JP2019162623A - マイクロ流体処理のための方法およびシステム - Google Patents

マイクロ流体処理のための方法およびシステム Download PDF

Info

Publication number
JP2019162623A
JP2019162623A JP2019063904A JP2019063904A JP2019162623A JP 2019162623 A JP2019162623 A JP 2019162623A JP 2019063904 A JP2019063904 A JP 2019063904A JP 2019063904 A JP2019063904 A JP 2019063904A JP 2019162623 A JP2019162623 A JP 2019162623A
Authority
JP
Japan
Prior art keywords
fluid
cartridge
microfluidic
actuator
present
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2019063904A
Other languages
English (en)
Inventor
ダニエル レーザー
Laser Daniel
ダニエル レーザー
エイミー ドロワクール
Droitcour Amy
エイミー ドロワクール
ハイルマリアム ネグシー
Negussie Hailemariam
ハイルマリアム ネグシー
ウィリアム ベーンケ‐パークス
Behnke-Parks William
ウィリアム ベーンケ‐パークス
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
WAVE 80 BIOSCIENCES Inc
Original Assignee
WAVE 80 BIOSCIENCES Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by WAVE 80 BIOSCIENCES Inc filed Critical WAVE 80 BIOSCIENCES Inc
Publication of JP2019162623A publication Critical patent/JP2019162623A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • B01L3/50273Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by the means or forces applied to move the fluids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • B01L3/502715Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by interfacing components, e.g. fluidic, electrical, optical or mechanical interfaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/06Auxiliary integrated devices, integrated components
    • B01L2300/0681Filter
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0809Geometry, shape and general structure rectangular shaped
    • B01L2300/0816Cards, e.g. flat sample carriers usually with flow in two horizontal directions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0861Configuration of multiple channels and/or chambers in a single devices
    • B01L2300/0867Multiple inlets and one sample wells, e.g. mixing, dilution
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/12Specific details about materials
    • B01L2300/123Flexible; Elastomeric
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2400/00Moving or stopping fluids
    • B01L2400/04Moving fluids with specific forces or mechanical means
    • B01L2400/0403Moving fluids with specific forces or mechanical means specific forces
    • B01L2400/0415Moving fluids with specific forces or mechanical means specific forces electrical forces, e.g. electrokinetic
    • B01L2400/0418Moving fluids with specific forces or mechanical means specific forces electrical forces, e.g. electrokinetic electro-osmotic flow [EOF]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L7/00Heating or cooling apparatus; Heat insulating devices
    • B01L7/52Heating or cooling apparatus; Heat insulating devices with provision for submitting samples to a predetermined sequence of different temperatures, e.g. for treating nucleic acid samples

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Clinical Laboratory Science (AREA)
  • Analytical Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Hematology (AREA)
  • Dispersion Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Automatic Analysis And Handling Materials Therefor (AREA)
  • Micromachines (AREA)

Abstract

【課題】分析物検出、標識化および分析に有用な高性能アクチュエータを含むマイクロ流体カートリッジの提供。【解決手段】カートリッジ内部の個別の構成要素として、複数の流体通路101,102,103と、複数の流体通路を接続する少なくとも1つの合流点104と、少なくとも1つの高性能流体アクチュエータを含む少なくとも2つの流体輸送手段105b,106bを備え、高性能流体アクチュエータが、少なくとも10−8ワットの動力を少なくとも30秒間持続することができる流体動力発生能力、および10秒未満の流体動力発生のための応答時間を有する。【選択図】図1

Description

関連出願の相互参照
本出願は、全体として参照により本明細書に組み入れられる、2013年3月1日に出願された米国特許仮出願第61/771,708号の恩典を主張するものである。
本出願は、全体として参照により本明細書に組み入れられる、2013年3月1日に出願された米国特許仮出願第61/771,694号に関するものである。
連邦政府による資金援助を受けた研究開発に関する声明
本発明は、国立保健研究所(National Institutes of Health)によって与えられたNIH契約番号HHSN272200900029CおよびNIH助成金番号2R44AI073221の下、政府支援を受けて達成された。政府は、本発明において特定の権利を有する。
発明の分野
本発明は、アッセイシステムを通して流体を移動させ、処理するための方法およびシステムに関する。
関連技術の説明
マイクロ流体処理システムは、少量(典型的には1マイクロリットルから10ミリリットルの間)の反応物および生成物での、化学もしくは生化学反応または一連の反応を実施するためのものである。マイクロ流体処理システムは、弁およびセンサーなどの個別の構成要素と接続した管のネットワーク、あるいは、プラスチック、ガラス、金属もしくは他の材料または材料の組み合わせから作製された統合デバイスであって、弁およびセンサーなどの構成要素がデバイス内に内蔵され、かつ該材料中に形成された流通路によって接続されている統合デバイスを、含むことができる。
従来のマイクロ流体処理システムは、化学もしくは生化学反応または一連の反応を実施するために、往復変位ポンプ、蠕動効果、シリンジポンプ、表面張力効果、外部または内部磁界源からの磁気ビーズへの体積力、真空マニホールド、界面動電効果、電気化学効果またはこれらの組み合わせを使用する。
マイクロ流体処理システム内の流れは、低レイノルズ数領域と称される、慣性効果に対する粘性効果の優勢性に典型的に関連している。マイクロ流体処理システムの多くの適用は、対応して低い二元拡散率を有する1つまたは複数の高分子量反応物に関わる。例えば、分子力学シミュレーションは、3.1×106ダルトンの分子量を有する、ヒト免疫不全ウイルス(HIV)のゲノム物質を構成するおよそ9800個の塩基のリボ核酸鎖は、およそD=2×10-12 m2 s-1の水中拡散率を有し、そのため、10分間で、1次元拡散は、たった50ミクロンの変位と関連する、ということを示す。慣性効果に対する粘性効果の優勢性と、高い関心対象である反応物の比較的緩徐な拡散率との組み合わせは、マイクロ流体システムにおいて2つまたはそれ以上の溶液を巨視的に混合するための流体力学的機序の必要性を課するものである。
実施されるプロセスの一部として導入されたか、あるいは流れの方向での流体通路の膨張または収縮が充填の間に気泡を捕捉する傾向があるときのように意図せずに生じる、少量の気体は、しばしば、マイクロ流体システムにおいて見出される。マイクロ流体システムにおけるある容量の気体は、該システムに作用する機械的強制機能(mechanical forcing function)に対する低域フィルターとして作用することができる。これは、流体キャパシタンスと称されることもある。管類もまた、流体キャパシタンスの源であることができる。
捕捉された空気が低域フィルターとして作用する傾向は、流体アクチュエータが力を加えて機械的作用をする流体容量に物理的にきわめて近接して流体アクチュエータを位置しようとする誘因を作り出す。
マイクロ流体システムのいくつかの適用において、反応を、一回使用後に廃棄できる流体通路内で行う必要性が存在する。例えば、感染性疾患の診断において、体液サンプルを処理するために使用されるマイクロ流体システムは、アッセイの完了後、バイオハザード廃棄物と見なすことができる。生産工程間において汚染の悪影響が非常に高いことは、抗体精製のために使用されるマイクロ流体システムを、一回使用後に完全に廃棄できるようにする誘因を作り出す。多くの種類のマイクロ流体アクチュエータ、例えば、圧電アクチュエータおよび電磁アクチュエータは、一回使用のためのマイクロ流体カートリッジ内に含めるには高価すぎる。圧電アクチュエータおよび電磁アクチュエータは、カートリッジ内への力学的エネルギー移動を必要とし、アクチュエータおよびカートリッジの誤整列に関連する不具合を起こしがちである可能性がある。電気化学的気体発生および表面張力に基づく作動などの作動機構は、経済的にカートリッジ内に内蔵されることができるが、緩慢な応答時間、低い出力、範囲の不足および他の制限に関連する。
1つまたは複数の反応物の巨視的急速混合を実施することができるマイクロ流体システムの必要性が存在する。流体アクチュエータの速い応答時間および高出力は、2つまたはそれ以上の流体を混合するため、またはカートリッジ内で混合物中の2つまたはそれ以上の種を反応させるために、重要である。現在のマイクロ流体アクチュエータは、低い流体動力発生能力、持続動力および緩慢な応答時間といった制限を有する。電気浸透流発生は、高出力および速い応答時間と関連し得るが、いくつかの場合、サンプル中の粒子がEOマイクロ流体デバイスを遮断する可能性もあるので、サンプルは、EOマイクロ流体デバイスを通して輸送されることができず、流体が、EOデバイスの内側の高電場によって悪影響を受けるだろう。
本発明は、これらおよび他の先行技術の欠点に取り組むものである。
本発明は、複数の流体通路と、該複数の流体通路を接続する少なくとも1つの合流点と、少なくとも1つの高性能流体アクチュエータを含む少なくとも2つの流体輸送のための機構とを含む、マイクロ流体処理システムを含む。高性能流体アクチュエータは、少なくとも10-8ワットの流体動力発生能力を有し、少なくとも30秒間、動力を持続することができ、かつ10秒未満の流体動力発生のための応答時間を有する。
いくつかの態様において、マイクロ流体処理システムは、カートリッジと称される統合システムである。いくつかの態様において、カートリッジは、500立方センチメートル以下、または50立方センチメートル以下の排水量を有する。
いくつかの態様において、高性能流体アクチュエータは、電力を流体動力に直接変換することができる。いくつかの態様において、高性能流体アクチュエータの動作は、外部デバイスから少なくとも1つの高性能流体アクチュエータへの力学的エネルギーの移動を含まない。
いくつかの態様において、動力発生のための応答時間は、2秒未満、0.2秒未満、または0.04秒未満である。一態様において、液体が、毎分少なくとも0.1mLの流量で少なくとも1kPaの圧力降下に関連する流体抵抗の中でも流れるように、アクチュエータは、少なくとも10マイクロリットルの液体に作用することができる。
別の態様において、高性能アクチュエータは、パルス発生器または他の制御型時変電圧源に結合されている。いくつかの態様において、高性能流体アクチュエータは、界面動電効果によって流体動力を生成することができる。いくつかの態様において、界面動電効果は、電気浸透流である。電気浸透流は、スリットキャピラリー内部または少なくとも1つの流体アクチュエータの各々の内部のスラット構造の隙間において発生させられ得る。
別の態様において、電気浸透流は、流体アクチュエータの各々の内部の、充填ビーズのベッド、一体型多孔質構造または円筒形チャネルのアレイの内部で発生される。
いくつかの態様において、マイクロ流体カートリッジは、出発物質を流体通路のネットワーク内に受け入れるための開口部を含む。開口部は、栓またはキャッピング要素で閉鎖されることができる。栓またはキャッピング要素は、流体導管を受け入れ、流体導管が引き抜かれると密閉封鎖することができる。他の態様において、流体導管は、栓またはキャッピング要素によって受け入れられることができ、針、管、剛性流体導管または半剛性流体導管を含むことができる。栓またはキャッピング要素は、エラストマー材料を含むことができる。別の態様において、栓またはキャッピング要素は、閉鎖機構を有する。
他の態様において、カートリッジは、動力源から高性能流体アクチュエータへの動力送達を制御することができる制御器を含む。カートリッジは、少なくとも1つの高性能流体アクチュエータに動作可能に結合された動力源を含むことができる。動力源は、外部デバイス内に位置され、かつ電気的接続によってカートリッジに結合されることができる。いくつかの態様において、動力源は、電気式または空気式である。動力源は、カートリッジの内側に位置されることができる電池であることができる。他の態様において、電池は、外部デバイス内に位置され、かつ電気的接続によってカートリッジに結合されることができる。
カートリッジは、流体通路のネットワークに結合された、処理流体を受け入れるための第二の開口部を含むことができる。処理流体は、流体通路のネットワーク内部に収容されることができる。処理流体は、細胞または細胞小器官を溶解することができる第一の試薬を含むことができる。第一の試薬は、界面活性剤または他の表面活性剤を含む。別の態様において、第一の試薬は、リゾチームなどの酵素を含む。
いくつかの態様において、処理流体は、組織サンプルまたは他の不均質な生物学的物質を均質化することができる均質化溶液を含む。
他の態様において、処理流体は、生細胞、組織または生物体の生物活性を減少させるまたは除去することができる溶液を含む。処理流体は、出発物質の機械的破砕を引き起こすことができるガラスビーズまたは他の固形物質を含むことができる。いくつかの態様において、処理流体は、グリコーゲンまたは他の多糖を含むことができる。処理流体は、キャリアRNAを含むことができる。
いくつかの態様において、カートリッジは、高性能流体アクチュエータに結合された、アクチュエータ流体を受け入れるための第三の開口部を含む。アクチュエータ作動流体は、少なくとも1つの高性能流体アクチュエータ内部に位置付けられることができる。
別の態様において、流体通路のネットワークの一部は、第二の試薬を含む。第二の試薬は、シリカビーズ、粒子または常磁性ビーズを含むことができる。第二の試薬は、蛍光ビーズまたは蛍光分子であることもできる。第二の試薬は、アルカリホスファターゼ基質、またはランタニドもしくはランタニドキレートなどの化学発光分子であることができる。他の態様において、第二の試薬は、モノクローナルまたはポリクローナル抗体を含み、モノクローナルまたはポリクローナル抗体は、シグナリング分子に連結されていることができる。
第二の試薬は、オリゴヌクレオチドプローブもしくはプライマー、またはプローブの組み合わせまたはプライマーの組み合わせであることができる。オリゴヌクレオチドプローブは、ヒト免疫不全ウイルス、C型肝炎ウイルス、B型肝炎ウイルス、マイコバクテリウム・ツベルクローシス(M. tuberculosis)細菌、クラミジア・トラコマチス(C. trachomatis)細菌、インフルエンザウイルス、呼吸器合胞体ウイルスまたはヒト気道の別のウイルスの遺伝物質の規定領域に特異的に結合することができる。オリゴヌクレオチドプローブは、癌遺伝子のDNAまたはRNAの規定領域に結合することができる。いくつかの態様において、オリゴヌクレオチドプローブは、標識されており、標識は、蛍光性または発光性シグナリング分子またはそのクエンチャー、アプタマー、光増感剤分子、光活性指示体前駆体分子、または光増感剤分子および光活性指示体前駆体分子であることができる。
いくつかの態様において、光増感剤分子および光活性指示体前駆体分子は、以下を含む:1つまたは複数の増感剤、1つまたは複数の増感剤オリゴヌクレオチド、およびかかる増感剤と増感剤オリゴヌクレオチドとを同じ場所に位置させるためのマトリクスを含む、少なくとも1つの増感剤標識粒子;ならびに、1つまたは複数のエミッタ剤、1つまたは複数の増感剤オリゴヌクレオチド、およびかかるエミッタ剤とエミッタオリゴヌクレオチドとを同じ場所に位置させるためのマトリクスを含む、少なくとも1つのエミッタ標識粒子。光増感剤分子は、一重項酸素分子を発生させる励起状態であることができる。光活性指示体前駆体分子は、一重項酸素分子と反応して光活性指示体を形成することができる。
他の態様において、第二の試薬は、量子ドットまたは他の結晶性半導体粒子であることができる。第二の試薬は、核酸の配列非依存的測定のための核酸特異的な蛍光または発光色素であることができる。第二の試薬は、フェルスター共鳴エネルギー転移(FRET)または他の共鳴エネルギー移動プロセスに関与することができる分子であることができる。別の態様において、第二の試薬は、特異的細胞化合物の測定のための標識タンパク質、標識核酸または標識糖質種を含む。
第二の試薬は、細胞の特異的または非特異的標識化のための色素を有する溶液を含むことができる。第二の試薬は、プライマー、プローブ、プライマーとプローブとの組み合わせ、またはポリメラーゼ連鎖反応、転写介在増幅、核酸配列を基にした増幅、もしくは少なくとも1つの特定された核酸配列を増幅するための別の化学反応を触媒することができる、酵素を含むことができる。酵素は、DNAポリメラーゼ、逆転写酵素、RNAポリメラーゼ、リボヌクレアーゼH(RNAse H)、DNAヘリカーゼ、またはリコンビナーゼであることができる。
別の態様において、出発物質は、流体相、流体を含んだマトリクスまたは固相を含む。出発物質は、血液、痰または他の体液であることができる。出発物質は、生物組織、薬剤もしくはワクチンのための原材料もしくは中間物、農産物、土、または別の環境サンプルを含むことができる。
一態様において、カートリッジは、第一の物質を含む第一の流体通路および第二の物質を含む第二の流体通路を含み、ここで、該第一の流体通路および該第二の流体通路は、該マイクロ流体カートリッジ内に合流点を形成する。別の態様において、合流点は、T字合流点またはY字合流点である。さらに別の態様において、合流点は、該第一および第二の流体通路からの該第一および第二の物質の融合から生じる1つまたは複数のマイクロ流体液滴の形成を可能にする。他の態様において、1つまたは複数の液滴は各々、分析物または試薬を含む。別の態様において、1つまたは複数の液滴は各々、少なくとも1つのプライマー、およびポリメラーゼ連鎖反応、転写介在増幅、核酸配列を基にした増幅、または少なくとも1つの標的核酸配列を増幅するための別の化学反応を触媒することができる酵素を含む。いくつかの態様において、1つまたは複数の液滴は各々、標識を含む。他の態様において、第一または第二の物質は、処理流体を含む。別の態様において、1つまたは複数の液滴は各々、細胞を含む。
別の態様において、カートリッジは、増幅反応の段階を実施するための異なる温度ゾーンを含む複数の流体通路を含む。一態様において、複数の流体は、標識化またはハイブリダイゼーション反応を誘発するために、該複数の流体通路内で合わされる。
本発明は、先に記載したマイクロ流体カートリッジと、動力源を含み、かついくつかの態様では電力をマイクロ流体カートリッジへ供給するように適合された装置とを含む、システムを含む。他の態様において、マイクロ流体カートリッジは、オンボード動力源を有する。装置は、さらに、アッセイ結果の指標を感知するように適合されている。センサーは、カートリッジ内部で発生した可視光線または別のタイプの電磁放射を感知することができる。いくつかの態様において、装置は、さらに、カートリッジ内部の常磁性ビーズの位置または分布を感知するように適合されている。装置は、カートリッジ内部の種の電子スピン核磁気共鳴または他の物理的特性を感知するように適合されることができる。
別の態様は、マイクロ流体カートリッジ内で、複数の流体通路に接続され、かかる流体通路の間に少なくとも1つの合流点を含むチャネルに第一の流体を提供する工程を含む方法を含む。マイクロ流体カートリッジは、少なくとも30秒間動力を持続することができる少なくとも10-8ワットの流体動力発生能力、および10秒未満の動力発生のための応答時間を有する、少なくとも1つの高速マイクロ流体アクチュエータを含む。方法は、時変方式でマイクロ流体アクチュエータを動作させる工程を含み、そのため、第一の流体および第二の流体は、流体の交互栓を発生させるように流体通路のネットワーク内に導入され、ここで、各栓量の長さは、かかる流体通路のうちの最小の平均直径の5倍未満である。高速マイクロ流体アクチュエータは、界面動電効果によって流体動力を生成することができる。界面動電効果は、スリットのアレイ、充填ビーズベッド、または一体型多孔質構造内部で発生した電気浸透流によって発生されることができる。
方法は、細胞膜内の少なくとも1タイプの分子に特異的な第二の流体内部の標識化分子または標識化粒子を用いて、第一の流体内部の細胞のサブセットを標識する工程を含む。方法は、第二の流体中に含有された細胞透過色素を用いて、第一の流体中の細胞を着色する工程を含むことができる。
他の態様において、方法は、第二の流体中に含有された光増感剤分子もしくは光活性指示体前駆体分子またはそれらの組み合わせを用いて、第一の流体内部に含有されたDNAまたはRNAのサブセットを標識する工程を含む。方法はまた、第二の流体中に含有されたランタニドキレートを用いて、第一の流体内部に含有されたDNAまたはRNAのサブセットを標識する工程を含むことができる。方法は、第二の流体中に含有された界面活性剤または他の表面活性剤を用いて、第一の流体内部の細胞または他の生物学的物質を溶解する工程を含む。界面活性剤は、ラウリル硫酸ナトリウム、臭化ヘキサデシルトリメチルアンモニウムまたは別の陽イオン界面活性剤であることができる。
別の態様において、方法は、酵素を用いて、第一の流体内部の細胞または他の生物学的物質を溶解する工程を含む。酵素は、リゾチームであることができる。方法は、さらに、第一の流体からの組織サンプルまたは他の不均質な生物学的物質を均質化する工程を含む。方法はまた、第一の流体中の生細胞、組織または生物体の生物活性を減少させる工程を含む。生物活性を減少させる工程は、水酸化ナトリウムまたは次亜塩素酸ナトリウムなどの高塩基性溶液を使用することを含むことができる。
方法は、さらに、第二の流体中の機械的破砕のためのガラスビーズまたは他の固形物質を用いて、第一の流体中の細胞または他の生物学的物質を溶解する工程を含む。方法は、スワブまたは多孔質マトリクスと第一の流体とを混合する工程、およびスワブまたは多孔質マトリクス内部に結合された土または他の環境サンプルを解放する工程を含む。
一態様において、第一の流体は、樹状細胞を含み、方法は、攻撃に対する免疫応答の要素を誘導するために樹状細胞をパルスする工程を含む。
方法は、薬理学的物質またはワクチンを生成する工程を含むことができる。方法は、薬理学的物質の生物活性を増加させる工程を含む。方法はまた、第一の流体内部に含有されたDNAまたはRNA分子を、グリコーゲンまたはシリカに結合させる工程を含むことができる。方法はまた、グリコーゲン複合または共沈DNAおよびRNAを精製する工程、あるいはシリカビーズまたはシリカ含有構造に結合されたDNAまたはRNA分子を精製する工程を含む。方法は、グリコーゲンまたはシリカビーズもしくはシリカ含有構造からDNAおよびRNAを溶離する工程を含む。
方法はまた、第一の流体中の分析物の存在または非存在を検出する工程を含む。検出する工程は、分析物に結合された化学発光または蛍光分子から可視光線または別のタイプの電磁放射を感知することを含む。検出する工程は、分析物に結合された常磁性ビーズの位置または分布を感知すること、または分析物に結合された種の核磁気共鳴または他の物理的特性を感知することを含むことができる。
一態様において、方法はまた、複数の流体通路内で複数の微液滴を発生させるための工程を含む。別の態様において、複数の微液滴は、少なくとも2つの流体を脈動させることによって形成され、ここで、脈動させることは、マイクロ流体カートリッジ内の複数の高速マイクロ流体アクチュエータによって生じる。方法はまた、複数の微液滴の各々の中の分析物の存在または非存在を検出する工程を含むことができる。別の態様において、方法は、複数の微液滴をマイクロ流体カートリッジ内の複数の温度ゾーンを通過して移動させることによって、複数の微液滴の各々において増幅反応を実施する工程を含む。さらに別の態様において、方法は、複数の微液滴の各々の中の標的アンプリコンの存在を検出する工程を含む。方法はまた、該複数の微液滴の各々の中の標的核酸分子の融解温度(Tm)を測定する工程を含む。一態様において、方法は、参考菌株からのウイルスRNAの遺伝学的相違の融解温度(Tm)分析を実施する工程を含む。
[本発明1001]
複数の流体通路と;
該複数の流体通路を接続する少なくとも1つの合流点と;
少なくとも1つの高性能流体アクチュエータを含む少なくとも2つの流体輸送手段であって、
該少なくとも1つの高性能流体アクチュエータが、
少なくとも10-8ワットの、および動力を少なくとも30秒間持続することができる、流体動力発生能力、および
10秒未満の該流体動力発生のための応答時間
を有する、カートリッジ内部の個別の構成要素である、前記少なくとも2つの流体輸送手段と
を含む、マイクロ流体カートリッジ。
[本発明1002]
500立方センチメートル以下の排水量を有する、本発明1000のカートリッジ。
[本発明1003]
50立方センチメートル以下の排水量を有する、本発明1002のカートリッジ。
[本発明1004]
少なくとも1つの高性能流体アクチュエータが、電力を流体動力に変換することができる、本発明1000のカートリッジ。
[本発明1005]
電力の流体動力への変換が、中間エネルギー状態なしで起こる、本発明1004のカートリッジ。
[本発明1006]
少なくとも1つの高性能流体アクチュエータの動作が、外部デバイスから該少なくとも1つの高性能流体アクチュエータへの力学的エネルギーの移動を含まない、本発明1000のカートリッジ。
[本発明1007]
動力発生のための応答時間が、2秒未満である、本発明1000のカートリッジ。
[本発明1008]
動力発生のための応答時間が、0.2秒未満である、本発明1007のカートリッジ。
[本発明1009]
動力発生のための応答時間が、0.04秒未満である、本発明1008のカートリッジ。
[本発明1010]
液体が、毎分少なくとも0.1mLの流量で、少なくとも1kPaの圧力降下に関連する流体抵抗の中でも流れるように、アクチュエータが、少なくとも10マイクロリットルの液体を加圧することができる、本発明1000のカートリッジ。
[本発明1011]
高性能アクチュエータが、パルス発生器または他の制御型時変電圧源および少なくとも1つの電極に結合されている、本発明1000のカートリッジ。
[本発明1012]
少なくとも1つの高性能流体アクチュエータが、界面動電効果によって流体動力を生成することができる、本発明1000のカートリッジ。
[本発明1013]
界面動電効果が、電気浸透流を含む、本発明1012のカートリッジ。
[本発明1014]
電気浸透流が、少なくとも1つの流体アクチュエータの各々の内部の複数のスリットキャピラリー内部で発生される、本発明1013のカートリッジ。
[本発明1015]
電気浸透流が、少なくとも1つの流体アクチュエータの各々の内部の充填ビーズのベッド内部で発生される、本発明1013のカートリッジ。
[本発明1016]
電気浸透流が、少なくとも1つの流体アクチュエータの各々の内部の一体型多孔質構造内部で発生される、本発明1013のカートリッジ。
[本発明1017]
電気浸透流が、少なくとも1つの流体アクチュエータの各々の内部の円筒形チャネルのアレイ内部で発生される、本発明1013のカートリッジ。
[本発明1018]
出発物質を流体通路のネットワーク内に受け入れるための開口部を含む、本発明1000のカートリッジ。
[本発明1019]
開口部が、栓またはキャッピング要素で閉鎖される、本発明1018のカートリッジ。
[本発明1020]
栓またはキャッピング要素が、流体導管を受け入れることができ、該流体導管が引き抜かれると密閉封鎖することができる、本発明1018のカートリッジ。
[本発明1021]
栓またはキャッピング要素によって受け入れられることができる流体導管が、針、管、剛性流体導管または半剛性流体導管を含む、本発明1020のカートリッジ。
[本発明1022]
栓またはキャッピング要素が、エラストマー材料を含む、本発明1020のカートリッジ。
[本発明1023]
栓またはキャッピング要素が、閉鎖機構を含む、本発明1020のカートリッジ。
[本発明1024]
動力源から少なくとも1つの高性能流体アクチュエータへの動力送達を制御することができる制御器をさらに含む、本発明1001のカートリッジ。
[本発明1025]
少なくとも1つの高性能流体アクチュエータに動作可能に結合された動力源をさらに含む、本発明1000のカートリッジ。
[本発明1026]
動力源が、外部デバイス内に位置され、かつ電気的接続によってカートリッジに結合される、本発明1025のカートリッジ。
[本発明1027]
動力源が、電気式である、本発明1025のカートリッジ。
[本発明1028]
動力源が、空気式である、本発明1025のカートリッジ。
[本発明1029]
動力源が、電池を含む、本発明1025のカートリッジ。
[本発明1030]
電池が、カートリッジの内側に位置される、本発明1029のカートリッジ。
[本発明1031]
電池が、外部デバイスの内側に位置され、かつ電気的接続によってカートリッジに結合される、本発明1029のカートリッジ。
[本発明1032]
処理流体を受け入れるための、かつ流体通路のネットワークに結合された第二の開口部をさらに含む、本発明1001のカートリッジ。
[本発明1033]
流体通路のネットワーク内部に収容された処理流体をさらに含む、本発明1001のカートリッジ。
[本発明1034]
処理流体が、細胞または細胞小器官を溶解することができる第一の試薬を含む、本発明1033のカートリッジ。
[本発明1035]
第一の試薬が、界面活性剤または他の表面活性剤を含む、本発明1034のカートリッジ。
[本発明1036]
第一の試薬が、酵素を含む、本発明1034のカートリッジ。
[本発明1037]
酵素が、リゾチームである、本発明1036のカートリッジ。
[本発明1038]
処理流体が、組織サンプルまたは他の不均質な生物学的物質を均質化することができる均質化溶液を含む、本発明1033のカートリッジ。
[本発明1039]
処理流体が、生細胞、組織または生物体の生物活性を減少させるかまたは除去することができる溶液を含む、本発明1033のカートリッジ。
[本発明1040]
処理流体が、出発物質の機械的破砕を引き起こすことができるガラスビーズまたは他の固形物質を含む、本発明1033のカートリッジ。
[本発明1041]
処理流体が、グリコーゲンまたは他の多糖を含む、本発明1033のカートリッジ。
[本発明1042]
処理流体が、キャリアRNAを含む、本発明1033のカートリッジ。
[本発明1043]
アクチュエータ流体を受け入れるための、かつ少なくとも1つの高性能流体アクチュエータに結合された第三の開口部をさらに含む、本発明1001のカートリッジ。
[本発明1044]
少なくとも1つの高性能流体アクチュエータ内部にアクチュエータ作動流体をさらに含む、本発明1001のカートリッジ。
[本発明1045]
流体通路のネットワークの一部分が、第二の試薬を含む、本発明1001のカートリッジ。
[本発明1046]
第二の試薬が、シリカビーズまたは粒子を含む、本発明1045のカートリッジ。
[本発明1047]
第二の試薬が、常磁性ビーズを含む、本発明1045のカートリッジ。
[本発明1048]
第二の試薬が、蛍光ビーズまたは蛍光分子を含む、本発明1045のカートリッジ。
[本発明1049]
第二の試薬が、化学発光分子を含む、本発明1045のカートリッジ。
[本発明1050]
化学発光分子が、アルカリホスファターゼ基質を含む、本発明1049のカートリッジ。
[本発明1051]
第二の試薬が、ランタニドまたはランタニドキレートを含む、本発明1045のカートリッジ。
[本発明1052]
第二の試薬が、モノクローナルまたはポリクローナル抗体を含む、本発明1045のカートリッジ。
[本発明1053]
モノクローナルまたはポリクローナル抗体が、シグナリング分子に連結されている、本発明1052のカートリッジ。
[本発明1054]
第二の試薬が、オリゴヌクレオチドプローブもしくはプライマー、プローブの組み合わせ、またはプライマーの組み合わせを含む、本発明1045のカートリッジ。
[本発明1055]
オリゴヌクレオチドプローブが、ヒト免疫不全ウイルスの遺伝物質の規定領域に特異的に結合する、本発明1054のカートリッジ。
[本発明1056]
オリゴヌクレオチドプローブが、C型肝炎ウイルスの遺伝物質の規定領域に特異的に結合する、本発明1054のカートリッジ。
[本発明1057]
オリゴヌクレオチドプローブが、B型肝炎ウイルスの遺伝物質の規定領域に特異的に結合する、本発明1054のカートリッジ。
[本発明1058]
オリゴヌクレオチドプローブが、マイコバクテリウム・ツベルクローシス(M. tuberculosis)細菌の遺伝物質の規定領域に特異的に結合する、本発明1054のカートリッジ。
[本発明1059]
オリゴヌクレオチドプローブが、クラミジア・トラコマチス(C. trachomatis)細菌の遺伝物質の規定領域に特異的に結合する、本発明1054のカートリッジ。
[本発明1060]
オリゴヌクレオチドプローブが、インフルエンザウイルス、呼吸器合胞体ウイルスまたはヒト気道の別のウイルスの遺伝物質の規定領域に特異的に結合する、本発明1054のカートリッジ。
[本発明1061]
オリゴヌクレオチドプローブが、癌遺伝子のDNAまたはRNAの規定領域に特異的に結合する、本発明1054のカートリッジ。
[本発明1062]
オリゴヌクレオチドプローブが、標識されている、本発明1054のカートリッジ。
[本発明1063]
標識が、蛍光性もしくは発光性シグナリング分子またはそのクエンチャーを含む、本発明1062のカートリッジ。
[本発明1064]
オリゴヌクレオチドプローブが、アプタマーを含む、本発明1054のカートリッジ。
[本発明1065]
第二の試薬が、光増感剤分子を含む、本発明1045のカートリッジ。
[本発明1066]
第二の試薬が、光活性指示体前駆体分子を含む、本発明1045のカートリッジ。
[本発明1067]
第二の試薬が、光増感剤分子および光活性指示体前駆体分子を含む、本発明1045のカートリッジ。
[本発明1068]
光増感剤分子および光活性指示体前駆体分子が、
a.1つまたは複数の増感剤、1つまたは複数の増感剤オリゴヌクレオチド、およびかかる増感剤と増感剤オリゴヌクレオチドとを同じ場所に位置させるためのマトリクスを含む、少なくとも1つの増感剤標識粒子;ならびに
b.1つまたは複数のエミッタ剤、1つまたは複数の増感剤オリゴヌクレオチド、およびかかるエミッタ剤とエミッタオリゴヌクレオチドとを同じ場所に位置させるためのマトリクスを含む、少なくとも1つのエミッタ標識粒子
を含む、本発明1067のカートリッジ。
[本発明1069]
光増感剤分子が、一重項酸素分子を発生させる励起状態にあることができる、本発明1068のカートリッジ。
[本発明1070]
光活性指示体前駆体分子が、一重項酸素分子と反応して光活性指示体を形成することができる、本発明1068のカートリッジ。
[本発明1071]
第二の試薬が、量子ドットまたは他の結晶性半導体粒子を含む、本発明1045のカートリッジ。
[本発明1072]
第二の試薬が、核酸の配列非依存的測定のための核酸特異的な蛍光または発光色素を含む、本発明1045のカートリッジ。
[本発明1073]
第二の試薬が、フェルスター共鳴エネルギー転移(FRET)または他の共鳴エネルギー移動プロセスに関与することができる分子を含む、本発明1045のカートリッジ。
[本発明1074]
第二の試薬が、特異的細胞化合物の測定のための標識タンパク質、標識核酸または標識糖質種を含む、本発明1045のカートリッジ。
[本発明1075]
第二の試薬が、細胞の特異的または非特異的標識化のための色素を含む溶液を含む、本発明1045のカートリッジ。
[本発明1076]
第二の試薬が、プライマー、プローブ、またはプライマーとプローブとの組み合わせを含む、本発明1045のカートリッジ。
[本発明1077]
酵素が、ポリメラーゼ連鎖反応、転写介在増幅、核酸配列を基にした増幅、または少なくとも1つの特定された核酸配列を増幅するための別の化学反応を触媒することができる、本発明1076のカートリッジ。
[本発明1078]
酵素が、DNAポリメラーゼ、逆転写酵素、RNAポリメラーゼ、リボヌクレアーゼH、DNAヘリカーゼまたはリコンビナーゼを含む、本発明1076のカートリッジ。
[本発明1079]
出発物質が、流体相、流体を含んだマトリクスまたは固相を含む、本発明1000のカートリッジ。
[本発明1080]
出発物質が、血液、痰または他の体液を含む、本発明1000のカートリッジ。
[本発明1081]
出発物質が、生物組織を含む、本発明1000のカートリッジ。
[本発明1082]
出発物質が、薬剤またはワクチンのための原材料または中間物である、本発明1000のカートリッジ。
[本発明1083]
出発物質が、農産物である、本発明1000のカートリッジ。
[本発明1084]
出発物質が、土または別の環境サンプルである、本発明1000のカートリッジ。
[本発明1085]
第一の物質を含む第一の流体通路および第二の物質を含む第二の流体通路をさらに含む、本発明1000のカートリッジであって、該第一の流体通路および該第二の流体通路が、該マイクロ流体カートリッジ内に合流点を形成する、カートリッジ。
[本発明1086]
合流点が、T字合流点またはY字合流点である、本発明1085のカートリッジ。
[本発明1087]
合流点が、第一および第二の流体通路からの第一および第二の物質の融合から生じる1つまたは複数のマイクロ流体液滴の形成を可能にする、本発明1085のカートリッジ。
[本発明1088]
1つまたは複数の液滴が各々、分析物または試薬を含む、本発明1086のカートリッジ。
[本発明1089]
1つまたは複数の液滴が各々、少なくとも1つのプライマー、およびポリメラーゼ連鎖反応、転写介在増幅、核酸配列を基にした増幅、または少なくとも1つの標的核酸配列を増幅するための別の化学反応を触媒することができる酵素を含む、本発明1086のカートリッジ。
[本発明1090]
1つまたは複数の液滴が各々、標識を含む、本発明1086のカートリッジ。
[本発明1091]
第一または第二の物質が、処理流体を含む、本発明1085のカートリッジ。
[本発明1092]
1つまたは複数の液滴が各々、細胞を含む、本発明1086のカートリッジ。
[本発明1093]
複数の流体通路が、増幅反応の段階を実施するための異なる温度ゾーンを含む、本発明1001のカートリッジ。
[本発明1094]
複数の流体が、標識化またはハイブリダイゼーション反応を誘発するために、複数の流体通路内で合わされる、本発明1001のカートリッジ。
[本発明1095]
本発明1001〜1094のいずれかのマイクロ流体カートリッジ;および
動力源を含み、かつ電力を該マイクロ流体カートリッジに供給するように適合された装置
を含む、システム。
[本発明1096]
前記装置が、アッセイ結果の指標を感知するようにさらに適合されている、本発明1095のシステム。
[本発明1097]
センサーが、カートリッジ内部で発生した可視光線または別のタイプの電磁放射を感知する、本発明1095のシステム。
[本発明1098]
前記装置が、カートリッジ内部の常磁性ビーズの位置または分布を感知するようにさらに適合されている、本発明1095のシステム。
[本発明1099]
前記装置が、カートリッジ内部の種の電子スピン核磁気共鳴または他の物理的特性を感知するようにさらに適合されている、本発明1095のシステム。
[本発明1100]
マイクロ流体カートリッジ内で、複数の流体通路に接続され、かかる流体通路の間に少なくとも1つの合流点を含むチャネルに、第一の流体を提供する工程であって、該マイクロ流体カートリッジが、少なくとも1つの高速マイクロ流体アクチュエータをさらに含み、該少なくとも1つの高性能流体アクチュエータが、該カートリッジ内部の個別の構成要素であり、かつ該少なくとも1つの高性能流体アクチュエータが、少なくとも10-8ワットの、および動力を少なくとも30秒間持続することができる流体動力発生能力と、10秒未満の動力発生のための応答時間とを有する、工程;ならびに、
該第一の流体および第二の流体が、流体の交互栓を発生させるために該流体通路のネットワーク内に導入されるように、該マイクロ流体アクチュエータを時変方式で動作させる工程であって、各栓量の長さが、かかる流体通路のうちの最小の平均直径の5倍未満である、工程
を含む、方法。
[本発明1101]
高速マイクロ流体アクチュエータが、界面動電効果によって流体動力を生成する、本発明1100の方法。
[本発明1102]
界面動電効果が、電気浸透流によって発生される、本発明1101の方法。
[本発明1103]
電気浸透流が、スリットのアレイ内部で発生される、本発明1102の方法。
[本発明1104]
電気浸透流が、充填ビーズベッド内部で発生される、本発明1102の方法。
[本発明1105]
電気浸透流が、一体型多孔質構造内部で発生される、本発明1102の方法。
[本発明1106]
細胞膜内の少なくとも1つのタイプの分子に特異的な第二の流体内部の標識化分子または標識化粒子で、第一の流体内部の細胞のサブセットを標識する工程をさらに含む、本発明1100の方法。
[本発明1107]
第二の流体中に含有されている細胞透過色素で、第一の流体中の細胞を着色する工程をさらに含む、本発明1100の方法。
[本発明1108]
第二の流体中に含有されている光増感剤分子もしくは光活性指示体前駆体分子またはそれらの組み合わせで、第一の流体内部に含有されているDNAまたはRNAのサブセットを標識する工程をさらに含む、本発明1100の方法。
[本発明1109]
第二の流体中に含有されているランタニドキレートで、第一の流体内部に含有されているDNAまたはRNAのサブセットを標識する工程をさらに含む、本発明1100の方法。
[本発明1110]
第二の流体中に含有されている界面活性剤または他の表面活性剤で、第一の流体内部の細胞または他の生物学的物質を溶解する工程をさらに含む、本発明1100の方法。
[本発明1111]
界面活性剤が、ラウリル硫酸ナトリウムを含む、本発明1110の方法。
[本発明1112]
界面活性剤が、臭化ヘキサデシルトリメチルアンモニウムまたは別の陽イオン界面活性剤を含む、本発明1110の方法。
[本発明1113]
第一の流体内部の細胞または他の生物学的物質を酵素で溶解する工程をさらに含む、本発明1100の方法。
[本発明1114]
酵素が、リゾチームを含む、本発明1113の方法。
[本発明1115]
第一の流体からの組織サンプルまたは他の不均質な生物学的物質を均質化する工程をさらに含む、本発明1100の方法。
[本発明1116]
第一の流体中の生細胞、組織または生物体の生物活性を減少させる工程をさらに含む、本発明1100の方法。
[本発明1117]
生物活性を減少させる工程が、高塩基性溶液を使用することを含む、本発明1116の方法。
[本発明1118]
高塩基性溶液が、水酸化ナトリウムを含む、本発明1117の方法。
[本発明1119]
高塩基性溶液が、次亜塩素酸ナトリウムを含む、本発明1117の方法。
[本発明1120]
第二の流体中の機械的破砕のためのガラスビーズまたは他の固形物質で、第一の流体中の細胞または他の生物学的物質を溶解する工程をさらに含む、本発明1100の方法。
[本発明1121]
スワブまたは多孔質マトリクスと第一の流体とを混合する工程をさらに含む、本発明1100の方法。
[本発明1122]
スワブまたは多孔質マトリクス内部に結合されている土または他の環境サンプルを解放する工程をさらに含む、本発明1121の方法。
[本発明1123]
第一の流体が、樹状細胞を含む、本発明1100の方法。
[本発明1124]
攻撃に対する免疫応答の要素を誘導するために樹状細胞をパルスする工程をさらに含む、本発明1123の方法。
[本発明1125]
薬理学的物質またはワクチンを生成する工程をさらに含む、本発明1100の方法。
[本発明1126]
薬理学的物質の生物活性を増加させる工程をさらに含む、本発明1100の方法。
[本発明1127]
第一の流体内部に含有されているDNAまたはRNA分子をグリコーゲンに結合させる工程をさらに含む、本発明1100の方法。
[本発明1128]
第一の流体内部に含有されているDNAまたはRNA分子をシリカに結合させる工程をさらに含む、本発明1100の方法。
[本発明1129]
グリコーゲン複合または共沈DNAおよびRNAを精製する工程をさらに含む、本発明1127の方法。
[本発明1130]
シリカビーズまたはシリカ含有構造に結合されたDNAまたはRNA分子を精製する工程をさらに含む、本発明1128の方法。
[本発明1131]
グリコーゲンまたはシリカビーズもしくはシリカ含有構造から、DNAおよびRNAを溶離する工程をさらに含む、本発明1129または1130の方法。
[本発明1132]
第一の流体中の分析物の存在または非存在を検出する工程をさらに含む、本発明1100〜1131のいずれかの方法。
[本発明1133]
検出する工程が、分析物に結合されている化学発光または蛍光分子からの可視光線または別のタイプの電磁放射を感知することを含む、本発明1132の方法。
[本発明1134]
検出する工程が、分析物に結合されている常磁性ビーズの位置または分布を感知することを含む、本発明1132の方法。
[本発明1135]
検出する工程が、分析物に結合されている種の核磁気共鳴または他の物理的特性を感知することを含む、本発明1132の方法。
[本発明1136]
複数の流体通路内で複数の微液滴を発生させる工程をさらに含む、本発明1100の方法。
[本発明1137]
複数の微液滴が、少なくとも2つの流体を脈動させることによって形成され、該脈動させることが、マイクロ流体カートリッジ内の複数の高速マイクロ流体アクチュエータによって生じる、本発明1136の方法。
[本発明1138]
複数の微液滴の各々の中の分析物の存在または非存在を検出する工程をさらに含む、本発明1136の方法。
[本発明1139]
マイクロ流体カートリッジ内の複数の温度ゾーンを通過して複数の微液滴を移動させることによって、複数の微液滴の各々において増幅反応を実施する工程をさらに含む、本発明1136の方法。
[本発明1140]
複数の微液滴の各々の中の標的アンプリコンの存在を検出する工程をさらに含む、本発明1139の方法。
[本発明1141]
複数の微液滴の各々の中の標的核酸分子の融解温度を測定する工程をさらに含む、本発明1136の方法。
[本発明1142]
参考菌株からのウイルスRNAの遺伝学的相違の融解温度分析を実施する工程をさらに含む、本発明1141の方法。
図は、例示のみを目的に本発明の種々の態様を示している。当業者は、以下の説明から、本明細書に例示された構造および方法の代替態様が、本明細書に記載された本発明の原理から逸脱せずに使用され得るということを容易に認識するだろう。
本発明の一態様による、マイクロ流体カートリッジの内部の上から見下ろした破断図の例である。 本発明の一態様による、単一の溶解物質を各々含有する流体の処理、および合流点の下流の流体通路の短いチャネル区域にわたって空間的に平均化され、時間の関数としてプロットされた2つの溶解物質の各々の濃度を図示する。 本発明の一態様による、最大電圧と合流点の下流での2つの流体についての栓幅との間の関数関係を示すグラフを図示する。 本発明の一態様による、種々の流通路合流点の幾何学的形状を図示する。 本発明の一態様による、マイクロ流体カートリッジについての栓幅対マイクロアクチュエータ電圧を示すグラフを図示する。 本発明の一態様による、短い栓幅領域の種々のネックダウン拡散体合流点設計についての栓幅対マイクロアクチュエータ電圧を示すグラフを例示する。 本発明の一態様による、マイクロ流体カートリッジの側面破断図の例である。 本発明の一態様による、開口部を含むマイクロ流体カートリッジの側面破断図の例である。 本発明の一態様による、視野窓を含むマイクロ流体カートリッジの側面破断図の例である。 本発明の一態様による、マイクロ流体アクチュエータおよび電極を含むマイクロ流体カートリッジの側面破断図の例である。 本発明の一態様による、マイクロ流体カートリッジの内部チャネル内の流体栓の例である。 本発明の一態様による、マイクロ流体カートリッジにドッキングしている器具の例である。 本発明の一態様による、マイクロ流体カートリッジの流体通路内で生じた流体栓の例を例示する。 本発明の一態様による、改良されたマイクロ流体処理のためのマイクロ流体カートリッジおよび器具の写真である。 本発明の一態様による、改良されたマイクロ流体処理のためのマイクロ流体カートリッジの写真である。 本発明の一態様による、サンプルに処理工程を実施するための例示的なマイクロ流体カートリッジの等角投影図である。 本発明の一態様による、マイクロ流体カートリッジの上面図である。 本発明の一態様による、同一の規定の条件下、異なる時間に生化学プロセスで使用するためのマイクロ流体カートリッジの高い均一性を示す。一連のビーズ結合実験は、1×10-13M、1×10-12Mおよび1×10-11Mの濃度で出発溶液中に存在するオリゴヌクレオチド標的を用いて行われた。高性能アクチュエータの制御の下、標的含有溶液を、2タイプのビーズを含有する溶液と混合して、励起源を消した後、放射光が持続するように、中間物として一重項酸素を用いて、蛍光をおよそ610ナノメートルで測定した。プロットされた値は、標的の出発濃度の指示である。少なくとも10回のアッセイを各濃度で実施した。 本発明のマイクロ流体カートリッジを使用して所望の終点に達するために生化学反応に必要とされる時間の量を示す。図18に関して説明したものと同様のアッセイを実施した。 本発明の一態様による、マイクロ流体合流点で急速脈動流を達成するために高性能アクチュエータの対に適用される電位波形の例である。 本発明の一態様による、流体の混合を同期化するための例示的な合流点幾何学的形状を図示する。 本発明の態様による、HIV遺伝物質の定量化などの適用のための、本発明のマイクロ流体カートリッジを使用する定量的リアルタイムポリメラーゼ連鎖反応アッセイのためのプロセス流れ図である。 本発明の態様による、流体の区画の処理において本発明のマイクロ流体カートリッジを使用するための例示的構成を示しており、ここで、各区画または区画の各組は、その区画または区画の組のために選択されるプロセスを経ることができる。 本発明の態様による、マイクロ流体カートリッジを使用する、流体区画または区画の組の個別の処理を示している。 本発明の態様による、マイクロ流体カートリッジを使用する、流体区画または区画の組の個別の処理の例を示している。
発明の詳細な説明
概略
マイクロ流体処理システム内の流れは、典型的には、低レイノルズ数領域と称される、慣性効果に対する粘性効果の優勢性に関連している[1]、[2]。マイクロ流体処理システムの多くの適用は、対応して低い二元拡散率を有する1つまたは複数の高分子量反応物に関わる[3]、[4]。例えば、分子力学シミュレーション[5]は、3.1×106ダルトンの分子量を有するヒト免疫不全ウイルス(HIV)のゲノム物質を構成するおよそ9800個の塩基のリボ核酸鎖が、およそD=2×10-12 m2 s-1の水中拡散率を有し、そのため、10分間で1次元拡散はたった50ミクロンの変位と関連する、ということを示す。慣性効果に対する粘性効果の優勢性と、高い関心対象である反応物の比較的緩徐な拡散率との組み合わせは、マイクロ流体システムにおいて2つまたはそれ以上の溶液を巨視的に混合するための流体力学的機序の必要性を課するものである。
水溶液がガラスまたはシリカなどの表面に接触すると、表面は、表面シラノール基の脱プロトン化(depronation)に起因して負に帯電する。脱プロトン化(depronation)の結果として、電気二重層が生ずる。表面電荷は、溶解対イオンを引きつけ、共イオンに反発し、その結果、電荷分離をもたらす。デバイ長は、二重層の特性厚である。拡散対イオン層内の可動イオンは、外部から加えられた電場によって駆動され、移動しているイオンは、粘性力相互作用によってバルク液体を引っ張る。
軸方向電場Exの適用によって2つの幅広平行表面の間で発生される電気浸透流の平均速度は以下である:
Figure 2019162623
式中、aは、2つのポンピング表面の間の分離距離の二分の一であり、μは、流体粘性であり、dp/dxは、流れに反する圧力勾配であり、εは、流体誘電率であり、ζは、ゼータ電位であり、αは、イオンエネルギーパラメータであり、Gは、二重層の厚みのための補正項である。幅広平行表面が帯電し、対イオンを引きつけ、共イオンに反発して、電荷二重層を形成する。二重層のイオンの外層は、可動性である。軸方向電場を加えることは、可動イオンに力を及ぼし、可動イオンのエレクトロマイグレーションは、粘性相互作用によってバルク流体を引っ張る。ゼータ電位は、電気浸透流上の表面状態の効果を特徴付ける。ゼータ電位は、表面/流体界面の近くの正味過量の表面電荷平衡イオンと関連する経験的なパラメータである。
定義
特許請求の範囲および明細書において使用される用語は、特に断りない限り以下に記載されるように定義される。
「電気浸透流」は、流体導管を横切る印加電圧によって誘導される液体の移動を指す。流体導管は、液体の流れを可能にするための任意の多孔質材料、キャピラリー管、膜、基板、マイクロチャネルまたは通路であることができる。電位は、任意の2つの平行表面の間に加えられることができる。
「マイクロ流体アクチュエータ」または「流体アクチュエータ」は、電力または別の容易に蓄積されるかまたは発生されるエネルギーの形態を流体動力に変換する構成要素を指し、流体の塊に力を加えて圧力勾配によって該流体の塊を輸送することを意味する[6]。
「テイラー分散(Taylor dispersion)」は、長い、一直線の管または他の同様の流通路を通して溶質の塊を層流に輸送および伝播することを指し、かかる溶質の塊は、最初は、流れ内部の栓(または複数の栓)の中に閉じ込められており、かかる栓は、管横断面と同じ程度の軸方向寸法を有する[2]。
「ゼータ電位」は、電気浸透流の多くの数学的モデルに含まれる経験的または半経験的なパラメータを指し、他の要因が等しい場合、ゼータ電位のより高い絶対値は概して、より高い流量および/またはより高い最大背圧と関連している[7]、[8]。
明細書および添付の特許請求の範囲に使用されるように、単数形「a」「an」および「the」は、文脈が明らかに指示しない限り、複数の指示対象を含むことが留意されるべきである。
マイクロ流体システムの概略
本発明は、カートリッジまたは同様の密閉された流体処理デバイスなどのマイクロ流体システムを含む。いくつかの態様において、マイクロ流体カートリッジは、機械式可動部を有さず、滑り接触、流体嵌め(fluidic fitting)などに関連する不具合モードを除去する。一態様において、マイクロ流体カートリッジは、電池電源で動き、外部シリンジポンプまたは流体発動の何らかの他の手段を必要とすることなくEO流体発動を組み込む。別の態様において、マイクロ流体カートリッジは、マイクロ流体アクチュエータによって加圧される流体を移動させるための内部機構を含む。
いくつかの態様において、マイクロ流体カートリッジは、サイズが小さく、ハンドヘルドの携帯用デバイスと共に使用されることができる。例えば、カートリッジは、体積が40cm3未満であり得る(2cm×2cm×10cm=40cm3)。加えて、カートリッジは、50〜500ccの排水量を有することができる。例えば、カートリッジは、人間の手の中に収まるのに十分に小さく、低コストで大量に製造するための寸法にすることができる。
マイクロ流体システムは、流体通路のネットワークを含む。通路は、流体を保持し、流体の輸送を可能にするためのパイプ、管、密閉されたチャネルまたは他の密閉された構造を含むことができる。流体通路は、少量の少なくとも2つの異なる流体で装填されることができる。流体は、例えば、各々10ミリリットル未満の容量を有することができる。一態様において、流体の少なくとも1つは、動作時にまたは動作時の頃にポートを通してカートリッジ内に装填される。他の態様において、流体は、カートリッジ内に予め装填されている。
流体通路のネットワークは、1つまたは複数の合流点によって接続されることができる。各合流点は、2つまたはそれ以上の流体通路を合わせて、種々の配列および設計に構成されることができる。
マイクロ流体カートリッジは、少なくとも2つのマイクロ流体アクチュエータを含み、少なくとも1つのマイクロ流体アクチュエータは、高性能マイクロ流体アクチュエータである。少なくとも1つの高性能マイクロ流体アクチュエータは、少なくとも10-8ワットの流体動力発生能力を有し、少なくとも30秒間、動力を持続することができ、かつ10秒未満の動力発生のための応答時間を有する。流体通路のネットワークは、マイクロ流体アクチュエータに流体連通している。
マイクロ流体システムは、プラスチック、ガラスまたは他の材料から作られたカートリッジであり得る。カートリッジ内部の流体通路および他の特徴は、機械加工、ホットエンボス、射出成形または他の手段によって生成され得る。カートリッジは、熱接合、レーザー溶接、超音波溶接によって、あるいはエポキシ樹脂または感圧接着剤または他の接着手段の使用によって、複数の部分から組み立てられ得る。
本発明のマイクロ流体アクチュエータは、電気浸透流の発生を通して動作し得る。
本発明のマイクロ流体アクチュエータは、シリコン、ガラス、プラスチックまたは他の材料から作られ得る。いくつかの態様において、マイクロ流体アクチュエータは、酸化ケイ素および窒化ケイ素の多数層で被覆された単結晶シリコンウエハーから作られ、単結晶シリコンウエハー内の開口部が、フォトリソグラフィー特徴明確化プロセス(photolithographic feature definition process)、それに続く深掘り反応性イオン改良型(deep-reactive ion enhanced)(DRIE)エッチング[9]としても知られている時間多重化誘導結合型プラズマ(time-multiplexed inductively coupled plasma)(TM-ICP)エッチングによって作られる。マイクロ流体アクチュエータは、単純なワンステップ・フォトリソグラフィープロセスによって、単結晶シリコンウエハーから生成されることができる。これらのマイクロ流体アクチュエータは、様々な適用のための使い捨てマイクロ流体カートリッジ内に組み込むためには経済的である。
いくつかの態様において、マイクロ流体カートリッジは、カートリッジ内側の流体またはサンプルを分析するか、または処理するための器具にドッキングするか、または結合するように設計されている。器具は、流体もしくはサンプルを分析するための種々の検出用または監視用構成要素を含むことができ、かつエネルギーをカートリッジに提供するための動力供給または電気回路を含むことができる。
いくつかの態様において、電力源および関連電気回路は、カートリッジ内に内蔵されており、それは、外部ハードウェアと接続することなく、動作する。
図1において、マイクロ流体カートリッジ100の例が、カートリッジ100の内部の、上から見下ろした破断図の視点から示されている。マイクロ流体カートリッジは、第一の流体通路101、第二の流体通路102、第三の流体通路103、ならびに第一、第二および第三の流体通路を接続する合流点104を含む。マイクロ流体カートリッジは、第一の圧力源および第二の圧力源を含む。圧力源の各々は、マイクロ流体アクチュエータ105b、106bであることができ、それらの少なくとも1つは、高性能マイクロ流体アクチュエータである。いくつかの態様において、アクチュエータはまた、1つまたは複数のピストンまたはピストン様要素105aおよび106aを含み得る。いくつかの態様において、ピストン様要素105aおよび105bは、固形物質の栓であり得、それは、該栓が内部で進む流体通路の内側と周囲シールを形成する。
一態様において、マイクロ流体アクチュエータ105b、106bは、ピストンまたはピストン様要素105aおよび106aを介して、流体通路101、102内部に収容されている処理流体に作用する。例えば、第一のマイクロ流体アクチュエータ105bの動作は、アクチュエータのピストン105aを前方へ押す。ピストン105aの移動は、流体通路101内部の流体を加圧して、かかる流体を合流点104に向けて進ませる。同様に、第二のマイクロ流体アクチュエータ106bの動作は、第二のピストン106aを前方に押す。ピストン106aの移動は、流体通路102内部の流体を加圧して、かかる流体を合流点104に向けて進ませる。2つの処理流体は、合流点104で合わされ、混合される。
他の態様において、ピストン105a、106aは、カートリッジ内で固体要素として存在しない。アクチュエータ流体は、マイクロ流体アクチュエータ105b、106b内部に収容されるか、またはマイクロ流体アクチュエータ105b、106bと流体接触しており、障壁流体の栓によって流体通路内の処理流体から分離されている。いくつかの態様において、障壁流体は、空気または別の気体である。アクチュエータ流体の流体移動により、空気栓が加圧されて前方に移動し、それが順に、流体通路内の処理流体を加圧して処理流体の流体移動を発生させる。ピストンとしての空気栓の機能は、表面張力効果によって高められる。いくつかの態様において、空気栓が内部を進む流体通路の内側表面は疎水性であり、通路の壁に沿って空気栓を通り越すアクチュエータ作動流体の流れを促す、はっきりした軸方向の特徴がない。いくつかの態様において、不混和流体の栓が、ピストンとして機能する。いくつかの態様において、アクチュエータ流体を処理流体から分離する流体の栓はなく、アクチュエータ流体は、流体通路内で処理流体と直接接触しているが、処理流体(例えば、2つの不混和流体)と混ざらない。アクチュエータ流体の移動は、処理流体の対応する加圧および移動を引き起こす。
合流点104に向かって流体通路を通して流体を移動させると、少なくとも1つの流体が合流点104を通過して第三の流体通路103内に進むことをもたらす。10mm未満の断面寸法を有し、かつ液体相流体を収容する流体通路について、通路101、102および合流点104の内部での流体の流れは、特徴的に層流であることができる。
第一および第二の流体アクチュエータ105bおよび106bは、第一および第二の流体通路101および102内部の流体の速度および流量が経時的にほぼ不変で、一定であり、合流点104を越えてすぐの流体通路103の領域において半個別の流体層流をもたらすように、作動されることができる。流れの方向(軸方向と称される)に合流点104を数ミリメートル越えた距離にわたって一連の流体通路の横断面がある場合、第一の流体の濃度は、横断面の一領域においてほぼ100%であることができ、第二の流体の濃度は、別の領域においてほぼ100%である。合流点104からの軸方向距離の関数としてのそのような空間的局在性の存続は、処理流体中の種の拡散率にほぼ反比例する。
処理流体の交互栓などの、先に記載した層流動作からの逸脱は、マイクロ流体アクチュエータの1つまたは複数の時変作用から、処理流体の1つまたは複数の対応する時変加圧および流れにより、生じることができる。一例において、第一のマイクロ流体アクチュエータ105bは、所与の周波数および100%未満のデューティーサイクルでの矩形波電圧入力で作動され、第二のマイクロ流体アクチュエータ106bは、同じ周波数で、100%未満のデューティーサイクルでの矩形波電圧入力で作動され、第一のアクチュエータ矩形波は、第二のアクチュエータ矩形波と位相がずれている。
図2は、処理流体が、単一の溶解物質を各々含有する水溶液であり、2つの溶解物質の各々の濃度が、合流点104の下流の流体通路103の短いチャネル区域にわたって空間的に平均化され、時間の関数としてプロットされていることを例示する例である。アクチュエータの位相のずれた動作は、流体通路101および102内に収容されている流体の交互栓の逐次注入をもたらす。慣性力に対する粘性力の優勢性により、分子拡散は、2つの流体がマイクロ流体カートリッジ内部で合わされるとき、かかる流体の化学および生化学成分が混ざり合う一次機構であることができる。流体の空間的に不均一な分布は、かかる拡散が起こる距離を短くし、化学および生化学反応を加速することができる。
図3は、マイクロアクチュエータ動作の最大電圧、デューティーサイクルおよび期間と、合流点104の下流の2つの種の栓幅との間の関数関係の例である。図3においてプロットされたデータは、流体通路がおよそ1mmの直径を有する円筒形である、本発明のカートリッジで収集された。マイクロ流体アクチュエータは、窒化ケイ素および酸化ケイ素の薄膜で被覆されたシリコンを含むスラット構造内部の隙間における電気浸透流の発生によって、電力を流体動力に変換する。2つの溶液の一方は、蛍光種を含有し、そのため、栓幅は、CCDカメラを備えた落射蛍光顕微鏡によって監視されることもできる。75V〜175Vの範囲の電圧が、50%デューティーサイクル、かつ100および200ミリ秒のオン状態継続時間で、位相ずれで動作する2つのアクチュエータに印加された。示されているように、軸方向に2mmの流体栓が、生成されることもできる。短い栓の下流混合は、テイラー分散によって起こることができる。
流体栓の最小軸方向寸法は、合流点での流通路の断面寸法によって制約され得る。図4は、流通路が、合流点にすぐ隣接する領域においてネックダウンするか、または断面寸法が減少する、流通路合流点の幾何学的形状の例である。
図5は、ネックダウン幾何学的形状と速いマイクロアクチュエータ応答との組み合わせが、流体の非常に短い栓を生成することができることを示す。
図6は、図4の短い栓幅領域の種々のネックダウン拡散体合流点設計についての栓幅対マイクロアクチュエータ電圧を示すグラフを図示する。チャネルが直径1mmから直径0.25mmにネックダウンする合流点で、50ミリ秒オン状態継続時間が、軸方向に50ミクロン未満の栓を生成した。このサイズの栓で、200nm直径ビーズなどの比較的緩徐に拡散する種を含有する第一の溶液は、第二の溶液と10分未満で完全に混合するであろう。
差別的流体輸送に対する、および/または複数の流体を混ぜ合わせるための、より優れた制御のために、複数のマイクロ流体アクチュエータが、流体を移動させて合わせるために、複数のチャネルおよび合流点を用いて使用されることができる。各マイクロ流体アクチュエータ105b、106bは、アクチュエータ流体に流体接続されており、処理流体の流れを発生させる。例えば、2つのマイクロ流体アクチュエータ105b、106bは、2つの処理流体の混合を生じることができる。次に、混合物は、2つの追加のマイクロ流体アクチュエータの流体圧力を使用して、別の流体通路内の第三の流体と合わされることができる。
いくつかの態様において、マイクロ流体カートリッジ100は、2つの流体で装填される、すなわち、第一の流体通路101内を一方の流体で、第二の流体通路102内をもう一方の流体で装填される。いくつかの態様において、流体は、マイクロ流体カートリッジの製造時に、またはその頃に装填される。マイクロ流体カートリッジ100は、マイクロ流体アクチュエータ105b、106bの各々と流体接続しているアクチュエータ流体を含むことができる。
他の態様において、マイクロ流体カートリッジ100は、流体通路101、102内を試薬で装填される。試薬は、流体相の形態、乾燥された試薬であることができるか、または流体通路の表面もしくは壁に付着していることができる(例えば、ビーズまたは粒子)。いくつかの態様において、試薬は、処理流体中に存在し、かつ細胞または細胞小器官を溶解するための界面活性剤または他の表面活性剤を含む。試薬は、リゾチームなどの酵素であることができる。他の態様において、試薬は、サンプルまたは処理流体中の分析物と結合するか、ハイブリダイズするか、または相互作用するための、抗体、タンパク質、ペプチド、オリゴヌクレオチドまたは粒子である。試薬の他の例は、以下で詳細に説明される。
図7は、図1のマイクロ流体カートリッジ100の例であり、カートリッジ100の内部を側面斜視から示している。図1のように、マイクロ流体カートリッジは、第一の流体通路101、第二の流体通路102、第三の流体通路103、および第一および第二の流体通路が出会う合流点104を含む。マイクロ流体カートリッジは、第一の流体アクチュエータ105bおよび第二の流体アクチュエータ106bを含む。カートリッジはまた、第一および第二の流体アクチュエータ105b、106bによって前方に押される1つまたは複数のピストンまたはピストン様要素105aおよび106aを含む。
ここで図8を参照すると、開口部801が、マイクロ流体カートリッジ100の上部上に示されており、それは、出発物質、サンプル、またはその後の処理のための流体を入れるために使用されることができる。開口部は、流体通路のネットワークに接続される。開口部は、出発物質を処理するために流体通路に接続されることができる。マイクロ流体カートリッジ100の動作の間に、流体が開口部801から流れ出ることを防ぐために、開口部801は、キャップ、キャッピング要素、栓または他のタイプの閉鎖物802を有することができる。いくつかの態様において、開口部801は、空気圧弁などの機構によって密封閉鎖されることができる。開口部801は、シリンジなどの狭い導管によって作用されると弾性的に変形することができる有孔エラストマー構造などの受動機構により自己密封することができる。他の態様において、栓またはキャッピング要素802は、流体導管を受け入れることができ、流体導管が引き抜かれると密封封鎖することができる。流体導管は、針、管、剛性流体導管または半剛性流体導管であることができる。開口部はまた、熱空気(thermopheumatic)効果、電磁効果または静電効果によって閉鎖されることができる。
一態様において、マイクロ流体カートリッジ100は、流体処理の監視を促進するため、または流体プロセスのアウトプットを分析するために、少なくとも1つの構成要素またはモジュールを含む。図9において、マイクロ流体カートリッジ100は、第三の流体通路103内の流体、例えば流体の色、不透明度および他のそのような物理的特性の観察または監視を可能にする、光学的に透明な領域901を含む。透明な領域901は、蛍光、化学ルミネセンスまたは本明細書に記載されたものなどの他の分析方法などの技術を使用して、流体通路103内部の流体の分析を可能にすることができる。
図10において、第一のマイクロ流体アクチュエータ1001が示されており、穿孔された構造1001aであって、電気二重層の特性厚の1000倍以内の少なくとも1つの横断面を有する流体通路、および穿孔された構造の各側面上の少なくとも1つの電極を有する、穿孔された構造1001aを含む。電極は、金属接点に電気的に接続されており、マイクロ流体アクチュエータ1001の両側上に置かれている。電場は、電極間を横切るように適用される。一態様において、電場は、マイクロ流体カートリッジの一部分を通るかまたは沿って走り、接点1003で終端するトレースまたはワイヤー1002によって、電極間を横切るように適用される。
他の態様において、マイクロ流体アクチュエータ1001は、パルス発生器または他の制御型時変電圧源、および少なくとも一対の電極に結合されている。パルス発生器または制御型時変電圧源は、電圧パルスのパターンまたは時差式電圧パルスをマイクロ流体アクチュエータ1001に生じることができる。
いくつかの態様において、電気浸透流は、マイクロ流体アクチュエータ1001内部の複数のスリットキャピラリー内部で発生される。電気浸透流はまた、マイクロ流体アクチュエータ1001内の充填ビーズのベッド内部、一体型多孔質構造内部または円筒形チャネルのアレイ内部で発生されることができる。
他の態様において、マイクロ流体アクチュエータ1001は、非常に効果的なゼータ電位で電気二重層の流体固体界面での形成を促す化学的特性を有するアクチュエータ流体で充填されている(例えば、主として酸素およびケイ素を含有する内部穿孔表面を有する穿孔された構造用の水溶液)。電場の適用は、マイクロ流体アクチュエータ1001の穿孔内部で電気浸透流を発生させる。1〜10ミクロンの間のより小さい断面寸法を有するスリット様穿孔を有する絶縁シリコンの穿孔された構造について、かかる電気浸透流は、流体抵抗を破って、および/または10kPa以上の圧力水頭に対して、流体を通路101内に駆動することができる。電気浸透流に関連する圧力は、数マイクロ秒以内に発生することができ、第一の基本的な制限は、各スリット様穿孔の壁から各穿孔の中心面までの運動量拡散の率である。
一態様において、マイクロ流体アクチュエータ1001は、少なくとも10-8ワットの流体動力発生能力を有し、少なくとも30秒間、動力を持続することでき、かつ動力発生のための応答時間は、例えば、10秒未満、2秒未満、0.2秒未満または0.04秒未満である。液体が、毎分少なくとも0.1mLの流量で少なくとも1kPaの圧力降下に関連する流体抵抗の中でも流れるように、マイクロ流体アクチュエータはまた、少なくとも10マイクロリットルの液体を加圧することができる。
本発明におけるマイクロ流体アクチュエータは、規定のサイズのカートリッジに嵌めるのに十分小さいことによって、比較的小さい動力を引き出すことによって、および速い応答時間によって、優れている。各マイクロ流体アクチュエータは、0.1ヘルツまたはそれより高速で、好ましくは1ヘルツまたはそれより高速、より好ましくは10ヘルツまたはそれより高速で、オンおよびオフを循環(または異なる流体動力発生状態の間の移行)することができる。同等に、マイクロ流体アクチュエータは、10秒以下の立ち上り時間、または1秒以下の立ち上り時間、または0.1秒以下の立ち上り時間を有する。
速い応答時間および高出力は重要である。理由は、最初は別個の流体相内部に収容されている2つの種の反応速度が、2つの流体相が短い個別の栓で反応チャネル内に導入されるときは、2つの流体が連続的にもしくは長い栓で反応チャネル内に導入されるときと比較して、または2つの流体がチャネルの代わりにウェル(すなわち、パイプまたは密閉されたチャネルなど他の2つの寸法よりもはるかに大きい1つの寸法を有する流体容器とは対照的に、内部寸法アスペクト比がおよそ1(unity)である容器)内に導入されるときと比較して、より著しく速いためである。
ここで図11を参照すると、マイクロ流体カートリッジ100内の通路の内部の略図が示されている。空間的不均一性は、流体通路1100を通る一連の栓の圧力駆動流が後に続く、流体の交互栓の逐次注入による2つの流体相の反応を促進することができる。低レイノルズ数領域での流体の流れは、流体通路1100壁での流れ速度をゼロであると仮定することによって(滑りなし境界条件)、うまくモデル化されることができる。円筒形通路について、半径流速度プロファイルは、以下の式によって説明される、放物線状である:
Figure 2019162623
式中、Uは、平均速度であり、rは、動径座標であり、aは、円筒形通路の半径である。栓が流体通路を下って移動するにつれて、放物線状流れプロファイルは、対応する栓ひずみ1101、1102を引き起こす。栓と共に収容されている粒子は、ひずんだ栓1103から半径方向に拡散することができる。粒子は、流体通路中心線近くの栓前部から半径方向外側1103aと、壁近くの栓後部から半径方向内側1103bに、拡散する。この現象は、テイラー分散として知られており、それは2つまたはそれ以上の流体の効率的な混合を生じる。同様の拡散効果が、非円筒形流体通路内で生じることができる。
図12において、改良された流体処理を促進するためか、処理を監視するためか、プロセスのアウトプットを分析するためか、または他の処理工程のために有用な器具1200にドッキングしているマイクロ流体カートリッジ100が示されている。マイクロ流体カートリッジ100は、カートリッジ内部で発生した可視光線または別のタイプの電磁放射を感知するセンサーを含むことができる。一態様において、器具1200は、CCD撮像装置もしくは光電子増倍管などの光学検出器または他のセンサー1201を含む。別の態様において、マイクロ流体カートリッジ100は、蛍光標識された分子からの蛍光発光を検出するための検出器を含む。
一態様において、器具1200は、時変電圧または他の入力をマイクロ流体アクチュエータ1001に供給するための動力供給源および電気回路1202を収容する。別の態様において、制御電圧が、リボンケーブル1204によって動力供給源/制御器に接続されたピンベースの相互接続器1203を介して供給される。いくつかの態様において、動力供給源は、電池である。
他の態様において、マイクロ流体カートリッジ100は、外部動力源に結合される。外部動力源は、電気的接続によってマイクロ流体カートリッジ100に結合されることができる。マイクロ流体カートリッジ100は、動力源からの電力供給を制御することができる制御器を含むことができる。動力源は、マイクロ流体アクチュエータ1001に動作可能に結合されることができる。いくつかの態様において、動力源は、電気式、空気式であるか、または電池である。電池は、外部デバイスの内側に位置されるか、または電気的接続によってマイクロ流体カートリッジ100に結合されることができる。
いくつかの態様において、カートリッジ構成要素は、射出成形によって特殊化したポリスチレンおよび/またはABSプラスチック樹脂から生成される。カートリッジ構成要素接合は、ダイカットされた感圧接着剤によるか、熱接合によるか、超音波溶接によるか、レーザー溶接によるか、エポキシ樹脂によるか、これら手段の組み合わせによるか、または他の手段によることができる。
図13は、本発明の一態様による、マイクロ流体カートリッジの流体通路内に発生される交互流体栓の例である。
図14は、本発明の態様による、改良されたマイクロ流体処理のための例示的なマイクロ流体カートリッジ1400および器具1401を示す。器具1401の外部ハウジングは、内部構成を示すために取り除かれている。マイクロ流体カートリッジ1400は、マイクロ流体アクチュエータ1401(4つのアクチュエータは、カートリッジ内部で黒で輪郭が描かれている)を含む。図14は、カートリッジ1400の内側に4つのマイクロ流体アクチュエータ1401を示す。マイクロチャネルのネットワーク1405は、カートリッジ1400のプラスチック材料で形成される。マイクロチャネルのネットワーク1405は、マイクロ流体アクチュエータ1401の2つの流体ポートの各々と、その他の3つのマイクロ流体アクチュエータの2つの流体ポートの各々とに接続する、チャネルを含む。回路基板1404は、マイクロ流体アクチュエータ電極の各々のための電気接点を含む。電気接点は、相互接続器を用いてケーブル1406を介して器具1401に配線される。器具1401は、アクチュエータ1401の電極対を横切り、かつその他の3つのアクチュエータの電極対を横切って印加される電圧を制御するためのマイクロプロセッサー、パワーマネージメントハードウェア、および他の構成要素を含む。器具の機能は、100ボルト、200ボルト、400ボルトまたは他の電圧の独立に制御された電位を入手することを含み、かかる電位は、10Hzを超える周波数でマイクロプロセッサー制御の下、切替可能である。
図15は、本発明の態様による、改良されたマイクロ流体処理のためのマイクロ流体カートリッジ1400を示す。カートリッジの底部プレート1500および上部プレート1501は、内部構成を示すために、この図では互いから切り離して示されている。2つのプレートが一緒に嵌め込まれると、それらは、図14に示されたものと同様のマイクロ流体カートリッジ1400を形成する。カートリッジは、この写真では各々組み立ての異なる段階にある、4つの高性能マイクロ流体アクチュエータ用に構成されている。カートリッジ1400は、底部電極1502および半導体チップ1503を含み、底部電極の上に位置付けられた電気浸透流を発生させるためのスラット構造を備え、介在チップ密封ガスケットを備える。別の半導体チップ1504は、1503と類似し、スラット構造半導体チップの上に置かれた追加のガスケットを備える。カートリッジ1400はまた、追加のガスケットを有する上部電極1505を含む。
図16は、本発明の態様による、サンプルに処理工程を実施するための例示的なマイクロ流体カートリッジ1600の等角投影図(機械製図)である。カートリッジ1600は、少なくとも1つの高性能流体アクチュエータを収容するモジュールと流体的相互作用することができる、入口ポート1601および1602を含む。流体通路1604および1605は各々、ある容量の流体を保持することができる。一例において、流体の1つは、ブタノールまたは別の沈殿剤であることができる。別の例において、流体の1つは、多糖結合核酸などの、沈殿しやすい複合体を含有することができる。流体通路1604および1605の内部の幾何学的形状は、規定の流体が規定の流れ特徴を通路内部で示すように設計されることができる。例えば、ブタノールを運ぶ流体通路は、マイクロ流体アクチュエータによって駆動される輸送の間、ブタノール流頭の完全性をより良好に維持するために、より小さい断面寸法(水溶液を保持するための流体通路と比較して)で構成されることができる。カートリッジ1600は、反応物を受け入れるためのチャンバーを含むことができる。カートリッジ1600は、環状オレフィンポリマーまたは他のポリマーから作製されることができる。カートリッジ1600は、溶媒を保存することを意図されたカートリッジ領域が、経時的な劣化に耐え、かつ他の設計目標を達成するように、2種類以上の材料から形成された要素を含むことができる。カートリッジ1600は、1つまたは複数のマイクロ流体アクチュエータ(それらの少なくとも1つが高性能マイクロ流体アクチュエータである)の作用によって2つの溶液が中に輸送されるチャンバー1606を含むことができる。チャンバー1606は、2つの溶液または相の異なる密度に関連する浮力効果が、2つの溶液または相の混合を促進するように構成されることができる。2つの溶液は、溶媒および核酸含有溶液であることができる。溶媒および核酸含有溶液の混合は、流体をチャンバー1606内に輸送することを必要とし、そこで、チャンバーから1つまたは複数の液体相を引き抜くと、表面張力効果、浮力効果、またはこれら効果の組み合わせにより、気泡がかかるチャンバー内に保持される。カートリッジ1600は、多孔質構造を組み込んだ構成要素1607を含む。核酸含有溶液または他の溶液は、例えば、多孔質構造を通過させられることができる。この通過の後に、タンパク質などの非結合材料を洗い流すために、多孔質構造を通るエタノールなどの溶媒の流れが続くことができる。核酸は、水を多孔質構造に通過させることによって、チャネル1608内に溶離されることができる。
図17は、本発明の態様による例示的なマイクロ流体カートリッジの上面図である。
図18は、マイクロ流体カートリッジまたは本発明を使用して実施された実験からのデータを示す。データは、複数のプロセスの結果において高い均一性を有する生化学プロセスおよび他のプロセスが、同一の規定の条件下、異なる時間に実行されることを示している。一連の実験を、1×10-13M、1×10-12M、および1×10-11Mの濃度で出発溶液中に存在するオリゴヌクレオチド標的を用いて行った。高性能アクチュエータの制御下、標的含有溶液を、2タイプのビーズを含有する溶液と混合した。2タイプのビーズを、2タイプのプローブで機能化したため、各オリゴヌクレオチド標的は、各ビーズの1つに結合する傾向にあろう。およそ680ナノメートルでの光による励起が、一重項酸素を中間物とし、およそ610ナノメートルでの発光をもたらすようにビーズを着色した。そのため、放射された光が、励起源を消した後、存続する。プロットされた値は、標的の出発濃度の指標である。少なくとも10回のアッセイを、各濃度で実施した。データは、明確性のためにジッター表示(jitter)した。
図19は、マイクロ流体カートリッジまたは本発明を使用して実施された実験からのデータを示す。データは、マイクロ流体カートリッジが、生化学反応または他のプロセスが最小閾値を超える信号などの所望の終点に達するために必要とされる時間を短縮するために使用されることができることを示している。図18に関して説明されたアッセイと同様のアッセイを実施した。標的含有溶液およびビーズ含有溶液を、高性能マイクロ流体アクチュエータによって駆動された流れにより、合流点で混合した。アッセイを、以下の2つの条件下で実行した:1)流体が合流点において合わさる間、流体の急速脈動流を用いる、および2)流体が合流点で合わさる間、連続流を用いる。次に、合わされた溶液を、10または20分間インキュベートし、その後読み取った。対照として、アッセイをまた、標的溶液中に標的を含まずに実行した。図19に示されているように、急速脈動流を用いる10分間インキュベーションについての発光信号(形成されたビーズ対-標的複合体の数にほぼ比例する)は、層流を用いた20分間インキュベーションについての信号に匹敵する。
図20は、マイクロ流体合流点で急速脈動流を達成するために、高性能アクチュエータの対に適用された電位波形の例である。
図21は、本発明を使用した流体の混合を同期化するための合流点の幾何学的形状を図示する。合流点2100に入ってくるのは、第一の流通路2101および第二の流通路2102である。合流点にすぐ近接する第二の流通路2102の横断面範囲は、第一の流通路2101の横断面よりも小さい。第一の流通路2101は、ほぼ一直線のラインに沿って合流点を通り、第三の流通路2103に移行する。第二の流通路2102は、第一および第三の流通路2101、2103の両方と角度を形成する。合流点にすぐ近接する第二の流通路2102の横断面における縮小は、疎水性溶液に合流点でメニスカスを形成する傾向にさせる。高性能アクチュエータによって駆動される脈動流の下、第二の流通路2102内の流頭2104は、アクチュエータによる流体容積への正味の正の流体動力の適用にもかかわらず、交互の凸および凹メニスカス形成を伴って、合流点で保持されることができる。この失速効果は、第一の流通路2101から前進する流頭2005が合流点に達して、2つの流頭の間で接触が起こるまで、維持されることができる。この効果、および同様のそのような効果は、流体の混合を同期化するために使用されることができる。同期化された流体混合は、実行間のより良好な再現性および他の好都合なアッセイ性能特性と関連し得る。
図22は、HIV遺伝物質の定量化などの適用のための、本発明を使用する定量的リアルタイムポリメラーゼ連鎖反応アッセイのためのプロセス流れ図である。細菌DNAまたはメッセンジャーRNA、またはウイルスRNAなどの関心対象の遺伝物質を含有し得るサンプル2200は、マイクロ流体チャネルおよび少なくとも2つの流体アクチュエータ2204(その少なくとも1つは高性能流体アクチュエータである)を含む処理システム内に導入される。流体アクチュエータは、ポリメラーゼ連鎖反応モジュール2203におけるサンプル中の該遺伝物質が関与するポリメラーゼ連鎖反応を促進する。ポリメラーゼ連鎖反応プロセスは、逆転写モジュール2203における逆転写プロセスによって先行されることができる。流体アクチュエータは、逆転写モジュール2202において、サンプル内部に含有されているRNAの逆転写を促進する。かかる逆転写は、サンプル調製モジュール2201におけるサンプル調製プロセスによって先行され得る。かかるサンプル調製プロセスは、少なくとも1つの高性能マイクロ流体アクチュエータの作用によって促進されることができる。
図23は、流体の区画の処理において本発明のマイクロ流体カートリッジを使用するための構成を示しており、ここで、各区画または区画の組は、その区画または区画の組のために選択されるプロセスを経ることができる。カートリッジまたは他の流体ネットワーク2300は、主チャネル2301を収容する。主チャネルに流体接続しているのは、少なくとも2つの副チャネルのアレイ2302である。副チャネルアレイを含む副チャネルは、少なくとも1つのマイクロ流体アクチュエータ2304に流体接続される。主チャネルは、マイクロ流体アクチュエータ2303に流体接続される。マイクロ流体アクチュエータ2303および2304の少なくとも1つは、高性能マイクロ流体アクチュエータである。
図24は、本発明のマイクロ流体カートリッジを使用する流体区画または区画の組の個別処理を示している。チャネル2301内部に収容されたある容量の第一の流体2400は、マイクロ流体アクチュエータ2303の作用によって加圧され、輸送されることができる。副チャネルアレイ2302内部の副チャネル内のある容量の第二の流体2401は、マイクロ流体アクチュエータ2304の作用によって加圧され、輸送されることができる。副チャネルアレイ内部の追加の副チャネルは、マイクロ流体アクチュエータおよび他の手段によって加圧されて、合流点2402で、副チャネル内の流体の容量を第一のチャネル内の流体の容量に注入することができる。不混和流体または空気または他の気体2403の容量が注入されて、主チャネル内の流体が区画されることができ、かかる区画は特定の副チャネルに対応し、そのため、特定の流体区画内の流体は、主として、特定の副チャネルから注入された規定の第二の流体と合わされた第一の流体を含む。第一の流体および規定の第二の流体のかかる混合物は、下流チャネル、チャンバーまたは他の流体容器2405内に進むことができる。
いくつかの態様において、本発明のマイクロ流体カートリッジは、ピペットを介して加えられる精製されたサンプル(サンプル調製が、必要に応じて組み込まれることができる)のための入口;アッセイプロセスを駆動するための、統合された帯電スリットアクチュエータ;サンプルが最初にPCRプライマーを再構成し、次に逆転写酵素過程および増幅のための3つの異なる温度ゾーンを通過して循環させられる、増幅モジュール;各々異なるビーコンを含有する一連の液滴を発生させる、液滴モジュール;融解温度スキャニングゾーンであって、ここで、リアソータント分析(reassortant resolution)が、主要アクチュエータが液滴を検出ゾーンを通過して前後に往復させながら行われると同時に、独自の光化学感熱方法が、ランプの間の各点での各液滴の温度を正確に決定するために使用される、融解温度スキャニングゾーンを含む。
図25は、本発明の態様による、流体区画の個別の処理を使用するマイクロ流体カートリッジ内の液滴設計の例を示す。個々のマイクロ流体アクチュエータ(例えば、24個の帯電スリットアクチュエータのアレイ)の制御の下の種々の副チャネルは、凍結乾燥されたビーコンプローブを含む溶液をアンプリコン溶液(増幅モジュールからの出力)に逐次注入して一連の液滴を発生させることができ、これが検出領域(例えば、溶融温度分析ゾーンまたは蛍光検出器)に向かって一次反応チャネルまたは流体通路を下って移動する。いくつかの態様において、個々の帯電スリットマイクロアクチュエータによって駆動された急速脈動流は、緩徐に拡散する大量の標的アンプリコンへのプローブ結合を加速するために使用されることができる。一態様において、液滴発生のために使用される帯電スリットアクチュエータは、一時的におよび連続的に作動する。1つの高電圧信号が、液滴発生帯電スリットアクチュエータのためのカートリッジに適用され、カートリッジのプリント回路基板上で多重分離するカートリッジ上での高電圧によって適切なアクチュエータに発信されるであろう。
本発明の方法
マイクロ流体カートリッジは、個々のプラスチック構成要素および個別のマイクロ流体アクチュエータから生成されることができる。構成要素は、種々の手段によって組み立てられることができる。
マイクロ流体アクチュエータを作製する説明は、全体として参照により本明細書に組み入れられる、2013年3月1日に出願された米国仮特許出願第61/771,694号に記載されている。
A. 出発物質を含む反応物の導入および輸送
いくつかの態様において、反応物または反応物を含有する溶液を、処理およびその後の分析のために、マイクロ流体カートリッジに加える。反応物は、血液、痰、組織、体液、細胞、細胞成分、細胞外液、タンパク質、DNA、RNAなどを含み得る。出発物質はまた、処理流体に加えるための乾燥試薬または生物学的物質を含み得る。出発物質は、流体相、流体を含んだマトリクスまたは固相であることができる。出発物質は、薬剤またはワクチンのための中間物を含むことができる。ある場合には、出発物質は、農産物、土または環境サンプルを含む。
出発物質を、カートリッジの通路内で第一の流体と混合する。第一の流体を、スワブまたは多孔質マトリクス内に結合された土または他の環境サンプルを含む、スワブまたは多孔質マトリクスと混合することができる。
出発物質は、細胞または細胞膜を溶解するために界面活性剤を加えることによって処理されることができる。界面活性剤は、細胞膜を破壊するもので、ラウリル硫酸ナトリウム、臭化ヘキサデシルトリメチルアンモニウムまたは他の陽イオンもしくは双性イオン界面活性剤を含む。界面活性剤の例は、Triton X-100、Triton X-114、NP-40、Tween 20、Tween 80、SDS(ドデシル硫酸ナトリウム)およびCHAPSを含む。
酵素は、細胞を溶解し、細胞壁を取り除くか、またはサンプル中の細胞もしくは細胞成分を処理するために使用され得る。酵素の例は、リゾチーム、リソスタフィン、ザイモリエイス(zymolase)、セルラーゼ、ムタノリシン(mutanolysin)、グリカナーゼ、プロテアーゼまたはマンナーゼを含む。
出発物質の処理は、サンプルを均質化溶液と混合することによって実施されることができる。例えば、溶液は、組織サンプルまたは他の不均質な生物学的サンプルを均質化することができる。均質化溶液は、N-アセチル-L-システインまたは高張食塩水を含むことができる。均質化溶液は、チオレドキシンなどの還元剤を含むことができる。
均質化溶液はまた、DNAおよび細胞残屑の崩壊のためのDNAseまたは他のタンパク質を含むことができる。溶液は、生細胞、組織または生物体の生物活性を減少するまたは除去することを可能にすることができる。均質化溶液は、高塩基性であることができ、水酸化ナトリウムまたは次亜塩素酸ナトリウムを含むことができる。
いくつかの態様において、溶液は、ガラスビーズ、スチールビーズ、ケイ酸ジルコニウムビーズ、酸化ジルコニウムビーズ、またはサンプル材料の機械的破砕のために使用される他の固形物質を含む。ビーズまたは固形物質は、ビーズビーティング(beadbeating)と呼ばれるプロセスにおいて細胞または細胞物質を破壊するために使用される。溶液はまた、グリコーゲンまたは多糖を含むことができる。
他の態様において、溶液は、サンプルからのDNA抽出のためのキャリアRNAを含む。アセトンなどの溶媒はまた、細胞タンパク質を抽出するために使用されることができる。
いくつかの態様において、出発物質は、樹状細胞を含み、カートリッジ内で第一の流体と混合され、かつ攻撃に対する免疫応答の要素を誘導するようにパルスされることができる。
出発物質は、本明細書に記載される方法を使用して処理され、次に分析されることができる。いくつかの場合において、処理された出発物質は、流体として、マイクロ流体カートリッジ内で他の試薬または流体と合わされる。
B. 分析物の標識化
処理流体中の分析物を標識するための方法が提供される。分析物の例は、タンパク質、DNA、RNA、抗体、ペプチド、または宿主によって生成される他の化合物を含む。分析物は、DNA、RNA、抗体、ペプチド、または宿主の外側で生成されたタンパク質、例えば、感染の経過の間、病原体によって放出されたタンパク質を含むことができる。
一態様において、マイクロ流体カートリッジを使用する、分析物を標識するためのプロセスが提供される。一態様において、マイクロ流体アクチュエータは、分析物および標識化分子を含む流体を含む処理流体を共通の流体通路内に推進するポンプを加圧し、流体は、標識化が行われるように合わさる。いくつかの態様において、マイクロ流体アクチュエータは、流体の交互栓のテイラー分散を発生させて標識化のために溶液を混合する。
例示的な標識化試薬は、ルミナール、イソルミノール、アクリジニウムエステル、チオエステル、スルホンアミドおよびフェナントリジウムエステル(phenanthridium ester)、アルカリホスファターゼなどの化学発光種;フィコエリトリン、コロイド金もしくは他のコロイド金属などの蛍光種;または量子ドットを含む。他の蛍光試薬は、ランタニドまたはランタニドキレート(ユウロピウム、サマリウム、テルビウム、ジスプロシウムなど)を含み、以下に記載されるとおりのSOCLEアッセイにおいて使用されることができる。
量子ドットは、結晶性半導体粒子であり、その電子的特徴は、個々の結晶のサイズおよび形状に密接に関係している。一般に、結晶のサイズが小さければ小さいほど、バンドギャップはより大きくなり、最高価電子帯と最低伝導帯との間のエネルギーの差はより大きくなり、したがって、より多くのエネルギーが、ドットを励起させるために必要とされ、同時に、結晶がその静止状態に戻るとき、より多くのエネルギーが放出される。例えば、蛍光性色素の適用において、このことは、結晶サイズがより小さくなるとき、ドットの励起後に放射される光の周波数がより高くなることに等しく、結果として、放射される光における赤色から青色への色シフトをもたらす。そのような同調に加えて、量子ドットでの主要利点は、生成される結晶のサイズに対して高いレベルの制御が可能であるため、材料の導電性に対して非常に正確な制御をすることが可能であるということである。
蛍光、化学ルミネセンスおよびリン光は、3つの異なるタイプのルミネセンス特性である(物質からの光の発光)。蛍光は、光が吸収され、より低いエネルギー(より長い波長)で数ナノ秒(およそ10ナノ秒)以内に再放射される(remitted)といった特性であり、一方で、生物発光は、光が基質上で酵素の化学反応によって発生されるといった特性の、生物学的化学ルミネセンスである。リン光は、光を吸収し、数ミリ秒またはそれ以降もエネルギーを放射する材料の特性である(三重項状態の基底状態への禁制遷移に起因する、一方で、蛍光は、励起一重項状態で生じる)。
蛍光標識化は、フルオロフォアをタンパク質、核酸分子、脂質または他の小分子などの別の分子に共有結合するプロセスである。フルオロフォアの反応性誘導体は、標的分子内の官能基に選択的に結合するために使用されることができる。一般的な反応基は、FITCおよびTRITCなどのイソチオシアナート誘導体、NHS-フルオレセインなどのスクシンイミジルエステル、フルオレセイン-5-マレイミドなどのマレイミド活性フルオロフォア、または6-FAMホスホラミダイトなどのフルオロフォア標識されたオリゴヌクレオチドを含む。蛍光性タンパク質またはフルオロフォアはまた、タンパク質に非特異的または非共有に結合されることもできる。蛍光標識された分子は、光(励起源)によって励起され、蛍光を放射し、それは肉眼または蛍光検出器によって検出されることができる。レーザー、フォトダイオードおよびランプ、特にキセノンアークランプおよび水銀灯を含む種々の光源が、励起源として使用され得る。
分析物は、FRET(フェルスター(蛍光)共鳴エネルギー移動))、共鳴エネルギー移動(RET)または電子エネルギー移動(EET)による検出のために、フルオロフォアで標識化されることができる。FRETは、2つの発色団の間でのエネルギー移動を説明する機構である。最初はその電子的励起状態にあるドナー発色団は、無放射の双極子-双極子カップリングを介して、エネルギーをアクセプター発色団に移動し得る。例えば、シアン蛍光性タンパク質(CFP)で標識されている分析物は、励起後のエネルギーを、検出のための蛍光信号を放射する黄色蛍光タンパク質(YFP)に移動することができる。
分析物は、シリカビーズ、粒子または常磁性ビーズを使用して、標識され、検出されることができる。ビーズまたは粒子は、標的分析物にハイブリダイズするかまたは結合して、磁気分離、アフィニティ精製などによって流体から精製されるか、または分離されることができる。
分析物はまた、オリゴヌクレオチドプローブを使用して、標識され、検出されることができる。プローブは、RNAまたはDNA、またはその改変バージョンであることができる。オリゴヌクレオチドプローブは、ウイルス、細菌、感染性生物体またはヒト遺伝子に特異的な、特異的核酸配列を標的にするように設計されることができる。標的核酸配列の例は、HIV、B型肝炎、C型肝炎、マイコバクテリウム・ツベルクローシス、クラミジア・トラコマチス、インフルエンザウイルス、呼吸器合胞体ウイルス、ヒト気道のウイルス、または癌関連遺伝子(例えば、ERRB2)に特異的な配列を含む。オリゴヌクレオチドプローブは、蛍光分子、発光性シグナリング分子、またはクエンチャー分子で標識されることができる。
標識化試薬の他の例は、特異的細胞化合物の測定のための標識糖質、標識核酸または標識タンパク質を含む。
いくつかの態様において、流体通路内の流体は、細胞の特異的または非特異的標識化のための色素を含む。
他の態様において、流体通路内の流体は、プライマー、プローブ、またはプライマーとプローブとの組み合わせ、およびポリメラーゼ連鎖反応、転写介在増幅、核酸配列を基にした増幅もしくは少なくとも1つの特定された核酸配列を増幅するための別の化学反応を触媒することができる酵素を含む。酵素は、DNAポリメラーゼ、逆転写酵素、RNAポリメラーゼ、リボヌクレアーゼH、DNAヘリカーゼ、またはリコンビナーゼを含むことができる。
別の態様において、標識化試薬は、流体通路の壁に付着されるか、結合されるか、または連結される。標的分析物を含む流体が、カートリッジ内の通路を通過するとき、標的分析物は、その結合された試薬に会合または結合する。
分析物の標識化は、その後に、サンプル中に存在する分析物の検出または分析物の量の測定が続くことができる。例えば、蛍光粒子で標識された種は、蛍光標識の励起周波数での光で照射し、放射された光を測定することによって、検出されることができる。
標識化はまた、その後に、分析物の分離が続くことができる。例えば、磁性粒子で種を標識することによって、および標識された種が差別的に中に輸送される磁場を課すことによって、分析物を分離することもできる。
C. 抗体でのタンパク質の標識
サンプルまたは出発物質は、例えば、サンプル中の標的タンパク質に特異的に結合する第一の組の抗体を含有する第一の溶液と合わされることができる。合わされた流体は、通路内を電気浸透流によって移動して、流体通路の壁の領域のそばを通ることができる。壁は、標的タンパク質の異なるエピトープと特異的に結合する第二の組の抗体と結合される。壁領域に結合し、かつ第一の組の抗体とサンドイッチ状態を形成する標的タンパク質は、分光計または蛍光を測定する他の器具によって検出されることができる。
2つ以上の標的に特異的な抗体を使用し、2種類以上の種々の抗体、例えば、壁の別個の領域に結合されている各抗体を提供することによって、複数の標的を、特異的に検出し、測定することができる。複数の蛍光標識の使用はさらに、有用性を広げる。
オリゴヌクレオチドプローブの対を使用したゲノム物質の検出などの、基本的抗体サンドイッチアッセイと同様の多くの他のアッセイが実施されることができる。多くの適切な非光学アッセイ手段の中には、電気化学的アッセイ方法および常磁性ビーズを使用するアッセイ方法がある。
D. SOCLE検出アッセイ
マイクロ流体カートリッジに使用される分析物のための例示的な標識化および検出方法は、一重項酸素触媒発光(SOCLE)である。SOCLEは、ルミネセンス酸素チャネリングの一変型であり(Ullman et al., Luminescent oxygen channeling assay (LOCI): sensitive, broadly applicable homogeneous immunoassay method.(1996). Clin. Chem 42, 1518-1526; Ullman et al., Luminescent oxygen channeling immunoassay: measurement of particle binding kinetics by chemiluminescence.(1994). Proceedings of the National Academy of Sciences 91, 5426-5430)、ウェル形式の市販のイムノアッセイシステムに広く使用されている。
二部SOCLEアッセイは、プローブ結合光増感剤および化学発光/蛍光性エミッタビーズを組み込む。光を用いる増感剤ビーズの励起は、標的へのハイブリダイゼーションが増感剤およびエミッタビーズをきわめて接近させた(<200nm)場合のみ、蛍光信号を発生させる。一重項酸素は、エネルギー輸送中間物として作用する。増感剤とエミッタビーズとの間の一重項酸素の拡散は、有限時間を必要とするので、励起工程と光子計数工程の時間的分離が存在する。したがって、バックグラウンド蛍光は、励起用放射源が読み取り前に止められるので、数桁の規模で減少する。SOCLEアッセイは、非酵素的である(すなわち、熱不安定性タンパク質なし)。
一例において、マイクロ流体カートリッジは、第一の標的核酸を含む流体、および増感剤ビーズに結合された増感剤オリゴヌクレオチドを含む第二の流体を含む。増感剤オリゴヌクレオチドは、第一の標的核酸に対して相補的な配列を含む。第一の標的核酸分子は、上記で説明された方法を使用して2つの流体を一緒に合わせることによって、ビーズに結合された増感剤オリゴヌクレオチドとハイブリダイズする。例えば、2つの流体は、加圧されて、通路内で2つの流体を合わせる合流点への電気浸透流によって合わさる。第三の流体は、第一の標的核酸分子に相補的であり、かつエミッタビーズに結合されたエミッタオリゴヌクレオチドにも相補的である、第二の標的核酸分子を含むことができる。第三の流体は、エミッタオリゴヌクレオチド-ビーズが第二の標的核酸とハイブリダイズするように、第四の流体と混合されることができる。増感剤-ビーズ複合体分子およびエミッタ-ビーズ複合体分子は、上記に記載したマイクロ流体アクチュエータを使用して交互流体の栓を発生させることによって2つの流体通路を合わせる別の合流点で、混合されることができる((a)第一の標的核酸と増感剤オリゴヌクレオチド-ビーズの複合体、および(b)第二の標的核酸とエミッタオリゴヌクレオチド-ビーズの複合体)。第一および第二の標的核酸のハイブリダイゼーションは、2つの複合体がハイブリダイズして、エミッタビーズおよび増感剤ビーズが、互いに近接する(例えば、<200nmの間隔で)と、信号を生成することができる。いくつかの例では、増感剤-ビーズ複合体およびエミッタ-ビーズ複合体は両方とも、第一の標的核酸および第二の標的核酸に相補的であるブリッジプローブ(オリゴヌクレオチド)にハイブリダイズする。ブリッジプローブは、エミッタオリゴヌクレオチド-ビーズ複合体と増感剤オリゴヌクレオチド-ビーズ複合体との間のオリゴヌクレオチド複合体を形成するのを助ける。
他の例において、流体通路は、増感剤オリゴヌクレオチド-ビーズ複合体と共局在化するためのマトリクス、またはエミッタオリゴヌクレオチド-ビーズ複合体と共局在化するためのマトリクスを含む。標的核酸分子を含む流体は、増感剤オリゴヌクレオチド-ビーズにハイブリダイズするか、またはエミッタオリゴヌクレオチド-ビーズ複合体にハイブリダイズすることができる。
カートリッジ内部から、サンプルは、680nmでの励起および615nmでの検出を必要とし得る。サンプルからの読み出しは、カートリッジの検出窓から検出され得る。励起段階は、およそ数ミリ秒以下の移行期間を伴って次々と起きることができる。励起源は、高強度であることができ、検出器は、高感度であることができる。光学モジュールは、これらの必要条件を満たすように設計されるべきである。励起源は、比較的狭い範囲の波長にわたって放射する効率的な光源である、発光ダイオード(LED)である。アッセイによって放射された光は、光電子増倍管(PMT)によって検出される。レンズ、帯域通過フィルターおよび二色性ビームスプリッターは、光を、LEDからカートリッジ内へ、およびカートリッジからPMT内へ向ける。
典型的な読み出しサイクルシーケンスは、PMT制御電圧を低く設定すること(典型的には0.3V)、LEDを0.5秒間オンにすること、LEDをオフにすること、および最後にPMT制御を増大させて(典型的には0.8Vまで)読み出しウェル内のSOCLEシグナリングの結果を読み出すことを伴う。カスタムアナログハードウェアが、電流-電圧変換、フィルタリングおよび増幅または減衰を提供するために、構築された。5個のアナログ-デジタル変換器チャネル(異なる増幅、温度、およびPMT制御電圧を有する3つの信号チャネル)は、実験が実行している時間、読み出される(典型的には0.7秒)。5個のチャネルからのデータは、リアルタイムでマイクロプロセッサーに流され、それは信号を統合して、それを標準曲線またはルックアップテーブルと比較して、出発サンプル濃度を決定する。出発サンプル濃度が決定されるダイナミックレンジは、飽和信号が測定された後、PMT制御電圧を低下させることによって増加されることができる。
E. 液滴ベースのアッセイ
本発明のマイクロ流体カートリッジは、介在する不混和担体流体によってそれぞれの液滴において互いから単離されている複数の区画されたアッセイ混合物に、サンプルまたは出発物質を分割することを含むアッセイを通して、サンプルまたは出発物質中の複数の分析物を検出し、定量するために使用されることができる。この分割は、カートリッジ内部のどこでも行われることができ、サンプルまたは出発物質の処理の任意の段階で起こることができる。分割が起こることができる段階の例は、サンプルまたは出発物質のカートリッジ内への導入直後;ろ過プロセス後;核酸抽出プロセス後;特定のカテゴリーの全ての種におけるゲノム物質のセグメント(例えば、細菌標的のための16S領域)がポリメラーゼ連鎖反応または別の方法によって増幅されるプロセス後;および、蛍光ビーズまたは他のシグナリング粒子での標識化後を含む。
本発明のマイクロ流体カートリッジは、カートリッジ内の合流点で出会う複数の流体通路を含むことができる。いくつかの態様において、これは、T字合流点またはY字合流点である。2つの別個の流体通路からの2つの不混和流体は、カートリッジ内の合流点で出会い、2つの流体が衝突すると、合流点で液滴を形成することができる(例えば、水中油型液滴、油中水型液滴)。合流点および流体通路は、2つ不混和流体が合流点で出会うとき、1つの液滴が形成されるように十分に狭くすることができる。流体が合流点で前方に流れると、複数の液滴が形成されることができ、それらは単一の通路内で合流される。
いくつかの態様において、本発明のマイクロ流体カートリッジは、外部構成要素からカートリッジ内への流体輸送または力学的エネルギー移動なしに、複数の区画されたアッセイ混合物を任意に選択された容量で正確に生じさせるために使用されることができる。区画される混合物の容量を任意に選択する能力は、本発明を使用した液滴形成を差別化し;対照的に、高性能アクチュエータを含まない液滴発生器による液滴形成では、合流点の幾何学的形状および流体特性は、区画容量の一次決定因子であり、これらの容量を任意に選択する能力を限定する。少なくとも1つのマイクロ流体アクチュエータは、流体通路内部に収容されている処理流体に作用し、それによってかかる流体が合流点に向かって進むことができる。同様に、第二のマイクロ流体アクチュエータは、第二の流体通路内部の不混和担体流体に作用し、それによってかかる担体流体が合流点に向かって進むことができる。マイクロ流体カートリッジ内のアクチュエータの少なくとも1つが、高性能アクチュエータである場合、第一の流体もしくは担体流体のいずれか、または両方の加圧は、急速にパルス化されるか、または別様に時変方式で加圧されることができ、そのため、所望の区画容量を有する流体区画は、合流点での2つの流体の合流で形成される。
本発明のマイクロ流体カートリッジはまた、液滴形成により、多重化として知られている単一出発サンプル内部の複数の分析物の検出および定量化が促進される、液滴ベースのアッセイのために使用されることができる。不混和担体流体および試薬の二重栓は、サンプルの栓内に逐次注入されて、複数の流体区画を形成することができ、試薬は、異なる反応が特定の区画内部で行われるように選択され、かかる反応の各々は、関心対象の特定分析物の検出に対応する。各反応は、単一液滴内部で行われることができ、マイクロ流体カートリッジ内の検出器は、液滴における各反応からの放射または信号を検出することができる。
別の態様において、本発明のマイクロ流体カートリッジは、液滴を発生させるため、およびカートリッジ内の複数の液滴においてPCR増幅を実施するために、使用されることができる。いくつかの態様において、各液滴は、サンプル中の核酸分子の増幅モジュールのための標的核酸分子、酵素、およびPCRプライマー混合物を含む。各液滴は、PCR試薬を含むことができ、マイクロ流体カートリッジ内の3つの異なる温度ゾーン(例えば、逆転写酵素反応および増幅のための)を通って循環されることができる。いくつかの態様において、マイクロ流体カートリッジは、カートリッジの1つの領域内で液滴を発生させることができる(例えば、少なくとも2つの流体通路の合流点が、一連の少なくとも24個の液滴を発生させるために使用される)。PCR増幅は、カートリッジ内のプリセット温度ゾーンを通る液滴の移動(マイクロ流体アクチュエータを介する)により起こることができる。
さらに詳細には、増幅は、液滴を含む流体を、逆転写および増幅のためのカートリッジ内の3つの温度ゾーンの間を往復させることによって、達成されることができる。流体栓の低い熱質量は、流体温度が各ゾーンにおいて数秒で平衡化することを可能にし、その結果、迅速な増幅サイクルをもたらす。帯電スリットアクチュエータの高速過渡応答時間は、溶液をゾーン間で往復させるために必要とされる時間を短縮することによって、増幅プロセスをさらに改良する。3つのゾーンに加えて、増幅モジュールは、試薬再構成ゾーンを含むことができる。単一の比較的大きい(例えば、4mm×6mm)帯電スリットマイクロアクチュエータは、これらの工程を実行するために使用されることができる。増幅モジュール熱工学について、熱分析は、COMSOL内で実施されて、必須のカートリッジ熱質量割当てを確立して、溶液がゾーン間を移動するときゾーン温度を公称+/-1℃に保持することができる。
他の態様において、カートリッジは、融解温度スキャニングゾーンを含み(ここで、リアソータント分析は、液滴を検出ゾーンを通過して前後に往復させる主要アクチュエータを用いて行われる)、光化学感熱方法は、カートリッジ内で種々の時点での各液滴の温度を正確に決定するために使用される。
一態様において、カートリッジ内の液滴発生器は(図23〜25中に示されるように)、増幅モジュールの下流に位置付けられる。液滴発生器は、融解温度スキャニングアッセイに使用される、多くの凍結乾燥された試薬プラーク(例えば、24個のビーコンを含む24個のプラーク)の個々の再構成を実行することができ、次に、各ビーコン溶液容量をアンプリコン溶液中に逐次脈動的に送ることによって一連の液滴を発生させる。主要チャネル内の流れは、増幅段階において使用される大型帯電スリットアクチュエータによって駆動されることができる。一態様において、複数の小型アクチュエータ(例えば、24個の小型アクチュエータ)は、乾燥ビーコン再構成(ハイブリダイゼーションバッファー中)および注入の両方を含み、チャネルの片側を各々駆動することができる。副チャネルアクチュエータおよび主要アクチュエータは、溶融温度分析の間、一連の液滴を検出器を通過して前後に往復させるために一緒に働くことができる。
いくつかの態様において、マイクロ流体カートリッジは、帯電スリットアクチュエータ駆動電子装置、カートリッジ温度制御、検出用光学構成要素、器具制御電子装置、別個のマイクロコントローラーによって制御されたタッチスクリーンユーザーインターフェース、動力電子装置ならびにRFID、WiFiおよびイーサーネット接続性を含む通信ハードウェアを含む、器具に結合される。
F. 混合を改良する合流点の幾何学的形状
単純なT字合流点またはY字合流点で流体を混合することに加えて、本発明は、急速混合を特に促進する合流点の幾何学的形状を有する合流点において、流体を混合するために使用されることができる。合流点にすぐ近接する1つまたは複数のチャネル横断面が、合流点からより遠い横断面よりも小さい合流点構成(ネックダウン合流点と称されることもある)は、本発明との組み合わせで、本発明での非ネックダウン合流点か、または本発明でない合流点(ネックダウンを有するかまたは有しない)のいずれかの場合よりも、より迅速な巨視的混合を促進することができる。すぐ近接するチャネル横断面がより小さいことは、本発明を使用する個別の栓注入のための最少流体栓量がより少量であることに対応する。一連の脈動が、合流点にすぐ近接する反応チャネルのネックダウン領域を越えて移動した後、質量の保存は、少量の流体栓が、ネックダウンチャネル領域内部の寸法と比較して、軸方向寸法がより短い栓へと拡張することを必要とする。テイラー分散の混合への寄与は、それに対応して、非ネックダウン幾何学的形状などの、より大容量の栓での合流点プロセスと比較して、増加される。
G. カートリッジ内の流体に対する制御を改善するか、気泡を減らすか、合流点での混合のために流体を同期化するか、または別様にアッセイ性能を改善するために、表面張力効果を使用するためのチャネルおよび合流点の特徴
合流点に近接するチャネルの特徴は、本発明を使用する混合の性能を改善するために使用されることができる。流体通路を構成する材料に対して疎水性である流体について、合流点に近接するキャビティ様特徴の包含は、本発明と共に使用されて、混合前に流体を整列させることができる。ほぼ円筒形のチャネルのほぼ一様な半径方向拡張および収縮であり、かかる拡張および収縮が沿って起こる軸方向長さがチャネル直径と比較して短い、キャビティ特徴について、流体容量の流頭は、キャビティへの入口での表面張力介在流頭変形に関連するエネルギー貯蔵に起因して、所与のデューティーサイクルおよび平均動力で作用する高性能アクチュエータによって加圧されるとき、キャビティ内部で保持されることができる。高性能アクチュエータのデューティーサイクルおよび/または平均動力の増加は、メニスカスエネルギー貯蔵効果に打ち勝って、流体流頭をキャビティ入口を越えて移動させることができる。カートリッジ内部の流体の流れ特徴(例えば流量)が、例えば全血サンプル用のヘマトクリットにおける患者間変動のために、不確実性にさらされる場合、例えば、パラメータ空間の低流量極値での流体がカートリッジ設計用に企図される時間が経過するまで、高性能アクチュエータの動作を低デューティーサイクル/低動力状態で維持することによって、(例えば、生理学的範囲の上限でのヘマトクリットを用いて)キャビティでの低デューティーサイクル/低動力失速効果が、アッセイ性能へのかかる不確実性の影響を減少させるために使用されることができる。同様の効果の組み合わせによって、本発明を用いて、キャビティは、流体中に混入された空気または別の気体の気泡のためのトラップとして機能することができる。
本発明はまた、合流点にすぐ近接するT字合流点の副チャネル内のキャビティ様特徴の包含によりアッセイ性能を改善するために使用されることができる。ほぼ円筒形のチャネルのほぼ一様な半径方向拡張であり、かかる拡張がそれに沿って起こる軸方向長さがチャネル直径と比較して短い、キャビティ特徴について、第一の流体容量の流頭は、キャビティへの入口での表面張力介在流頭変形に関連するエネルギー貯蔵に起因して、所与のデューティーサイクルおよび平均動力で作用する高性能アクチュエータによって加圧されるとき、キャビティ内部に保持されることができる。キャビティの軸方向長さがチャネル直径と比較して短いという条件で、ほぼ直線のT字合流点通路を通過する第二の流体は、メニスカスエネルギー貯蔵効果に打ち勝って、第一の流体の流頭に合流点内に入らせることができる。
H. 成分の検出を促進するための固相との反応
本発明は、公知の方法と組み合わされて、溶液の成分と固相との間の反応を促進し、かかる成分の検出または検出および定量化を促進することができる。溶液は、プローブが結合されている1つまたは複数の内側表面領域を含有するチャンバー内に流されることができる。かかる表面結合プローブは、オリゴヌクレオチドプローブ、抗体プローブまたは他のプローブであり得る。表面結合プローブは、表面結合プローブと溶液相反応物との間の結合事象の同定を促進する感知要素または感知システムに対して位置付けられ得る。かかる反応物は、オリゴヌクレオチド、タンパク質、糖、細胞または他の反応物であり得る。表面結合プローブは、一次元、二次元または三次元アレイに構成されることができる。感知要素または感知システムは、該アレイの個々の要素の関心対象のパラメータを測定するために構成され得る。感知要素は、温度、pHおよび電磁放射を含むパラメータを測定するように設計され得る。2つのマイクロ流体アクチュエータ(その少なくとも1つは高性能アクチュエータである)は、プローブ機能化表面領域のいくつかまたは全てに近接する時変流れを誘導するために使用されることができる。時変流れは、結果的に、かかる表面領域にすぐ近接するある容量の溶液の交換をもたらすことができ、そのため、比較的高濃度の非結合反応物を含有する流体容量は、反応物がかかる表面結合プローブに結合することができるように、該表面に近接させられる。
I. 反応物の計量
本発明は、規定の容量の流体相反応物、例えば血液、血漿、尿もしくは別の生物流体、または化学もしくは生化学合成プロセスのための成分を含有する溶液を、カートリッジまたはその後の処理または分析のための他のマイクロ流体ネットワーク内に、引き入れることができる。ある容量の反応物は、ピペット操作によるか、別の容器から注ぐことによるか、供給源からの直接の流れによるか(例えば、機械的ランセットの作用によって生成された皮膚内の開口部から直接流れる血液)、または別の手段によって、チャンバー内に装填されることができる。装填プロセスは、例えば、看護師または他の医療専門家が、反応物の容量がチャンバー上の充填ラインによって示された最少容量を超えることを視覚的に確認するなど、不正確である可能性がある。そこで、第一のマイクロ流体アクチュエータは、規定の期間、かつ規定の動力レベルで動作することによって、ある容量の反応物を流体通路または取り入れチャンバーとは異なるチャンバー内に引き入れることができ、かかる動作パラメータは、その後の処理のための好ましい容量に対応するように、マイクロアクチュエータおよび関連マイクロ流体ネットワークの特徴付けによって予め決定されている。これは、本明細書において、開ループ計量と称される。代替的に、該第一のマイクロ流体アクチュエータは、センサーが、該流体通路内部のある容量の反応物が規定の値に達したことを示す時間まで動作することによって、その容量の反応物を流体通路内に引き入れることができる。かかるセンサーは、反応物流頭がチャネル内部を所定位置までに前進するときのキャパシタンスにおける変化を示す、容量センサーであることができる。これは、本明細書において、閉ループ計量と称される。
第一の流体通路内に引き入れられた容量の反応物は、合流点で他の流体と混合されることができ、かかる混合は、第一および第二のマイクロ流体アクチュエータの組み合わされた作用によって駆動され、その一方は、本明細書において記載されたような高性能アクチュエータである。第一の流体通路内に引き入れられた反応物は、第一の通路またはチャンバー内に引き入れられるとすぐに、または処理の後の段階で、乾燥または凍結乾燥させた材料を再構成することができる。
J. 細胞の溶解
本発明は、生体マトリクス内部に収容された細胞を効率的に溶解するために使用されることができる。全血または血漿は、第一のマイクロアクチュエータによって流体通路内に引き入れられることができる。細胞壁および膜を分解する傾向がある1つまたは複数の化合物、例えば、チオシアン酸グアニジンまたは別のタンパク質変性剤、ポリソルベート20または別の界面活性剤/乳化剤、およびプロテイナーゼKまたは別のセリンプロテイナーゼを含有する溶液が、第二の流体通路内に装填され得る。溶解溶液での第二の流体通路の装填は、溶解溶液成分の1つまたは複数の、乾燥または凍結乾燥状態からの再構成によって先行されることができる。乾燥または凍結乾燥された材料は、ペレットの形態であることができるか、流体通路の内部表面の一部分を被覆するプラーク様構成物であることができるか、あるいは通路またはチャンバー内部に位置される多孔質材料中に分布されることができる。
K. 温度制御器と一緒の使用
本発明は、反応を促進するために抵抗加熱器と、熱電冷却器と、ならびに流体容量の温度を上昇させるか、低下させるか、または調節するための他の要素およびシステムと共に、使用されることができる。
L. 複合体出発サンプルからのDNAおよびRNAの抽出
本発明は、出発サンプルからのDNA、RNAおよび他の核酸の可逆的結合のための公知の方法と組み合わされることができる。核酸を含有する溶液は、マイクロ流体アクチュエータの作用によって多孔質構造を通して流されることができる。多孔質構造は、充填シリカビーズベッドであることができ、かかるビーズは、核酸と可逆的に結合することが知られている。多孔質構造は、細孔径分布を有し、他の点では、沈殿した物質、例えば、グリコーゲンへの結合によって溶液から沈殿した核酸を捕獲するように構成されることができる。核酸含有溶液が多孔質構造を通って流れることに先行して、細胞が細胞壁および膜を破壊する傾向がある化合物に曝露され、それによって当初は細胞内部に収容されていた核酸への結合の効率を改善するプロセスを行うことができる。核酸含有溶液が多孔質構造を通って流れることに先行して、その中に収容される核酸のいくらかまたは全てが、多糖と結合するか、またはそのような糖-核酸複合体を沈殿する傾向にさせる他の物質と結合するプロセスを行うことができる。核酸含有溶液が多孔質構造を通って流れることに先行して、糖-核酸複合体または他の沈殿しやすい複合体が溶液から沈殿して、多孔質構造の近くまたはその内部に保持されることができるように、第一のマイクロ流体アクチュエータおよび第二の流体アクチュエータ(その少なくとも一方は高性能流体アクチュエータである)が核酸含有溶液とブタノールまたは別の溶媒とを混合するプロセスを行うことができる。溶媒と核酸含有溶液との混合は、流体をチャンバー内に輸送することを伴うことができ、ここで、溶媒および核酸含有溶液の異なる密度に関連する浮力効果が2つの相の混合を促進する。溶媒と核酸含有溶液との混合は、チャンバー内に流体を輸送することを伴うことができ、ここで、1つまたは複数の液体相をチャンバーから引き出すと、表面張力効果、浮力効果またはこれら効果の組み合わせにより、気泡がかかるチャンバー内部に保持される。核酸含有溶液が多孔質構造を通過することは、その後に、タンパク質などの非結合材料を洗い流すために、エタノールなどの溶媒の多孔質構造を通って流れることが続くことができる。そのような洗浄工程は2つ以上存在することができる。核酸含有溶液が多孔質構造を通過することは、その後に、核酸の可逆結合の傾向がある水または別の溶液を通すことが続くことができ、そのため、核酸は、かかる水または他の溶液を該多孔質構造外に輸送すると、多孔質構造から溶離される傾向があろう。
以下は、本発明を実施するための具体的な態様の例である。例は、単に例示目的で提供されており、本発明の範囲をいかようにも限定するように意図されるものではない。使用される数字(例えば、量、温度など)に関して正確性を確実にする努力はなされたが、いくらかの実験誤差および逸脱は、当然、考慮されるべきである。
本発明の実施は、特に断りない限り、当技術分野の技能の範囲内のタンパク質化学、生化学、組換えDNA技術および薬理学の慣用の方法を使用する。そのような技術は、文献で完全に説明されている。例えば、T.E. Creighton, Proteins: Structures and Molecular Properties (W.H. Freeman and Company, 1993); A.L. Lehninger, Biochemistry (Worth Publishers, Inc., current addition); Sambrook, et al., Molecular Cloning: A Laboratory Manual (2nd Edition, 1989); Methods In Enzymology (S. Colowick and N. Kaplan eds., Academic Press, Inc.); Remington's Pharmaceutical Sciences, 18th Edition (Easton, Pennsylvania: Mack Publishing Company, 1990); Carey and Sundberg Advanced Organic Chemistry 3rd Ed. (Plenum Press) Vols A and B(1992)を参照のこと。
実施例1:HIV試験への適用
上記で説明した方法は、HIV-1 RNAの遺伝物質またはウイルスタンパク質を検出するか、または分析するために使用されることができる。最も重症なHIV患者でさえ、その血流中のウイルスの量は、比較的少量であるので、標的種を直接検出することは、精巧な方法を必要とする。
患者の血液または身体サンプルを含む出発物質は、マイクロ流体カートリッジに提供される。サンプルは、流体通路内でサンプル中の細胞を溶解するために、均質化溶液、ビーズまたは酵素を使用して処理されることができる。均質化溶液およびサンプルは、カートリッジ内のマイクロ流体アクチュエータを使用して混合されることができる。
処理された流体サンプルは、次に、マイクロ流体カートリッジ内の2つまたはそれ以上のマイクロ流体アクチュエータを使用して、流体を一緒に脈動的に送ることによって、第二の流体と混合されることができる。第二の流体は、HIVウイルスに特異的であるタンパク質、DNA、RNAまたは他の分子に特異的に結合する、抗体、オリゴヌクレオチドプローブ、または標識された分子などの試薬を含有することができる。
HIVウイルスの検出は、上記で提供された検出方法のいずれかを使用して実施されることができる。
実施例2:デング熱ウイルスの検出
上記で説明した方法は、デング熱(Dengue)ウイルスのゲノム物質を検出するか、または分析するために使用されることができる。デング熱ウイルス(DENV)は、潜在的な生物兵器防衛病原体であり、世界保健機関(WHO)によって重大な国際公衆衛生上の懸念として分類されている。上記で説明したマイクロ流体カートリッジおよび方法を使用して、デング熱ウイルスを、サンプル中で検出することができる。
患者の血液または身体サンプルを含む出発物質は、マイクロ流体カートリッジに提供される。サンプルは、流体通路内でサンプル中の細胞を溶解するために、均質化溶液、ビーズまたは酵素を使用して処理されることができる。均質化溶液およびサンプルは、カートリッジ内のマイクロ流体アクチュエータによって生じた流体栓のテイラー分散を使用して混合される。
本アッセイの最適化された性能は、上記で説明したマイクロ流体カートリッジ内での動作を必要とする。カートリッジ統合型マイクロ流体アクチュエータは、ミリ秒の時間分解能でサンプルおよび試薬の輸送を駆動して、拡散により制限されるウェル形式反応に対してビーズ-プライマー反応を実質的に加速し、同時に、カートリッジ統合型発熱器は、1度の精度で反応チャンバーおよび読み出しウェルの温度を制御する。
実施例3:薬物耐性株を同定するためのマイコバクテリウム・ツベルクローシス(MTB)の検出およびMTBゲノム物質の分析
MTBは、上記で説明した方法を使用して、サンプルまたは出発物質から同定されることができる。
MTBのいくつかの菌株は、MTBを処置するために広く使用されているある特定の抗生物質に耐性がある。薬物耐性を同定する能力により、耐性株に感染した個体を処置するために異なる薬物を選択することが可能になる。臨床上重要であるMTB耐性の例は、リファンピシン、イソニアジド、フルオロキノロンおよびピラジナミドに対する耐性を含む。
MTBに感染していることが分かったかまたはMTBに感染している疑いがある患者からの痰サンプルなどのサンプルは、本発明のカートリッジ内で均質化され、DNAまたはリボゾームRNAを含むゲノム物質が、細菌から放出されることができる。サンプルは、次に、等温増幅と称されるプロセスにおいてrpoB遺伝子などの関心対象の領域の大量のコピーを生成するためのプライマーの追加を含む一連の工程を経ることができる。カートリッジ内のマイクロ流体アクチュエータの作用は、プローブおよびプライマーを急速に混合して、等温増幅工程を迅速かつ効率的に進ませることができる。増幅された標的は、次に、例えば分子ビーコンを用いて、標識されることができる。
実施例4:ポリメラーゼ連鎖反応(PCR)によるHIVウイルスの定量化
本発明のマイクロ流体カートリッジは、HIV遺伝物質を含有していることが分かっているかまたは疑われる材料のサンプル中のHIV遺伝物質の量を正確に決定するために使用されることができる。かかる物質は、全血サンプル、血漿サンプルまたは他のサンプルであることができる。ある量のサンプルは、逆転写酵素と合わされて、ウイルスRNAのcDNAへの逆転写を促進することができる。このように合わせることは、ウイルス被膜を溶解するか、潜在的妨害物質を取り除くか、または別様に、逆転写のためにサンプルを調製するための、1つまたは複数のプロセスによって先行されることができる。かかるサンプル調製は、逆転写プロセスと同じカートリッジまたは他のマイクロ流体チャネルネットワークモジュール内部で行われることができるか、あるいは該カートリッジまたはマイクロ流体ネットワークモジュールの完全または部分的に外部で行われることができる。HIV遺伝物質を含有していることが分かっているかまたは疑われる材料と逆転写酵素を合わせることは、逆転写遺伝物質が溶液形態である場合、合流点で起こることができるか、あるいは凍結乾燥形態、乾燥形態または別の形態である逆転写酵素を収容するチャンバー内への材料の通過により起こることができる。再構成を必要とする、乾燥形態、凍結乾燥形態または別の形態である逆転写酵素の再構成は、1つまたは複数の高性能アクチュエータによって駆動される急速脈動流によって促進されることができる。
逆転写は、逆転写が起こる材料の容量の温度を制御するための関連要素を用いてカートリッジチャンバー内で起こることができる。かかる要素は、抵抗加熱器、熱電効果によってある質量の材料の温度を上昇させるかまたは低下させるための要素、抵抗温度センサー、温度センサーの出力の関数として加熱要素による熱産生を自動または手動で調節するための電気回路構成、および他の要素を含むことができる。逆転写反応を経た溶液は、ポリメラーゼ連鎖反応のためのプライマー、酵素および他の試薬と合わされることができる。プライマー、酵素および他の試薬と合わせることは、少なくとも1つの高性能アクチュエータによって駆動される、プライマー、酵素および他の試薬の、逆転写されたDNAが生成された反応チャンバー内への流体輸送を通して、あるいは少なくとも1つの高性能アクチュエータによって駆動される、逆転写されたDNAを含有する溶液の、別のチャンバーまたは2つ以上の他のチャンバー内への流体輸送によって、起こることができる。PCRによって生成されたアンプリコンは、PCR反応が行われている間に、または終点方法によって、検出されることができる。PCRによって生成されたアンプリコンは、蛍光体(fluor)または他の発光粒子、クエンチャー粒子およびヘアピン構造を有するアンプリコンに特異的なプローブであって、アンプリコンに結合したとき励起するとルミネセンスを示すプローブを含むことによって、分析されることができる。PCR反応は、溶液の温度を変えて、標識プローブとの結合を監視することによって分析されることができる。PCR反応は、複数の流体区画内で行われることができる。少なくとも1つの高性能アクチュエータは、流体の区画分けを促進することができる。流体区画は、乳剤を構成することができる。区画要素の容量および数は、PCRの開始前に逆転写されたDNAの少なくとも1つのコピーを含有していると分かった区画要素の分画の分析を通して、定量化を促進するように選択されることができる。
実施例5:インフルエンザおよび他の呼吸器病原体の検出ならびにかかる病原体の間の区別
本発明は、参考菌株からのインフルエンザAウイルス(IAV)RNAの遺伝学的相違の融解温度(Tm)分析のために使用されることができる。標的とされた増幅は、可能な標的識別情報に基づいて実施されることができる。標的とされた増幅は、HAおよびNA抗原に集中することができる。標的とされた増幅は、8個のゲノムセグメントのいくつかまたは全てにわたって、参考菌株に対してIAVを迅速に分類することができる。標的とされた増幅は、予測された標的配列を組み込むことができるか、またはゲノムレベルでの再配列のための偏りのない調査として機能することができる。
本発明は、好ましい態様および種々の代替態様を参照して、具体的に示され、記載されたが、本発明の精神および範囲から逸脱せずに、それに形態および詳細の種々の変更を行うことができることは、関連する技術分野の当業者によって理解されるだろう。
本明細書の本文の中に引用された全ての参考文献、交付された特許および特許出願は、あらゆる目的のために、全体として参照により本明細書に組み入れられる。

Claims (43)

  1. 複数の流体通路と;
    該複数の流体通路を接続する少なくとも1つの合流点と;
    少なくとも1つの高性能流体アクチュエータを含む少なくとも2つの流体輸送手段であって、
    該少なくとも1つの高性能流体アクチュエータが、
    少なくとも10-8ワットの、および動力を少なくとも30秒間持続することができる、流体動力発生能力、および
    10秒未満の該流体動力発生のための応答時間
    を有する、カートリッジ内部の個別の構成要素である、前記少なくとも2つの流体輸送手段と
    を含む、マイクロ流体カートリッジ。
  2. 少なくとも1つの高性能流体アクチュエータが、電力を流体動力に変換することができる、請求項1記載のカートリッジ。
  3. 動力発生のための応答時間が、2秒未満である、請求項1記載のカートリッジ。
  4. 液体が、毎分少なくとも0.1mLの流量で、少なくとも1kPaの圧力降下に関連する流体抵抗の中でも流れるように、アクチュエータが、少なくとも10マイクロリットルの液体を加圧することができる、請求項1記載のカートリッジ。
  5. 少なくとも1つの高性能流体アクチュエータが、電気浸透流によって流体動力を生成することができる、請求項1記載のカートリッジ。
  6. 電気浸透流が、少なくとも1つの流体アクチュエータの各々の内部の複数のスリットキャピラリー内部で、少なくとも1つの流体アクチュエータの各々の内部の充填ビーズのベッド内部で、少なくとも1つの流体アクチュエータの各々の内部の一体型多孔質構造内部で、または少なくとも1つの流体アクチュエータの各々の内部の円筒形チャネルのアレイ内部で、発生される、請求項5記載のカートリッジ。
  7. 処理流体を受け入れるための、第二の開口部をさらに含み、該第二の開口部が前記複数の流体通路に結合されている、請求項1記載のカートリッジ。
  8. 処理流体が、細胞または細胞小器官を溶解することができる第一の試薬;組織サンプルまたは他の不均質な生物学的物質を均質化することができる均質化溶液;生細胞、組織または生物体の生物活性を減少させるかまたは除去することができる溶液;出発物質の機械的破砕を引き起こすことができるガラスビーズまたは他の固形物質;グリコーゲンまたは他の多糖;またはキャリアRNAを含む、請求項7記載のカートリッジ。
  9. アクチュエータ流体を受け入れるための、かつ少なくとも1つの高性能流体アクチュエータに結合された第三の開口部をさらに含む、請求項1記載のカートリッジ。
  10. 流体通路のネットワークの一部分が、第二の試薬を含む、請求項1記載のカートリッジ。
  11. 第二の試薬が、シリカビーズもしくは粒子、常磁性ビーズ、蛍光ビーズもしくは蛍光分子、化学発光分子、ランタニドもしくはランタニドキレート、またはモノクローナルもしくはポリクローナル抗体である、請求項10記載のカートリッジ。
  12. モノクローナルもしくはポリクローナル抗体が、シグナリング分子に連結されている、請求項11記載のカートリッジ。
  13. 第二の試薬が、オリゴヌクレオチドプローブもしくはプライマー、プローブの組み合わせ、またはプライマーの組み合わせを含む、請求項10〜12のいずれか一項記載のカートリッジ。
  14. オリゴヌクレオチドプローブが、ヒト免疫不全ウイルスの遺伝物質の規定領域、C型肝炎ウイルスの遺伝物質の規定領域、またはB型肝炎ウイルスの遺伝物質の規定領域に特異的に結合する、請求項13記載のカートリッジ。
  15. オリゴヌクレオチドプローブが、マイコバクテリウム・ツベルクローシス(M. tuberculosis)細菌の遺伝物質の規定領域、クラミジア・トラコマチス(C. trachomatis)細菌の遺伝物質の規定領域、インフルエンザウイルス、呼吸器合胞体ウイルスもしくはヒト気道の別のウイルスの遺伝物質の規定領域、または癌遺伝子のDNAまたはRNAの規定領域に特異的に結合する、請求項13記載のカートリッジ。
  16. 第二の試薬が、光増感剤分子および光活性指示体前駆体分子を含む、請求項10記載のカートリッジ。
  17. 光増感剤分子および光活性指示体前駆体分子が、
    a.1つまたは複数の増感剤、1つまたは複数の増感剤オリゴヌクレオチド、およびかかる増感剤と増感剤オリゴヌクレオチドとを同じ場所に位置させるためのマトリクスを含む、少なくとも1つの増感剤標識粒子;ならびに
    b.1つまたは複数のエミッタ剤、1つまたは複数の増感剤オリゴヌクレオチド、およびかかるエミッタ剤とエミッタオリゴヌクレオチドとを同じ場所に位置させるためのマトリクスを含む、少なくとも1つのエミッタ標識粒子
    を含む、
    請求項16記載のカートリッジ。
  18. 第二の試薬が、量子ドットもしくは他の結晶性半導体粒子;核酸の配列非依存的測定のための核酸特異的な蛍光もしくは発光色素;フェルスター共鳴エネルギー転移(FRET)もしくは他の共鳴エネルギー移動プロセスに関与することができる分子;特異的細胞化合物の測定のための標識タンパク質、標識核酸もしくは標識糖質種;細胞の特異的もしくは非特異的標識化のための色素を含む溶液;またはプライマー、プローブ、もしくはプライマーとプローブとの組み合わせを含む、請求項10〜12のいずれか一項記載のカートリッジ。
  19. 第一の物質を含む第一の流体通路および第二の物質を含む第二の流体通路をさらに含み、該第一の流体通路および該第二の流体通路が、マイクロ流体カートリッジ内に合流点を形成する、請求項1記載のカートリッジ。
  20. 合流点が、第一および第二の流体通路からの第一および第二の物質の融合から生じる1つまたは複数のマイクロ流体液滴の形成を可能にする、請求項19記載のカートリッジ。
  21. 複数の流体通路が、増幅反応の段階を実施するための異なる温度ゾーンを含む、請求項1記載のカートリッジ。
  22. 複数の流体が、標識化またはハイブリダイゼーション反応を誘発するために、複数の流体通路内で合わされる、請求項1記載のカートリッジ。
  23. 請求項1〜22のいずれか一項記載のマイクロ流体カートリッジ;および
    動力源を含み、かつ電力を該マイクロ流体カートリッジに供給するように適合された装置
    を含む、システム。
  24. 前記装置が、アッセイ結果の指標を感知するように;カートリッジ内部で発生した可視光線または別のタイプの電磁放射を感知するように;カートリッジ内部の常磁性ビーズの位置または分布を感知するように;またはカートリッジ内部の種の電子スピン核磁気共鳴または他の物理的特性を感知するようにさらに適合されている、請求項23記載のシステム。
  25. マイクロ流体カートリッジ内で、複数の流体通路に接続され、かかる流体通路の間に少なくとも1つの合流点を含むチャネルに、第一の流体を提供する工程であって、該マイクロ流体カートリッジが、少なくとも1つの高速マイクロ流体アクチュエータをさらに含み、該少なくとも1つの高性能流体アクチュエータが、該カートリッジ内部の個別の構成要素であり、かつ該少なくとも1つの高性能流体アクチュエータが、少なくとも10-8ワットの、および動力を少なくとも30秒間持続することができる流体動力発生能力と、10秒未満の動力発生のための応答時間とを有する、工程;ならびに、
    該第一の流体および第二の流体が、流体の交互栓を発生させるために該流体通路のネットワーク内に導入されるように、該マイクロ流体アクチュエータを時変方式で動作させる工程であって、各栓量の長さが、かかる流体通路のうちの最小の平均直径の5倍未満である、工程
    を含む、方法。
  26. 細胞膜内の少なくとも1つのタイプの分子に特異的な第二の流体内部の標識化分子または標識化粒子で、第一の流体内部の細胞のサブセットを標識する工程;第二の流体中に含有されている細胞透過色素で、第一の流体中の細胞を着色する工程;第二の流体中に含有されている光増感剤分子もしくは光活性指示体前駆体分子またはそれらの組み合わせで、第一の流体内部に含有されているDNAまたはRNAのサブセットを標識する工程;第二の流体中に含有されているランタニドキレートで、第一の流体内部に含有されているDNAまたはRNAのサブセットを標識する工程;第一の流体からの組織サンプルまたは他の不均質な生物学的物質を均質化する工程;または第二の流体中の機械的破砕のためのガラスビーズまたは他の固形物質で、第一の流体中の細胞または他の生物学的物質を溶解する工程をさらに含む、請求項25記載の方法。
  27. 第一の流体内部の細胞または他の生物学的物質を酵素で溶解する工程をさらに含む、請求項25記載の方法。
  28. 酵素がリゾチームを含む、請求項27記載の方法。
  29. 第一の流体中の生細胞、組織または生物体の生物活性を減少させる工程をさらに含む、請求項25記載の方法。
  30. 生物活性を減少させる工程が高塩基性溶液を使用することを含む、請求項29記載の方法。
  31. スワブまたは多孔質マトリクスと第一の流体とを混合する工程をさらに含む、請求項25記載の方法。
  32. スワブまたは多孔質マトリクス内部に結合されている土または他の環境サンプルを解放する工程をさらに含む、請求項31記載の方法。
  33. 第一の流体が、樹状細胞を含む、請求項25記載の方法。
  34. 攻撃に対する免疫応答の要素を誘導するために樹状細胞をパルスする工程をさらに含む、請求項33記載の方法。
  35. 薬理学的物質またはワクチンを生成する工程、または薬理学的物質の生物活性を増加させる工程をさらに含む、請求項25記載の方法。
  36. 第一の流体内部に含有されているDNAまたはRNA分子をグリコーゲンまたはシリカに結合させる工程をさらに含む、請求項25記載の方法。
  37. シリカビーズまたはシリカ含有構造に結合されたDNAまたはRNA分子を精製する工程、および/またはグリコーゲンまたはシリカビーズもしくはシリカ含有構造から、該DNAおよびRNAを溶離する工程をさらに含む、請求項36記載の方法。
  38. 第一の流体中の分析物の存在または非存在を検出する工程をさらに含む、請求項25〜37のいずれか一項記載の方法。
  39. 検出する工程が、分析物に結合されている化学発光もしくは蛍光分子からの可視光線もしくは別のタイプの電磁放射を感知すること;分析物に結合されている常磁性ビーズの位置もしくは分布を感知すること;または分析物に結合されている種の核磁気共鳴もしくは他の物理的特性を感知することを含む、請求項38記載の方法。
  40. 複数の流体通路内で複数の微液滴を発生させる工程をさらに含む、請求項25記載の方法。
  41. 複数の微液滴が、少なくとも2つの流体を脈動させることによって形成され、該脈動させることが、マイクロ流体カートリッジ内の複数の高速マイクロ流体アクチュエータによって生じる、請求項40記載の方法。
  42. 複数の微液滴の各々の中の分析物の存在または非存在を検出する工程;マイクロ流体カートリッジ内の複数の温度ゾーンを通過して複数の微液滴を移動させることによって、複数の微液滴の各々において増幅反応を実施する工程;複数の微液滴の各々の中の標的アンプリコンの存在を検出する工程;または複数の微液滴の各々の中の標的核酸分子の融解温度を測定する工程をさらに含む、請求項40または41記載の方法。
  43. 参考菌株からのウイルスRNAの遺伝学的相違の融解温度分析を実施する工程をさらに含む、請求項42記載の方法。
JP2019063904A 2013-03-01 2019-03-28 マイクロ流体処理のための方法およびシステム Pending JP2019162623A (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201361771708P 2013-03-01 2013-03-01
US61/771,708 2013-03-01

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2015560397A Division JP2016516562A (ja) 2013-03-01 2014-03-03 マイクロ流体処理のための方法およびシステム

Publications (1)

Publication Number Publication Date
JP2019162623A true JP2019162623A (ja) 2019-09-26

Family

ID=51491830

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2015560397A Pending JP2016516562A (ja) 2013-03-01 2014-03-03 マイクロ流体処理のための方法およびシステム
JP2019063904A Pending JP2019162623A (ja) 2013-03-01 2019-03-28 マイクロ流体処理のための方法およびシステム

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2015560397A Pending JP2016516562A (ja) 2013-03-01 2014-03-03 マイクロ流体処理のための方法およびシステム

Country Status (4)

Country Link
EP (1) EP2962092A4 (ja)
JP (2) JP2016516562A (ja)
CA (1) CA2903382A1 (ja)
WO (1) WO2014137940A1 (ja)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105758942B (zh) * 2014-12-16 2019-01-04 中国科学院大连化学物理研究所 基于多种核酸适体的多蛋白同时在线富集检测方法
CN105241941A (zh) * 2015-09-06 2016-01-13 常州大学 一种毛细管内快速检测酶浓度的方法
WO2017066884A1 (en) * 2015-10-23 2017-04-27 The Royal Institution For The Advancement Of Learning/Mcgill University Fluidic circuits and methods for bacterial screening
WO2018025899A1 (ja) * 2016-08-03 2018-02-08 和光純薬工業株式会社 プラスチック製マイクロ流体デバイス充填用溶液
JP6759841B2 (ja) * 2016-08-15 2020-09-23 住友ゴム工業株式会社 マイクロ流路チップ
US11865540B2 (en) * 2016-09-23 2024-01-09 Hewlett-Packard Development Company, L.P. Microfluidic device
PL235210B1 (pl) * 2016-12-21 2020-06-15 Genomtec Spolka Akcyjna Sposób detekcji materiału genetycznego w próbce biologicznej oraz urządzenie do jego realizacji
JP6863074B2 (ja) * 2017-05-24 2021-04-21 住友ゴム工業株式会社 マイクロ流路チップ
AU2018364741B2 (en) * 2017-11-09 2021-03-25 Visby Medical, Inc. Portable molecular diagnostic device and methods for the detection of target viruses
US10046322B1 (en) 2018-03-22 2018-08-14 Talis Biomedical Corporation Reaction well for assay device
CN109576345A (zh) * 2018-10-17 2019-04-05 西人马(厦门)科技有限公司 一种用于dna提取的微流控芯片及其检测方法
US10820847B1 (en) 2019-08-15 2020-11-03 Talis Biomedical Corporation Diagnostic system
KR102329337B1 (ko) * 2020-01-21 2021-11-19 (주)옵토레인 푸시타입 pcr용 카트리지
CN116930298B (zh) * 2023-09-14 2023-12-26 古镜科技(深圳)有限公司 用于检测hiv的电化学生物传感器及其制备方法和应用

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000513813A (ja) * 1996-07-03 2000-10-17 カリパー テクノロジーズ コーポレイション 流体含有構造体内における電気力を介した電気浸透力および/または電気泳動力の可変制御
JP2001502790A (ja) * 1996-06-28 2001-02-27 カリパー テクノロジーズ コーポレイション 微小スケール流体装置の高処理能力スクリーニングアッセイシステム
JP2004508837A (ja) * 2000-09-14 2004-03-25 カリパー・テクノロジーズ・コープ. 温度介在反応を行うためのマイクロ流体装置及び方法
JP2004340962A (ja) * 2003-05-13 2004-12-02 Berkin Bv 液体流路内の液流の質量流量を制御するための装置
JP2006022807A (ja) * 2004-06-07 2006-01-26 Science Solutions International Laboratory Inc 電気浸透流ポンプシステム及び電気浸透流ポンプ
JP2011509658A (ja) * 2008-01-10 2011-03-31 ヒューレル コーポレーション 免疫システムモデリング・デバイスおよび方法
JP2012508894A (ja) * 2008-11-13 2012-04-12 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ マイクロ流体システムの流入口と毛細管チャネルとの接続
JP2012511156A (ja) * 2008-12-05 2012-05-17 ナノアイヴイディー,インコーポレイテッド ポイント・オブ・ケア分析器用マイクロ流体ベースのラボオンテストカード
JP2012527622A (ja) * 2009-05-19 2012-11-08 ザ リージェンツ オブ ザ ユニバーシティ オブ カリフォルニア 多方向マイクロ流体装置および方法
JP2012251927A (ja) * 2011-06-06 2012-12-20 National Institute Of Advanced Industrial & Technology 標的物質検出用マイクロチップ

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6391622B1 (en) * 1997-04-04 2002-05-21 Caliper Technologies Corp. Closed-loop biochemical analyzers
US6416642B1 (en) * 1999-01-21 2002-07-09 Caliper Technologies Corp. Method and apparatus for continuous liquid flow in microscale channels using pressure injection, wicking, and electrokinetic injection
US7214300B2 (en) * 2001-06-04 2007-05-08 Epocal Inc. Integrated electrokinetic devices and methods of manufacture
US7235164B2 (en) * 2002-10-18 2007-06-26 Eksigent Technologies, Llc Electrokinetic pump having capacitive electrodes
US7316543B2 (en) * 2003-05-30 2008-01-08 The Board Of Trustees Of The Leland Stanford Junior University Electroosmotic micropump with planar features
US20050034990A1 (en) * 2003-08-12 2005-02-17 Crooks Richard M. System and method for electrokinetic trapping and concentration enrichment of analytes in a microfluidic channel
US8528589B2 (en) * 2009-03-23 2013-09-10 Raindance Technologies, Inc. Manipulation of microfluidic droplets
SE534488C2 (sv) * 2010-02-22 2011-09-06 Lunavation Ab Ett system för elektrokinetisk flödesteknik

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001502790A (ja) * 1996-06-28 2001-02-27 カリパー テクノロジーズ コーポレイション 微小スケール流体装置の高処理能力スクリーニングアッセイシステム
JP2000513813A (ja) * 1996-07-03 2000-10-17 カリパー テクノロジーズ コーポレイション 流体含有構造体内における電気力を介した電気浸透力および/または電気泳動力の可変制御
JP2004508837A (ja) * 2000-09-14 2004-03-25 カリパー・テクノロジーズ・コープ. 温度介在反応を行うためのマイクロ流体装置及び方法
JP2004340962A (ja) * 2003-05-13 2004-12-02 Berkin Bv 液体流路内の液流の質量流量を制御するための装置
JP2006022807A (ja) * 2004-06-07 2006-01-26 Science Solutions International Laboratory Inc 電気浸透流ポンプシステム及び電気浸透流ポンプ
JP2011509658A (ja) * 2008-01-10 2011-03-31 ヒューレル コーポレーション 免疫システムモデリング・デバイスおよび方法
JP2012508894A (ja) * 2008-11-13 2012-04-12 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ マイクロ流体システムの流入口と毛細管チャネルとの接続
JP2012511156A (ja) * 2008-12-05 2012-05-17 ナノアイヴイディー,インコーポレイテッド ポイント・オブ・ケア分析器用マイクロ流体ベースのラボオンテストカード
JP2012527622A (ja) * 2009-05-19 2012-11-08 ザ リージェンツ オブ ザ ユニバーシティ オブ カリフォルニア 多方向マイクロ流体装置および方法
JP2012251927A (ja) * 2011-06-06 2012-12-20 National Institute Of Advanced Industrial & Technology 標的物質検出用マイクロチップ

Also Published As

Publication number Publication date
EP2962092A4 (en) 2016-08-24
WO2014137940A1 (en) 2014-09-12
CA2903382A1 (en) 2014-09-12
JP2016516562A (ja) 2016-06-09
EP2962092A1 (en) 2016-01-06

Similar Documents

Publication Publication Date Title
JP2019162623A (ja) マイクロ流体処理のための方法およびシステム
US10955067B2 (en) Methods and systems for enhanced microfluidic processing
WO2020192742A1 (zh) 自驱动微流控芯片及其使用方法
JP6316369B2 (ja) 微小流体デバイス
US9243288B2 (en) Cartridge with lysis chamber and droplet generator
US8338166B2 (en) Sorting, amplification, detection, and identification of nucleic acid subsequences in a complex mixture
JP5054096B2 (ja) 液滴に基づく生化学
US20180311661A1 (en) Method and molecular diagnostic device for detection, analysis and identification of genomic dna
Tanaka et al. Hands-off preparation of monodisperse emulsion droplets using a poly (dimethylsiloxane) microfluidic chip for droplet digital PCR
JP3654481B2 (ja) 生化学反応用マイクロリアクタ
WO2010147942A1 (en) Multiphase non-linear electrokinetic devices
KR20070063542A (ko) 미세유동 장치
JP2016516562A5 (ja)
AU2007284454A1 (en) Method and apparatus for microfluidic injection
JP2020500517A (ja) 連続流小滴反応に関連するシステムおよび方法
JP2007136379A (ja) マイクロリアクタおよびその製造方法
JP2007135504A (ja) 増幅部位にビーズを保持する核酸検査用マイクロリアクタ
JP4687413B2 (ja) マイクロチップにおける2種類以上の液体の混合方法およびマイクロ総合分析システム
US9089883B2 (en) Method for washing a microfluidic cavity
US11865535B2 (en) Microfluidic reaction system
Chen et al. High-throughput droplet analysis and multiplex DNA detection in the microfluidic platform equipped with a robust sample-introduction technique
Saha Microfluidics for Sorting Droplets and Motile Cells
Le Gac Microfluidic platform for parallel single cell analysis for diagnostic applications
JP2020094993A (ja) カートリッジ及び分析システム
JP2019211254A (ja) カートリッジ

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190424

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190424

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200603

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20200902

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201203

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210517

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20210521

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20210813

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20220127