JPH06265514A - Sensor for water quality - Google Patents

Sensor for water quality

Info

Publication number
JPH06265514A
JPH06265514A JP5055373A JP5537393A JPH06265514A JP H06265514 A JPH06265514 A JP H06265514A JP 5055373 A JP5055373 A JP 5055373A JP 5537393 A JP5537393 A JP 5537393A JP H06265514 A JPH06265514 A JP H06265514A
Authority
JP
Japan
Prior art keywords
water quality
quality sensor
sensor according
ion conductive
oxygen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5055373A
Other languages
Japanese (ja)
Inventor
Keiko Ishizuka
恵子 石塚
Masanori Takahashi
正典 高橋
Atsushi Watanabe
敦志 渡辺
Hidefumi Ibe
英史 伊部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP5055373A priority Critical patent/JPH06265514A/en
Publication of JPH06265514A publication Critical patent/JPH06265514A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Abstract

PURPOSE:To directly measure the concentration of oxygen, hydrogen peroxide in a reactor water under the radiation of radioactive rays by using an oxygen sensor which employs an ion conductive substance sufficiently capable of responding at temperatures in a reactor. CONSTITUTION:An ion conductive substance 1 is a metallic oxide using a solid electrolyte which sufficiently scatters in the temperature range from room temperatures to not higher than 300 deg.C, for example, Sc, Ti, V, Cr or the like. Electrodes 2 of thin films of Pt, Ag, etc., are attached at both sides of the ion conductive substance 1. A reference gas is housed at one side of the ion conductive substance 1 by an insulating body 3 and a material 4 having resistances to high temperatures and radioactive rays, e.g. stainless steel, an alloy of Ni base. The reference gas is communicated with a gas tank 6 from a piping 5 through, for instance, a capillary. The partial pressure of oxygen is kept to be constant at all times. The electrodes 2 are connected to a voltmeter 8 thereby to measure the electromotive force generated by the movement of ions.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、沸騰水型原子炉に係
り、特に、高温・放射線照射下における炉水中の酸素・
過酸化水素濃度を直接測定する水質センサに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a boiling water reactor, and more particularly to oxygen in reactor water under high temperature and radiation irradiation.
The present invention relates to a water quality sensor that directly measures the concentration of hydrogen peroxide.

【0002】[0002]

【従来の技術】沸騰水型原子炉では炉水が炉心近傍で中
性子・ガンマ線等の強い放射線照射を受ける結果、腐食
性の酸素・過酸化水素をはじめとする水の分解生成物が
形成される。従来の高温条件下における酸素濃度センサ
は炭酸ナトリウム等の電解液を用い、酸素濃度測定用の
バイパスラインに設置されていた。詳しくは特開昭60−
93386 号公報に開示されている。現在のところ一次冷却
系の炉水水質は、原子炉再循環系、あるいは原子炉冷却
材浄化系に設けられた試料採取点から炉水をサンプリン
グし、常温に冷却した後測定している。また特開平3−1
40589 号公報に示される様に、固体電解質にLaF3
BiO3−MoO3,SrCl2,β−PbF2,PbSn
4,Sb25・4H2Oそして、電極に薄膜状の白金電
極を用いた、低温でも対応可能な酸素センサが検討され
ているが、原子炉への応用はなされていない。放射線照
射下での酸素・過酸化水素の測定法及びセンサは確立さ
れていない。
2. Description of the Related Art In a boiling water reactor, the water of the reactor is exposed to strong radiation such as neutrons and gamma rays in the vicinity of the core, and as a result, corrosive decomposition products of water such as oxygen and hydrogen peroxide are formed. . Conventionally, an oxygen concentration sensor under high temperature conditions uses an electrolytic solution such as sodium carbonate and is installed in a bypass line for measuring oxygen concentration. For details, see JP-A-60-
It is disclosed in Japanese Patent No. 93386. At present, the water quality of reactor water in the primary cooling system is measured by sampling the reactor water from a sampling point provided in the reactor recirculation system or the reactor coolant purification system, cooling it to room temperature, and then measuring it. In addition, Japanese Patent Laid-Open No. 3-1
As disclosed in Japanese Patent No. 40589, LaF 3 is added to the solid electrolyte,
BiO 3 —MoO 3 , SrCl 2 , β-PbF 2 , PbSn
Oxygen sensors that use F 4 , Sb 2 O 5 .4H 2 O and thin film platinum electrodes as electrodes and can be used at low temperatures have been studied, but have not been applied to nuclear reactors. Methods and sensors for measuring oxygen and hydrogen peroxide under irradiation have not been established.

【0003】[0003]

【発明が解決しようとする課題】従来の酸素センサは、
炉心部における放射線照射場での測定には対応出来なか
った。また酸素イオン導電性物質として、炭酸ナトリウ
ム,塩化カルシウム等の電解液を使用していた為、電解
液の溶出・センサの短寿命という問題があった。また炉
水をサンプリングし、常温に冷却した後の測定では、冷
却過程で過酸化水素が分解し、成分相互のバランスが変
化するため、正確な濃度を把握することはできなかっ
た。
The conventional oxygen sensor has the following problems.
We could not deal with the measurement in the radiation irradiation field in the core. Further, since an electrolytic solution such as sodium carbonate or calcium chloride is used as the oxygen ion conductive material, there is a problem that the electrolytic solution elutes and the sensor has a short life. In addition, in the measurement after sampling the reactor water and cooling it to room temperature, it was not possible to accurately determine the concentration because hydrogen peroxide was decomposed during the cooling process and the balance between the components changed.

【0004】本発明の目的は、従来の酸素センサが対応
できなかった、放射線照射条件下での炉水中の酸素・過
酸化水素濃度の直接測定を可能とする水質センサ、及び
長寿命水質センサを提供することにある。
An object of the present invention is to provide a water quality sensor and a long-life water quality sensor, which can directly measure the oxygen and hydrogen peroxide concentrations in reactor water under irradiation conditions, which conventional oxygen sensors cannot handle. To provide.

【0005】[0005]

【課題を解決するための手段】本発明は、イオンが室温
から300℃を含む温度範囲内で十分に拡散する耐高温
・耐放射線照射性イオン導電性物質の両側に電極を取り
付け、耐高温・耐放射線照射性材料に格納した規準ガス
と測定ガスとの分圧の差による起電力を測定する機能を
備えた酸素センサ、及び前記の酸素センサに過酸化水素
の分解を引き起こすフィルタを装着した過酸化水素セン
サを骨子とする。本発明により、炉水中の酸素・過酸化
水素濃度を直接測定することが可能となる。
SUMMARY OF THE INVENTION According to the present invention, electrodes are attached to both sides of a high temperature resistant / radiation resistant ion conductive material in which ions are sufficiently diffused in a temperature range including room temperature to 300 ° C. An oxygen sensor with the function of measuring the electromotive force due to the difference in partial pressure between the reference gas stored in the radiation-resistant material and the measurement gas, and the oxygen sensor equipped with a filter that causes decomposition of hydrogen peroxide The outline is the hydrogen oxide sensor. According to the present invention, it becomes possible to directly measure the oxygen / hydrogen peroxide concentration in the reactor water.

【0006】[0006]

【作用】原子炉内の温度で十分に応答可能な、固体電解
質などのイオン導電性物質を用いた酸素センサを、炉内
の任意の位置に装着するために、センサの格納材料とし
て耐高温・耐放射線材料を使用する。また過酸化水素の
分解反応によって生じた酸素を測定することによって、
過酸化水素センサにも応用できる。
[Function] In order to mount an oxygen sensor using an ion conductive material such as a solid electrolyte, which can respond sufficiently at the temperature in the reactor, at a desired position in the reactor, it can be used as a storage material for the sensor. Use radiation resistant material. Also, by measuring the oxygen produced by the decomposition reaction of hydrogen peroxide,
It can also be applied to hydrogen peroxide sensors.

【0007】[0007]

【実施例】以下、本発明を実施例により説明する。EXAMPLES The present invention will be described below with reference to examples.

【0008】図1は本発明の高温水質センサの一例であ
る。
FIG. 1 shows an example of the high temperature water quality sensor of the present invention.

【0009】図1において、イオン導電性物質1は酸素
イオンが、室温から300℃を含む温度範囲で十分に拡
散する固体電解質である。例えば、Sc,Ti,V,C
r,Mn,Fe,Co,Ni,Cu,Y,Zr,Nb,
Mo,Tc,Ru,Rh,Pd,Ag,La,Ce,P
r,Nd,Pm,Sm,Eu,Gd,Tb,Dy,H
o,Er,Tm,Yb,Lu,Hf,Ta,W,Re,
Os,Ir,Ac,Th,Pa,U,Np,Pu,A
m,Cm,Bk,Cf,Es,Fm,Md,No,L
r,Sb,Bi等の金属を用いた金属酸化物である。イ
オン導電性物質1の両側には薄膜状のPt,Ag等の電
極2を取り付けている。イオン導電性物質1の一方は規
準ガスが絶縁体3とステンレス鋼,Ni基合金,Ti合
金,Zr等の耐高温・耐放射線照射材料4によって格納
されている。規準ガスは、配管5、例えばキャピラリに
よってガスタンク6に通じ、酸素分圧は常に一定に保た
れている。電極2はリード線7によって電圧計8に接続
されている。図1において上部分で溶存酸素濃度
[O2]を測定し、下部分で実効酸素濃度[O2]effを
測定する。
In FIG. 1, the ion conductive material 1 is a solid electrolyte in which oxygen ions are sufficiently diffused in a temperature range including room temperature to 300 ° C. For example, Sc, Ti, V, C
r, Mn, Fe, Co, Ni, Cu, Y, Zr, Nb,
Mo, Tc, Ru, Rh, Pd, Ag, La, Ce, P
r, Nd, Pm, Sm, Eu, Gd, Tb, Dy, H
o, Er, Tm, Yb, Lu, Hf, Ta, W, Re,
Os, Ir, Ac, Th, Pa, U, Np, Pu, A
m, Cm, Bk, Cf, Es, Fm, Md, No, L
It is a metal oxide using a metal such as r, Sb, or Bi. On both sides of the ion conductive material 1, thin-film electrodes 2 made of Pt, Ag or the like are attached. One of the ion conductive materials 1 is stored with the reference gas by the insulator 3 and the high temperature and radiation resistant material 4 such as stainless steel, Ni-based alloy, Ti alloy, and Zr. The reference gas is introduced into the gas tank 6 through the pipe 5, for example, a capillary, and the oxygen partial pressure is always kept constant. The electrode 2 is connected by a lead wire 7 to a voltmeter 8. In FIG. 1, the dissolved oxygen concentration [O 2 ] is measured in the upper part and the effective oxygen concentration [O 2 ] eff is measured in the lower part.

【0010】過酸化水素の表面分解反応:Surface decomposition reaction of hydrogen peroxide:

【0011】[0011]

【化1】H22→1/2O2+H2O を引き起こすフィルタ9、例えば、Sc,Ti,V,C
r,Mn,Fe,Co,Ni,Cu,Y,Zr,Nb,
Mo,Tc,Ru,Rh,Pd,Ag,La,Ce,P
r,Nd,Pm,Sm,Eu,Gd,Tb,Dy,H
o,Er,Tm,Yb,Lu,Hf,Ta,W,Re,
Os,Ir,Ac,Th,Pa,U,Np,Pu,A
m,Cm,Bk,Cf,Es,Fm,Md,No,Lr
等の金属を用いたフィルタをイオン導電性物質1の他
方、すなわち、測定ガス側の前段に設置する。ここでは
## STR1 ## A filter 9 that causes H 2 O 2 → 1 / 2O 2 + H 2 O, for example, Sc, Ti, V, C
r, Mn, Fe, Co, Ni, Cu, Y, Zr, Nb,
Mo, Tc, Ru, Rh, Pd, Ag, La, Ce, P
r, Nd, Pm, Sm, Eu, Gd, Tb, Dy, H
o, Er, Tm, Yb, Lu, Hf, Ta, W, Re,
Os, Ir, Ac, Th, Pa, U, Np, Pu, A
m, Cm, Bk, Cf, Es, Fm, Md, No, Lr
A filter using a metal such as the above is installed on the other side of the ion conductive substance 1, that is, in the preceding stage on the measurement gas side. here

【0012】[0012]

【化2】[O2]eff=[O2]+1/2[H22] の関係が成り立つ。過酸化水素濃度を求める式は、化2
より
Embedded image The relationship of [O 2 ] eff = [O 2 ] +1/2 [H 2 O 2 ] is established. The formula for obtaining the hydrogen peroxide concentration is
Than

【0013】[0013]

【化3】[H22]=2([O2]eff−[O2]) となる。つまり、下部分での実効酸素濃度[O2]eff
と、上部分での溶存酸素濃度[O2]との差の2倍が過
酸化水素濃度となる。
[H 2 O 2 ] = 2 ([O 2 ] eff- [O 2 ]). That is, the effective oxygen concentration [O 2 ] eff in the lower part
Then, the hydrogen peroxide concentration is twice the difference from the dissolved oxygen concentration [O 2 ] in the upper part.

【0014】酸素センサの原理を図2に示す。ここでは
酸素イオンを選択的に透過するイオン導電性物質1、例
えば、金属酸化物の固体電解質によって、酸素分圧の異
なる系が分離されている。このような系は酸素の化学ポ
テンシャルに関する一種の濃淡電池を形成することにな
る。ここでは分圧を一定とした規準ガスの酸素分圧を
P′o2被測定ガスの酸素分圧をP″o2とし、被測定ガ
スを高酸素側,規準ガスを低酸素側とする。
The principle of the oxygen sensor is shown in FIG. Here, a system having different oxygen partial pressures is separated by an ion conductive material 1 that selectively permeates oxygen ions, for example, a solid electrolyte of metal oxide. Such a system would form a kind of concentration cell for the chemical potential of oxygen. Here, the oxygen partial pressure of the reference gas with a constant partial pressure is P′o 2 and the oxygen partial pressure of the measured gas is P ″ o 2 , the measured gas is on the high oxygen side and the reference gas is on the low oxygen side.

【0015】図2に示す様に、酸素がイオンの状態で固
体電解質を伝導して低酸素側に移動し、イオンを放出し
て酸素になる。これと同時に、高酸素側(カソード)か
ら低酸素側(アノード)ヘ電流が流れる。化学反応式で
示すと次の様になる。
As shown in FIG. 2, oxygen in the ion state conducts through the solid electrolyte and moves to the low oxygen side, releasing the ions to become oxygen. At the same time, a current flows from the high oxygen side (cathode) to the low oxygen side (anode). The chemical reaction formula is as follows.

【0016】[0016]

【化4】(カソード) O2+4e-→2O2- ## STR00005 ## (cathode) O 2 + 4e - → 2O 2-

【0017】[0017]

【化5】(アノード) 2O2-→O2+4e- この時の起電力Eは、次のネルンストの式で示される。(Anode) 2O 2- → O 2 + 4e - The electromotive force E at this time is shown by the following Nernst equation.

【0018】[0018]

【数1】E=(RT/4F)ln(P″o2/P′o2) ただし、R:気体定数,T:絶対温度(K),F:ファ
ラデー定数である。
## EQU1 ## E = (RT / 4F) ln (P ″ o 2 / P′o 2 ) where R is a gas constant, T is an absolute temperature (K), and F is a Faraday constant.

【0019】従って、起電力Eを測定することにより被
測定ガスの酸素分圧を計算することが出来る。但し、ネ
ルンストの式に従うには、与えられた温度範囲の下で酸
素イオンが十分に拡散出来るイオン導電性物質を用いな
ければならない。
Therefore, the oxygen partial pressure of the gas to be measured can be calculated by measuring the electromotive force E. However, in order to comply with the Nernst equation, it is necessary to use an ion conductive material capable of sufficiently diffusing oxygen ions within a given temperature range.

【0020】図3及び図4は本発明における実施例の一
例である。
3 and 4 show an example of the embodiment of the present invention.

【0021】図3は原子炉内に本発明である水質センサ
10を設置したものである。
FIG. 3 shows the water quality sensor 10 of the present invention installed in a nuclear reactor.

【0022】図4における水質センサは、イオン導電性
物質1、例えば、LaF3,β−PbF2,PbSnF4
等の金属フッ化物,SrCl2 等の金属塩化物や安定化
Zr等の金属酸化物の一方に参照電極20を備えたもの
である。この参照電極20は、炉水中の酸素に影響され
ることなく一定の電極電位を保持出来るように、絶縁体
3および耐高温・耐放射線照射材料4、例えば、ステン
レス鋼,Ni基合金,Ti合金,Zr等の材料によって
外界からマスクされている。参照電極20には金属酸化
物や金属フッ化物,金属塩化物等の無機固体と、その無
機固体に含有する還元金属を溶融したもの等を用いる。
イオン導電性物質1の他方である被測定ガス側には、薄
膜状のPt,Ag等を用いた電極2を取り付け、電極2
と参照電極20はリード線7によって、電圧計8に接続
されている。
The water quality sensor shown in FIG. 4 has an ionic conductive substance 1, such as LaF 3 , β-PbF 2 , PbSnF 4.
The reference electrode 20 is provided on one of a metal fluoride such as SrCl 2, a metal chloride such as SrCl 2 and a metal oxide such as stabilized Zr. The reference electrode 20 is made of an insulator 3 and a high temperature / radiation resistant material 4, such as stainless steel, a Ni-based alloy, or a Ti alloy, so as to maintain a constant electrode potential without being affected by oxygen in the reactor water. , Zr, etc. are masked from the outside world. For the reference electrode 20, an inorganic solid such as a metal oxide, a metal fluoride, or a metal chloride and a material obtained by melting a reducing metal contained in the inorganic solid are used.
On the side of the measured gas, which is the other side of the ion conductive substance 1, an electrode 2 made of thin film Pt, Ag or the like is attached.
The reference electrode 20 and the reference electrode 20 are connected to the voltmeter 8 by the lead wire 7.

【0023】[0023]

【発明の効果】本発明によれば、沸騰水型原子炉炉水中
の酸素・過酸化水素の濃度を高温・放射線照射下で直接
測定できる。従って、炉水中の正確な水質環境を把握す
ることが出来る。従って、炉内腐食環境の定量化の確立
につながり、原子炉の健全性及び安全性を確保し、ひい
ては原子炉の長寿命化にもつながるため、エネルギ資源
確保の上でメリットが大きい。
According to the present invention, the concentrations of oxygen and hydrogen peroxide in boiling water reactor water can be directly measured under irradiation of high temperature and radiation. Therefore, it is possible to grasp the accurate water quality environment in the reactor water. Therefore, the quantification of the in-reactor corrosion environment is established, the soundness and safety of the nuclear reactor are ensured, and the life of the nuclear reactor is extended, which is a great advantage in securing energy resources.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例を示す説明図。FIG. 1 is an explanatory diagram showing an embodiment of the present invention.

【図2】本発明の原理を示す説明図。FIG. 2 is an explanatory diagram showing the principle of the present invention.

【図3】本発明の一実施例の系統図。FIG. 3 is a system diagram of an embodiment of the present invention.

【図4】本発明の実施例を示す説明図。FIG. 4 is an explanatory view showing an embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1…イオン導電性物質、2…電極、3…絶縁体、4…耐
高温・耐放射線照射材料、5…配管、6…ガスタンク、
7…リード線、8…電圧計、9…フィルタ。
1 ... Ion conductive substance, 2 ... Electrode, 3 ... Insulator, 4 ... High temperature / radiation resistant material, 5 ... Piping, 6 ... Gas tank,
7 ... Lead wire, 8 ... Voltmeter, 9 ... Filter.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 伊部 英史 茨城県日立市大みか町七丁目2番1号 株 式会社日立製作所エネルギー研究所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Hidefumi Ibe 7-2-1, Omika-cho, Hitachi-shi, Ibaraki Hitachi Energy Research Laboratory

Claims (13)

【特許請求の範囲】[Claims] 【請求項1】沸騰水型原子炉において、炉水中の酸素イ
オンをはじめとする各種イオンが選択的に拡散するイオ
ン導電性物質を用いることを特徴とする水質センサ。
1. A water quality sensor in a boiling water nuclear reactor, which uses an ion conductive material in which various ions such as oxygen ions in the reactor water are selectively diffused.
【請求項2】請求項1において、前記イオン導電性物質
としてLaF3,β−PbF2,PbSnF4等の金属フ
ッ化物,SrCl2等の金属塩化物や安定化Zr等の金
属酸化物を用いる水質センサ。
2. A metal fluoride such as LaF 3 , β-PbF 2 , PbSnF 4 or the like, a metal chloride such as SrCl 2 or a metal oxide such as stabilized Zr is used as the ion conductive substance. Water quality sensor.
【請求項3】請求項2において、前記金属としてSc,
Ti,V,Cr,Mn,Fe,Co,Ni,Cu,Y,
Zr,Nb,Mo,Tc,Ru,Rh,Pd,Ag,L
a,Ce,Pr,Nd,Pm,Sm,Eu,Gd,T
b,Dy,Ho,Er,Tm,Yb,Lu,Hf,T
a,W,Re,Os,Ir,Ac,Th,Pa,U,N
p,Pu,Am,Cm,Bk,Cf,Es,Fm,M
d,No,Lr,Sb,Bi等の金属を用いる水質セン
サ。
3. The Sc according to claim 2, wherein the metal is Sc,
Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Y,
Zr, Nb, Mo, Tc, Ru, Rh, Pd, Ag, L
a, Ce, Pr, Nd, Pm, Sm, Eu, Gd, T
b, Dy, Ho, Er, Tm, Yb, Lu, Hf, T
a, W, Re, Os, Ir, Ac, Th, Pa, U, N
p, Pu, Am, Cm, Bk, Cf, Es, Fm, M
Water quality sensor using metals such as d, No, Lr, Sb, and Bi.
【請求項4】請求項1において、前記イオン導電性物質
の両側に電極を取り付け、被測定ガスと規準ガスの分圧
の差による起電力を測定する水質センサ。
4. The water quality sensor according to claim 1, wherein electrodes are attached to both sides of the ionic conductive material, and an electromotive force is measured by a difference in partial pressure between the gas under measurement and the reference gas.
【請求項5】請求項4において、規準ガスを耐高温材料
に格納している水質センサ。
5. The water quality sensor according to claim 4, wherein the reference gas is stored in a high temperature resistant material.
【請求項6】請求項5において、前記耐高温材料とし
て、ステンレス鋼,Ni基合金,Ti合金,Zr等の材
料を用いる水質センサ。
6. The water quality sensor according to claim 5, wherein a material such as stainless steel, a Ni-based alloy, a Ti alloy, or Zr is used as the high temperature resistant material.
【請求項7】請求項4において、規準ガスを耐放射線照
射材料に格納している水質センサ。
7. The water quality sensor according to claim 4, wherein the reference gas is stored in the radiation resistant material.
【請求項8】請求項7において、前記耐放射線照射材料
として、ステンレス鋼,Ni基合金,Ti合金,Zr等
の材料を用いる水質センサ。
8. The water quality sensor according to claim 7, wherein a material such as stainless steel, a Ni-based alloy, a Ti alloy, or Zr is used as the radiation resistant material.
【請求項9】請求項4において、規準ガスの分圧を変化
させ、測定の精度を変える水質センサ。
9. The water quality sensor according to claim 4, wherein the partial pressure of the reference gas is changed to change the measurement accuracy.
【請求項10】請求項9において、規準ガスの分圧を制
御するシステムを用いる水質センサ。
10. The water quality sensor according to claim 9, wherein the system controls a partial pressure of the reference gas.
【請求項11】請求項4において、設置場所として原子
炉内の任意の位置を用いる水質センサ。
11. The water quality sensor according to claim 4, wherein an arbitrary position in a nuclear reactor is used as an installation place.
【請求項12】請求項1において、前記イオン導電性物
質の前段に過酸化水素を分解する物質を設置することに
より、炉水中の過酸化水素分圧を測定する水質センサ。
12. The water quality sensor according to claim 1, wherein a substance decomposing hydrogen peroxide is installed in front of the ion conductive substance to measure a partial pressure of hydrogen peroxide in the reactor water.
【請求項13】請求項12において、前記の過酸化水素
を分解する物質として、Sc,Ti,V,Cr,Mn,
Fe,Co,Ni,Cu,Y,Zr,Nb,Mo,T
c,Ru,Rh,Pd,Ag,La,Ce,Pr,N
d,Pm,Sm,Eu,Gd,Tb,Dy,Ho,E
r,Tm,Yb,Lu,Hf,Ta,W,Re,Os,
Ir,Ac,Th,Pa,U,Np,Pu,Am,C
m,Bk,Cf,Es,Fm,Md,No,Lr等の金
属を用いる水質センサ。
13. The substance according to claim 12, wherein the substance decomposing hydrogen peroxide is Sc, Ti, V, Cr, Mn,
Fe, Co, Ni, Cu, Y, Zr, Nb, Mo, T
c, Ru, Rh, Pd, Ag, La, Ce, Pr, N
d, Pm, Sm, Eu, Gd, Tb, Dy, Ho, E
r, Tm, Yb, Lu, Hf, Ta, W, Re, Os,
Ir, Ac, Th, Pa, U, Np, Pu, Am, C
A water quality sensor using metals such as m, Bk, Cf, Es, Fm, Md, No and Lr.
JP5055373A 1993-03-16 1993-03-16 Sensor for water quality Pending JPH06265514A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5055373A JPH06265514A (en) 1993-03-16 1993-03-16 Sensor for water quality

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5055373A JPH06265514A (en) 1993-03-16 1993-03-16 Sensor for water quality

Publications (1)

Publication Number Publication Date
JPH06265514A true JPH06265514A (en) 1994-09-22

Family

ID=12996686

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5055373A Pending JPH06265514A (en) 1993-03-16 1993-03-16 Sensor for water quality

Country Status (1)

Country Link
JP (1) JPH06265514A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007073352A (en) * 2005-09-07 2007-03-22 Toyota Motor Corp Fuel cell
JP2019132685A (en) * 2018-01-31 2019-08-08 株式会社東芝 Oxygen measurement device for storage container and oxygen sensor thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007073352A (en) * 2005-09-07 2007-03-22 Toyota Motor Corp Fuel cell
JP2019132685A (en) * 2018-01-31 2019-08-08 株式会社東芝 Oxygen measurement device for storage container and oxygen sensor thereof

Similar Documents

Publication Publication Date Title
Cleveland et al. Nanometer-scale corrosion of copper in de-aerated deionized water
Carotti et al. Characterization of a thermodynamic reference electrode for molten LiF-BeF2 (FLiBe)
Cowan et al. Electrochemical measurements of corrosion processes in a boiling water nuclear reactor
Baur et al. Electrochemical examinations in 350 C water with respect to the mechanism of corrosion-hydrogen pickup
Thompson Determination of oxide film thickness by proton activation
Knoeck et al. Coulometric assay of the primary standards potassium dichromate and ammonium hexanitratocerate
JPH06265514A (en) Sensor for water quality
Silverman et al. An Ellipsometric Investigation of Passive Films Formed on Fe‐25Ni‐x Cr Alloys in Borate Buffer Solution
Kim et al. Corrosion potential behavior in high-temperature water of noble metal-doped alloy coatings deposited by underwater thermal spraying
JPS58215549A (en) Measuring apparatus of concentration of dissolved oxygen
Saito et al. Crevice corrosion of austenitic alloys in high-temperature water
RU2774309C1 (en) DEVICE FOR MEASURING THE REDOX POTENTIAL OF MOLTEN MIXTURES BASED ON THE LiF-BeF2 SYSTEM
Marichev A nonequilibrium approach to development of reference electrodes and oxygen sensors for high-temperature aqueous systems
JPH08240562A (en) Hydrogen peroxide sensor for reactor water
Choi et al. Long-Term Stability of Mullite and Magnesia-encased Ag| Ag+ Reference Electrodes in Molten MgCl2-KCl-NaCl
KAWAKAMI et al. Oxygen Diffusivity in Molten Iron Determined by Oxygen Concentration Cell Technique at 1550℃
Slansky et al. Review of Research and Development at the Idaho Chemical Processing Plant on the Electrolytic Dissolution of Nuclear Fuel
Marv et al. Investigation of the corrosion of valve metals and alloys under the influence of plutonium
Zhang Electrochemical Measurements in Molten Salt Mixtures for Nuclear Applications
Liu et al. Selective grain-boundary dissolution of alloy 600 in a concentrated caustic solution at 140° C
Draley et al. The Polarization of Metals in Boiling, Distilled Water
Hagi et al. Electrochemical measurement of tritium and hydrogen permeation through iron membranes
Cao et al. Study of Potentiometry for Monitoring Activity of GdCl3 in Molten LiCl-KCl Salt
Gregor et al. The Silver-Silver Oxide Electrode; the Entropy of Mercuric Oxide
Weston et al. Experimental studies of processing conditions for liquid lithium and solid lithium alloy fusion blankets