JP2019163439A - 樹脂組成物、樹脂シート、樹脂硬化物および樹脂基板 - Google Patents

樹脂組成物、樹脂シート、樹脂硬化物および樹脂基板 Download PDF

Info

Publication number
JP2019163439A
JP2019163439A JP2018212670A JP2018212670A JP2019163439A JP 2019163439 A JP2019163439 A JP 2019163439A JP 2018212670 A JP2018212670 A JP 2018212670A JP 2018212670 A JP2018212670 A JP 2018212670A JP 2019163439 A JP2019163439 A JP 2019163439A
Authority
JP
Japan
Prior art keywords
resin
resin composition
hydroquinone
epoxy compound
compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2018212670A
Other languages
English (en)
Inventor
彩乃 旭
Ayano Asahi
彩乃 旭
尭 稲垣
Takashi Inagaki
尭 稲垣
純平 葉山
Jumpei Hayama
純平 葉山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Publication of JP2019163439A publication Critical patent/JP2019163439A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Epoxy Resins (AREA)

Abstract

【課題】高い熱伝導性を有する樹脂組成物を提供する。【解決手段】式(1)で表されるエポキシ化合物と、ヒドロキノンとメチルヒドロキノンとを含む硬化剤と、を含み、前記ヒドロキノンと前記メチルヒドロキノンのモル比(ヒドロキノン/メチルヒドロキノン)が0.42〜19.0である樹脂組成物。【選択図】図1

Description

本発明は、エポキシ樹脂を含む樹脂組成物、ならびにその樹脂組成物を用いた樹脂シート、樹脂硬化物および樹脂基板に関する。
近年、電子機器の小型化により、部品の高機能化、高密度実装化が進められており、部品からの発熱量は増大している。
電子部品等から発生した熱は、主に基板を通して外部に放熱される。このうち樹脂基板を積層した電源用の積層基板においては、金属基板等と比較して熱伝導率が低いため、樹脂中に酸化アルミニウムや窒化ホウ素、酸化マグネシウムなどの無機粒子を添加して熱伝導性を高めている。
しかし、熱伝導率を向上させるために樹脂組成物中の無機粒子含有率を増加させると、樹脂基板成形時の塗料の流動性に問題が生じる。そこで、樹脂組成物中の無機粒子含有率を抑制して塗料の流動性を確保しても、高い放熱性を有する樹脂基板が得られるように、熱伝導率の高い樹脂硬化物が得られる樹脂の開発が進められている。
積層基板用途としては、優れた成形加工性と高い電気特性を有することからエポキシ樹脂が良く使用されている。エポキシ樹脂硬化物の熱伝導率はエポキシ主剤の構造だけでは決まらず、硬化剤、触媒、硬化条件の組み合わせによって決定される。
絶縁体中ではフォノンと呼ばれる原子振動が熱の輸送を担っている。このフォノンは振動であるため不規則な構造中を伝播する際には散乱されるという性質を持っている。そのため、規則性の高い構造ほど散乱が抑制され、高い熱伝導率を示す。
上記のような理由から、エポキシ樹脂硬化物において高い熱伝導率を発現させるための手法として、樹脂中に液晶構造を導入してポリマー鎖を配向させる方法(規則性を高める方法)が提案されている(非特許文献1)。樹脂中に液晶構造を導入する手法として最も多いのが、エポキシ主剤にメソゲンを持たせて液晶性を付与するというものである。メソゲンとは比較的剛直な棒状や板状の機能性部位で液晶性発現に必要な要素となっている。そして、このエポキシ主剤と硬化剤を液晶相が発現する温度域で硬化させることで高い熱伝導率のエポキシ樹脂硬化物が得られることが報告されている。
このようなメソゲンを有するエポキシ樹脂の中では4,4’−ビフェノールジグリシジルエーテルは安価であることから広く利用されている(特許文献1)。しかしながら、4,4’−ビフェノールジグリシジルエーテルは溶媒に対する溶解性が低い、融点が高い、得られる樹脂硬化物の熱伝導率が低いという問題を残している。
そこで、これらの問題点を解決することを目的として、アルキル鎖を非対称に伸長したエポキシ樹脂が提案されており、それにより融点の低下と溶解性の向上、熱伝導率の向上が可能であることが報告されている(特許文献2)。
特開平11−323162号公報 特開2013−209631号公報
竹澤由高、高分子65巻2月号、p65−67、2016
しかしながら、特許文献2では、メソゲンを含む安価な原料であるビフェノールを用いて検討を行っているがその熱伝導率は低く十分ではない。
このような液晶性を付与した原料からなる樹脂硬化物は延伸処理や磁場配向などの特別な配向処理を行わずに硬化させた場合、巨視的には硬化物は等方的である。しかし、微視的には様々な方向に配向したポリマー鎖がドメインを形成し、多結晶体のような構造を形成している。このドメイン内はポリマー鎖の配向している方向には非常に高い熱伝導率を有している一方、ポリマー鎖の配向している方向と直交する方向の熱伝導率は非常に低くなっている。そのため、ドメインとドメインの間ではフォノンの散乱が起こってしまう。このドメイン間の散乱はドメインサイズが大きければ大きいほど体積当たりに含まれるドメイン境界が減少するため抑制される。そのため、ドメインサイズが大きくなるほど熱伝導率的には有利に働く傾向にある。
特許文献2にあるようなビフェノールとエポキシ基とアルキレン鎖からなるエポキシ主剤を用いた場合、ポリマー化が進行する過程生成するオリゴマーの対称性が高いため、ドメインの核生成速度がドメインの核成長速度を上回ってしまい、結果ドメインサイズが小さくなることで熱伝導率が低くなる。
よって、高熱伝導の樹脂組成物を得るためには、ドメインの生成速度に対してドメインの成長速度を高める必要がある。
本発明はかかる問題点に鑑みてなされたもので、その目的は、安価なビフェノール骨格を用いつつ、大きなドメインを形成することにより高い熱伝導率を実現できる樹脂組成物、樹脂シート、樹脂硬化物および樹脂基板を提供することにある。
本発明者は上記課題を解決するために、以下に示すように鋭意検討を重ねた。その結果、下記[1]〜[9]に係る樹脂組成物を見出した。すなわち、本発明は以下の発明に関わる。
[1]:式(1)で表されるエポキシ化合物と、ヒドロキノンとメチルヒドロキノンとを含む硬化剤と、を含み、前記ヒドロキノンと前記メチルヒドロキノンのモル比(ヒドロキノン/メチルヒドロキノン)が0.42〜19.0である樹脂組成物。
Figure 2019163439
[2]:式(2)または(8)で表される他のエポキシ化合物と、を含み、前記エポキシ化合物と前記他のエポキシ化合物とのモル比(他のエポキシ化合物/エポキシ化合物)が、2.34未満である、[1]に記載の樹脂組成物。
Figure 2019163439
Figure 2019163439
[3]:式(8)で表されるエポキシ化合物と、ヒドロキノンとメチルヒドロキノンとを含む硬化剤と、を含み、前記ヒドロキノンと前記メチルヒドロキノンのモル比(ヒドロキノン/メチルヒドロキノン)が0.42〜19.0である樹脂組成物。
Figure 2019163439
[4]:式(2)で表される他のエポキシ化合物と、を含み、前記エポキシ化合物と前記他のエポキシ化合物とのモル比(他のエポキシ化合物/エポキシ化合物)が、2.34未満である、[3]に記載の樹脂組成物。
Figure 2019163439
[5]:式(1)で表される第1のエポキシ化合物と、式(2)で表される第2のエポキシ化合物と、式(8)で表される第3のエポキシ化合物と、ヒドロキノンとメチルヒドロキノンとを含む硬化剤と、を含み、前記第1のエポキシ化合物と前記第2のエポキシ化合物と前記第3のエポキシ化合物と、のモル比をa:b:c(第1のエポキシ:第2のエポキシ:第3のエポキシ)とした際に、三成分の組成図上(a、b、c)の組成の範囲が、A(0、0、1)と、B(1、0、0)と、C(0.3、0.7、0)と、D(0、0.7、0.3)と、で囲まれる領域であり、前記ヒドロキノンと前記メチルヒドロキノンとのモル比(ヒドロキノン/メチルヒドロキノン)が0.42〜19.0である樹脂組成物。(但し、点ABCDで囲まれる領域とは、点ABCDで決められる四角形の線上を含まない。)
Figure 2019163439
Figure 2019163439
Figure 2019163439
[6]:[1]〜[5]の何れか一つに記載の樹脂組成物を硬化して得られる樹脂硬化物。
[7]:[1]〜[5]の何れか一つに記載の樹脂組成物を含む樹脂シート。
[8]:[7]に記載の樹脂シートを1枚または複数枚積層して成形硬化することにより得られる樹脂基板。
本発明の樹脂組成物は、配向を形成しやすい類似した樹脂成分を混合することで、ドメインの核生成速度を抑制し、相対的にドメインの核生成速度を高められるため、樹脂硬化物中に大きなドメイン生成することができ、ひいては熱伝導率を高めることが出来る。
本発明の樹脂組成物を用いた樹脂シートの構成を表す断面図である。 本発明の樹脂組成物を用いた樹脂シートの他の構成を表す断面図である。 本発明の樹脂組成物を用いた樹脂シートの他の構成を表す断面図である。 本発明の樹脂硬化物を用いた樹脂基板の構成を表す断面図である。 本発明の樹脂硬化物を用いた樹脂基板の他の構成を表す断面図である。 本発明の樹脂硬化物を用いた樹脂基板の他の構成を表す断面図である。 本発明の樹脂硬化物を用いた樹脂基板の他の構成を表す断面図である。 図7に示した樹脂基板の製造方法を説明するための断面図である。 第3の実施形態に係るエポキシ樹脂の好ましい組成を示す三成分組成図である。
以下、本発明について、図を適宜参照しながら詳細に説明する。以下の説明で用いる図面は、本発明の特徴をわかりやすくするために便宜上特徴となる部分を拡大して示している場合がある。したがって、図面に記載の各構成要素の寸法比率などは、実際とは異なっていることがある。以下の説明において例示される材料、寸法等は一例であって、本発明はそれらに限定されるものではなく、その要旨を逸脱しない限り、種々の実施形態に変更可能である。
<第1の実施形態>
まず、本発明の第1の実施形態に係る樹脂組成物に関して説明する。
本実施形態に係る樹脂組成物は、後述する樹脂シート、樹脂硬化物および樹脂基板などを製造するために用いられる。ただし、樹脂組成物の用途は、他の用途でも良い。
本実施形態に係る樹脂組成物は、エポキシ樹脂として式(1)に記載の化合物(以下、化合物1)を含み、ヒドロキノンとメチルヒドロキノンを含む硬化剤と、を含むことを特徴とする。
Figure 2019163439
ここで説明する樹脂組成物は、前述したように、樹脂シートなどの中間生成物を製造すると共に、樹脂基板などの最終生成物(樹脂硬化物)を製造するために用いられる。この「中間生成物」とは、後述するように、樹脂組成物の硬化反応(架橋反応)が実質的に完了していない状態の物質を意味している。また、「最終生成物」とは、後述するように、樹脂組成物の硬化反応が実質的に完了した状態の物質を意味しており、化合物1とヒドロキノンとメチルヒドロキノンを含む硬化剤と、が組み合わされた構造を含んでいる。
ポリマー鎖を配向させることによって硬化物の熱伝導を上げようとした場合、エポキシ樹脂硬化物の熱伝導率はエポキシ主剤の構造だけでは決まらず、硬化剤、硬化条件の組み合わせによって決定される。これは、樹脂硬化物の熱伝導率がミクロなポリマー鎖の分子配列だけでは決まらず、それらが集合したマクロな構造の影響を強く受けるためである。
ビフェノールのような棒状のメソゲンを主鎖中に含むポリマー系で配向が起こった場合、ポリマー鎖はメソゲンの長軸方向と同一方向に配向する。そのため、ポリマー鎖に沿った方向の熱伝導率は高い値を示すが、ポリマー鎖と直交する方向の熱伝導率は無配向の樹脂と同レベルとなる。この配向したポリマー鎖はnm〜μmの幅広いスケールにわたってドメインを形成しており、このドメイン内ではポリマー鎖の配向方向には非常に高い熱伝導率を示す。しかし、特別な配向処理等を施していないバルクの樹脂硬化物ではドメインはランダムな方向を向いており、そのドメイン−ドメイン間の界面でフォノンが散乱されてしまうため、バルクの熱伝導率はドメイン単体の配向方向よりも低い値となる。そのため、ドメイン単体とバルクの間の熱伝導率の低下幅はミクロな構造よりもマクロな構造に強く影響を受ける。すなわち、硬化物中に含まれるドメインのサイズが大きいほど、ドメイン−ドメイン間の界面によるフォノン散乱が抑制されるため、バルク状態の熱伝導率が高まる。
そのため、エポキシ樹脂として特定の組成範囲で化合物1を含み、硬化剤としてヒドロキノンとメチルヒドロキノンをを特定の組成範囲で調整して得た混合物含む樹脂組成物を得ることで、樹脂硬化物の配向性を保持しつつ、ドメインの核生成速度を抑制し、相対的にドメインの核成長速度を高めることでより大きなドメイン成長を促し、高熱伝導性の樹脂硬化物を得ることができる。
また、エポキシ樹脂として化合物1の他に式(2)に記載の化合物(以下、化合物2)を含んでいてもよい。化合物2は、化合物1と比べてメチレン基の数がビフェノール部を中心に一つずつ異なるので、ヒドロキノンと反応してポリマー鎖を生成した際にビフェニル部の凝集を強制的に崩す効果がある。すなわち、ポリマー鎖が配向した際に式(7)に示すようにポリマー鎖の伸長方向にビフェニル部をずらすことでメソゲン部の強い凝集力を調整し、ドメインの核生成速度を抑制する効果がある。
Figure 2019163439

Figure 2019163439
エポキシ樹脂として化合物2のみを用いた場合や、化合物2の比率が多すぎる場合は、硬化物の熱伝導率の低下を引き起こすため望ましくない。他方、化合物2を含まない場合は、ドメインの核生成速度が高すぎるため、硬化物の熱伝導率が低下してしまう。そのため、化合物2/化合物1のモル比が0.05以上2.34未満であることが好ましく、0.11〜1.00であることがより好ましく、0.25〜0.67であることが最も好ましい。
また樹脂組成物の構成要素である硬化剤としてヒドロキノンとメチルヒドロキノンが選択されている。特にメチルヒドロキノンは、下記式(3)と(4)に示すように主剤と反応した際にメチル基の方向によって異なる構造をポリマー鎖中に形成できるため有用である。すなわち、ポリマー鎖中の構成要素の配列の異なるA、Bの間をメチルヒドロキノンが結合させた場合、メチル基がA方向を向く場合とB方向を向く場合の2パターンが生成する。これは樹脂硬化の過程で類似した構造を有する混合物として働くため、融点降下現象によってドメインの核生成速度を抑制する効果がある。
Figure 2019163439
硬化剤中のメチルヒドロキノンの比率が多すぎると、熱伝導率の低下や硬化物の耐熱性の低下を引き起こすため望ましくない。そのため、ヒドロキノン/メチルヒドロキノンのモル比が0.43〜19.0であることが好ましく、0.66〜4.0であることがより好ましく、1.0〜2.34であることが最も好ましい。
これらの樹脂組成物を硬化させて配向構造を得る場合には硬化温度が重要である。硬化温度が高すぎると配向構造が破壊してしまい熱伝導率と耐熱性が大幅に低下してしまう。一方、低すぎると硬化反応が完全に進まずに不完全な硬化物となってしまう。そのため、硬化温度は100℃〜200℃であることが好ましく、110℃〜160℃であることがより好ましく、120℃〜140℃であることが最も好ましい。
化合物1を含むエポキシ樹脂とヒドロキノンおよびメチルヒドロキノンを含む硬化剤の混合物は、融点降下により100℃以上であれば流動性を有するため、プロセス温度を低下させることができ、さらに高熱伝導の樹脂硬化物を得ることができるため多様なプロセスへの適用性が高く有用である。
[他の材料]
この樹脂組成物は、上記したエポキシ樹脂、硬化剤と一緒に、他の材料のうちのいずれか1種類又は2種類以上を含んでいても良い。
他の材料の種類は、特に限定されないが、例えば、添加剤、溶媒、難燃剤、無機粒子、他のエポキシ樹脂および硬化剤などである
添加剤は、例えば、硬化触媒およびカップリング剤などである。硬化触媒の具体例は、イミダゾール類や3級アミンなどである。カップリング剤の具体例は、シランカップリング剤およびチタネートカップリング剤などである。
溶媒は、エポキシ樹脂と、硬化剤と、を分散又は溶解させるために用いられる。この溶媒は、有機溶剤などのうちのいずれか1種類又は2種類以上であり、その有機溶剤の具体例は、メチルエチルケトン、メチルセロソルブ、メチルイソブチルケトン、ジメチルホルムアミド、プロピレングリコールモノメチルエーテル、トルエン、キシレン、アセトン、1,3−ジオキソラン、N−メチルピロリドンおよびγ−ブチロラクトンなどである。
他の硬化剤は、1つ以上の反応基を含んでいる化合物であり、ここで説明する反応基は、例えば、水酸基、アミノ基、カルボキシル基である。この他の硬化剤の具体例は、フェノール、アミンおよびカルボン酸などである。
なお、効果の観点から、樹脂組成物中に含まれるエポキシ基のうちの半分以上が化合物1で占めることが好ましく、硬化剤のうち半分以上がヒドロキノンおよびメチルヒドロキノンの混合物で占めることが好ましい。また硬化剤の活性水素の数は、エポキシ化合物の数に対して、50%以上となるように含まれることが好ましく、80%以上であることがより好ましい。
無機粒子は、粒子状の無機材料のうちのいずれか1種類又は2種類以上である。この無機粒子の具体例は、酸化マグネシウム(MgO)、酸化アルミニウム(Al)、酸化ケイ素(SiO)、水酸化アルミニウム(Al(OH))、窒化ホウ素(BN)、窒化アルミニウム(AlN)、窒化ケイ素(Si)などである。その中でも、無機粒子の熱伝導率が高いほどコンポジットの熱伝導率向上に有利に働くため、無機粒子の熱伝導率は30W/(m・K)以上であることが望ましい。具体例としては、酸化マグネシウム、酸化アルミニウム、窒化ホウ素、炭化ケイ素、窒化ケイ素等である。上記の中でも、酸化マグネシウムと窒化ホウ素が化学的安定性と加工性にも優れるため添加する無機粒子として好ましい。
この樹脂組成物は、例えば、以下の手順により製造される。
化合物1を含んだエポキシ化合物とヒドロキノンおよびメチルヒドロキノンを含んだ硬化剤を混合する。エポキシ化合物が塊状である場合には混合前に粉砕しても良い。このように混合前に粉砕しても良いことは硬化剤に関しても同様である。これにより、所定の樹脂組成物が得られる。
このようにして得られた樹脂組成物に溶媒を添加して使用しても良い。この場合、上記の樹脂組成物に溶媒を加えた後、ミキサなどの撹拌装置を用いて溶媒を撹拌する。これにより、溶媒中にエポキシ樹脂、硬化剤が分散又は溶解される。
また、樹脂組成物は加熱溶融させて使用しても良く、必要に応じて金型などを用いて樹脂組成物の溶融物を成形し、その溶融物を冷却して用いても良い。
本実施形態に係る樹脂組成物によれば、上記の通り、優れた熱伝導性を有する樹脂硬化物を得ることができる。
次に、本発明の一実施形態の樹脂シートに関して説明する。以下では、既に説明した樹脂組成物を「本発明の樹脂組成物」という。
樹脂シートは、本発明の樹脂組成物を含んでいる。この樹脂シートの構成は、本発明の樹脂組成物を含んでいれば、特に限定されない。すなわち、樹脂シートは、樹脂組成物と一緒に他の構成要素を備えていなくても良いし、その樹脂組成物と一緒に他の構成要素を備えていても良い。
図1は、樹脂シート10の断面構成を表している。この樹脂シート10は、シート状に成形された樹脂組成物(樹脂組成物層1)であり、より具体的には、1つの樹脂組成物層1からなる単層体である。樹脂シート10の厚さなどは、特に限定されない。樹脂組成物層1の構成は、シート状に成形されていることを除き、本発明の樹脂組成物の構成と同様である。
図2は、樹脂シート20の断面構成を表している。この樹脂シート20は、複数の樹脂組成物層1が積層された積層体である。樹脂シート20において、樹脂組成物層1が積層される数(積層数)は、2層以上であれば、特に限定されない。図2では、例えば、樹脂組成物層1の積層数が3層である場合を示している。なお、樹脂シート20において、各樹脂組成物層1の構成は、特に限定されない。すなわち、各樹脂組成物層1における樹脂組成物の構成は、同じでも良いし、異なっても良い。もちろん、複数の樹脂組成物層1のうち、一部の樹脂組成物層1における樹脂組成物の構成が同じでも良い。
図3は、樹脂シート30の断面構成を表している。この樹脂シート30は、シート状に成形された樹脂組成物(樹脂組成物層1)と一緒に芯材2を備えており、例えば、2つの樹脂組成物層1により芯材2が挟まれた3層構造を有している。
芯材2は、例えば、繊維状物質および非繊維状物質などのうちのいずれか1種類又は2種類以上を含んでおり、シート状に成形されている。繊維状物質は、例えば、ガラス繊維、炭素繊維、金属繊維、天然繊維および合成繊維などであり、シート状に成形された繊維状物質は、例えば、織布および不織布などである。合成繊維の具体例は、ポリエステル繊維およびポリアミド繊維などである。非繊維状物質は、例えば、高分子化合物などであり、シート状に成形された非繊維状物質は、例えば、高分子フィルムなどである。高分子化合物の具体例は、ポリエチレンテレフタレート(PET)などである。
なお、樹脂シート30に用いられる樹脂組成物層1は、1層だけでも良いし、2層以上でも良い。このように1層でも2層以上でも良いことは、芯材2に関しても同様である。
また、樹脂シート30は、2つの樹脂組成物層1により芯材2が挟まれた3層構造に限らず、樹脂組成物層1と芯材2とが積層された2層構造を有していても良い。なお、2つ以上の樹脂シート30が積層されていても良い。
樹脂シート10を製造する場合には、例えば、本発明の樹脂組成物の製造方法と同様の手順を用いる。
具体的には、シート状となるように樹脂組成物を成形して、樹脂組成物層1を形成する。この場合には、樹脂組成物の溶融物を成形しても良い。溶融物を成形する場合には、まず、樹脂組成物を加熱して、その樹脂組成物を溶融させる。続いて、樹脂組成物の溶融物を成形したのち、その成形物を冷却する。
溶媒を添加した樹脂組成物を用いる場合には、高分子フィルムなどの支持体の表面に樹脂組成物を塗布したのち、溶媒を揮発させる。これにより、支持体の表面において樹脂組成物がシート状に成形される。すなわち、支持体の表面において樹脂組成物が膜化する。よって、樹脂組成物層1が形成される。こののち、支持体から樹脂組成物層1を剥離する。
樹脂シート20を製造する場合には、上記した樹脂組成物層1の形成手順を繰り返して、複数の樹脂組成物層1を積層させる。この場合には、複数の樹脂組成物層1が積層された積層体を形成したのち、必要に応じて加熱しながら、積層体を加圧しても良い。これにより、樹脂組成物層1同士が密着する。
3層構造を有する樹脂シート30を製造する場合には、例えば、溶媒を添加した樹脂組成物を芯材2の両面に塗布したのち、溶媒を揮発させる。これにより、芯材2を挟むように2つの樹脂組成物層1が形成される。この塗布工程では、芯材2が繊維状物質を含んでいる場合には、その樹脂組成物により芯材2の表面が被覆されると共に、樹脂組成物の一部が芯材2の内部に含浸する。又は、芯材2が非繊維状物質を含んでいる場合には、その液体状の樹脂組成物により芯材2の表面が被覆される。
もちろん、2層構造を有する樹脂シート30を製造する場合には、樹脂組成物を芯材2の片面だけに塗布すれば良い。
なお、樹脂シート30を製造する場合には、例えば、樹脂組成物を加熱して、その樹脂組成物を溶融させたのち、その溶融物中に芯材2を浸漬させても良い。この場合には、溶融物中から芯材2を取り出したのち、その芯材2を冷却する。これにより、芯材2の両面に樹脂組成物層1が形成される。
ここで、樹脂シート10〜30を製造するために溶媒を添加した樹脂組成物を用いる場合には、上記したように、溶媒揮発工程において液体状の樹脂組成物が膜化(固体化)する。ただし、ここで説明する「膜化(固体化)」とは、流動性を有する状態の物質が自立可能な状態に変化することを意味しており、いわゆる半硬化状態も含む。すなわち、液体状の樹脂組成物が膜化する場合には、硬化反応が実質的に完了していないため、その樹脂組成物が実質的に未硬化の状態にある。このため、溶媒を添加した樹脂組成物を膜化させる際の溶媒揮発条件は、硬化反応を実質的に完了させない条件であることが好ましい。具体的には、乾燥温度は50℃〜100℃であると共に乾燥時間は1分間〜120分間であることが好ましく、乾燥温度は50℃〜80℃であると共に乾燥時間は3分間〜90分間であることがより好ましい。
このように硬化反応を実質的に完了させない条件が好ましいことは、樹脂シート10〜30を製造するために固体状の樹脂組成物の溶融物を用いる場合に関しても同様である。すなわち、樹脂組成物を溶融させる際の加熱条件(加熱温度および加熱時間)は、硬化反応を実質的に完了させない条件であることが好ましい。
この樹脂シートによれば、上記した本発明の樹脂組成物を含んでいるので、その樹脂組成物と同様の理由により、優れた熱伝導率を得ることができる。これ以外の作用および効果は、本発明の樹脂組成物と同様である。
次に、本発明の一実施形態の樹脂硬化物に関して説明する。
樹脂硬化物は、上記した樹脂組成物の硬化反応物を含んでおり、より具体的には、化合物1とヒドロキノンおよびメチルヒドロキノンとの硬化反応物を含んでいる。つまり、下記式(5)で示されるような繰り返し構造を有する高分子鎖を含んでいることを特徴とする。
Figure 2019163439
(式中のnは2以上の整数を示し、mは0、または1、もしくは3を示す。式中Rは両方とも水素または、いずれか片方がメチル基、残りの片方が水素である。)
この樹脂硬化物を製造する場合には、樹脂組成物を加熱する。これにより、樹脂組成物が硬化反応を起こすため、硬化反応物である樹脂硬化物が得られる。
加熱温度および加熱時間などの加熱条件は、特に限定されないが、前述の温度範囲にあることが好ましい。
この樹脂硬化物によれば、上記した本発明の樹脂組成物の硬化反応物を含んでいるので、その樹脂組成物と同様の理由により、優れた熱的特性を得ることができる。これ以外の作用および効果は、本発明の樹脂組成物と同様である。
次に、本発明の一実施形態の樹脂基板に関して説明する。以下では、既に説明した樹脂シートを「本発明の樹脂シート」、樹脂硬化物を「本発明の樹脂硬化物」とそれぞれ呼称する。
樹脂基板は、上記した樹脂硬化物の適用例の1つであり、ここで説明する樹脂基板は、例えば、本発明の樹脂シートの硬化反応物である。この樹脂基板の構成は、1又は2以上の樹脂シートの硬化反応物を含んでいれば、特に限定されない。
図4は、樹脂基板40の断面構成を表している。この樹脂基板40は、図1に示した樹脂シート10の硬化反応物である。すなわち、樹脂基板40は、樹脂組成物層1の硬化反応物(樹脂硬化物層3)であり、より具体的には、1つの樹脂硬化物層3からなる単層体である。
図5は、樹脂基板50の断面構成を表している。この樹脂基板50は、図2に示した樹脂シート20の硬化反応物であり、より具体的には、複数の樹脂組成物層1の硬化反応物(樹脂硬化物層3)が積層された積層体である。樹脂硬化物層3が積層される数(積層数)は、2層以上であれば、特に限定されない。図5では、例えば、樹脂硬化物層3の積層数が3層である場合を示している。
図6は、樹脂基板60の断面構成を表している。この樹脂基板60は、図3に示した樹脂シート30の硬化反応物であり、より具体的には、2つの樹脂硬化物層3により1つの芯材2が挟まれた3層構造を有している。
図7は、樹脂基板70の断面構成を表している。この樹脂基板70では、2つ以上の樹脂シート30の硬化反応物が積層されている。ここでは、例えば、3つの樹脂シート30の硬化反応物が積層されている。すなわち、2つの樹脂硬化物層3により1つの芯材2が挟まれた3層構造が形成されており、その3層構造が3段重ねられている。
なお、上記した3層構造が重ねられる数(段数)は、3段に限らず、2段でも良いし、4段以上でも良い。この段数は、樹脂基板70の厚さおよび強度などの条件に基づいて適宜設定可能である。
ここでは図示していないが、樹脂基板70は、金属層を備えていても良い。この金属層は、例えば、最上層の樹脂硬化物層3の表面に設けられると共に、最下層の樹脂硬化物層3の表面に設けられる。
金属層は、例えば、銅、ニッケルおよびアルミニウムなどのうちのいずれか1種類又は2種類以上を含んでいる。また、金属層は、例えば、金属箔および金属板などのうちのいずれか1種類又は2種類以上を含んでおり、単層でも良いし、多層でも良い。金属層の厚さは、特に限定されないが、例えば、3μm〜150μmである。この金属層を備えた樹脂基板70は、いわゆる金属張り基板である。
なお、金属層は、最上層の樹脂硬化物層3の表面だけに設けられても良いし、最下層の樹脂硬化物層3の表面だけに設けられても良い。
この金属層を備えた樹脂基板70には、必要に応じて、エッチング処理および穴開け処理などの各種処理のうちのいずれか1種類又は2種類以上が施されていても良い。この場合には、樹脂基板70と、上記した各種処理が施された金属層と、樹脂シート10〜30のうちのいずれか1種類又は2種類以上とを重ねることで、多層基板としても良い。
このように、金属層を設けてもよいこと、または多層基板としても良いことは、樹脂基板70に限らず上記した樹脂基板40〜60に関しても同様である。
樹脂基板40を製造する場合には、樹脂シート10を加熱する。これにより、上記したように、樹脂組成物層1中において樹脂組成物の硬化反応が実質的に完了するため、図4に示したように、樹脂組成物層1の硬化反応物である樹脂硬化物層3が形成される。
樹脂基板50を製造する場合には、樹脂シート20を加熱する。これにより、上記したように、各樹脂組成物層1中において樹脂組成物の硬化反応が実質的に完了するため、図5に示したように、複数の樹脂組成物層1の硬化反応物である複数の樹脂硬化物層3が形成される。
樹脂基板60を製造する場合には、樹脂シート30を加熱する。これにより、上記したように、各樹脂組成物層1中において樹脂組成物の硬化反応が実質的に完了するため、図6に示したように、芯材2の両面に樹脂組成物層1の硬化反応物である樹脂硬化物層3が形成される。
図8は、樹脂基板70の製造方法を説明するために、図7に対応する断面構成を表している。この樹脂基板70を製造する場合には、まず、図8に示したように、3つの樹脂シート30を積層させる。これにより、3つの樹脂シート30の積層体が得られる。こののち、積層体を加熱する。これにより、各樹脂シート30では、各樹脂組成物層1中において樹脂組成物の硬化反応が実質的に完了するため、図7に示したように、各芯材2の両面に、樹脂組成物層1の硬化反応物である樹脂硬化物層3が形成される。
ここで、樹脂シート10〜30を製造するために樹脂組成物の溶融物を用いる場合には、上記したように、樹脂組成物の溶融時において硬化反応が実質的に完了することを回避する。このため、樹脂組成物の硬化反応が実質的に完了する温度よりも、溶融物を得るために樹脂組成物を加熱する温度を低くすることが好ましい。言い替えれば、樹脂組成物の溶融温度は、その樹脂組成物の硬化反応が実質的に完了する温度よりも低いことが好ましい。
この樹脂基板によれば、本発明の樹脂硬化物を含んでいるので、その樹脂硬化物と同様の理由により、優れた熱的特性を得ることができる。これ以外の作用および効果は、本発明の樹脂硬化物と同様である。
<第2の実施形態>
次に、本発明の第2の実施形態に係る樹脂組成物に関して説明する。本実施形態に係る樹脂組成物は、第1の実施形態に係る樹脂組成物と同様の要素を備えている。そのため、以降は第1の実施形態と異なる部分について説明する。なお、本実施形態に係る樹脂硬化物、樹脂シート、樹脂硬化物についても第1の実施形態と同様の要素を備えているため、以降は記述を省略する。
本実施形態に係る樹脂組成物は、化合物1に代えて、式(8)に記載の化合物(以下、化合物3)を含む点で、第1の実施形態と異なる。
Figure 2019163439
化合物1に代えて化合物3を含む場合にも、第1の実施形態と同様に優れた熱伝導性を有する樹脂硬化物を得ることができる。なお、エポキシ化合物に、化合物3だけでなく化合物2を含有してもよい点についても第1の実施形態と同様である。
なお、本実施形態に係る樹脂組成物においては、化合物3のほかに、化合物2に代えて化合物1を含有してもよい。化合物3/化合物1または化合物3/化合物2のモル比が0.05以上2.34未満であることが好ましく、0.11〜1.00であることがより好ましく、0.25〜0.67であることが最も好ましい。
<第3の実施形態>
次に、本発明の第3の実施形態に係る樹脂組成物に関して説明する。本実施形態に係る樹脂組成物も、第2の実施形態と同様に第1の実施形態に係る樹脂組成物と同様の要素を備えているため、第1の実施形態と異なる部分について説明する。
本実施形態に係る樹脂組成物は、化合物1と化合物2と化合物3と、を全て含む点で、第1の実施形態と異なる。
化合物1と化合物2と化合物3と、の3種は、メチレン基の数がビフェノール部を中心に1〜3つずつ異なるので、ヒドロキノンと反応してポリマー鎖を生成した際にビフェニル部の凝集を強制的に崩す効果がある。すなわち、ポリマー鎖が配向した際に式(7)に示すようにポリマー鎖の伸長方向にビフェニル部をずらすことでメソゲン部の強い凝集力を調整し、ドメインの核生成速度を抑制する効果がある。
本実施形態の樹脂組成物は、化合物1と化合物2と化合物3と、のモル比をa:b:c(化合物1:化合物2:化合物3)とした際に、これら三成分の組成図(図9)上で(a、b、c)の組成の範囲が、A(0、0、1)と、B(1、0、0)と、C(0.3、0.7、0)と、D(0、0.7、0.3)、の4点で囲まれる領域内とすることを特徴とする。上記領域から外れてしまうと、硬化物の熱伝導率が低下してしまう。
本実施形態に係る樹脂組成物によれば、上記の通り、優れた熱伝導性を有する樹脂硬化物を得ることができる。
以上、本発明の実施形態について説明してきたが、本発明は、上述した実施形態に何等限定されるものではなく、本発明の要旨を逸脱しない範囲内において種々に改変することができる。
本発明の実施例に関して、詳細に説明する。
(実施例1〜13、比較例1〜7)
以下で説明する手順により樹脂組成物を製造し、得られた樹脂組成物を加熱することで樹脂硬化物を作製した。
まず、エポキシ樹脂と、硬化剤と、添加剤(硬化触媒)とを混合した。この場合には、エポキシ樹脂に含まれているエポキシ基の数と、硬化剤に含まれている活性水素の数との比が1:1になるように、エポキシ樹脂と硬化剤との混合比を調整して樹脂組成物を作製した。得られた樹脂組成物は150℃のホットプレート上で溶融混合させた後、120℃の乾燥機中で3時間加熱を行い硬化させた。
エポキシ樹脂として、化合物1を用いた。実施例によっては、化合物2を添加した。また硬化剤としては、ヒドロキノン(東京化成工業株式会社製)、メチルヒドロキノン(東京化成工業株式会社製)を用いた。エポキシ樹脂、硬化剤の種類および混合物中の含有量(質量部)は、表1に示した通りである。硬化触媒はN,N−ジメチル−m−アニシジン(東京化成工業株式会社製)を用いると共に、その添加量は、エポキシ樹脂に含まれるエポキシ基の合計に対して0.5mol%とした。
上記式(1)に示す化合物1は常法に従って合成した。4,4’−ビフェノール(25.0g、0.134mol)をアセトン(1L)に溶解させ1−ブロモ−3−ブテン(52.3g、0.402mol)と水酸化カリウム(22.5g、0.402mol)を加えて14時間リフラックスさせた。反応混合物から溶媒を除去し、得られた固体をメタノールで洗浄することで目的とする下記式(6)に示すオレフィン34.3gを得た。
Figure 2019163439
得られたオレフィン(34.3g、0.117mol)をジクロロメタン(1L)に溶解させ、0℃まで冷却した。そこにmCPBA(約水30%含有、86.6g、)を加えて、撹拌しながら温度を室温まで上げた。その後6時間撹拌を続けた。得られた反応混合物をメタノールで希釈し、ジクロロメタン分を留去した。生成した沈殿をろ過で回収し、メタノールで繰り返し洗浄した。白色粉末として上記式(1)に記載の化合物1を収量は34.0gであり、収率は89%であった。
上記式(2)に示す化合物2は常法に従って合成した。4,4’−ビフェノール(25.0g、0.134mol)をエピクロロヒドリン(200mL)に溶解し、水酸化カリウム(16g)を加えて14時間リフラックスさせた。反応混合物からエピクロロヒドリンを留去した。反応混合物に水を注ぎ、スラリー上にした後、ろ過して固体を集めた。得られた固体をメタノールで洗浄した後、乾燥した。得られたクルードを熱アセトンから再結晶することで目的物を得た。収量は34.8gであり、収率は87%であった。
硬化物の熱伝導率は、熱拡散率と比熱と密度とを掛け合わせて算出した。熱拡散率の測定には、キセノンフラッシュ法熱拡散率測定装置TD−1 HTV(アドバンス理工株式会社製)を用いた。比熱(25℃)は、MDSC Q2000(TA Instrumental製)を用いて求めた。密度は、アルキメデス法により求めた。熱伝導率の測定結果を表1に示す。
Figure 2019163439
本発明の樹脂組成物を用いることで0.4W/(m・K)以上の高い熱伝導率を示す樹脂硬化物が得られた。
その中でも、エポキシ樹脂として化合物1を用い、ヒドロキノン/メチルヒドロキノンを混合した硬化剤を用いた場合(実施例1〜3、13)、0.4W/(m・K)以上の高い熱伝導率を示す樹脂硬化物が得られた。特に、ヒドロキノン/メチルヒドロキノンのモル比を1.00とした硬化剤を用いた場合(実施例2)において顕著であった。エポキシ樹脂として化合物1と化合物2を用い、ヒドロキノン/メチルヒドロキノンを混合した硬化剤を用いた場合(実施例4〜9)も同様に高い熱伝導率示す硬化物が得られた。特に、ヒドロキノン/メチルヒドロキノンのモル比を1.00とした硬化剤を用いた場合(実施例5、7〜9)において顕著であった。また、樹脂組成物に無機粒子として酸化アルミニウム(76wt%、50vol%)を添加した場合(実施例10)や、酸化マグネシウム(74.1wt%、50vol%)を添加した場合(実施例11)、酸化マグネシウム(52.8wt%、40vol%)と窒化ホウ素(15.7wt%、10vol%)を混合して添加した場合(実施例12)のいずれも高い熱伝導率を示した。
硬化剤としてヒドロキノン単体またはメチルヒドロキノン単体を用いた場合の熱伝導率は低い値となった(比較例1、2)。また、ヒドロキノン/メチルヒドロキノンのモル比が0.43未満の場合や化合物2のみを用いた場合も熱伝導率は低い値となった(比較例3〜5、7)。ヒドロキノン/メチルヒドロキノンのモル比が0.43に満たない樹脂組成物に酸化アルミニウム(76wt%、50vol%)を添加しても高い熱伝導率を示すコンポジットは得られなかった(比較例6)。
表1に示した結果から、エポキシ樹脂として化合物1と、硬化剤としてヒドロキノンおよびメチルヒドロキノンと、を適切な組成範囲内で組み合わせて用いることで高い熱伝導率を有するエポキシ樹脂硬化物を得られた。
(実施例14)
図5で示した樹脂基板50は実施例2と同様の条件で樹脂組成物を作製した後、溶媒(メチルエチルケトン)を添加し、その溶媒を撹拌した。これにより、溶媒中においてエポキシ樹脂、硬化剤が溶解されたため、液体状の樹脂組成物が得られた。この場合には、固形分(硬化剤)の濃度を65質量%とした。
続いて、支持体(PETフィルム,厚さ=0.05mm)の表面に液体状の樹脂組成物を塗布したのち、その液体状の樹脂組成物を乾燥(温度=80℃)した。これにより、支持体の表面に樹脂組成物層1が形成されたため、図1に示した単層体である樹脂シート10(厚さ=0.1mm)が得られた。こののち、支持体から樹脂シート10を剥離した。
続いて、10枚の樹脂シート10を重ねて、図2に示した積層体である樹脂シート20(樹脂組成物層1の積層数=10層)を作製した。最後に、平板プレス機を用いて積層体を加熱(温度=110℃)および加圧(圧力=1MPa,時間=20分間)したのち、さらに積層体を加熱(温度=130℃)および加圧(圧力=4MPa,時間=1時間)した。この加熱工程では、各樹脂組成物層1中において樹脂組成物の反応が実質的に完了したため、その樹脂組成物の硬化反応物を含む樹脂硬化物層3が形成された。これにより、樹脂基板50(樹脂硬化物層3の積層数=10層,厚さ=0.9mm)が完成した。
作製した樹脂基板は熱伝導率が0.50W/m・Kであり、高い熱伝導率を有する樹脂基板が得られた。
(実施例15)
実施例12と同様の条件で樹脂組成物を作製した後、実施例14と同様にして樹脂基板を作製した。但し、この時の固形分(硬化剤、無機粒子)の濃度は80質量%とした。
作製した酸化アルミニウム含有樹脂基板は熱伝導率が2.89W/m・Kであり、高い熱伝導率を有する樹脂基板が得られた。
(実施例16〜33)
次にエポキシ樹脂として、化合物3を用いた実施例および比較例について、実施例1と異なる部分についてのみ詳述する。エポキシ樹脂、硬化剤の種類および混合物中の含有量(質量部)は、表2に示した通りである。
Figure 2019163439
上記式(8)に示す化合物3は以下のように合成した。4,4’−ビフェノール(10.0g、0.054mol)をアセトン(200mL)に溶解させ1−ブロモ−6−クロロメタン(43.0g、0.216mol)と炭酸カリウム(16.3g、0.118mol)18−クラウン6−エーテルを触媒量加えて24時間リフラックスさせた。反応混合物から溶媒を除去し、得られた固体をメタノールで洗浄することで目的とする下記式(9)に示すハロゲン化物21.7gを得た。
Figure 2019163439
得られたハロゲン化物(18.6g、0.044mol)を無水トルエン(500ml)に溶解させカリウムt−ブトキシド(15.1g、0.135mol)と18―クラウン6−エーテルを触媒量加えて2時間リフラックスさせた。その後室温で水を少量加え1時間リフラックスさせ、未反応のハロゲン化物をアルコールに変換した。反応混合物から溶媒を除去し、得られた固体をシリカゲルカラムクロマトグラフィー(ヘキサン:クロロホルム=1:1)で精製することで目的とする下記式(10)に示すオレフィン15.4gを得た。
Figure 2019163439
得られたオレフィン(15.4g、0.044mol)をジクロロメタン(400mL)に溶解させ、0℃まで冷却した。そこにmCPBA(約水30%含有、43.3g、)を加えて、撹拌しながら温度を室温まで上げた。その後6時間撹拌を続けた。得られた反応混合物をメタノールで希釈し、ジクロロメタン分を留去した。生成した沈殿をろ過で回収し、メタノールで繰り返し洗浄した。白色粉末として上記式(8)に記載の化合物の収量は13.8gであり、収率は91.4%であった。
表2に記載の通り、実施例16〜33に関しても、本発明の樹脂組成物を用いることで0.4W/(m・K)以上の高い熱伝導率を示す樹脂硬化物が得られた。
硬化剤としてヒドロキノン単体またはメチルヒドロキノン単体を用いた場合の熱伝導率は低い値となった(比較例8、9)。また、ヒドロキノン/メチルヒドロキノンのモル比が0.43未満の場合も熱伝導率は低い値となった(比較例10〜12)。
(実施例25〜30)
次にエポキシ樹脂として、化合物1、化合物2、化合物3の全てを用いた実施例および比較例について、実施例1と異なる部分についてのみ詳述する。エポキシ樹脂、硬化剤の種類および混合物中の含有量(質量部)は、表3に示した通りである。
Figure 2019163439
図9に実施例34〜36を●、比較例14,15を○として、それぞれをプロットした。化合物1、化合物2、化合物3の三成分のモル比を、それぞれa:b:c(a+b+c=100)とした際に、これら三成分の組成図(図9)上で(a、b、c)の組成の範囲が、A(0、0、1)と、B(1、0、0)と、C(0.3、0.7、0)と、D(0、0.7、0.3)、の4点で囲まれる領域内とする(但し、点ABCDで囲まれる領域とは、点ABCDで決められる四角形の線上を含まない。)ことで、0.4W/(m・K)以上の高い熱伝導率を示す樹脂硬化物が得られた。
(比較例14,15)
なお、化合物1、化合物2、化合物3の三成分のモル比を、上記点ABCDで囲まれる領域外とした樹脂組成物を用いた場合、0.4W/(m・K)以上の高い熱伝導率を示す樹脂硬化物は得られなかった。
以上、実施形態および実施例を挙げながら本発明を説明したが、本発明は実施形態および実施例において説明した態様に限定されず、種々の変形が可能である。
1…樹脂組成物層、2…芯材、3…樹脂硬化物層、10,20,30…樹脂シート、40,50,60,70…樹脂基板。

Claims (8)

  1. 式(1)で表されるエポキシ化合物と、ヒドロキノンとメチルヒドロキノンとを含む硬化剤と、を含み、前記ヒドロキノンと前記メチルヒドロキノンのモル比(ヒドロキノン/メチルヒドロキノン)が0.42〜19.0である樹脂組成物。
    Figure 2019163439
  2. 式(2)または(8)で表される他のエポキシ化合物と、を含み、前記エポキシ化合物と前記他のエポキシ化合物とのモル比(他のエポキシ化合物/エポキシ化合物)が、2.34未満である、請求項1に記載の樹脂組成物。
    Figure 2019163439
    Figure 2019163439
  3. 式(8)で表されるエポキシ化合物と、ヒドロキノンとメチルヒドロキノンとを含む硬化剤と、を含み、前記ヒドロキノンと前記メチルヒドロキノンのモル比(ヒドロキノン/メチルヒドロキノン)が0.42〜19.0である樹脂組成物。
    Figure 2019163439
  4. 式(2)で表される他のエポキシ化合物と、を含み、前記エポキシ化合物と前記他のエポキシ化合物とのモル比(他のエポキシ化合物/エポキシ化合物)が、2.34未満である、請求項3に記載の樹脂組成物。
    Figure 2019163439
  5. 式(1)で表される第1のエポキシ化合物と、
    式(2)で表される第2のエポキシ化合物と、
    式(8)で表される第3のエポキシ化合物と、
    ヒドロキノンとメチルヒドロキノンとを含む硬化剤と、を含み、
    前記第1のエポキシ化合物と前記第2のエポキシ化合物と前記第3のエポキシ化合物と、のモル比をa:b:c(第1のエポキシ:第2のエポキシ:第3のエポキシ)とした際に、
    三成分の組成図上(a、b、c)の組成の範囲が、
    A(0、0、1)と、
    B(1、0、0)と、
    C(0.3、0.7、0)と、
    D(0、0.7、0.3)と、で囲まれる領域であり、
    前記ヒドロキノンと前記メチルヒドロキノンとのモル比(ヒドロキノン/メチルヒドロキノン)が0.42〜19.0である樹脂組成物。
    (但し、点ABCDで囲まれる領域とは、点ABCDで決められる四角形の線上を含まない。)
    Figure 2019163439
    Figure 2019163439
    Figure 2019163439
  6. 請求項1〜5の何れか一項に記載の樹脂組成物を硬化して得られる樹脂硬化物。
  7. 請求項1〜5の何れか一項に記載の樹脂組成物を含む樹脂シート。
  8. 請求項7に記載の樹脂シートを1枚または複数枚積層して成形硬化することにより得られる樹脂基板。
JP2018212670A 2018-03-14 2018-11-13 樹脂組成物、樹脂シート、樹脂硬化物および樹脂基板 Pending JP2019163439A (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018046109 2018-03-14
JP2018046109 2018-03-14

Publications (1)

Publication Number Publication Date
JP2019163439A true JP2019163439A (ja) 2019-09-26

Family

ID=68064737

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018212670A Pending JP2019163439A (ja) 2018-03-14 2018-11-13 樹脂組成物、樹脂シート、樹脂硬化物および樹脂基板

Country Status (1)

Country Link
JP (1) JP2019163439A (ja)

Similar Documents

Publication Publication Date Title
WO2002094905A1 (fr) Produit durci de resine thermodurcissable
TW201425455A (zh) 用於印刷電路板的樹脂組合物、絕緣膜、預浸材料及印刷電路板
JP5551147B2 (ja) 印刷回路基板用樹脂組成物及びこれを含む印刷回路基板
CN108250675A (zh) 一种含磷活性酯及其无卤组合物与覆铜箔基板
JP2014101491A (ja) 絶縁用樹脂組成物、絶縁フィルム、プリプレグ及び印刷回路基板
JP2008266594A (ja) エポキシ樹脂組成物
TW202014466A (zh) 無溶劑之樹脂組合物及其應用
JP2008239679A (ja) エポキシ樹脂組成物
JP2021155586A (ja) エポキシ樹脂プレポリマー、エポキシ樹脂プレポリマーの製造方法、エポキシ樹脂組成物、樹脂シート、樹脂硬化物、積層基板
JP2016210971A (ja) 樹脂組成物、樹脂シート、樹脂硬化物および樹脂基板
JP6422230B2 (ja) プリント回路基板用絶縁樹脂組成物およびこれを用いた製品
JPH09302070A (ja) 熱硬化性エポキシ樹脂組成物とその用途および硬化剤
WO2016175296A1 (ja) 樹脂組成物、樹脂シート、樹脂硬化物および樹脂基板
JP6497196B2 (ja) 樹脂組成物、樹脂シート、樹脂硬化物および樹脂基板
JP6477206B2 (ja) 樹脂組成物、樹脂シート、樹脂硬化物および樹脂基板
JP2010163540A (ja) エポキシ樹脂組成物及びその硬化物
JP2019163439A (ja) 樹脂組成物、樹脂シート、樹脂硬化物および樹脂基板
US11505694B2 (en) Resin composition, resin cured product and resin substrate
JP2019163440A (ja) 樹脂組成物、樹脂シート、樹脂硬化物および樹脂基板
KR102059824B1 (ko) 광경화성 절연 수지 조성물 및 이를 이용한 인쇄회로기판
JP2020063433A (ja) 熱伝導性樹脂組成物
JP2018069708A (ja) 積層体、電子部材及び熱伝導性部材
JP2018172458A (ja) 化合物、樹脂組成物、樹脂シート、樹脂硬化物、樹脂基板および積層基板
JP2016113493A (ja) エポキシ樹脂組成物、熱伝導材料前駆体、bステージシート、プリプレグ、放熱材料、積層板、金属基板、及びプリント配線板
JP6536158B2 (ja) 樹脂組成物、樹脂シート、樹脂硬化物および樹脂基板