の製造方法は、コンディショニング工程P2と拘束工程P4との間に、蓄電モジュール4の拘束状態を解放する解放工程P3を備える。この場合、一旦第1の拘束圧L1による拘束を開放することで、第2の拘束圧L2の設定を容易に実施できる。
また、コンディショニング工程P2を、常温よりも低い温度の環境下で実施してもよい。この場合、セパレータ13のクリープ変形を抑制できる。したがって、コンディショニング工程P2に続く拘束工程P4において、セパレータ13の厚さをコンディショニング工程P2前の状態に復帰させることができる。これにより、第2の拘束圧L2の設定を容易に実施できる。
また、コンディショニング工程P2終了時における第1の拘束寸法S1に比べて、拘束工程P4終了時における第2の拘束寸法S2を大きくする。拘束寸法を用いて拘束圧の管理を行うことで、蓄電モジュール4の第1の拘束圧L1及び第2の拘束圧L2の設定を容易に実施できる。
本発明は、上述した実施形態に限られるものではなく、他に様々な変形が可能である。例えば、上述した実施形態において、コンディショニング工程P2及び解放工程P3を、複数の蓄電モジュール4をまとめて積層した状態で実施してもよい。また、上述した実施形態において、解放工程P3は必須ではなく、適宜省略可能である。解放工程P3を省略する場合、コンディショニング工程P2終了時におけるセパレータ13の厚さt2は、解放工程P3終了時におけるセパレータ13の厚さt3を経ることなく、拘束工程P4終了時におけるセパレータ13の厚さt4に移行する(図6参照)。
1…蓄電装置、3…拘束部、4…蓄電モジュール、8…拘束板、9…締結ボルト、10…ナット、11…電極積層体(積層体)、13…セパレータ、14…バイポーラ電極、L1…第1の拘束圧、L2…第2の拘束圧、S1…第1の拘束寸法、S2…第2の拘束寸法。

Claims (4)

  1. セパレータを介して電極が積層された積層体を含んで構成される一又は複数の蓄電モジュールを備えた蓄電装置の製造方法であって、
    前記蓄電モジュールを前記積層体の積層方向に拘束した状態において、前記蓄電モジュールを充放電するコンディショニング工程と、
    前記コンディショニング工程の後、前記蓄電モジュールを前記積層方向に拘束する拘束工程と、を備え、
    前記コンディショニング工程終了時における前記蓄電モジュールへの前記積層方向の第1の拘束圧に比べて、前記拘束工程終了時における前記蓄電モジュールへの前記積層方向の第2の拘束圧を小さくする、蓄電装置の製造方法。
  2. 前記コンディショニング工程と前記拘束工程との間に、前記蓄電モジュールの拘束状態を解放する解放工程を更に備える、請求項1に記載の蓄電装置の製造方法。
  3. 前記コンディショニング工程を、常温よりも低い温度の環境下で実施する、請求項1又は2に記載の蓄電装置の製造方法。
  4. 前記コンディショニング工程終了時における前記蓄電モジュールへの前記積層方向の第1の拘束寸法に比べて、前記拘束工程終了時における前記蓄電モジュールへの前記積層方向の第2の拘束寸法を大きくする、請求項1〜3のいずれか一項に記載の蓄電装置の製造方法。
JP2018052113A 2018-03-20 2018-03-20 蓄電装置の製造方法 Pending JP2019164929A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018052113A JP2019164929A (ja) 2018-03-20 2018-03-20 蓄電装置の製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018052113A JP2019164929A (ja) 2018-03-20 2018-03-20 蓄電装置の製造方法

Publications (1)

Publication Number Publication Date
JP2019164929A true JP2019164929A (ja) 2019-09-26

Family

ID=68065029

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018052113A Pending JP2019164929A (ja) 2018-03-20 2018-03-20 蓄電装置の製造方法

Country Status (1)

Country Link
JP (1) JP2019164929A (ja)

Similar Documents

Publication Publication Date Title
WO2018150723A1 (ja) 蓄電モジュール
JP2018125142A (ja) 蓄電モジュール
WO2018123503A1 (ja) 蓄電モジュール及び蓄電モジュールの製造方法
JP6959514B2 (ja) 蓄電モジュール、蓄電モジュールの製造方法、及び、蓄電装置の製造方法
JP2018106967A (ja) 蓄電装置及び蓄電装置の製造方法
CN111201657B (zh) 蓄电模块
WO2018123502A1 (ja) 蓄電モジュール及び蓄電モジュールの製造方法
JP7123687B2 (ja) バイポーラ電池及びバイポーラ電池の製造方法
JP2019096392A (ja) バイポーラ電池の製造方法
JP2020024828A (ja) バイポーラ電池及びバイポーラ電池の製造方法
JP6683089B2 (ja) 蓄電装置
JP2020030985A (ja) 蓄電モジュール
JP2020024820A (ja) 蓄電モジュール及び蓄電モジュールの製造方法
JP2020053151A (ja) 蓄電モジュールの製造方法
JP2019125564A (ja) 蓄電モジュール
JP7420566B2 (ja) 蓄電装置
JP2019087414A (ja) バイポーラ電池の製造方法
JP7074614B2 (ja) 蓄電モジュール
JP7056167B2 (ja) 蓄電モジュール、及び、蓄電モジュールの製造方法
JP7079681B2 (ja) 蓄電モジュール
JP6926509B2 (ja) 蓄電装置
JP7060956B2 (ja) 蓄電モジュール
JP2019164929A (ja) 蓄電装置の製造方法
JP2020021546A (ja) 蓄電装置の製造方法
JP2020102412A (ja) 蓄電装置