JP2019132685A - Oxygen measurement device for storage container and oxygen sensor thereof - Google Patents

Oxygen measurement device for storage container and oxygen sensor thereof Download PDF

Info

Publication number
JP2019132685A
JP2019132685A JP2018014543A JP2018014543A JP2019132685A JP 2019132685 A JP2019132685 A JP 2019132685A JP 2018014543 A JP2018014543 A JP 2018014543A JP 2018014543 A JP2018014543 A JP 2018014543A JP 2019132685 A JP2019132685 A JP 2019132685A
Authority
JP
Japan
Prior art keywords
oxygen
diaphragm
containment vessel
electrodes
measuring device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018014543A
Other languages
Japanese (ja)
Other versions
JP6906454B2 (en
Inventor
基茂 柳生
Motoshige Yagyu
基茂 柳生
幸基 岡崎
Yukimoto Okazaki
幸基 岡崎
元気 田中
Genki Tanaka
元気 田中
大仁 羽生
Hirohito Hanyu
大仁 羽生
愛実 高橋
Manami Takahashi
愛実 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Toshiba Energy Systems and Solutions Corp
Original Assignee
Toshiba Corp
Toshiba Energy Systems and Solutions Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Toshiba Energy Systems and Solutions Corp filed Critical Toshiba Corp
Priority to JP2018014543A priority Critical patent/JP6906454B2/en
Publication of JP2019132685A publication Critical patent/JP2019132685A/en
Application granted granted Critical
Publication of JP6906454B2 publication Critical patent/JP6906454B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Measuring Oxygen Concentration In Cells (AREA)

Abstract

To allow a measurement of the concentration of oxygen regardless of the presence or absence of hydrogen in a nuclear reactor storage container.SOLUTION: According to an embodiment, an oxygen sensor 12 includes: a barrier film 15 of a solid electrolyte which presents an oxygen ion conductivity at a temperature of 525°C or less; and a pair of electrodes 16, 17 set on the barrier film 15 across the barrier film 15. The oxygen sensor is set in the nuclear reactor storage container 11 and measures the concentration of oxygen in the measurement target gas within the nuclear reactor storage container 11. The electrodes 16, 17 include a material of which heat of generation per an oxygen atom in the metal oxide is 80 kJ at highest or 150 kJ at lowest. The oxygen sensor 12 may be a limiting current oxygen sensor or a contrasting density oxygen sensor.SELECTED DRAWING: Figure 1

Description

本発明の実施形態は、原子炉格納容器用酸素計測装置およびそれに用いられる酸素センサに関する。   Embodiments described herein relate generally to a reactor containment vessel oxygen measuring device and an oxygen sensor used therefor.

発電用原子炉施設には、過酷事故発生時に原子炉および施設の安全性を確保するための機器があり、事故の状況把握および収束に向けた対応が採れるような機構を有している。特に、東日本大震災に伴う福島第一原子力発電所の過酷事故では、水素と酸素の反応による水素爆発により原子炉施設を損なう事象が発生しており、水素爆発防止のための気相濃度監視が求められている。   The nuclear power generation facility has equipment for ensuring the safety of the nuclear reactor and the facility in the event of a severe accident, and has a mechanism for grasping the situation of the accident and taking measures for convergence. In particular, in the severe accident at the Fukushima Daiichi Nuclear Power Station following the Great East Japan Earthquake, there was an event that damaged the reactor facility due to a hydrogen explosion caused by the reaction of hydrogen and oxygen, and gas phase concentration monitoring was required to prevent hydrogen explosions. It has been.

従来の原子炉施設において、格納容器雰囲気モニタにより気相中の水素および酸素濃度などを測定している。当該機器は原子炉格納容器外部に設置されており、原子炉格納容器内部の気相をブロワにより当該機器まで移送し、冷却器などを用いて湿度、温度、圧力などを調整し測定を実施している。   In a conventional nuclear reactor facility, hydrogen and oxygen concentrations in the gas phase are measured by a containment vessel atmosphere monitor. The equipment is installed outside the containment vessel, the gas phase inside the containment vessel is transferred to the equipment by a blower, and humidity, temperature, pressure, etc. are adjusted and measured using a cooler. ing.

特開2016−532079号公報Japanese Patent Laying-Open No. 2006-532079 特開2015−125138号公報JP2015-125138A

春日正毅、「水素と一酸化炭素の燃焼触媒」、触媒、1987年、第29巻第4号、p.299−304Masaaki Kasuga, “Combustion Catalyst of Hydrogen and Carbon Monoxide”, Catalyst, 1987, Vol. 29, No. 4, p. 299-304

しかしながら、福島第一原子力発電所で過酷事故が発生したことから明らかなように、既設施設のみでは過酷事故に対応するための十分な対応が採れない。従来の原子炉施設において、過酷事故発生時に交流電源を失った場合は、格納容器雰囲気モニタを動作させることができず、現状では常時監視を達成できていない。特に、福島第一原子力発電所での過酷事故では水素と酸素の反応による水素爆発により原子炉施設を損なう事象が発生しており、水素爆発防止のための気相濃度監視が重要である。   However, as is clear from the fact that a severe accident occurred at the Fukushima Daiichi Nuclear Power Station, the existing facilities alone cannot take sufficient measures to respond to the severe accident. In a conventional nuclear reactor facility, when AC power is lost when a severe accident occurs, the containment vessel atmosphere monitor cannot be operated, and at present, constant monitoring cannot be achieved. In particular, in severe accidents at the Fukushima Daiichi Nuclear Power Station, an event that damages the reactor facility due to a hydrogen explosion caused by the reaction of hydrogen and oxygen has occurred, and it is important to monitor the gas phase concentration to prevent hydrogen explosions.

そこで、交流電源を必要とするガスの移送や除湿、冷却、降圧などの調整等を行わず、過酷事故時の格納容器内の気相組成を直接測定するシステムが求められている。特に、酸素は水素と共存することで燃焼、爆発を引き起こし格納容器の健全性に大きな影響を与える事象を引き起こす可能性があるため、その測定はアクシデントマネジメント上、重要な位置づけとなる。   Therefore, there is a need for a system that directly measures the gas phase composition in the containment vessel at the time of a severe accident without adjusting gas transfer, dehumidification, cooling, pressure reduction, or the like that requires an AC power supply. In particular, because oxygen coexists with hydrogen, it can cause combustion and explosion, and can cause events that have a major impact on the integrity of the containment vessel, so its measurement is an important part of accident management.

しかしながら、現在のシステムでは格納容器内からブロワにより格納容器内部のガスをサンプリングする格納容器雰囲気モニタのみでの測定であり、交流電源喪失時は測定することができない。   However, in the current system, the measurement is performed only by the containment vessel atmosphere monitor that samples the gas inside the containment vessel with a blower from the inside of the containment vessel, and cannot be measured when the AC power source is lost.

このような状況に対応するための技術として、水素と酸素の燃焼反応より酸素濃度を測定する方法が検討されている。しかし、公知の技術を用いた場合は、水素が共存していない環境では測定することができず、水素が存在している場合でも水素濃度が既知でないと正確な酸素濃度を換算できなかった。また、測定のために水素と酸素の燃焼反応を用いており、測定部を起点とした水素爆発のリスクが否定しきれなかった。   As a technique for coping with such a situation, a method of measuring the oxygen concentration from a combustion reaction of hydrogen and oxygen has been studied. However, when a known technique is used, measurement cannot be performed in an environment where hydrogen does not coexist, and even when hydrogen is present, an accurate oxygen concentration cannot be converted unless the hydrogen concentration is known. In addition, the combustion reaction of hydrogen and oxygen was used for the measurement, and the risk of hydrogen explosion starting from the measurement part could not be denied.

本発明の実施形態が解決しようとする課題は、原子炉格納容器内において水素の有無によらず酸素濃度を測定可能とすることである。   The problem to be solved by the embodiment of the present invention is to make it possible to measure the oxygen concentration regardless of the presence or absence of hydrogen in the reactor containment vessel.

実施形態に係る格納容器用酸素計測装置は、上記課題を解決するために、原子炉格納容器内に設けられ、525℃以下で酸素イオン伝導性を有する固体電解質を含む隔膜と前記隔膜を挟んで対向するように前記隔膜上に配置された1対の電極を備える酸素センサ、を備え、前記電極は、金属酸化物中の酸素1原子あたりの生成熱が80kJ以下または150kJ以上である材料を含む。   In order to solve the above-described problem, an oxygen measuring device for a containment vessel according to an embodiment is provided in a reactor containment vessel, and includes a diaphragm containing a solid electrolyte having oxygen ion conductivity at 525 ° C. or less and the diaphragm. An oxygen sensor having a pair of electrodes disposed on the diaphragm so as to face each other, wherein the electrode includes a material having a heat of formation of 80 kJ or less or 150 kJ or more per oxygen atom in the metal oxide .

また、実施形態に係る格納容器用酸素計測装置は、上記課題を解決するために、原子炉格納容器内に設けられ、隔膜と、前記隔膜を挟んで対向するように前記隔膜上に配置された1対の電極とを備える酸素センサ、を備え、前記隔膜は、イットリア安定化ジルコニア、スカンジア安定化ジルコニア、ランタンストロンチウムガレート及びガドリニウムドープセリアのうち少なくとも1つを含有し、前記電極は、金、銀、銅、ニッケル及び炭素のうち少なくとも1つを含有する。   Further, in order to solve the above-described problem, the oxygen measuring device for a containment vessel according to the embodiment is provided in the reactor containment vessel, and is disposed on the diaphragm so as to face the diaphragm across the diaphragm. An oxygen sensor comprising a pair of electrodes, wherein the diaphragm contains at least one of yttria-stabilized zirconia, scandia-stabilized zirconia, lanthanum strontium gallate and gadolinium-doped ceria, wherein the electrodes are gold, silver And at least one of copper, nickel and carbon.

また、実施形態に係る酸素センサは、原子炉格納容器内に設けられ、525℃以下で酸素イオン伝導性を有する固体電解質を含む隔膜と前記隔膜を挟んで対向するように前記隔膜上に配置された1対の電極を備え、前記電極は、金属酸化物中の酸素1原子あたりの生成熱が80kJ以下または150kJ以上である材料を含む。   In addition, the oxygen sensor according to the embodiment is disposed on the diaphragm so as to be opposed to the diaphragm containing a solid electrolyte having oxygen ion conductivity at 525 ° C. or less provided in the reactor containment vessel. A pair of electrodes, the electrodes including a material having a heat of formation of 80 kJ or less or 150 kJ or more per oxygen atom in the metal oxide.

また、実施形態に係る酸素センサは、原子炉格納容器内に設けられ、隔膜と、前記隔膜を挟んで対向するように前記隔膜上に配置された1対の電極とを備え、前記隔膜は、イットリア安定化ジルコニア、スカンジア安定化ジルコニア、ランタンストロンチウムガレート及びガドリニウムドープセリアのうち少なくとも1つを含有し、前記電極は、金、銀、銅、ニッケル及び炭素のうち少なくとも1つを含有する。   The oxygen sensor according to the embodiment includes a diaphragm and a pair of electrodes disposed on the diaphragm so as to face each other with the diaphragm interposed therebetween, and the diaphragm includes: The electrode contains at least one of yttria stabilized zirconia, scandia stabilized zirconia, lanthanum strontium gallate and gadolinium doped ceria, and the electrode contains at least one of gold, silver, copper, nickel and carbon.

本発明の実施形態によれば、原子炉格納容器内において水素の有無によらず酸素濃度を測定できる。   According to the embodiment of the present invention, the oxygen concentration can be measured regardless of the presence or absence of hydrogen in the reactor containment vessel.

本発明に係る格納容器用酸素計測装置の第1の実施形態を示す模式的構成図である。It is a typical lineblock diagram showing a 1st embodiment of an oxygen measuring device for containment vessels concerning the present invention. 本発明に係る格納容器用酸素計測装置の第1の実施形態の設置状況を示す沸騰水型原子力施設の模式的な立断面図である。It is a typical elevation sectional view of a boiling water nuclear facility which shows the installation situation of a 1st embodiment of the oxygen measuring device for containment vessels concerning the present invention. 本発明の実施形態に係る格納容器用酸素計測装置の効果を説明するための図であって、金属酸化物酸素1原子あたりの生成熱と水素酸化活性の関係を示すグラフである。It is a figure for demonstrating the effect of the oxygen measuring device for containment vessels which concerns on embodiment of this invention, Comprising: It is a graph which shows the relationship between the production | generation heat | fever per metal oxide oxygen atom, and hydrogen oxidation activity. 本発明に係る格納容器用酸素計測装置の第1の実施形態の特性の一例を示すグラフであって、酸素分圧と出力電流の関係を示すグラフである。It is a graph which shows an example of the characteristic of 1st Embodiment of the oxygen measuring device for containment vessels which concerns on this invention, Comprising: It is a graph which shows the relationship between oxygen partial pressure and output current. 本発明に係る格納容器用酸素計測装置の第2の実施形態を示す模式的構成図である。It is a typical block diagram which shows 2nd Embodiment of the oxygen measuring device for containment vessels which concerns on this invention.

以下、実施の形態について、図面を参照しながら説明する。ここで、互いに同一または類似の部分には共通の符号を付して、重複説明は省略する。   Hereinafter, embodiments will be described with reference to the drawings. Here, the same or similar parts are denoted by common reference numerals, and redundant description is omitted.

[第1の実施形態]
図1は、本発明に係る格納容器用酸素計測装置の第1の実施形態を示す模式的構成図である。図2は、第1の実施形態の格納容器用酸素計測装置の設置状況を示す沸騰水型原子力施設の模式的な立断面図である。
[First Embodiment]
FIG. 1 is a schematic configuration diagram showing a first embodiment of an oxygen measuring device for a containment vessel according to the present invention. FIG. 2 is a schematic sectional elevation view of the boiling water nuclear facility showing the installation state of the containment vessel oxygen measuring device of the first embodiment.

この第1の実施形態の格納容器用酸素計測装置(酸素計測装置)は、一般的に知られている限界電流式酸素計測装置とほぼ同様の構成であり、酸素ポンピングを利用した酸素計測装置である。   The oxygen measuring device for a containment vessel (oxygen measuring device) of the first embodiment has substantially the same configuration as a generally known limit current type oxygen measuring device, and is an oxygen measuring device using oxygen pumping. is there.

この酸素計測装置は、原子炉格納容器11内に設置された酸素センサ(格納容器用酸素センサ)12と、原子炉格納容器11外の制御室(図示せず)内に設置された制御・監視部13とを有する。   This oxygen measuring device includes an oxygen sensor (container oxygen sensor) 12 installed in the reactor containment vessel 11 and a control / monitoring device installed in a control room (not shown) outside the reactor containment vessel 11. Part 13.

図2に示すように、沸騰水型原子力施設においては、原子炉格納容器11は、ドライウェル40と、ウェットウェル41とを有する。ドライウェル40とウェットウェル41とはベント管42によって接続されている。ドライウェル40内に原子炉圧力容器43が配置されている。ウェットウェル41内に圧力抑制プール44が収容されている。   As shown in FIG. 2, in the boiling water nuclear facility, the reactor containment vessel 11 has a dry well 40 and a wet well 41. The dry well 40 and the wet well 41 are connected by a vent pipe 42. A reactor pressure vessel 43 is arranged in the dry well 40. A pressure suppression pool 44 is accommodated in the wet well 41.

酸素センサ12は、原子炉格納容器11内の複数個所に配置するのが好ましい。原子炉格納容器11内で水素が発生した場合、水素は比重が小さいことから、水素は、ドライウェル40およびウェットウェル41のそれぞれの上部にたまりやすい。そのため、水素と酸素との反応を予知する必要性から、酸素センサ12は、少なくとも、ドライウェル40およびウェットウェル41のそれぞれの上部に配置するのが好ましい。より具体的には、酸素センサ12を、ドライウェル40内の原子炉圧力容器43よりも上方の位置と、ウェットウェル41内の圧力抑制プール44よりも上方の位置に配置するのが好ましい。   The oxygen sensors 12 are preferably arranged at a plurality of locations in the reactor containment vessel 11. When hydrogen is generated in the reactor containment vessel 11, since hydrogen has a small specific gravity, the hydrogen is likely to accumulate in the upper portions of the dry well 40 and the wet well 41. Therefore, it is preferable to dispose the oxygen sensor 12 at least above each of the dry well 40 and the wet well 41 in order to predict the reaction between hydrogen and oxygen. More specifically, the oxygen sensor 12 is preferably disposed at a position above the reactor pressure vessel 43 in the dry well 40 and at a position above the pressure suppression pool 44 in the wet well 41.

図1に示すように、酸素センサ12は、酸素イオン伝導性の隔膜15と、隔膜15をはさんで隔膜15に接して配置された正電極(電極)16および負電極(電極)17と、負電極17を覆うように配置された検査室カバー18とを有する。   As shown in FIG. 1, the oxygen sensor 12 includes an oxygen ion conductive diaphragm 15, a positive electrode (electrode) 16 and a negative electrode (electrode) 17 disposed in contact with the diaphragm 15 across the diaphragm 15, And a laboratory cover 18 arranged to cover the negative electrode 17.

検査室カバー18は、隔膜15および負電極17とともにガス検査室20を形成する。正電極16はガス検査室20の外側にある。検査室カバー18には、拡散孔21が形成されている。拡散孔21は、原子炉格納容器11内の測定対象ガスGが拡散によりガス検査室20内へ流入するようにするものであり、直径の小さな孔や多孔質材料が用いられる。   The examination room cover 18 forms a gas examination room 20 together with the diaphragm 15 and the negative electrode 17. The positive electrode 16 is outside the gas inspection chamber 20. A diffusion hole 21 is formed in the examination room cover 18. The diffusion hole 21 allows the measurement target gas G in the reactor containment vessel 11 to flow into the gas inspection chamber 20 by diffusion, and a hole having a small diameter or a porous material is used.

制御・監視部13は、電圧調整可能な直流電源25と、電流計26と、電圧計27とを含む。直流電源25の正側はリード線30によって正電極16に接続され、直流電源25の負側はリード線31によって負電極17に接続されている。リード線30,31は原子炉格納容器11の壁を貫通して延びている。電圧計27は、正電極16と負電極17との間に印加される電圧を計測できるように接続されている。また、電流計26は、正電極16および負電極17を流れる電流、すなわち直流電源25から供給される電流を計測できるように接続されている。正電極16と負電極17との間に印加される電圧が所定の値に維持されるように、電圧計27の出力に基づいて、直流電源25の電圧を制御することができる。   The control / monitoring unit 13 includes a DC power supply 25 with adjustable voltage, an ammeter 26, and a voltmeter 27. The positive side of the DC power supply 25 is connected to the positive electrode 16 by a lead wire 30, and the negative side of the DC power supply 25 is connected to the negative electrode 17 by a lead wire 31. The lead wires 30 and 31 extend through the wall of the reactor containment vessel 11. The voltmeter 27 is connected so that the voltage applied between the positive electrode 16 and the negative electrode 17 can be measured. The ammeter 26 is connected so as to measure the current flowing through the positive electrode 16 and the negative electrode 17, that is, the current supplied from the DC power supply 25. Based on the output of the voltmeter 27, the voltage of the DC power source 25 can be controlled so that the voltage applied between the positive electrode 16 and the negative electrode 17 is maintained at a predetermined value.

隔膜15は、固体電解質からなり、少なくとも525℃以下で酸素イオン伝導性を有する。ここで、525℃は、大気圧、空気環境時(酸素濃度約20%)での水素の自然燃焼開始温度である。隔膜15の材料の例としては、イットリア安定化ジルコニア(YSZ)、スカンジア安定化ジルコニア(ScSZ)などのジルコニア系材料に加え、ランタンストロンチウムガレートなどのぺロブスカイト型の酸素イオン伝導体、ガドリニウムドープセリア(GDC)などのセリア系材料などが挙げられる。   The diaphragm 15 is made of a solid electrolyte and has oxygen ion conductivity at least at 525 ° C. or less. Here, 525 ° C. is a natural combustion start temperature of hydrogen at atmospheric pressure and in an air environment (oxygen concentration of about 20%). Examples of the material of the diaphragm 15 include zirconia-based materials such as yttria-stabilized zirconia (YSZ) and scandia-stabilized zirconia (ScSZ), perovskite-type oxygen ion conductors such as lanthanum strontium gallate, gadolinium-doped ceria ( Ceria-based materials such as GDC).

負電極17にガス検査室20内の酸素ガスが接触することで、酸素ガスが酸素イオンに変化し、その酸素イオンが隔膜15を図1に示す矢印aの方向に移動し、正電極16で酸素イオンから酸素ガスに再度変化する。このときの正電極16と負電極17との間の電圧を適切に設定し、隔膜15に十分な酸素イオンが流れるようにすることにより、対象ガスGの流れは、拡散孔21の拡散過程が律速となる。この際に生じる電気信号(電流)を電流計26によって測定することで、酸素濃度もしくは酸素分圧を測定することが可能である。   When the oxygen gas in the gas inspection chamber 20 comes into contact with the negative electrode 17, the oxygen gas changes to oxygen ions, and the oxygen ions move in the direction of the arrow a shown in FIG. It changes again from oxygen ions to oxygen gas. At this time, by appropriately setting the voltage between the positive electrode 16 and the negative electrode 17 so that sufficient oxygen ions flow through the diaphragm 15, the flow of the target gas G is caused by the diffusion process of the diffusion hole 21. It becomes rate-limiting. By measuring the electric signal (current) generated at this time with the ammeter 26, it is possible to measure the oxygen concentration or the oxygen partial pressure.

正電極16および負電極17を構成する材料は、導体であり、当該材料が酸化した際に生じる酸化物中の酸素1原子あたりの生成熱が80kJ以下、もしくは150kJ以上である。生成熱が80kJ以下の材料の例としては金、銀があり、生成熱が150kJ以上の材料の例としては銅、ニッケル、炭素などが挙げられる。これらの材料を直接電極として用いることも可能であるが、メッキ材もしくは合金材料として使用することも可能である。   The material constituting the positive electrode 16 and the negative electrode 17 is a conductor, and the generated heat per oxygen atom in the oxide generated when the material is oxidized is 80 kJ or less, or 150 kJ or more. Examples of materials having a generated heat of 80 kJ or less include gold and silver, and examples of materials having a generated heat of 150 kJ or higher include copper, nickel, and carbon. These materials can be used directly as electrodes, but can also be used as plating materials or alloy materials.

酸化物中の酸素1原子あたりの生成熱が80kJ以下では金属材料と酸素が化学吸着した中間生成物が生成しにくく、酸化物中の酸素1原子あたりの生成熱が150kJ以上となった場合、中間生成物が金属に還元される反応が進行しにくくなると考えられ、水素と酸素の燃焼反応を防ぐうえで有効な範囲と考えられる。   When the heat of formation per oxygen atom in the oxide is 80 kJ or less, it is difficult to generate an intermediate product in which the metal material and oxygen are chemically adsorbed, and when the heat of formation per oxygen atom in the oxide is 150 kJ or more, It is considered that the reaction in which the intermediate product is reduced to the metal is difficult to proceed, and is considered to be an effective range for preventing the combustion reaction of hydrogen and oxygen.

ここで、中間生成物が生成される反応および中間生成物が金属に還元される反応は次のとおりである。
+ 2M → 2M−O
2M−O + H → M + H
ただし、Mは金属材料を示し、「M−O」は、金属材料と酸素が化学吸着した形態例を示す。
Here, the reaction in which the intermediate product is generated and the reaction in which the intermediate product is reduced to the metal are as follows.
O 2 + 2M → 2M-O
2M-O + H 2 → M + H 2 O
However, M represents a metal material, and “MO” represents an example in which the metal material and oxygen are chemically adsorbed.

ここで、正電極16および負電極17を構成する材料が、当該材料が酸化した際に生じる酸化物中の酸素1原子あたりの生成熱が80kJ以下、もしくは150kJ以上とする理由を、さらに、図3を参照して説明する。   Here, the reason why the material constituting the positive electrode 16 and the negative electrode 17 has a heat of formation per oxygen atom in the oxide generated when the material is oxidized is 80 kJ or less, or 150 kJ or more is further illustrated in FIG. This will be described with reference to FIG.

図3は、本発明の実施形態に係る格納容器用酸素計測装置の効果を説明するための図であって、金属酸化物酸素1原子あたりの生成熱と水素酸化活性の関係を示すグラフである。この図3は、非特許文献1の図1である。この図の縦軸T1/2[H](℃)は、H50%酸化率温度であって、この値が小さいほど水素酸化活性が高いことを表す。横軸は、金属酸化物酸素1原子あたりの生成熱(kcal/g・atom oxygen)を表す。この図で、横軸の値が約22kcal/g・atom oxygen(92kJ/g・atom oxygen)において縦軸の値が最も小さくて水素酸化活性が高く、金属酸化物酸素1原子あたりの生成熱がこれよりも小さくても大きくても、縦軸の値が大きくて水素酸化活性が低いことがわかる。 FIG. 3 is a graph for explaining the effect of the containment vessel oxygen measuring device according to the embodiment of the present invention, and is a graph showing the relationship between the heat generated per one metal oxide oxygen atom and the hydrogen oxidation activity. . FIG. 3 is FIG. 1 of Non-Patent Document 1. The vertical axis T 1/2 [H 2 ] (° C.) in this figure represents the H 2 50% oxidation rate temperature, and the smaller this value, the higher the hydrogen oxidation activity. The horizontal axis represents the heat of formation per atom of metal oxide oxygen (kcal / g · atom oxygen). In this figure, when the value on the horizontal axis is about 22 kcal / g · atom oxygen (92 kJ / g · atom oxygen), the value on the vertical axis is the smallest, the hydrogen oxidation activity is high, and the heat of formation per atom of metal oxide oxygen is high. Whether it is smaller or larger than this, the value on the vertical axis is large and the hydrogen oxidation activity is low.

本発明の実施形態においては、負電極17の表面で水素と酸素の反応が起きるのを抑制するのが好ましい。すなわち、図3の横軸の値が約22kcal/g・atom oxygen(92kJ/g・atom oxygen)をはさむ所定の範囲内は負電極17表面で水素と酸素の反応が起きやすいので、その範囲を避け、その範囲から外れた範囲とするのがよい。そのため、本発明の実施形態においては、横軸の値が80kJ/g・atom oxygen(19kcal/g・atom oxygen)以下の範囲、または150kJ/g・atom oxygen(36kcal/g・atom oxygen)以上の範囲とする。   In the embodiment of the present invention, it is preferable to suppress the reaction between hydrogen and oxygen on the surface of the negative electrode 17. That is, when the value on the horizontal axis in FIG. 3 is within a predetermined range sandwiching about 22 kcal / g · atom oxygen (92 kJ / g · atom oxygen), the reaction between hydrogen and oxygen easily occurs on the surface of the negative electrode 17. It is better to avoid it and make it out of the range. Therefore, in the embodiment of the present invention, the value of the horizontal axis is 80 kJ / g / atom oxygen (19 kcal / g / atom oxygen) or less, or 150 kJ / g / atom oxygen (36 kcal / g / atom oxygen) or more. Range.

図4は、本発明に係る格納容器用酸素計測装置の第1の実施形態の特性の一例を示すグラフであって、酸素分圧と出力電流の関係を示すグラフである。   FIG. 4 is a graph showing an example of the characteristics of the first embodiment of the containment vessel oxygen measuring device according to the present invention, showing the relationship between the oxygen partial pressure and the output current.

図4に示すように、酸素分圧が増大するに従い、すなわち酸素濃度が増加するに従い、出力される電流値が増加する。当該結果を得るための運転条件として酸素センサ12は、温度および外部から与える電圧が一定となる条件で動作させる。その際の温度上限は水素燃焼防止の観点より525℃である。   As shown in FIG. 4, the output current value increases as the oxygen partial pressure increases, that is, as the oxygen concentration increases. As an operating condition for obtaining the result, the oxygen sensor 12 is operated under a condition in which the temperature and the externally applied voltage are constant. In this case, the upper temperature limit is 525 ° C. from the viewpoint of preventing hydrogen combustion.

また、酸素センサ12の運転温度は、300℃以上とするのが好ましい。その理由は次のとおりである。原子炉事故時の原子炉格納容器11内の温度は事故進展状況に応じて変化するが、おおむね200℃を上限として過渡変化すると予想されている。この実施形態の酸素センサ12は温度によってその出力が変化するため、外気温の影響を受けない温度条件で運転する必要がある。外気温の影響を極力減らして運転するための例として、酸素センサ12の温度を、原子炉格納容器11内の温度よりも高く設定し、原子炉格納容器11内の温度により酸素センサ12が加熱されることがないようにするのが好ましい。そのために、酸素センサ12の温度を300℃以上として運転するのが好ましい。   The operating temperature of the oxygen sensor 12 is preferably 300 ° C. or higher. The reason is as follows. Although the temperature in the reactor containment vessel 11 at the time of the nuclear reactor accident changes according to the accident progress situation, it is expected to change transiently with an upper limit of about 200 ° C. in general. Since the output of the oxygen sensor 12 of this embodiment changes depending on the temperature, it is necessary to operate under a temperature condition that is not affected by the outside air temperature. As an example for reducing the influence of the outside air temperature as much as possible, the temperature of the oxygen sensor 12 is set higher than the temperature in the reactor containment vessel 11, and the oxygen sensor 12 is heated by the temperature in the reactor containment vessel 11. It is preferable not to be done. Therefore, it is preferable to operate the oxygen sensor 12 at a temperature of 300 ° C. or higher.

また、酸素センサ12に一定電圧を与えて酸素濃度を監視する検出方法を採る場合は、酸素センサ12に与える電圧は酸素が共存しない環境における固体電解質が分解する理論電圧以下、より好適には運転温度における水蒸気の電気分解が起こる理論電圧以下で運転することが望ましい。   Further, when the detection method of monitoring the oxygen concentration by applying a constant voltage to the oxygen sensor 12, the voltage applied to the oxygen sensor 12 is lower than the theoretical voltage at which the solid electrolyte decomposes in an environment where oxygen does not coexist, more preferably the operation. It is desirable to operate below the theoretical voltage at which water vapor electrolysis occurs at temperature.

以上説明した第1の実施形態によれば、原子炉格納容器用酸素センサ12は、水素との反応を伴わず、酸素濃度に応じたに電気信号によって原子炉格納容器11内の酸素濃度もしくは酸素分圧を測定することが可能となる。また、水素と酸素が共存した場合でも水素の燃焼反応を回避することが可能である。   According to the first embodiment described above, the reactor containment vessel oxygen sensor 12 is not accompanied by reaction with hydrogen, and the oxygen concentration or oxygen in the reactor containment vessel 11 is determined by an electrical signal according to the oxygen concentration. The partial pressure can be measured. Further, even when hydrogen and oxygen coexist, it is possible to avoid the hydrogen combustion reaction.

[第2の実施形態]
図5は、本発明に係る格納容器用酸素計測装置の第2の実施形態を示す模式的構成図である。
[Second Embodiment]
FIG. 5 is a schematic configuration diagram showing a second embodiment of the oxygen measuring device for a containment vessel according to the present invention.

この第2の実施形態の格納容器用酸素計測装置(酸素計測装置)は、一般的に知られている濃淡式酸素計測装置とほぼ同様の構成である。図5に示すように、この第2の実施形態に係る酸素計測装置は、原子炉格納容器11内に設置された酸素センサ(格納容器用酸素センサ)12と、原子炉格納容器11外の制御室(図示せず)内に設置された制御・監視部13とを有する。   The containment vessel oxygen measuring device (oxygen measuring device) of the second embodiment has substantially the same configuration as a generally known concentration-type oxygen measuring device. As shown in FIG. 5, the oxygen measuring device according to the second embodiment includes an oxygen sensor (container oxygen sensor) 12 installed in the reactor containment vessel 11 and a control outside the reactor containment vessel 11. And a control / monitoring unit 13 installed in a chamber (not shown).

酸素センサ12は、酸素イオン伝導性の隔膜15と、隔膜15をはさんで隔膜15に接して配置された正電極16および負電極17とを有する。正電極16および隔膜15の正電極16側の面が基準ガス室50に接するように、基準ガス室カバー51が配置されている。負電極17は基準ガス室50の外側にある。基準ガス室50内には、酸素濃度が既知の基準ガスが充填されている。基準ガスは、たとえば100%酸素ガスである。図5に示す例では、基準ガス室50は配管であって、その内部に基準ガスが流れるようになっている。   The oxygen sensor 12 includes an oxygen ion conductive diaphragm 15, and a positive electrode 16 and a negative electrode 17 disposed in contact with the diaphragm 15 across the diaphragm 15. The reference gas chamber cover 51 is disposed so that the surfaces of the positive electrode 16 and the diaphragm 15 on the positive electrode 16 side are in contact with the reference gas chamber 50. The negative electrode 17 is outside the reference gas chamber 50. The reference gas chamber 50 is filled with a reference gas having a known oxygen concentration. The reference gas is, for example, 100% oxygen gas. In the example shown in FIG. 5, the reference gas chamber 50 is a pipe through which the reference gas flows.

制御・監視部13は電圧計52を備えている。電圧計52はリード線53,54によって、それぞれ、正電極16および負電極17に接続されている。リード線53,54は原子炉格納容器11の壁を貫通して延びている。   The control / monitoring unit 13 includes a voltmeter 52. The voltmeter 52 is connected to the positive electrode 16 and the negative electrode 17 by lead wires 53 and 54, respectively. The lead wires 53 and 54 extend through the wall of the reactor containment vessel 11.

隔膜15および正電極16、負電極17の材質は、第1の実施形態と同様でよい。   The material of the diaphragm 15, the positive electrode 16, and the negative electrode 17 may be the same as in the first embodiment.

隔膜15をはさんで隔膜15に接して配置された正電極16と負電極17における酸素濃度の差によって、正電極16と負電極17との間にその酸素濃度の差に応じた起電力が発生する。この起電力を電圧計52によって測定することにより、負電極17側の原子炉格納容器11内の測定対象ガスの酸素濃度を測定することができる。   Due to the difference in oxygen concentration between the positive electrode 16 and the negative electrode 17 disposed in contact with the diaphragm 15 across the diaphragm 15, an electromotive force corresponding to the difference in oxygen concentration is generated between the positive electrode 16 and the negative electrode 17. Occur. By measuring this electromotive force with the voltmeter 52, the oxygen concentration of the measurement target gas in the reactor containment vessel 11 on the negative electrode 17 side can be measured.

なお、基準ガス室カバー51は基準ガスが流れる配管であることが必須ではなく、基準ガスを溜めた密閉容器であってもよい。   The reference gas chamber cover 51 is not necessarily a pipe through which the reference gas flows, and may be a sealed container in which the reference gas is stored.

[他の実施形態]
本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。
[Other Embodiments]
Although several embodiments of the present invention have been described, these embodiments are presented by way of example and are not intended to limit the scope of the invention. These novel embodiments can be implemented in various other forms, and various omissions, replacements, and changes can be made without departing from the scope of the invention. These embodiments and modifications thereof are included in the scope and gist of the invention, and are included in the invention described in the claims and the equivalents thereof.

11…原子炉格納容器、 12…酸素センサ(格納容器用酸素センサ)、 13…制御・監視部、 15…隔膜、 16…正電極(電極)、 17…負電極(電極)、 18…検査室カバー、 20…ガス検査室、 21…拡散孔、 25…直流電源、 26…電流計、 27…電圧計、 30,31…リード線、 40…ドライウェル、 41…ウェットウェル、 42…ベント管、 43…原子炉圧力容器、 44…圧力抑制プール、 50…基準ガス室、 51…基準ガス室カバー、 52…電圧計、 53,54…リード線 DESCRIPTION OF SYMBOLS 11 ... Reactor containment vessel, 12 ... Oxygen sensor (oxygen sensor for containment vessel), 13 ... Control / monitoring part, 15 ... Diaphragm, 16 ... Positive electrode (electrode), 17 ... Negative electrode (electrode), 18 ... Inspection room Cover: 20 ... Gas inspection room, 21 ... Diffusion hole, 25 ... DC power supply, 26 ... Ammeter, 27 ... Voltmeter, 30, 31 ... Lead wire, 40 ... Dry well, 41 ... Wet well, 42 ... Vent tube, 43 ... Reactor pressure vessel, 44 ... Pressure suppression pool, 50 ... Reference gas chamber, 51 ... Reference gas chamber cover, 52 ... Voltmeter, 53, 54 ... Lead wire

Claims (9)

原子炉格納容器内に設けられ、525℃以下で酸素イオン伝導性を有する固体電解質を含む隔膜と前記隔膜を挟んで対向するように前記隔膜上に配置された1対の電極を備える酸素センサ、
を備え、
前記電極は、金属酸化物中の酸素1原子あたりの生成熱が80kJ以下または150kJ以上である材料を含む格納容器用酸素計測装置。
An oxygen sensor provided in a reactor containment vessel, and comprising a pair of electrodes disposed on the diaphragm so as to face each other across the diaphragm with a diaphragm containing a solid electrolyte having oxygen ion conductivity at 525 ° C. or lower;
With
The said electrode is an oxygen measuring device for containment vessels containing the material whose production | generation heat | fever per oxygen atom in a metal oxide is 80 kJ or less or 150 kJ or more.
原子炉格納容器内に設けられ、隔膜と、前記隔膜を挟んで対向するように前記隔膜上に配置された1対の電極とを備える酸素センサ、
を備え、
前記隔膜は、イットリア安定化ジルコニア、スカンジア安定化ジルコニア、ランタンストロンチウムガレート及びガドリニウムドープセリアのうち少なくとも1つを含有し、
前記電極は、金、銀、銅、ニッケル及び炭素のうち少なくとも1つを含有する格納容器用酸素計測装置。
An oxygen sensor provided in a nuclear reactor containment vessel, comprising: a diaphragm; and a pair of electrodes disposed on the diaphragm so as to face each other with the diaphragm interposed therebetween,
With
The diaphragm contains at least one of yttria stabilized zirconia, scandia stabilized zirconia, lanthanum strontium gallate and gadolinium doped ceria,
The said electrode is an oxygen measuring device for containment vessels containing at least 1 among gold | metal | money, silver, copper, nickel, and carbon.
前記1対の電極の間に電圧を印加する直流電源と、
前記1対の電極の間の電流値を測定する電流計と、
をさらに備え、
前記1対の電極は正電極および負電極であり、
前記酸素センサは、測定対象ガスと連通する拡散孔が形成されて前記原子炉格納容器内で前記隔膜とともに前記負電極を取り囲み前記正電極と接しないガス検査室を形成する検査室カバー、をさらに備える請求項1または2に記載の格納容器用酸素計測装置。
A DC power source for applying a voltage between the pair of electrodes;
An ammeter for measuring a current value between the pair of electrodes;
Further comprising
The pair of electrodes is a positive electrode and a negative electrode;
The oxygen sensor further includes an inspection chamber cover in which a diffusion hole communicating with the measurement target gas is formed, and a gas inspection chamber that surrounds the negative electrode together with the diaphragm and does not contact the positive electrode in the reactor containment vessel. The containment vessel oxygen measuring device according to claim 1 or 2.
前記負電極に対して前記正電極に印加する電圧は、無酸素時における固体電解質が分解する理論電圧以下である請求項3に記載の格納容器用酸素計測装置。   The oxygen measuring device for a containment vessel according to claim 3, wherein a voltage applied to the positive electrode with respect to the negative electrode is equal to or lower than a theoretical voltage at which the solid electrolyte is decomposed when there is no oxygen. 前記負電極に対して前記正電極に印加する電圧は、運転温度における水蒸気の電気分解が起こる理論電圧以下である請求項3に記載の格納容器用酸素計測装置。   4. The containment vessel oxygen measuring device according to claim 3, wherein a voltage applied to the positive electrode with respect to the negative electrode is equal to or lower than a theoretical voltage at which electrolysis of water vapor occurs at an operating temperature. 酸素濃度が制御されたガスである基準ガスが充填された基準ガス室を備え、
前記基準ガスと前記基準ガス室の外側の気体は基準ガス室カバーと前記隔膜によって隔てられ、
前記1対の電極のうちの一方は前記基準ガス室内に設けられ、前記1対の電極のうち他方の電極は前記基準ガス室外に設けられる請求項1または2に記載の格納容器用酸素計測装置。
A reference gas chamber filled with a reference gas that is a gas with a controlled oxygen concentration;
The reference gas and the gas outside the reference gas chamber are separated by a reference gas chamber cover and the diaphragm,
The containment vessel oxygen measuring device according to claim 1 or 2, wherein one of the pair of electrodes is provided in the reference gas chamber, and the other electrode of the pair of electrodes is provided outside the reference gas chamber. .
前記原子炉格納容器は、原子炉圧力容器を収容するドライウェルと、ベント管を介して前記ドライウェルと接続されて内部に圧力抑制プールを収容するウェットウェルとを備え、
前記酸素センサは、複数個あって、少なくとも、前記ドライウェル内で前記原子炉圧力容器よりも上方の位置と、前記ウェットウェル内で前記圧力抑制プールよりも上方の位置に配置されている請求項1ないし6のいずれか一項に記載の格納容器用酸素計測装置。
The reactor containment vessel includes a dry well that accommodates a reactor pressure vessel, and a wet well that is connected to the dry well via a vent pipe and accommodates a pressure suppression pool therein.
The oxygen sensor is provided in plurality, and is disposed at least at a position above the reactor pressure vessel in the dry well and at a position above the pressure suppression pool in the wet well. The containment vessel oxygen measuring device according to any one of 1 to 6.
原子炉格納容器内に設けられ、525℃以下で酸素イオン伝導性を有する固体電解質を含む隔膜と前記隔膜を挟んで対向するように前記隔膜上に配置された1対の電極を備え、
前記電極は、金属酸化物中の酸素1原子あたりの生成熱が80kJ以下または150kJ以上である材料を含む酸素センサ。
A pair of electrodes arranged in the reactor containment vessel and disposed on the diaphragm so as to face each other across the diaphragm with a diaphragm containing a solid electrolyte having oxygen ion conductivity at 525 ° C. or lower;
The said electrode is an oxygen sensor containing the material whose production | generation heat | fever per oxygen atom in a metal oxide is 80 kJ or less or 150 kJ or more.
原子炉格納容器内に設けられ、隔膜と、前記隔膜を挟んで対向するように前記隔膜上に配置された1対の電極とを備え、
前記隔膜は、イットリア安定化ジルコニア、スカンジア安定化ジルコニア、ランタンストロンチウムガレート及びガドリニウムドープセリアのうち少なくとも1つを含有し、
前記電極は、金、銀、銅、ニッケル及び炭素のうち少なくとも1つを含有する酸素センサ。
Provided in a nuclear reactor containment vessel, comprising a diaphragm and a pair of electrodes disposed on the diaphragm so as to face each other with the diaphragm interposed therebetween;
The diaphragm contains at least one of yttria stabilized zirconia, scandia stabilized zirconia, lanthanum strontium gallate and gadolinium doped ceria,
The electrode is an oxygen sensor containing at least one of gold, silver, copper, nickel, and carbon.
JP2018014543A 2018-01-31 2018-01-31 Oxygen measuring device for containment vessel and its oxygen sensor Active JP6906454B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018014543A JP6906454B2 (en) 2018-01-31 2018-01-31 Oxygen measuring device for containment vessel and its oxygen sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018014543A JP6906454B2 (en) 2018-01-31 2018-01-31 Oxygen measuring device for containment vessel and its oxygen sensor

Publications (2)

Publication Number Publication Date
JP2019132685A true JP2019132685A (en) 2019-08-08
JP6906454B2 JP6906454B2 (en) 2021-07-21

Family

ID=67546014

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018014543A Active JP6906454B2 (en) 2018-01-31 2018-01-31 Oxygen measuring device for containment vessel and its oxygen sensor

Country Status (1)

Country Link
JP (1) JP6906454B2 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06265514A (en) * 1993-03-16 1994-09-22 Hitachi Ltd Sensor for water quality
JPH09229898A (en) * 1996-02-22 1997-09-05 Matsushita Electric Ind Co Ltd Electrochemical device
JP2004251891A (en) * 2003-01-30 2004-09-09 Denso Corp Gas concentration detector
JP2010054233A (en) * 2008-08-26 2010-03-11 Japan Atomic Energy Agency Oxygen concentration sensor, method for forming the same and method for measuring concentration of oxygen in high-temperature and high-pressure water
CN101915786A (en) * 2010-07-22 2010-12-15 中科华核电技术研究院有限公司 System and method for monitoring combustible gas
JP2015145859A (en) * 2014-02-04 2015-08-13 株式会社東芝 Hydrogen gas concentration monitoring system and hydrogen gas concentration monitoring method
JP2015230267A (en) * 2014-06-06 2015-12-21 株式会社東芝 Hydrogen removal apparatus
JP2018522253A (en) * 2015-05-18 2018-08-09 ネクセリス,エルエルシー Gas monitoring system for nuclear reactor and gas monitoring method

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06265514A (en) * 1993-03-16 1994-09-22 Hitachi Ltd Sensor for water quality
JPH09229898A (en) * 1996-02-22 1997-09-05 Matsushita Electric Ind Co Ltd Electrochemical device
JP2004251891A (en) * 2003-01-30 2004-09-09 Denso Corp Gas concentration detector
JP2010054233A (en) * 2008-08-26 2010-03-11 Japan Atomic Energy Agency Oxygen concentration sensor, method for forming the same and method for measuring concentration of oxygen in high-temperature and high-pressure water
CN101915786A (en) * 2010-07-22 2010-12-15 中科华核电技术研究院有限公司 System and method for monitoring combustible gas
JP2015145859A (en) * 2014-02-04 2015-08-13 株式会社東芝 Hydrogen gas concentration monitoring system and hydrogen gas concentration monitoring method
JP2015230267A (en) * 2014-06-06 2015-12-21 株式会社東芝 Hydrogen removal apparatus
JP2018522253A (en) * 2015-05-18 2018-08-09 ネクセリス,エルエルシー Gas monitoring system for nuclear reactor and gas monitoring method

Also Published As

Publication number Publication date
JP6906454B2 (en) 2021-07-21

Similar Documents

Publication Publication Date Title
US11289725B2 (en) Fuel cell module arrangement with leak recovery and methods of use
US10062915B2 (en) Electrochemical reactor, such as a fuel cell or an electrolyser, provided with a device for measuring a parameter of a gas specific to the operation of said reactor
RU2654380C2 (en) Method for quantitative analysis of composition of gas mixture and associated measuring device
WO2022033225A1 (en) Hydrogen concentration measuring device resistant to high temperatures, high pressure, high humidity and high radiation, and hydrogen measuring probe
Bassini et al. Oxygen sensors for Heavy Liquid Metal coolants: Calibration and assessment of the minimum reading temperature
US3309233A (en) Solid electrolyte electrochemical cell
Sridhar et al. Effect of oxygen-containing species on the impedance of the Pt/YSZ interface
Tanaka et al. Hydrogen extraction using one-end closed tube made of CaZrO3-based proton-conducting ceramic for tritium recovery system
JP6906454B2 (en) Oxygen measuring device for containment vessel and its oxygen sensor
Okabe et al. Detecting characteristics of SF 6 decomposed gas sensor for insulation diagnosis on gas insulated switchgears
US11181492B2 (en) Device, system and method for X-ray diffraction analysis of an electrode of an electrochemical cell, at operating temperature and under current
Rasmussen et al. Study of internal and external leaks in tests of anode‐supported SOFCs
JP7021058B2 (en) Oxygen concentration measuring device and reactor facility
JP2008164305A (en) Electrochemical sensor, target gas monitor device, and concentration detection method of electrochemical sensor
JP4124536B2 (en) Hydrogen sensor
JP5693983B2 (en) Fuel cell system
JP7419211B2 (en) Oxygen concentration meter for reactor containment vessel
US20140102897A1 (en) Three compartment electrochemical cell
JPH0616024B2 (en) Apparatus and method for measuring hydrogen concentration in water
JP2014053177A (en) Solid oxide fuel cell system and method for stopping solid oxide fuel cell system
JP2021189058A (en) Device and method for measuring gas concentration inside nuclear reactor containment
JP2022065582A (en) Hydrogen gas concentration sensor for fuel cell
JP2021043018A (en) Oxygen concentration measuring device and oxygen concentration measuring method
JP5358554B2 (en) Corrosion potential sensor and corrosion potential sensor installation structure
JP2004127550A (en) Operation method of fuel cell system, and fuel cell system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200302

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210212

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210216

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210413

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210601

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210629

R150 Certificate of patent or registration of utility model

Ref document number: 6906454

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150