JP2019149349A - 遷移金属複合水酸化物粒子の製造方法、遷移金属複合水酸化物粒子、非水系電解質二次電池用正極活物質の製造方法、非水系電解質二次電池用正極活物質 - Google Patents
遷移金属複合水酸化物粒子の製造方法、遷移金属複合水酸化物粒子、非水系電解質二次電池用正極活物質の製造方法、非水系電解質二次電池用正極活物質 Download PDFInfo
- Publication number
- JP2019149349A JP2019149349A JP2018035031A JP2018035031A JP2019149349A JP 2019149349 A JP2019149349 A JP 2019149349A JP 2018035031 A JP2018035031 A JP 2018035031A JP 2018035031 A JP2018035031 A JP 2018035031A JP 2019149349 A JP2019149349 A JP 2019149349A
- Authority
- JP
- Japan
- Prior art keywords
- transition metal
- particles
- metal composite
- positive electrode
- aqueous solution
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Inorganic Compounds Of Heavy Metals (AREA)
- Battery Electrode And Active Subsutance (AREA)
Abstract
Description
非水系電解質二次電池用正極活物質の前駆体となる遷移金属複合水酸化物粒子を、晶析反応により製造する遷移金属複合水酸化物粒子の製造方法であって、
反応槽内に、少なくとも遷移金属を含有する原料水溶液と、アルカリ水溶液とを供給して反応水溶液を形成し、前記反応水溶液を、液温25℃基準におけるpH値が12.0以上14.0以下に制御し、核の生成を行なう核生成工程と、
前記核生成工程で得られた前記反応水溶液に、少なくとも遷移金属を含有する原料水溶液と、アルカリ水溶液とを供給して、液温25℃基準におけるpH値を9.0以上11.0以下に制御し、前記核を成長させる粒子成長工程とを有し、
前記核生成工程と、前記粒子成長工程において、前記反応水溶液中のアンモニウムイオン濃度を1g/L以下に制御する遷移金属複合水酸化物粒子の製造方法を提供する。
1.遷移金属複合水酸化物粒子の製造方法
以下に、本実施形態の遷移金属複合水酸化物粒子の製造方法の一構成例について説明する。
核生成工程で得られた反応水溶液に、少なくとも遷移金属を含有する原料水溶液と、アルカリ水溶液とを供給して、液温25℃基準におけるpH値を9.0以上11.0以下に制御し、核を成長させる粒子成長工程。
そして、核生成工程と、粒子成長工程において、反応水溶液中のアンモニウムイオン濃度を1g/L以下に制御することができる。
(1)核生成工程
核生成工程では、既述の様に少なくとも遷移金属を含有する原料水溶液と、アルカリ水溶液とを供給して反応水溶液を形成し、係る反応水溶液を、液温25℃基準におけるpH値が12.0以上14.0以下に制御し、核の生成を行なうことができる。
(少なくとも遷移金属を含有する原料水溶液)
本実施形態の遷移金属複合水酸化物粒子の製造方法によれば、少なくとも遷移金属を含有する原料水溶液(以下、単に「原料水溶液」とも記載する)中の金属元素の比率が、概ね、得られる遷移金属複合水酸化物粒子中の金属元素の組成比となる。このため、原料水溶液は、目的とする遷移金属複合水酸化物粒子の組成に応じて、各金属元素の含有量を適宜調整することが好ましい。
(アルカリ水溶液)
反応水溶液に添加し、反応水溶液のpH値を調整するアルカリ水溶液は、特に制限されることはなく、水酸化ナトリウムや水酸化カリウムなどの一般的なアルカリ金属水酸化物水溶液を用いることができる。なお、アルカリ金属水酸化物を、直接、反応水溶液に添加することもできるが、pH制御の容易さから、水溶液として添加することが好ましい。
(核生成工程での操作について)
そして、核生成工程を開始する前に、晶析を行う反応槽内に、アルカリ水溶液を供給、及び混合して、液温25℃基準で測定するpH値が12.0以上14.0以下である反応前水溶液を調製しておくことができる。なお、反応槽内には予め水を入れておくことができる。反応前水溶液のpH値はpH計により測定することができる。反応槽内の液温度は、20℃以上80℃以下に制御しておくことが好ましく、35℃以上75℃以下に制御しておくことがより好ましい。
(2)粒子成長工程
粒子成長工程では、核生成工程で得られた反応水溶液に、少なくとも遷移金属を含有する原料水溶液と、アルカリ水溶液とを供給して、液温25℃基準におけるpH値を核生成工程よりも低く、9.0以上11.0以下に制御し、核を成長させることができる。このように核生成工程と、粒子成長工程とで反応水溶液のpH値を変化させることで、主に核生成を行なう核生成工程と、主に粒子の成長を行う粒子成長工程と両工程を明確に区別することができる。
2.遷移金属複合水酸化物粒子
以下に、本実施形態の遷移金属複合水酸化物粒子の一構成例について説明する。
本実施形態の遷移金属複合水酸化物粒子が有する二次粒子は、板状一次粒子および微細一次粒子が凝集して形成されている。この際、二次粒子の少なくとも表面において、例えば後述する図3に示すように、隣接する一方の板状一次粒子301の主表面301Aと、他方の板状一次粒子302の厚み方向を含む面である端面302Aとが接するようにして凝集した構造を有することが好ましい。二次粒子の表面に配置された複数の板状一次粒子は、端面が二次粒子の表面側に配置され、主表面が二次粒子の直径方向に沿って配置されていることが好ましい。
本実施形態の遷移金属複合水酸化物粒子は、二次粒子の平均粒径が、1μm以上15μm以下であることが好ましく、3μm以上12μm以下であることがより好ましく、3μm以上10μm以下であることがさらに好ましい。本実施形態の遷移金属複合水酸化物粒子の二次粒子の平均粒径は、該遷移金属複合水酸化物粒子を前駆体とする正極活物質の平均粒径と相関する。そして、本発明の発明者らの検討によれば、本実施形態の遷移金属複合水酸化物粒子の二次粒子の平均粒径を1μm以上15μm以下とすることで、該遷移金属複合水酸化物粒子を前駆体とする正極活物質の平均粒径を容易に所定の範囲に制御することが可能となり好ましい。
本実施形態の遷移金属複合水酸化物粒子の組成が制限されることはないが、一般式(A):NixCoyAlzMt(OH)2+aで表される遷移金属複合水酸化物粒子であることが好ましい。なお、上記一般式(A)中のx、y、z、t、aは、x+y+z+t=1、0.3≦x≦0.95、0.05≦y≦0.55、0≦z≦0.4、0≦t≦0.1、0≦a≦0.5の関係を満たすことが好ましい。また、添加元素Mは、Mg、Ca、Ti、V、Cr、Zr、Nb、Mo、Hf、Ta、Wから選択される1種類以上の添加元素とすることが好ましい。
3.非水系電解質二次電池用正極活物質の製造方法
次に本実施形態の非水系電解質二次電池用正極活物質の製造方法(以下、単に「正極活物質の製造方法」とも記載する)の一構成例について説明する。
(1)混合工程
混合工程は、既述の遷移金属複合水酸化物の製造方法により製造した遷移金属複合水酸化物粒子と、リチウム化合物とを混合して、リチウム混合物を形成することができる。
焼成工程は、混合工程で得られたリチウム混合物を酸化性雰囲気中、650℃以下800℃以下で焼成し、遷移金属複合水酸化物粒子または酸化焙焼粒子中にリチウムを拡散させて、リチウム遷移金属複合酸化物粒子を得る工程である。
(焼成温度)
リチウム混合物の焼成温度は、650℃以上800℃以下とすることが好ましい。焼成温度を650℃以上とすることで、遷移金属複合水酸化物粒子または酸化焙焼粒子中にリチウムを十分に拡散することができる。このため、余剰のリチウムや未反応の遷移金属複合水酸化物粒子または酸化焙焼粒子が残存することを抑制できる。また、得られるリチウム遷移金属複合酸化物粒子の結晶性を十分に高めることができる。
(焼成時間)
焼成時間のうち、上述した焼成温度での保持時間を2時間以上とすることが好ましく、4時間以上24時間以下とすることがより好ましい。焼成温度における保持時間を2時間以上とすることで、遷移金属複合水酸化物粒子または酸化焙焼粒子中にリチウムを特に十分に拡散させることができる。このため、余剰のリチウムや未反応の遷移金属複合水酸化物粒子または酸化焙焼粒子が残存することを抑制できる。また、得られるリチウム遷移金属複合酸化物粒子の結晶性を十分に高めることができる。
(焼成雰囲気)
焼成時の雰囲気は、酸化性雰囲気とすることが好ましく、酸素濃度が95容量%以上100容量%以下の雰囲気とすることがより好ましい。
(3)酸化焙焼工程
上述のように本実施形態の正極活物質の製造方法はさらに酸化焙焼工程を有することもできる。酸化焙焼工程は、既述の混合工程の前に実施することができる。酸化焙焼工程では、遷移金属複合水酸化物粒子を105℃以上750℃以下の温度で酸化焙焼することができる。酸化焙焼工程により、遷移金属複合水酸化物粒子を酸化焙焼粒子とすることができる。
(4)解砕工程
本実施形態の正極活物質の製造方法は、焼成工程の後、得られた正極活物質を解砕する解砕工程を有することもできる。
4.非水系電解質二次電池用正極活物質
本実施形態の正極活物質は、リチウム遷移金属複合酸化物粒子を含むことができる。
(1)粒子構造
本実施形態の正極活物質は、上述のようにリチウム遷移金属複合酸化物粒子を含むことができる。また、本実施形態の正極活物質はリチウム遷移金属複合酸化物粒子から構成することもできる。なお、本実施形態の正極活物質がリチウム遷移金属複合酸化物粒子から構成される場合であっても、製造工程に起因する不可避成分等を含有することを排除するものではない。
(2)平均粒径
本実施形態の正極活物質が含むリチウム遷移金属複合酸化物粒子は、平均粒径が1μm以上15μm以下であることが好ましく、3μm以上12μm以下であることがより好ましく、3μm以上10μm以下であることがさらに好ましい。
(3)組成
本実施形態の正極活物質が含有するリチウム遷移金属複合酸化物粒子の組成は特に制限されることはないが、一般式(B):Li1+uNixCoyAlzMtO2で表される組成を有することが好ましい。なお、上記一般式(B)内のu、x、y、z、tは−0.05≦u≦0.50、x+y+z+t=1、0.3≦x≦0.95、0.05≦y≦0.55、0≦z≦0.4、0≦t≦0.1の関係を満たすことが好ましい。また、添加元素Mは、Mg、Ca、Ti、V、Cr、Zr、Nb、Mo、Hf、Ta、Wから選択される1種類以上の添加元素とすることができる。
本実施形態の正極活物質が含むリチウム遷移金属複合酸化物粒子は、比表面積が可能な限り大きいことが好ましい。比表面積が大きくなるほど電解液との接触面積が大きく、これを用いた二次電池の出力特性を大幅に改善することができるためである。
本実施形態の正極活物質が含有するリチウム遷移金属複合酸化物粒子では、空隙部が粒子内部に分散していることが好ましい。リチウム遷移金属複合酸化物粒子の断面積に対する空隙部面積の占有率(以下、「空隙部率」と記載する)は、これが大きくなるほど、比表面積は増大する傾向となる。すなわち、二次電池を構成した場合に、電解液との反応面積を確保することにつながる。
(6)単位体積当たりの表面積
本実施形態の正極活物質が含むリチウム遷移金属複合酸化物粒子は、比表面積と、タップ密度との積で算出される単位体積当たりの表面積が1.7m2/cc以上であることが好ましく、1.9m2/cc以上であることがより好ましく、2.3m2/cc以上であることがさらに好ましい。これは、リチウム遷移金属複合酸化物粒子の単位体積当たりの表面積を1.7m2/cc以上とすることで、単位体積当たりのリチウム遷移金属複合酸化物粒子の電解液との接触面積を十分に確保し、出力特性を高めることができるからである。
5.非水系電解質二次電池
次に、本実施形態の非水系電解質二次電池の一構成例について説明する。
(1)正極
まず正極について説明する。
(2)負極
負極は、銅などの金属箔集電体の表面に、負極合材ペーストを塗布し、乾燥して形成されたシート状の部材である。
(3)セパレータ
セパレータは、正極と負極との間に挟み込んで配置されるものであり、正極と負極とを分離し、電解液を保持する機能を有している。
(4)非水系電解液
非水系電解液は、支持塩としてのリチウム塩を有機溶媒に溶解したものである。
[実施例1]
(1)遷移金属複合水酸化物粒子の製造
(核生成工程)
はじめに、反応槽内に、水を21L入れて撹拌しながら、槽内温度を70℃に設定した。なお、核生成工程、及び粒子成長工程を実施している間、反応前水溶液、及び反応水溶液の液温は上記槽内温度と同じ70℃に保たれている。また、反応槽内は窒素雰囲気となっており、核生成工程、及び粒子成長工程を実施している間、同じ雰囲気に保持した。
(粒子成長工程)
核生成工程終了後、一旦、すべての水溶液の供給を一旦停止するとともに、硫酸を加えて、pH値が、液温25℃基準で10.0となるように調整することで、粒子成長用反応水溶液を形成した。
(被覆工程)
得られた被覆前遷移金属複合水酸化物粒子をアルミン酸ナトリウム水溶液に分散させ、硫酸による中和で粒子表面にAl(OH)3を析出させることで、遷移金属複合水酸化物粒子を得た。
(遷移金属複合水酸化物粒子の評価)
得られた遷移金属複合水酸化物粒子について以下の評価を行った。
ICP発光分光分析装置(株式会社島津製作所製、ICPE−9000)を用いた分析により、この遷移金属複合水酸化物粒子は、一般式:Ni0.820Co0.150Al0.030(OH)2で表されるものであることが確認された。
上記被覆工程を実施する前の被覆前遷移金属複合水酸化物粒子が有する二次粒子の一部を樹脂に埋め込み、クロスセクションポリシャ加工によって断面観察可能な状態とした上で、SEM(日本電子株式会社製、型式:JSM−6360LA)により観察した。この結果、この遷移金属複合水酸化物粒子は、厚みが30nm以下の板状一次粒子、及び粒径が1nm以上5nm以下である微細一次粒子が粒子全体に分布、凝集して形成されており、中心部と粒子表面部は連結していることが確認された。
レーザ光回折散乱式粒度分析計(日機装株式会社製、型式:マイクロトラックHRA)を用いて、遷移金属複合水酸化物粒子の平均粒径を測定した。この結果、平均粒径は、7.9μmであることが確認された。
(2)正極活物質の作製
以下の手順により、得られた遷移金属複合水酸化物粒子を用いて正極活物質の製造を行った。
(酸化焙焼工程)
得られた遷移金属複合水酸化物粒子を、空気(酸素濃度:21容量%)気流中、600℃で2時間酸化焙焼した。これにより酸化焙焼粒子を得た。
(混合工程)
得られた酸化焙焼粒子と、リチウム化合物である平均粒径が25μmである水酸化リチウムとをLi/Meが1.06となるように秤量し、シェーカーミキサ装置(ウィリー・エ・バッコーフェン(WAB)社製 型式:TURBULA TypeT2C)を用いて十分に混合した。これにより、リチウム混合物を得た。
(焼成工程)
混合工程で得られたリチウム混合物を、酸素気流中、昇温速度を2℃/分として最高到達温度725℃まで昇温し、この温度で5時間保持することにより焼成した。焼成後、冷却速度を約4℃/分として室温まで冷却した。
(解砕工程)
焼成工程後に得られた正極活物質は、凝集または軽度の焼結が生じていた。このため、この正極活物質を解砕し、平均粒径および粒度分布を調整した。
(正極活物質の評価)
得られた正極活物質について以下の評価を行った。
ICP発光分光分析装置を用いた分析により、この正極活物質は、一般式:Li1.06Ni0.820Co0.150Al0.030O2で表されるリチウムニッケルコバルト複合酸化物からなることが確認された。
正極活物質の一部を樹脂に埋め込み、クロスセクションポリシャ加工によって断面観察可能な状態とした上で、SEMにより観察した。この結果、この正極活物質は、複数の一次粒子が凝集して形成された二次粒子から構成され、この二次粒子は、粒子表面部と電気的に導通する一次粒子の凝集部および空隙部とを備えた多孔質構造を有することが確認された。
レーザ光回折散乱式粒度分析計(日機装株式会社製 型式:マイクロトラックHRA)を用いて、正極活物質の平均粒径を測定した。この結果、平均粒径は、5.9μmであることが確認された。
流動方式ガス吸着法比表面積測定装置(ユアサアイオニクス株式会社製、マルチソーブ)により比表面積を、タッピングマシン(株式会社蔵持科学器械製作所、KRS−406)によりタップ密度を、それぞれ測定した。この結果、得られた正極活物質の比表面積は1.3m2/gであり、タップ密度は2.1g/ccであることが確認された。
(3)二次電池の作製
以下の手順により、初期放電容量測定用にコイン型電池を、電圧緩和測定用にラミネート型電池をそれぞれ作製し、初期放電容量と、電圧緩和との測定を行った。
(コイン型電池の作製、初期放電容量の評価)
得られた正極活物質を用いて図1に示した2032型コイン型電池10を作製した。
(ラミネート型電池の作製、電圧緩和の測定)
得られた正極活物質を用いて、図2に示したラミネート型電池20を作製した。
[実施例2]
正極活物質を調製する際の焼成工程において、最高到達温度を735℃とした点以外は、実施例1と同様にして、遷移金属複合水酸化物粒子、正極活物質および二次電池を得て、その評価を行った。焼成工程における最高到達温度以外の条件、すなわち昇温速度、降温速度、最高到達温度での保持時間は実施例1と同じになっている。評価結果を表1、表2に示す。
[実施例3]
正極活物質を調製する際の焼成工程において、最高到達温度を745℃とした点以外は、実施例1と同様にして、遷移金属複合水酸化物粒子、正極活物質および二次電池を得て、その評価を行った。焼成工程における最高到達温度以外の条件、すなわち昇温速度、降温速度、最高到達温度での保持時間は実施例1と同じになっている。評価結果を表1、表2に示す。
[実施例4]
正極活物質を調製する際の焼成工程において、最高到達温度を760℃とした点以外は、実施例1と同様にして、遷移金属複合水酸化物粒子、正極活物質および二次電池を得て、その評価を行った。焼成工程における最高到達温度以外の条件、すなわち昇温速度、降温速度、最高到達温度での保持時間は実施例1と同じになっている。評価結果を表1、表2に示す。
[実施例5]
(1)遷移金属複合水酸化物粒子の製造
(核生成工程、粒子成長工程、被覆工程)
反応前水溶液を形成する際、アルカリ水溶液に加えて、25質量%アンモニア水を添加した。
(遷移金属複合水酸化物粒子の評価)
得られた遷移金属複合水酸化物粒子について実施例1の場合と同様に以下の評価を行った。
ICP発光分光分析装置(株式会社島津製作所製、ICPE−9000)を用いた分析により、この遷移金属複合水酸化物粒子は、一般式:Ni0.820Co0.150Al0.030(OH)2で表されるものであることが確認された。
上記被覆工程を実施する前の被覆前遷移金属複合水酸化物粒子が有する二次粒子の一部を樹脂に埋め込み、クロスセクションポリシャ加工によって断面観察可能な状態とした上で、SEMにより観察した。この結果、この遷移金属複合水酸化物粒子は、厚みが30nm以下の板状一次粒子、及び粒径が1nm以上5nm以下である微細一次粒子が粒子全体に分布、凝集して形成されており、中心部と粒子表面部は連結していることが確認された。
レーザ光回折散乱式粒度分析計を用いて、遷移金属複合水酸化物粒子の平均粒径を測定した。この結果、平均粒径は、7.7μmであることが確認された。
(2)正極活物質の作製
上述の遷移金属複合水酸化物粒子を用いた点以外は、実施例4と同様にして正極活物質を製造した。
(正極活物質の評価)
得られた正極活物質について実施例1と同様にして評価を行った。結果を表1に示す。
(3)二次電池の作製
上述の正極活物質を用いた点以外は、実施例1と同様にして初期放電容量測定用にコイン型電池を、電圧緩和測定用にラミネート型電池をそれぞれ作製し、初期放電容量と、電圧緩和との測定を行った。
[比較例1]
(1)遷移金属複合水酸化物粒子の製造
(核生成工程、粒子成長工程、被覆工程)
反応槽内の槽内温度を50℃に設定し、核生成工程、及び粒子成長工程を実施している間、反応前水溶液、及び反応水溶液の液温は上記槽内温度と同じ50℃に保持した。
(遷移金属複合水酸化物粒子の評価)
得られた遷移金属複合水酸化物粒子について実施例1の場合と同様に以下の評価を行った。
ICP発光分光分析装置を用いた分析により、この複合水酸化物粒子は、一般式:Ni0.820Co0.150Al0.03(OH)2で表されるものであることが確認された。
被覆工程を実施する前の複合水酸化物粒子の一部を樹脂に埋め込み、クロスセクションポリシャ加工によって断面観察可能な状態とした上で、SEMにより観察した。この結果、この複合水酸化物粒子は、板状一次粒子および微細一次粒子が密に凝集して二次粒子を形成しており、二次粒子内には空隙はほとんど確認されなかった。
レーザ光回折散乱式粒度分析計を用いて、複合水酸化物粒子の平均粒径を測定した。この結果、平均粒径は、5.8μmであることが確認された。
(2)正極活物質の作製
上述の遷移金属複合水酸化物粒子を用いた点以外は、実施例4と同様にして正極活物質を製造した。
(正極活物質の評価)
得られた正極活物質について実施例1と同様にして以下の評価を行った。
ICP発光分光分析装置を用いた分析により、この正極活物質は、一般式:Li1.06Ni0.820Co0.150Al0.030O2で表されるリチウムニッケルコバルト複合酸化物からなるであることが確認された。
正極活物質の一部を樹脂に埋め込み、クロスセクションポリシャ加工によって断面観察可能な状態とした上で、SEMにより観察した。この結果、この正極活物質粒子は、複数の一次粒子が凝集して形成された二次粒子から構成され、この二次粒子は、ほとんど空隙部を有さないことが確認された。
レーザ光回折散乱式粒度分析計を用いて、正極活物質の平均粒径を測定した。この結果、平均粒径は、5.7μmであることが確認された。
流動方式ガス吸着法比表面積測定装置により比表面積を、タッピングマシンによりタップ密度を、それぞれ測定した。この結果、比表面積は0.7m2/gであり、タップ密度は2.0g/ccであることが確認された。
(3)二次電池の作製
上述の正極活物質を用いた点以外は、実施例1と同様にして初期放電容量測定用にコイン型電池を、電圧緩和測定用にラミネート型電池をそれぞれ作製し、初期放電容量と、電圧緩和との測定を行った。
301A、401A 主表面
302A、402A 端面
Claims (10)
- 非水系電解質二次電池用正極活物質の前駆体となる遷移金属複合水酸化物粒子を、晶析反応により製造する遷移金属複合水酸化物粒子の製造方法であって、
反応槽内に、少なくとも遷移金属を含有する原料水溶液と、アルカリ水溶液とを供給して反応水溶液を形成し、前記反応水溶液を、液温25℃基準におけるpH値が12.0以上14.0以下に制御し、核の生成を行なう核生成工程と、
前記核生成工程で得られた前記反応水溶液に、少なくとも遷移金属を含有する原料水溶液と、アルカリ水溶液とを供給して、液温25℃基準におけるpH値を9.0以上11.0以下に制御し、前記核を成長させる粒子成長工程とを有し、
前記核生成工程と、前記粒子成長工程において、前記反応水溶液中のアンモニウムイオン濃度を1g/L以下に制御する遷移金属複合水酸化物粒子の製造方法。 - 前記粒子成長工程後に得られる前記遷移金属複合水酸化物粒子は、一般式(A):NixCoyAlzMt(OH)2+a(ただし、x+y+z+t=1、0.3≦x≦0.95、0.05≦y≦0.55、0≦z≦0.4、0≦t≦0.1、0≦a≦0.5、Mは、Mg、Ca、Ti、V、Cr、Zr、Nb、Mo、Hf、Ta、Wから選択される1種類以上の添加元素)で表される遷移金属複合水酸化物の粒子である、請求項1に記載の遷移金属複合水酸化物粒子の製造方法。
- 前記粒子成長工程後に得られる前記遷移金属複合水酸化物粒子は、一次粒子が凝集した二次粒子を有しており、
前記添加元素MおよびAlから選択された1種類以上は、前記二次粒子の内部及び表面のいずれか一方、もしくは両方に均一に配置されている請求項2に記載の遷移金属複合水酸化物粒子の製造方法。 - 非水系電解質二次電池用正極活物質の前駆体となる遷移金属複合水酸化物粒子であって、
厚みが30nm以下の板状一次粒子、及び微細一次粒子が凝集して形成された二次粒子を有し、
前記二次粒子は、少なくともその表面において、隣接する一方の前記板状一次粒子の主表面と、他方の前記板状一次粒子の端面とが接するようにして凝集した構造を有し、
前記二次粒子は平均粒径が1μm以上15μm以下である、遷移金属複合水酸化物粒子。 - 請求項1〜請求項3のいずれか一項に記載の遷移金属複合水酸化物粒子の製造方法により得られた遷移金属複合水酸化物粒子と、リチウム化合物とを混合して、リチウム混合物を形成する混合工程と、
前記混合工程で形成された前記リチウム混合物を、酸化性雰囲気中、650℃以上800℃以下で焼成する焼成工程とを有する、非水系電解質二次電池用正極活物質の製造方法。 - 前記混合工程において、前記リチウム混合物に含まれるリチウム以外の金属の原子数の和を1とした場合に、前記リチウム混合物に含まれるリチウムの原子数の比が0.95以上1.5以下となるように、前記リチウム混合物を形成する請求項5に記載の非水系電解質二次電池用正極活物質の製造方法。
- 前記混合工程において、前記リチウム化合物の平均粒径が110μm以下である、請求項5または請求項6に記載の非水系電解質二次電池用正極活物質の製造方法。
- 前記混合工程の前に、前記遷移金属複合水酸化物粒子を105℃以上750℃以下の温度で酸化焙焼する、酸化焙焼工程をさらに備え、
前記混合工程では、前記酸化焙焼工程で得られた酸化焙焼粒子と、リチウム化合物とを混合してリチウム混合物を形成する請求項5〜請求項7のいずれか一項に記載の非水系電解質二次電池用正極活物質の製造方法。 - 前記焼成工程後に得られる非水系電解質二次電池用正極活物質は、一般式(B):Li1+uNixCoyAlzMtO2(ただし、−0.05≦u≦0.50、x+y+z+t=1、0.3≦x≦0.95、0.05≦y≦0.55、0≦z≦0.4、0≦t≦0.1、Mは、Mg、Ca、Ti、V、Cr、Zr、Nb、Mo、Hf、Ta、Wから選択される1種類以上の添加元素)で表され、六方晶系のリチウムニッケルコバルト複合酸化物粒子を含み、
前記リチウムニッケルコバルト複合酸化物粒子は多孔質構造を有する請求項5〜請求項8のいずれか一項に記載の非水系電解質二次電池用正極活物質の製造方法。 - リチウム遷移金属複合酸化物粒子を含む非水系電解質二次電池用正極活物質であって、
前記リチウム遷移金属複合酸化物粒子は、複数の一次粒子が凝集して形成された二次粒子からなり、
前記二次粒子は、表面部と電気的に導通する一次粒子の凝集部と、空隙部とを有しており、
前記二次粒子は、平均粒径が1μm以上15μm以下であり、比表面積は0.8m2/g以上であり、比表面積×タップ密度で算出される単位体積当たりの表面積が1.7m2/cc以上であり、空隙部率が2.0%以上である非水系電解質二次電池用正極活物質。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018035031A JP7091711B2 (ja) | 2018-02-28 | 2018-02-28 | 遷移金属複合水酸化物粒子の製造方法、遷移金属複合水酸化物粒子、非水系電解質二次電池用正極活物質の製造方法、非水系電解質二次電池用正極活物質 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018035031A JP7091711B2 (ja) | 2018-02-28 | 2018-02-28 | 遷移金属複合水酸化物粒子の製造方法、遷移金属複合水酸化物粒子、非水系電解質二次電池用正極活物質の製造方法、非水系電解質二次電池用正極活物質 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2019149349A true JP2019149349A (ja) | 2019-09-05 |
JP7091711B2 JP7091711B2 (ja) | 2022-06-28 |
Family
ID=67850737
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2018035031A Active JP7091711B2 (ja) | 2018-02-28 | 2018-02-28 | 遷移金属複合水酸化物粒子の製造方法、遷移金属複合水酸化物粒子、非水系電解質二次電池用正極活物質の製造方法、非水系電解質二次電池用正極活物質 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP7091711B2 (ja) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2021159618A1 (zh) * | 2020-02-12 | 2021-08-19 | 湖南长远锂科股份有限公司 | 一种高功率型的锂离子电池用正极材料及其制备方法 |
JP2022044956A (ja) * | 2020-09-08 | 2022-03-18 | プライムプラネットエナジー&ソリューションズ株式会社 | 正極活物質およびその製造方法、ならびにリチウムイオン二次電池 |
JP2023016676A (ja) * | 2021-07-21 | 2023-02-02 | 日亜化学工業株式会社 | 非水電解質二次電池用正極活物質及びその製造方法 |
US11824193B2 (en) | 2020-03-26 | 2023-11-21 | Lg Chem, Ltd. | Method of manufacturing positive electrode active material |
JP7556616B2 (ja) | 2021-02-05 | 2024-09-26 | エルジー・ケム・リミテッド | 正極活物質およびその製造方法 |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012254889A (ja) * | 2011-06-07 | 2012-12-27 | Sumitomo Metal Mining Co Ltd | ニッケルマンガン複合水酸化物粒子とその製造方法、非水系電解質二次電池用正極活物質とその製造方法、ならびに、非水系電解質二次電池 |
JP2015191848A (ja) * | 2014-03-28 | 2015-11-02 | 住友金属鉱山株式会社 | 非水電解質二次電池用正極活物質の前駆体とその製造方法、及び非水電解質二次電池用正極活物質とその製造方法 |
-
2018
- 2018-02-28 JP JP2018035031A patent/JP7091711B2/ja active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012254889A (ja) * | 2011-06-07 | 2012-12-27 | Sumitomo Metal Mining Co Ltd | ニッケルマンガン複合水酸化物粒子とその製造方法、非水系電解質二次電池用正極活物質とその製造方法、ならびに、非水系電解質二次電池 |
JP2015191848A (ja) * | 2014-03-28 | 2015-11-02 | 住友金属鉱山株式会社 | 非水電解質二次電池用正極活物質の前駆体とその製造方法、及び非水電解質二次電池用正極活物質とその製造方法 |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2021159618A1 (zh) * | 2020-02-12 | 2021-08-19 | 湖南长远锂科股份有限公司 | 一种高功率型的锂离子电池用正极材料及其制备方法 |
US11824193B2 (en) | 2020-03-26 | 2023-11-21 | Lg Chem, Ltd. | Method of manufacturing positive electrode active material |
JP2022044956A (ja) * | 2020-09-08 | 2022-03-18 | プライムプラネットエナジー&ソリューションズ株式会社 | 正極活物質およびその製造方法、ならびにリチウムイオン二次電池 |
JP7135040B2 (ja) | 2020-09-08 | 2022-09-12 | プライムプラネットエナジー&ソリューションズ株式会社 | 正極活物質およびその製造方法、ならびにリチウムイオン二次電池 |
JP7556616B2 (ja) | 2021-02-05 | 2024-09-26 | エルジー・ケム・リミテッド | 正極活物質およびその製造方法 |
JP2023016676A (ja) * | 2021-07-21 | 2023-02-02 | 日亜化学工業株式会社 | 非水電解質二次電池用正極活物質及びその製造方法 |
JP7417135B2 (ja) | 2021-07-21 | 2024-01-18 | 日亜化学工業株式会社 | 非水電解質二次電池用正極活物質及びその製造方法 |
Also Published As
Publication number | Publication date |
---|---|
JP7091711B2 (ja) | 2022-06-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6596978B2 (ja) | 遷移金属複合水酸化物粒子とその製造方法、非水電解質二次電池用正極活物質とその製造方法、および非水電解質二次電池 | |
JP6159395B2 (ja) | 遷移金属複合水酸化物粒子とその製造方法、非水電解質二次電池用正極活物質とその製造方法および非水電解質二次電池 | |
KR101644252B1 (ko) | 니켈 복합 수산화물과 그의 제조 방법, 비수계 전해질 이차 전지용 정극 활물질과 그의 제조 방법, 및 비수계 전해질 이차 전지 | |
JP6331983B2 (ja) | 遷移金属複合水酸化物粒子の製造方法および非水電解質二次電池用正極活物質の製造方法 | |
KR101272411B1 (ko) | 니켈 망간 복합 수산화물 입자와 그의 제조 방법, 비수계 전해질 이차 전지용 정극 활성 물질과 그의 제조 방법, 및 비수계 전해질 이차 전지 | |
JP7188081B2 (ja) | 遷移金属含有複合水酸化物とその製造方法、非水電解質二次電池用正極活物質とその製造方法、および非水電解質二次電池 | |
JP6949297B2 (ja) | 遷移金属含有複合水酸化物とその製造方法、および、非水電解質二次電池用正極活物質とその製造方法 | |
JP6380711B1 (ja) | 遷移金属含有複合水酸化物とその製造方法、および、非水電解質二次電池用正極活物質の製造方法 | |
JP7260249B2 (ja) | 遷移金属含有複合水酸化物粒子とその製造方法、非水電解質二次電池用正極活物質とその製造方法、および非水電解質二次電池 | |
JP7087381B2 (ja) | 遷移金属含有複合水酸化物粒子およびその製造方法、並びに、非水電解質二次電池用正極活物質およびその製造方法 | |
JP7087380B2 (ja) | 遷移金属含有複合水酸化物粒子およびその製造方法、並びに、非水電解質二次電池用正極活物質およびその製造方法 | |
JP7091711B2 (ja) | 遷移金属複合水酸化物粒子の製造方法、遷移金属複合水酸化物粒子、非水系電解質二次電池用正極活物質の製造方法、非水系電解質二次電池用正極活物質 | |
JP7006255B2 (ja) | 遷移金属含有複合水酸化物粒子およびその製造方法、並びに、非水電解質二次電池用正極活物質およびその製造方法 | |
JP7087379B2 (ja) | 遷移金属含有複合水酸化物粒子およびその製造方法、並びに、非水電解質二次電池用正極活物質およびその製造方法 | |
JP7159639B2 (ja) | 遷移金属複合水酸化物の粒子の製造方法、及び、リチウムイオン二次電池用正極活物質の製造方法 | |
JP2020177860A (ja) | ニッケルマンガンコバルト含有複合水酸化物およびその製造方法、リチウムニッケルマンガンコバルト含有複合酸化物およびその製造方法、リチウムイオン二次電池用正極活物質およびその製造方法、並びに、リチウムイオン二次電池 | |
JP2019019047A (ja) | 金属複合水酸化物とその製造方法、非水電解質二次電池用正極活物質とその製造方法、及び、それを用いた非水電解質二次電池 | |
WO2017119457A1 (ja) | 非水系電解質二次電池用正極活物質前駆体、非水系電解質二次電池用正極活物質、非水系電解質二次電池用正極活物質前駆体の製造方法、及び非水系電解質二次電池用正極活物質の製造方法 | |
JP7035540B2 (ja) | 遷移金属含有複合水酸化物粒子とその製造方法、非水電解質二次電池用正極活物質とその製造方法、および非水電解質二次電池 | |
WO2018097191A1 (ja) | 非水電解質二次電池用正極活物質および非水電解質二次電池 | |
JP2019220361A (ja) | リチウムイオン二次電池用正極活物質とその製造方法およびリチウムイオン二次電池 | |
JP7119783B2 (ja) | 遷移金属複合水酸化物の製造方法、遷移金属複合水酸化物、リチウムイオン二次電池用正極活物質の製造方法、リチウムイオン二次電池用正極活物質 | |
JP6862786B2 (ja) | 遷移金属含有複合水酸化物の製造方法および非水電解質二次電池用正極活物質の製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20201110 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20211124 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20211214 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20220214 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20220517 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20220530 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 7091711 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |