JP4124536B2 - Hydrogen sensor - Google Patents

Hydrogen sensor Download PDF

Info

Publication number
JP4124536B2
JP4124536B2 JP08500199A JP8500199A JP4124536B2 JP 4124536 B2 JP4124536 B2 JP 4124536B2 JP 08500199 A JP08500199 A JP 08500199A JP 8500199 A JP8500199 A JP 8500199A JP 4124536 B2 JP4124536 B2 JP 4124536B2
Authority
JP
Japan
Prior art keywords
hydrogen
electrode
reference electrode
anode
concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP08500199A
Other languages
Japanese (ja)
Other versions
JP2000275209A (en
Inventor
周 山口
典彦 武津
秀雄 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yamari Industries Ltd
Original Assignee
Yamari Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yamari Industries Ltd filed Critical Yamari Industries Ltd
Priority to JP08500199A priority Critical patent/JP4124536B2/en
Publication of JP2000275209A publication Critical patent/JP2000275209A/en
Application granted granted Critical
Publication of JP4124536B2 publication Critical patent/JP4124536B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、気相、液相もしくは固相中の水素濃度を測定する水素センサに関し、特に、200℃〜500℃程度の温度域の過酷な環境においても正常に動作し得る水素センサに関するものである。
【0002】
【従来の技術】
水、雰囲気ガス、有機溶媒並びに金属中に含まれる微量の水素分子または水素原子の濃度測定は、材料劣化の程度を測ったり、製造プロセスを管理する上で重要である。
【0003】
例えば、(1)沸騰水型軽水炉では、炉内構造物に使用されているオーステナイト系ステンレス鋼の粒界応力腐食割れや照射誘起応力腐食割れの防止を目的として、系内への水素注入が行われるが、その水素濃度が高すぎると金属材料の活性溶解が起こり、これに起因する様々な問題が生じるため、その水素濃度を厳密に制御する必要がある。また、加圧水型軽水炉においても、中性子の照射により発生した水素の累積により、燃料棒を構成するジルカロイが水素腐食して燃料棒が破壊され易くなるという問題があるので、水素濃度の制御は必要である。(2)また、火力発電所の発電システムでは、発電システムの更なる効率化をめざして、水素ボイラの高温・高圧化が行われており、前記と同じ材料劣化の問題が発生するので、このような過酷な環境下でも作動し得る水素センサが求められている。(3)また、水素と親和力の強い活性金属を含む溶液合金中に含まれる水素は、凝固時の欠陥や低温脆性の原因となることが知られているため、脱水素処理が必要となり、同時に水素濃度を測定するプロセス監視が必要とされている。(4)そして、メタンやアンモニアなどの合成プロセスにおいては、水素ガス濃度を他成分ガスの影響を受けずに反応容器内で計測してプロセス監視をすることも必要となっている。
【0004】
従来の水素センサとしては、例えば、特許第2813578号公報に開示されるように、非導電性の基板上に非晶質のNiZrからなる金属合金膜を形成し、この金属合金膜上にパラジウム薄膜を形成した水素センサが存在するが、この種の水素センサは、室温〜150℃程度の測定温度域でしか作動しない。また、金属酸化物半導体センサー材料のSnO2をシリコーン蒸気で被毒し、水素以外のガスへの感度を消滅させて水素選択性を得る水素センサなども知られているが、測定温度域は、室温〜200℃程度である。
【0005】
また、高温度域で実用化されている固体電解質型水素センサも知られているが、このような固体電解質型水素センサは、温度変化が激しく高圧の過酷な環境下では、固体電解質の水素イオン(プロトン)の輸率が低下し、固体電解質がネルンスト型応答を示さなくなるためネルンストの式に基づいた濃度測定ができなくなるという問題や、炭化水素化合物ガスなどの水素以外の他成分ガスを多量に含む雰囲気下では、固体電解質が他成分ガスと反応し分解などを起こして化学的に平衡状態を維持し難くなり、水素濃度の測定精度が著しく低下するという問題を有していた。
【0006】
【発明が解決しようとする課題】
このように、従来の水素センサは、室温〜200℃程度の低温度域でしか作動しなかったり、固体電解質型センサのようにたとえ高温度域で作動するものでも、上述の(1),(2)に示したような過酷な環境下や、上述の(3),(4)に示したような水素以外の他成分が多量に存在する雰囲気下では、水素イオンの輸率が低下したり、他成分の影響を受けることで水素濃度を正確に測定できないという問題を有していた。
【0007】
本発明は、かかる問題に鑑みてなされたものであり、200℃〜500℃程度の中温度域における高温・高圧の過酷な環境下でも正常に作動し得る水素センサを提供することを目的とする。
【0008】
【課題を解決するための手段】
前記目的を達成するために、本発明者らは、水素を良好に選択透過する金属パラジウムに着目して鋭意研究を行った結果、以下の発明に到達するに至った。すなわち、第1発明の濃淡電池型水素センサは、金属パラジウムを主体とし、被測定物質中の水素を選択透過させる測定極を先端に設けた本体部と、この本体部内に配設された所定の水素濃度に対応する参照電位を規定する参照極と、前記測定極と参照極間に介在し且つ両電極に接する水素イオンを含むイオン伝導体とを備えて濃淡電池を形成すると共に、前記測定極と参照極間の起電力を測定し、ネルンストの式に基づいて該起電力に対応する被測定物質中の水素濃度を算出する測定装置を備え、前記イオン伝導体が水酸化物イオン導電性の溶融塩電解質からなることを特徴とするものである。
【0010】
また、前記参照極としては、所定の水素濃度を有する試料物質と接し、該試料物質中の水素を選択透過させるものを用いて濃淡電池を形成することが好ましい。このような参照極として、前記測定極と同じ金属パラジウムを用いてもよい。また、前記試料物質として、所定の水素濃度を有する水素含有ガスを用いることができる。
【0011】
次に、第2発明の限界電流型水素センサは、例えば金属パラジウムなどを主体とし、被測定物質中の水素を選択透過させる測定極(アノード)を先端に設けた本体部と、この本体部内に配設され水素を取り込む参照極(カソード)と、この参照極(カソード)と前記測定極(アノード)間に介在し且つ両電極に接する水素イオンを含むイオン伝導体と、前記測定極(アノード)の内部または被測定物質側の隣接領域において水素の拡散律速を起こす拡散層とを備えると共に、前記測定極(アノード)と参照極(カソード)間に電圧を印加する外部電源と、両極間の限界電流値を測定し、該限界電流値に対応する被測定物質中の水素濃度を算出する測定装置とを備え、前記イオン伝導体が水酸化物イオン導電性の溶融塩電解質からなることを特徴とするものである。
【0013】
また、水素の拡散律速を制御したい場合は、前記測定極(アノード)の周囲に、単または複数の拡散孔を有するダイアフラムもしくは被覆層を形成することが好ましい。
【0014】
また、前記測定極(アノード)および参照極(カソード)の分極により輸送される水素を参照極表面から除くために、参照極(カソード)として、金属パラジウムなどの水素選択性透過材料を用いたり、水素と親和力のある活性金属もしくは水素吸蔵金属を用いることが望ましい。
【0015】
【発明の実施の形態】
以下に、本発明に係る水素センサの種々の実施形態について図面を参照しながら説明する。
【0016】
図1は、本発明に係る濃淡電池型水素センサの一実施例を示す概略断面図である。本実施例の水素センサ1は、高温・高圧下でも十分な強度と安定性を有するステンレス材料などからなる保護チューブ(本体部)2と、この保護チューブ(本体部)2の一端を封止する金属パラジウムを主体とした水素選択透過膜の測定極3と、この保護チューブ2の内部に同軸状に配設されたガス流通チューブ4と、このガス流通チューブ4の一端を封止する金属パラジウムを主体とした水素選択透過膜の参照極5とを備えると共に、測定極3と参照極5との間に介在し且つ両電極3,5に接する水酸化物イオン導電性の溶融塩電解質6を備えて構成されている。尚、前記測定極3の厚みは、被測定物質の水素濃度変化に素早く応答するため充分に薄く設定し、特に1mm以下であることが好ましい。
【0017】
また、ガス流通チューブ4には、所定の水素濃度を有する参照ガスを導入し参照極5に接触させるガス導入チューブ7が配設され、導入した参照ガスを流通させるためのガス排出孔8が設けられている。ガス流通チューブ4の他端は、外気などが参照ガスと接触しないように封止部材9で封止されており、保護チューブ2の他端も、溶融塩電解質6が外気と触れて外気中の炭酸ガスと反応し固体炭酸塩となることなどを防ぐべく、封止部材10で封止されている。また、保護チューブ2およびガス流通チューブ4からは、それぞれリード線11,12が導出されおり、測定極3および参照極5と電気的に接続している。そして、ガス流通チューブ4と保護チューブ2との間には、両者の電気的接触を避けるべく絶縁体のスペーサー13を介在させている。尚、本実施例では、測定極3と参照極5は、それぞれコンプレッション式治具15,16を用いて保護チューブ2とガス流通チューブ4に気密状態に圧接されているが、この代わりに溶接により接合されてもよい。また、このような水素センサ1は、その測定極3の表面が被測定物質に曝されるようにフランジなどを用いて固定される。
【0018】
前記水酸化物イオン導電性の電解質6には、NaOH−KOH混合溶融塩を用いる。この溶融塩系は、共晶温度が約170℃であり、この温度以上で溶融塩電解質となり高いイオン導電性を示すことが知られている。よって、従来の固体電解質型水素センサでは困難であった約200℃以上の低温域で作動する水素センサを得ることが可能となる。尚、前記の溶融塩電解質を用いる代わりに、InをドープしたCaZrO3,GdをドープしたBaCeO3,アンチモン酸,ウラニル酸,ヒドロニウム型β−アルミナなどの固体電解質を用いてもよい。このような溶融塩電解質6や固体電解質は、測定極3と保護チューブ2により被測定物質と反応し変質しないように保護されるので、従来の固体電解質型水素センサの固体電解質が変質するような過酷な環境下でも水素濃度を正確に測定できる信頼性の高い水素センサを得ることが可能となる。
【0019】
また、前記リード線11,12は電圧計14と接続している。後述するように、測定極3の表面が被測定物質に曝されているとき、この電圧計14によって両電極間に生起する起電力が測定され、この起電力に基づいて被測定物質中の水素濃度が算出される。
【0020】
このような水素センサ1の濃淡電池の式は、参照ガス(Ar−1体積%H2)|参照極(Pd膜)|溶融塩電解質(KOH−NaOH)|測定極(Pd膜)|被測定物質、となる。参照ガスとして、Arガス中に1体積%の水素ガスを含有した混合ガスを用いた。また、測定極3に金属パラジウムからなる水素選択透過膜を用いているので、この測定極3と被測定物質中の水素との間に水素のみに関する部分平衡を起こすことができる。よって、水素以外の他成分や、副次的な電極反応により発生する他成分が、水素に関する部分平衡に影響を与えることが無くなる。このように水素に関する部分平衡が成立し溶融電解質両端の水素ポテンシャルが定まるので、濃淡電池の原理により、この電池の理論起電力は、E=−K ln(P1/P2),K=RT/(2F)のネルンストの式で表すことができる。式中、E:起電力、P1:測定物質(ガス)中の水素分圧、P2:参照ガス中の水素分圧、R:気体定数、T:絶対温度、F:ファラデイ定数である。
【0021】
ここで、P2は一定であるから、絶対温度(T)と起電力(E)を測定することで、被測定物質中の水素分圧(P1)を算出できる。本実施例のように被測定物質がガスの場合、水素分圧(P1)を知れば、予め作成した検量線を用いて水素ガス濃度を算出できるのである。
【0022】
尚、被測定物質には上記のガス以外にも液体や固体が適用できる。このとき、水素が原子状で溶解している場合は、ジーベルツの法則により、P1=KCH 1/2 (K:定数,CH:水素原子の濃度)の関係式を代入し、水素が分子状で溶解している場合は、P1=K'CH2(K':定数,CH2:水素分子の濃度)の関係式を代入することにより、被測定物質に溶解している水素原子または水素原子の濃度を測定できる。
【0023】
以上の濃淡電池型水素センサ1の測定性能を調べるために、試験環境を設定した。図2は、この試験環境を示す概略説明図である。上記濃淡電池型水素センサ1は、電気炉20に配設したガラスチューブ21の中に設置された。また、ガラスチューブ21の中には、被測定物質のガス(ArとH2の混合ガス)を流入孔21aから流入させ、排出孔21bから流出させた。この流通ガス中の水素ガス濃度と温度を変化させたとき、測定極3と参照極5との間に生ずる起電力を測定しその応答特性を調べた。この測定結果を、図3〜図5に示す。
【0024】
図3は、400℃の環境下で、流通ガスの水素濃度を変化させたときの起電力の経時変化を示すグラフである。同図において曲線に付した数字は、水素濃度(体積%)を示している。この図から分かるように、水素濃度の変化に対する起電力の応答速度は速く、本実施例の濃淡電池型水素センサ1の応答性の良さを示している。
【0025】
また、図4は、400℃の環境下における水素分圧(P1)と起電力(E)との対応関係を示すグラフである。この図から分かるように、測定点は、広い水素濃度範囲(0.01〜100体積%)で最小自乗法により作成した直線30の近辺に高い相関性をもって分布し、よって上記ネルンストの式が成立することが確認された。実際の水素濃度測定では、このような濃度と起電力との関係を示す検量線を予め作成しておくことにより、測定電圧から水素分圧ひいては水素濃度が測定される。
【0026】
そして、図5は、被測定ガスが、室温(約30℃)の環境下で飽和水蒸気を含む場合、含まない場合の水素濃度と起電力との対応関係を示すグラフである。この図に示すように、飽和水蒸気(酸素)を含む場合と飽和水蒸気(酸素)を含まない場合の両者の測定点は、誤差範囲内で、最小自乗法で作成した直線31の近辺に高い相関性をもって分布しており、他成分である水蒸気や酸素の影響を受けることなく、水素に関する部分平衡が成立していることが確認された。測定極3を酸素が透過する場合の起電力と、水素のみが透過する場合の起電力とは大きく異なることが理論的に示されている(例えば、文献「Carl Wagner; Advances in Electrochemistry and Electrochemical Engineering, Vol.4, ( INTERSCIENCE, NY ) 1966, p.1」を参照)。従って、本実施例の濃淡電池型水素センサ1は、水素以外の他成分と水素とが混在する環境下においても、水素のみの濃度測定を高精度で行うことが可能であることが確認された。
【0027】
以上、濃淡電池型水素センサの一実施例について説明したが、本発明においては、使用環境や温度・圧力条件などにより、種々の変形例をとることができる。例えば、上記保護チューブ2と溶融塩電解質6との反応を抑制し、センサの長寿命化を図るため、当該保護チューブ内面にPd,Auなどをコーティングしてもよい。
【0028】
また、上記実施例では、参照極5に金属パラジウムからなる水素選択透過膜を用い、この水素選択透過膜に接する参照ガスを常に供給する必要があった。そこで、参照ガスを不要にするため、参照極における水素ポテンシャルが一定つまり水素の平衡分圧を一定に保つことが可能な固体や固体−液体の参照極を採用できる。このような参照極には、上記イオン伝導体と反応して一定の水素ポテンシャルを発生させるが、副次的な反応を生じさせないものが好ましい。例えば、上記溶融塩電解質にNaOH−KOH系溶融塩を用いる場合、Pd+PdO(+H2O)系固体からなる参照極が挙げられる。これは、Pd+H2O(ガス)=PdO+H2(ガス)という化学平衡を利用するものであり、保護チューブと参照極との間の空間の水蒸気分圧を一定に保つことにより、参照極における一定の水素ポテンシャルを可能にするものである。
【0029】
また、他の例として、上記イオン伝導体に(NaOH−KOH)(液体)+KOH(固体)の固液共存電解質を用いる場合、参照極としてPd(固体)+PdO(固体)+M23+K224(固体)(M:金属元素)が挙げられる。例えば金属元素(M)が鉄の場合、参照極は、Pd(固体)+PdO(固体)+Fe23+K2Fe24(固体)となる。これは、2KOH(固体)+M23(固体)+Pd(固体)=PdO(固体)+K224(固体)+H2(ガス)という化学平衡を利用して、参照極における一定の水素ポテンシャルを可能とするものである。
【0030】
次に、本発明に係る他の実施形態について説明する。図6は、本発明に係る限界電流型水素センサの一実施例を示す概略断面図である。尚、上記の濃淡電池型水素センサ1と実質的に同一の構成部分には、同一符号を付してその詳細な説明を省略する。
【0031】
本実施例の限界電流型水素センサ40は、保護チューブ2と、この保護チューブ2の一端を封止する金属パラジウムを主体とした水素選択透過膜の測定極(アノード)3'と、この保護チューブ2の内部に同軸状に配設されたガス流通チューブ4と、このガス流通チューブ4の一端を封止する水素選択透過膜の参照極(カソード)5'と、前記測定極(アノード)3'と参照極(カソード)5'との間に介在し且つ両極3',5'に接する水酸化物イオン導電性の溶融塩電解質6とを備える共に、前記測定極(アノード)3'と参照極(カソード)5'との間に外部電圧を印加するためにリード線11,12に接続された外部電源41と、両電極間の電流量を測定する電流計42とを備えて構成されている。尚、前記溶融塩電解質6の代わりに、上記した固体電解質を用いてもよい。
【0032】
また、前記ガス流通チューブ4の内部にはガス導入チューブ7が配設されているが、このガス導入チューブ7のガス導入孔7aから導入する流通ガスは、ArガスやArと酸素を含む混合ガスなどである。アノード(測定極)3'を正に、カソード(参照極)5'を負となすように外部電源41を用いて直流電圧を印加すると、両電極が分極し、溶融塩電解質6の中をアノード3'側からカソード5'側へ水素が輸送され、この輸送された水素は水素選択透過性のカソード5'を透過する。前記の流通ガスは、この透過水素を系外へ運び去る役目を果たすものである。尚、流通ガスに代わるものとして、カソード(参照極)にチタンなどの水素と親和力の強い活性金属や、LaNi5などの水素吸蔵合金などを用いることができる。この場合、これら活性金属や水素吸蔵合金と溶融塩電解質6(または固体電解質)とが反応するのを避けるため、水素透過性の良好なパラジウムなどを参照極表面にコーティングすることが好ましい。
【0033】
本実施例の限界電流型水素センサ40の構成は、流通ガス|カソード(Pd膜)|溶融塩電解質(KOH−NaOH)|アノード(Pd膜)|拡散層|被測定物質、で表現される。この拡散層は、被測定物質中の水素を拡散律速させ、限界電流を生ぜしめるものであり、アノード3'の内部または被測定物質側の隣接領域に形成されるものである。尚、良好な水素の拡散律速過程を得るため、アノード3'の厚みは、当該アノード(測定極)の水素透過率に依って最適値となるように適宜調整されるが、本実施例の場合は1mm〜10mm程度が好適であった。そして、アノード3'を正に、カソード5'を負となすように直流電圧を印加し、アノード3'側からカソード5'側へ水素が輸送されるように分極させる。このとき、被測定物質中の水素は拡散層において拡散律速し、印加電圧に依存しない限界電流が発生する。また、この限界電流値は被測定物質中の水素濃度に比例し、この水素濃度は、ジーベルツの法則により水素分圧の1/2乗に比例する。以上の原理に従って、予め作成した検量線を利用し、測定した限界電流値に基づいて被測定物質中の溶解水素濃度を算出できる。
【0034】
次に、本実施例の限界電流型水素センサ40の測定性能を調べるために、図2と同じ試験環境を設定した。そして、アノード(測定極)3'とカソード(参照極)5'との間に直流電圧を印加し、被測定物質中の水素濃度と温度を変化させたとき、両極3',5'間に流れる限界電流量を測定しその応答特性を調べた。この結果を、図7〜10に示す。
【0035】
図7は、400℃の環境下で被測定物質中の水素濃度を変化させたとき、印加電圧と電流値との対応関係を示すグラフである。各曲線の下に付した数字は、水素濃度(体積%)を示す。この図より、水素濃度に対応した限界電流43,44,45,46が発生し、本実施例の限界電流型水素センサ40が機能していることが示された。
【0036】
また、図8は、400℃と300℃の各環境における被測定物質中の水素分圧と限界電流との対応関係を示すグラフである。400℃の環境下で電極3',5'間に800mV,1000mV,1200mVの各電圧を印加したときの測定点は、水素分圧の1/2乗に略比例しており、最小自乗法により作成した直線47の近辺に高い相関性をもって分布している。また、300℃の環境下で電極3',5'間に1200mVの電圧を印加したときの測定点も、水素分圧の1/2乗に略比例しており、最小自乗法により作成した直線48の近辺に高い相関性をもって分布している。実際の水素濃度測定では、このような検量線を予め作成しておくことにより、測定した限界電流値から水素濃度が測定される。
【0037】
そして、図9は、400℃の環境下で電極3',5'間に1000mVの電圧を印加し、被測定物質の水素濃度を変化させたときの限界電流値の経時変化を示すグラフである。同図において曲線に付した数字は、水素濃度(体積%)を示す。この図より、限界電流は水素濃度の変化に対応して素早く変化し、十分な応答速度を示していることが分かる。
【0038】
ところで、被測定物質中の溶解水素の濃度が高すぎると、上記拡散層において水素の拡散律速とすることが困難である場合がある。このような場合には、上記測定極3'として、金属パラジウムに透過水素をトラップするニッケルや銀などの金属元素を添加した合金を用いることが好ましい。その添加元素を選択し添加量を調整することで、測定極の透過水素量を調整できるため、透過水素の拡散律速を容易に起こすことが可能となる。
【0039】
また、上記限界電流型水素センサ40は、配管の内腔から透過する水素のモニターとして用いることができる。例えば、ステンレス製の配管は、その結晶粒界を通して透過する水素を拡散律速させる性質を有することが知られている。この性質を利用して、上記水素選択透過性のアノード(測定極)3'を当該配管表面に接触させ、配管からの透過水素をアノード(測定極)3'に透過させて、限界電流を測定し、水素濃度を算出することができる。これにより、配管の内腔を流れる流体の状態を監視したり、配管の劣化の程度を推し量ることができる。
【0040】
また、図10に示すように、水素の拡散律速過程を安定にするために、上記測定極3'の周りに拡散孔50aを備えたダイアフラム50を設けることも効果的である。この拡散孔の径と長さを適宜調整することにより、水素の拡散律速を制御し限界電流の発生環境をつくることが可能になる。また、このダイアフラム50の代わりに、上記アノード(測定極)3'の表面に、多孔質性焼結体などからなる被覆層を設けても、同様の効果を得ることができる。このようなダイアフラム50や被覆層を設けた水素センサは、高温熱水中にわずかに溶解した水素分子や、金属溶体中にわずかに溶解した水素原子の濃度検出に好適に用いられる。
【0041】
【発明の効果】
以上、本発明の濃淡電池型水素センサは、金属パラジウムを主体とし被測定物質中の水素を選択透過させる測定極を先端に設けた本体部と、この本体部内に配設され参照電位を規定する参照極と、前記測定極と参照極間に介在する水素イオンを含むイオン伝導体とを備えるものであるから、(1)特にイオン伝導体に溶融塩電解質を用いることで従来の化学電池型センサでは困難であった200℃〜600℃の中温度域において正常に作動し、(2)また、本体部先端に設けた水素選択性の測定極の存在によりイオン伝導体が被測定物質から保護されるため、イオン伝導体の変質が防止され、よってセンサの性能低下が防止されると共にイオン伝導体の選択の幅を広げることができ、(3)更に、測定極と参照極間に生ずる起電力の信号出力を得て連続測定ができることから、(4)高温熱水や石油改質プロセスなどの過酷な環境下(高温・高圧)でも水素濃度を高精度に測定することが可能となる。
【0042】
また、本発明の限界電流型水素センサは、被測定物質中の水素を選択透過させる測定極(アノード)を先端に設けた本体部と、この本体部内に配設され水素を取り込む参照極(カソード)と、該参照極(カソード)と前記測定極(アノード)間に介在する水素イオンを含むイオン伝導体と、前記測定極(アノード)の内部または被測定物質側の隣接領域において水素の拡散律速を起こす拡散層と、両極間に電圧を印加する外部電源とを備えるものであるから、前記(1)および(2)と同様の効果を得ると共に、(5)測定極(アノード)と参照極(カソード)間に生ずる限界電流の信号出力を得て連続測定できることから、前記(4)と同様に過酷な環境下(高温・高圧)でも水素濃度を高精度に測定することが可能となる。
【0043】
また、前記測定極(アノード)の周囲に、単または複数の拡散孔を有するダイアフラムもしくは被覆層を形成することにより、水素の拡散律速を制御し限界電流の発生環境を容易につくることが可能となり、例えば、高温熱水中にわずかに溶解した水素分子や、金属溶体中にわずかに溶解した水素原子の濃度検出を高精度に行うことが可能となる。
【図面の簡単な説明】
【図1】本発明に係る濃淡電池型水素センサの一実施例を示す概略断面図である。
【図2】本発明に係る濃淡電池型水素センサの試験環境を示す概略図である。
【図3】本発明に係る濃淡電池型水素センサの応答特性を示すグラフである。
【図4】起電力と水素濃度との対応関係を示すグラフである。
【図5】水素に関する部分平衡を説明するためのグラフである。
【図6】本発明に係る限界電流型水素センサの一実施例を示す概略断面図である。
【図7】本発明に係る限界電流型水素センサの限界電流特性を示すグラフである。
【図8】限界電流と水素分圧との対応関係を示すグラフである。
【図9】本発明に係る限界電流型水素センサの応答特性を示すグラフである。
【図10】本発明に係る限界電流型水素センサの測定極(アノード)の周囲に拡散孔を有するダイアフラムを設けた状態を示す概略断面図である。
【符号の説明】
1 濃淡電池型水素センサ 2 保護チューブ(本体部)
3 測定極 3' アノード
4 ガス流通チューブ 5 参照極
5' カソード 6 溶融塩電解質
7 ガス導入チューブ 7a ガス導入孔
8 ガス排出孔 9 封止部材
10 封止部材 11,12 リード線
13 スペーサー 14 電圧計
15,16 コンプレッション式治具 20 電気炉
21 ガラスチューブ 21a ガス流入孔
21b ガス排出孔 30 直線
31 直線 40 限界電流型水素センサ
41 外部電源 42 電流計
43,44,45,46 限界電流 47 直線
50 ダイアフラム 50a 拡散孔
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a hydrogen sensor that measures a hydrogen concentration in a gas phase, a liquid phase, or a solid phase, and particularly relates to a hydrogen sensor that can operate normally even in a harsh environment in a temperature range of about 200 ° C. to 500 ° C. is there.
[0002]
[Prior art]
Measurement of the concentration of trace amounts of hydrogen molecules or hydrogen atoms contained in water, atmospheric gas, organic solvent, and metal is important in measuring the degree of material deterioration and managing the manufacturing process.
[0003]
For example, (1) In boiling water type light water reactors, hydrogen is injected into the system for the purpose of preventing intergranular stress corrosion cracking and irradiation-induced stress corrosion cracking of austenitic stainless steel used in the reactor internal structure. However, if the hydrogen concentration is too high, active dissolution of the metal material occurs, causing various problems due to this, and it is necessary to strictly control the hydrogen concentration. Also, even in pressurized water reactors, there is a problem that the accumulation of hydrogen generated by neutron irradiation causes the zircaloy that constitutes the fuel rod to be corroded by hydrogen and the fuel rod is easily destroyed, so it is necessary to control the hydrogen concentration. is there. (2) Also, in the power generation system of thermal power plants, the temperature and pressure of hydrogen boilers are increased with the aim of further improving the efficiency of the power generation system. There is a need for a hydrogen sensor that can operate in such a harsh environment. (3) In addition, hydrogen contained in a solution alloy containing an active metal having a strong affinity for hydrogen is known to cause defects during solidification and low-temperature brittleness. Process monitoring to measure hydrogen concentration is needed. (4) In a synthesis process such as methane or ammonia, it is also necessary to monitor the process by measuring the hydrogen gas concentration in a reaction vessel without being affected by other component gases.
[0004]
As a conventional hydrogen sensor, for example, as disclosed in Japanese Patent No. 2813578, a metal alloy film made of amorphous NiZr is formed on a non-conductive substrate, and a palladium thin film is formed on the metal alloy film. However, this type of hydrogen sensor operates only in the measurement temperature range of room temperature to about 150 ° C. Also, SnO of metal oxide semiconductor sensor material2There are also known hydrogen sensors that are poisoned with silicone vapor to eliminate the sensitivity to gases other than hydrogen and obtain hydrogen selectivity, but the measurement temperature range is about room temperature to about 200 ° C.
[0005]
In addition, solid electrolyte hydrogen sensors that have been put to practical use at high temperatures are also known. However, such solid electrolyte hydrogen sensors can be used for solid electrolyte hydrogen ions in harsh environments with high temperature changes and high pressures. The transport number of (proton) decreases and the solid electrolyte does not show a Nernst type response, making it impossible to measure the concentration based on the Nernst equation, and a large amount of other component gases other than hydrogen, such as hydrocarbon compound gas Under the atmosphere, the solid electrolyte reacts with other component gases to cause decomposition and the like, and it becomes difficult to maintain a chemical equilibrium state, and the measurement accuracy of the hydrogen concentration is significantly lowered.
[0006]
[Problems to be solved by the invention]
Thus, even if the conventional hydrogen sensor operates only in a low temperature range of room temperature to about 200 ° C., or operates in a high temperature range such as a solid electrolyte sensor, the above-described (1), ( In a harsh environment as shown in 2), or in an atmosphere where a large amount of other components other than hydrogen as shown in (3) and (4) above is present, the transport number of hydrogen ions decreases. However, the hydrogen concentration cannot be accurately measured due to the influence of other components.
[0007]
The present invention has been made in view of such problems, and an object of the present invention is to provide a hydrogen sensor that can operate normally even in a severe environment of high temperature and high pressure in a medium temperature range of about 200 ° C. to 500 ° C. .
[0008]
[Means for Solving the Problems]
  In order to achieve the above object, the present inventors have conducted intensive research focusing on metal palladium that selectively permeates hydrogen well, and as a result, have reached the following invention. In other words, the concentration cell type hydrogen sensor according to the first aspect of the invention comprises a main body mainly composed of metallic palladium and provided with a measuring electrode for selectively permeating hydrogen in a substance to be measured, and a predetermined portion disposed in the main body. A concentration electrode comprising a reference electrode that defines a reference potential corresponding to a hydrogen concentration; and an ion conductor that includes hydrogen ions that are interposed between and in contact with the measurement electrode and the reference electrode; And a measuring device for measuring the electromotive force between the reference electrode and the hydrogen concentration in the substance to be measured corresponding to the electromotive force based on the Nernst equationThe ionic conductor comprises a hydroxide ion conductive molten salt electrolyte.It is characterized by that.
[0010]
Moreover, it is preferable to form a concentration cell using the reference electrode that is in contact with a sample material having a predetermined hydrogen concentration and selectively permeates hydrogen in the sample material. As such a reference electrode, the same metal palladium as the measurement electrode may be used. Further, a hydrogen-containing gas having a predetermined hydrogen concentration can be used as the sample material.
[0011]
  Next, the limiting current type hydrogen sensor of the second invention is, for example, a main body part mainly composed of metallic palladium and provided with a measuring electrode (anode) for selectively transmitting hydrogen in a substance to be measured at the tip, A reference electrode (cathode) that is disposed and takes in hydrogen, an ion conductor that includes hydrogen ions that are interposed between and in contact with the reference electrode (cathode) and the measurement electrode (anode), and the measurement electrode (anode) And an external power source for applying a voltage between the measurement electrode (anode) and the reference electrode (cathode), and a limit between both electrodes. A measuring device for measuring a current value and calculating a hydrogen concentration in a substance to be measured corresponding to the limit current valueThe ionic conductor comprises a hydroxide ion conductive molten salt electrolyte.It is characterized by that.
[0013]
When it is desired to control the hydrogen diffusion rate, it is preferable to form a diaphragm or a coating layer having a single or a plurality of diffusion holes around the measurement electrode (anode).
[0014]
Further, in order to remove the hydrogen transported by the polarization of the measurement electrode (anode) and the reference electrode (cathode) from the surface of the reference electrode, a hydrogen selective permeable material such as metal palladium is used as the reference electrode (cathode), It is desirable to use an active metal or hydrogen storage metal having an affinity for hydrogen.
[0015]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, various embodiments of a hydrogen sensor according to the present invention will be described with reference to the drawings.
[0016]
FIG. 1 is a schematic sectional view showing an embodiment of a concentration cell type hydrogen sensor according to the present invention. The hydrogen sensor 1 of the present embodiment seals a protective tube (main body portion) 2 made of a stainless material having sufficient strength and stability even under high temperature and high pressure, and one end of the protective tube (main body portion) 2. A measuring electrode 3 of a hydrogen permselective membrane mainly composed of metallic palladium, a gas flow tube 4 coaxially disposed inside the protective tube 2, and metal palladium for sealing one end of the gas flow tube 4 A hydrogen selective permeable membrane reference electrode 5 as a main body, and a hydroxide ion conductive molten salt electrolyte 6 interposed between the measurement electrode 3 and the reference electrode 5 and in contact with both electrodes 3, 5. Configured. The thickness of the measuring electrode 3 is set to be sufficiently thin so as to respond quickly to changes in the hydrogen concentration of the substance to be measured, and is preferably 1 mm or less.
[0017]
In addition, the gas distribution tube 4 is provided with a gas introduction tube 7 for introducing a reference gas having a predetermined hydrogen concentration and bringing it into contact with the reference electrode 5, and a gas exhaust hole 8 for distributing the introduced reference gas. It has been. The other end of the gas distribution tube 4 is sealed with a sealing member 9 so that the outside air does not come into contact with the reference gas, and the other end of the protective tube 2 is also in contact with the outside air by the molten salt electrolyte 6. In order to prevent it from reacting with carbon dioxide gas to become solid carbonate, etc., it is sealed with a sealing member 10. Lead wires 11 and 12 are led out from the protective tube 2 and the gas flow tube 4, respectively, and are electrically connected to the measurement electrode 3 and the reference electrode 5. An insulating spacer 13 is interposed between the gas flow tube 4 and the protective tube 2 so as to avoid electrical contact therebetween. In this embodiment, the measurement electrode 3 and the reference electrode 5 are pressed in a gas-tight state on the protective tube 2 and the gas flow tube 4 using compression-type jigs 15 and 16, respectively. It may be joined. Further, such a hydrogen sensor 1 is fixed using a flange or the like so that the surface of the measurement electrode 3 is exposed to the substance to be measured.
[0018]
As the hydroxide ion conductive electrolyte 6, a NaOH-KOH mixed molten salt is used. It is known that this molten salt system has a eutectic temperature of about 170 ° C., and becomes a molten salt electrolyte above this temperature and exhibits high ionic conductivity. Therefore, it is possible to obtain a hydrogen sensor that operates in a low temperature range of about 200 ° C. or higher, which is difficult with a conventional solid electrolyte hydrogen sensor. Instead of using the molten salt electrolyte, the In doped CaZrOThreeBaCeO doped with GdThreeSolid electrolytes such as antimonic acid, uranic acid, and hydronium type β-alumina may be used. Such a molten salt electrolyte 6 and a solid electrolyte are protected by the measuring electrode 3 and the protective tube 2 from reacting with the substance to be measured so as not to be altered, so that the solid electrolyte of the conventional solid electrolyte type hydrogen sensor is altered. It is possible to obtain a highly reliable hydrogen sensor that can accurately measure the hydrogen concentration even in a harsh environment.
[0019]
The lead wires 11 and 12 are connected to a voltmeter 14. As will be described later, when the surface of the measuring electrode 3 is exposed to the substance to be measured, an electromotive force generated between both electrodes is measured by the voltmeter 14, and hydrogen in the substance to be measured is measured based on the electromotive force. The concentration is calculated.
[0020]
The concentration cell formula of such a hydrogen sensor 1 is represented by a reference gas (Ar-1 vol% H2) | Reference electrode (Pd film) | molten salt electrolyte (KOH-NaOH) | measuring electrode (Pd film) | substance to be measured. As a reference gas, a mixed gas containing 1% by volume of hydrogen gas in Ar gas was used. Further, since the hydrogen selective permeable membrane made of metallic palladium is used for the measurement electrode 3, it is possible to cause partial equilibrium only for hydrogen between the measurement electrode 3 and hydrogen in the substance to be measured. Therefore, other components other than hydrogen and other components generated by a secondary electrode reaction do not affect the partial equilibrium related to hydrogen. Since the hydrogen partial equilibrium is established in this way and the hydrogen potential at both ends of the molten electrolyte is determined, the theoretical electromotive force of this battery is E = −K ln (P1/ P2), K = RT / (2F). Where E: electromotive force, P1: Hydrogen partial pressure in the measurement substance (gas), P2: Hydrogen partial pressure in reference gas, R: gas constant, T: absolute temperature, F: Faraday constant.
[0021]
Where P2Is constant, by measuring the absolute temperature (T) and the electromotive force (E), the hydrogen partial pressure (P1) Can be calculated. When the substance to be measured is a gas as in this example, the hydrogen partial pressure (P1), The hydrogen gas concentration can be calculated using a calibration curve prepared in advance.
[0022]
In addition to the above gases, liquids and solids can be applied to the substance to be measured. At this time, if hydrogen is dissolved in an atomic form, P.P.1= KCH 1/2(K: constant, CH: Hydrogen atom concentration) is substituted, and hydrogen is dissolved in molecular form, P1= K'CH2(K ': constant, CH2: The concentration of hydrogen atoms dissolved in the substance to be measured can be measured by substituting the relational expression: hydrogen molecule concentration.
[0023]
In order to examine the measurement performance of the above concentration cell type hydrogen sensor 1, a test environment was set. FIG. 2 is a schematic explanatory diagram showing this test environment. The concentration cell type hydrogen sensor 1 was installed in a glass tube 21 disposed in an electric furnace 20. Further, in the glass tube 21, the gas to be measured (Ar and H2Gas) was introduced from the inflow hole 21a and out of the discharge hole 21b. When the hydrogen gas concentration and temperature in the flow gas were changed, the electromotive force generated between the measurement electrode 3 and the reference electrode 5 was measured, and the response characteristics were examined. The measurement results are shown in FIGS.
[0024]
FIG. 3 is a graph showing changes in electromotive force over time when the hydrogen concentration of the circulating gas is changed in an environment of 400 ° C. The numbers attached to the curves in the figure indicate the hydrogen concentration (% by volume). As can be seen from this figure, the response speed of the electromotive force with respect to the change in the hydrogen concentration is fast, indicating the good response of the concentration cell type hydrogen sensor 1 of this embodiment.
[0025]
FIG. 4 shows the hydrogen partial pressure (P1) And the electromotive force (E). As can be seen from this figure, the measurement points are distributed with high correlation in the vicinity of the straight line 30 created by the method of least squares in a wide hydrogen concentration range (0.01 to 100% by volume), and thus the Nernst equation is established. Confirmed to do. In actual hydrogen concentration measurement, a calibration curve indicating the relationship between such concentration and electromotive force is prepared in advance, whereby the hydrogen partial pressure and thus the hydrogen concentration is measured from the measurement voltage.
[0026]
FIG. 5 is a graph showing the correspondence between the hydrogen concentration and the electromotive force when the gas to be measured contains saturated water vapor in an environment at room temperature (about 30 ° C.). As shown in this figure, the measurement points of both the case where saturated water vapor (oxygen) is included and the case where saturated water vapor (oxygen) is not included are highly correlated in the vicinity of the straight line 31 created by the method of least squares within the error range. It was confirmed that a partial equilibrium for hydrogen was established without being affected by water vapor and oxygen as other components. It has been theoretically shown that the electromotive force when oxygen passes through the measuring electrode 3 and the electromotive force when only hydrogen permeates are different (for example, “Carl Wagner; Advances in Electrochemistry and Electrochemical Engineering”). , Vol. 4, (INTERSCIENCE, NY) 1966, p.1). Therefore, it was confirmed that the concentration cell type hydrogen sensor 1 of this example can measure the concentration of hydrogen alone with high accuracy even in an environment where other components other than hydrogen and hydrogen coexist. .
[0027]
Although one embodiment of the concentration cell type hydrogen sensor has been described above, various modifications can be made in the present invention depending on the use environment, temperature / pressure conditions, and the like. For example, in order to suppress the reaction between the protective tube 2 and the molten salt electrolyte 6 and extend the life of the sensor, the inner surface of the protective tube may be coated with Pd, Au or the like.
[0028]
In the above embodiment, a hydrogen selective permeable membrane made of metallic palladium is used for the reference electrode 5 and it is necessary to always supply a reference gas in contact with the hydrogen selective permeable membrane. Therefore, in order to eliminate the need for a reference gas, a solid or solid-liquid reference electrode that can keep the hydrogen potential at the reference electrode constant, that is, the equilibrium partial pressure of hydrogen, can be adopted. Such a reference electrode preferably reacts with the ionic conductor to generate a constant hydrogen potential but does not cause a secondary reaction. For example, when a NaOH-KOH molten salt is used as the molten salt electrolyte, Pd + PdO (+ H2The reference electrode which consists of O) type solid is mentioned. This is Pd + H2O (gas) = PdO + H2It uses a chemical equilibrium of (gas), and allows a constant hydrogen potential at the reference electrode by keeping the water vapor partial pressure in the space between the protective tube and the reference electrode constant.
[0029]
As another example, when a solid-liquid coexisting electrolyte of (NaOH-KOH) (liquid) + KOH (solid) is used as the ionic conductor, Pd (solid) + PdO (solid) + M2OThree+ K2M2OFour(Solid) (M: metal element). For example, when the metal element (M) is iron, the reference electrode is Pd (solid) + PdO (solid) + Fe2OThree+ K2Fe2OFour(Solid). This is 2KOH (solid) + M2OThree(Solid) + Pd (solid) = PdO (solid) + K2M2OFour(Solid) + H2Using a chemical equilibrium called (gas), a constant hydrogen potential at the reference electrode is made possible.
[0030]
Next, another embodiment according to the present invention will be described. FIG. 6 is a schematic sectional view showing an embodiment of the limiting current type hydrogen sensor according to the present invention. In addition, the same code | symbol is attached | subjected to the component substantially the same as said concentration cell type hydrogen sensor 1, and the detailed description is abbreviate | omitted.
[0031]
The limiting current type hydrogen sensor 40 of this embodiment includes a protective tube 2, a measurement electrode (anode) 3 ′ of a hydrogen selective permeable membrane mainly composed of metallic palladium that seals one end of the protective tube 2, and the protective tube. 2, a gas flow tube 4 disposed coaxially, a hydrogen selective permeable membrane reference electrode (cathode) 5 ′ sealing one end of the gas flow tube 4, and the measurement electrode (anode) 3 ′. And a reference electrode (cathode) 5 ′ and a hydroxide ion conductive molten salt electrolyte 6 interposed between and in contact with both electrodes 3 ′ and 5 ′, and the measurement electrode (anode) 3 ′ and the reference electrode An external power source 41 connected to the lead wires 11 and 12 for applying an external voltage to the (cathode) 5 'and an ammeter 42 for measuring the amount of current between both electrodes are provided. . Instead of the molten salt electrolyte 6, the above-described solid electrolyte may be used.
[0032]
In addition, a gas introduction tube 7 is disposed inside the gas circulation tube 4, and the circulation gas introduced from the gas introduction hole 7a of the gas introduction tube 7 is Ar gas or a mixed gas containing Ar and oxygen. Etc. When a DC voltage is applied using an external power source 41 so that the anode (measurement electrode) 3 ′ is positive and the cathode (reference electrode) 5 ′ is negative, both electrodes are polarized, and the molten salt electrolyte 6 is anoded. Hydrogen is transported from the 3 ′ side to the cathode 5 ′ side, and the transported hydrogen passes through the cathode 5 ′ that is selectively permeable to hydrogen. The circulating gas serves to carry this permeated hydrogen out of the system. As an alternative to circulating gas, the cathode (reference electrode) has an active metal having strong affinity for hydrogen such as titanium, LaNiFiveA hydrogen storage alloy such as can be used. In this case, it is preferable to coat the surface of the reference electrode with palladium having good hydrogen permeability in order to avoid a reaction between the active metal or the hydrogen storage alloy and the molten salt electrolyte 6 (or solid electrolyte).
[0033]
The configuration of the limiting current type hydrogen sensor 40 of the present embodiment is expressed as: flowing gas | cathode (Pd film) | molten salt electrolyte (KOH-NaOH) | anode (Pd film) | diffusion layer | substance to be measured. This diffusion layer diffuses the hydrogen in the substance to be measured and generates a limiting current, and is formed in the anode 3 ′ or in an adjacent region on the substance to be measured side. In order to obtain a good hydrogen diffusion rate-determining process, the thickness of the anode 3 ′ is adjusted as appropriate depending on the hydrogen permeability of the anode (measurement electrode). Was preferably about 1 mm to 10 mm. Then, a DC voltage is applied so that the anode 3 ′ is positive and the cathode 5 ′ is negative, so that hydrogen is transported from the anode 3 ′ side to the cathode 5 ′ side. At this time, hydrogen in the substance to be measured is diffusion-limited in the diffusion layer, and a limit current that does not depend on the applied voltage is generated. Further, this limit current value is proportional to the hydrogen concentration in the substance to be measured, and this hydrogen concentration is proportional to the 1/2 power of the hydrogen partial pressure according to the Siebels law. In accordance with the above principle, the dissolved hydrogen concentration in the substance to be measured can be calculated based on the measured limit current value using a calibration curve prepared in advance.
[0034]
Next, in order to investigate the measurement performance of the limiting current type hydrogen sensor 40 of the present embodiment, the same test environment as in FIG. 2 was set. When a DC voltage is applied between the anode (measuring electrode) 3 ′ and the cathode (reference electrode) 5 ′ to change the hydrogen concentration and temperature in the substance to be measured, the electrodes 3 ′ and 5 ′ The limit current flowing was measured and the response characteristics were investigated. The results are shown in FIGS.
[0035]
FIG. 7 is a graph showing the correspondence between the applied voltage and the current value when the hydrogen concentration in the substance to be measured is changed under an environment of 400 ° C. The number attached below each curve indicates the hydrogen concentration (% by volume). This figure shows that limit currents 43, 44, 45, and 46 corresponding to the hydrogen concentration are generated, and that the limit current type hydrogen sensor 40 of this embodiment is functioning.
[0036]
FIG. 8 is a graph showing the correspondence between the hydrogen partial pressure in the substance to be measured and the limit current in each environment at 400 ° C. and 300 ° C. The measurement point when each voltage of 800 mV, 1000 mV, and 1200 mV is applied between the electrodes 3 ′ and 5 ′ in an environment of 400 ° C. is approximately proportional to the 1/2 power of the hydrogen partial pressure. It is distributed with high correlation in the vicinity of the created straight line 47. The measurement point when a voltage of 1200 mV is applied between the electrodes 3 ′ and 5 ′ in an environment of 300 ° C. is also approximately proportional to the half power of the hydrogen partial pressure, and is a straight line created by the method of least squares. It is distributed with high correlation in the vicinity of 48. In actual hydrogen concentration measurement, by preparing such a calibration curve in advance, the hydrogen concentration is measured from the measured limit current value.
[0037]
FIG. 9 is a graph showing the change over time in the limit current value when a voltage of 1000 mV is applied between the electrodes 3 ′ and 5 ′ in an environment of 400 ° C. and the hydrogen concentration of the substance to be measured is changed. . The numbers attached to the curves in the figure indicate the hydrogen concentration (% by volume). From this figure, it can be seen that the limiting current changes rapidly in response to the change in the hydrogen concentration, indicating a sufficient response speed.
[0038]
By the way, if the concentration of dissolved hydrogen in the substance to be measured is too high, it may be difficult to control the diffusion rate of hydrogen in the diffusion layer. In such a case, it is preferable to use an alloy in which metal element such as nickel or silver that traps permeated hydrogen is added to metal palladium as the measurement electrode 3 ′. By selecting the additive element and adjusting the amount of addition, the amount of permeated hydrogen at the measurement electrode can be adjusted, so that the diffusion rate of permeated hydrogen can be easily controlled.
[0039]
The limiting current type hydrogen sensor 40 can be used as a monitor for hydrogen permeating from the lumen of the pipe. For example, stainless steel pipes are known to have a property of limiting the diffusion of hydrogen that permeates through the crystal grain boundaries. Utilizing this property, the hydrogen selectively permeable anode (measuring electrode) 3 ′ is brought into contact with the surface of the pipe, and the permeated hydrogen from the pipe is passed through the anode (measuring electrode) 3 ′ to measure the limiting current. The hydrogen concentration can be calculated. As a result, the state of the fluid flowing through the lumen of the pipe can be monitored and the degree of deterioration of the pipe can be estimated.
[0040]
As shown in FIG. 10, it is also effective to provide a diaphragm 50 having a diffusion hole 50a around the measurement electrode 3 'in order to stabilize the hydrogen diffusion rate-determining process. By appropriately adjusting the diameter and length of this diffusion hole, it becomes possible to control the diffusion rate of hydrogen and create an environment for generating a limiting current. Further, the same effect can be obtained by providing a coating layer made of a porous sintered body or the like on the surface of the anode (measurement electrode) 3 ′ instead of the diaphragm 50. Such a hydrogen sensor provided with a diaphragm 50 and a coating layer is suitably used for detecting the concentration of hydrogen molecules slightly dissolved in high-temperature hot water or hydrogen atoms slightly dissolved in a metal solution.
[0041]
【The invention's effect】
As described above, the concentration cell-type hydrogen sensor of the present invention has a main body provided with a measurement electrode at its tip, which is mainly composed of metallic palladium and selectively transmits hydrogen in a substance to be measured, and defines a reference potential provided in the main body. Since it comprises a reference electrode and an ion conductor containing hydrogen ions interposed between the measurement electrode and the reference electrode, (1) a conventional chemical battery type sensor by using a molten salt electrolyte in particular for the ion conductor (2) In addition, the ion conductor is protected from the substance to be measured by the presence of a hydrogen-selective measuring electrode provided at the tip of the main body. Therefore, alteration of the ionic conductor can be prevented, so that the sensor performance can be prevented from being deteriorated and the selection range of the ionic conductor can be expanded. (3) Furthermore, an electromotive force generated between the measurement electrode and the reference electrode Signal output From the can continuously measure, it is possible to measure the (4) a severe environment (high temperature and high pressure) even accurate hydrogen concentration, such as high-temperature hot water and petroleum reforming process.
[0042]
In addition, the limiting current type hydrogen sensor of the present invention includes a main body provided with a measuring electrode (anode) for selectively permeating hydrogen in a substance to be measured at the tip, and a reference electrode (cathode) arranged in the main body to take in hydrogen. ), An ionic conductor containing hydrogen ions interposed between the reference electrode (cathode) and the measurement electrode (anode), and hydrogen diffusion rate-limiting in the measurement electrode (anode) or in the adjacent region on the measured substance side In this case, the same effect as the above (1) and (2) is obtained, and (5) the measurement electrode (anode) and the reference electrode Since the signal output of the limiting current generated between the (cathodes) can be obtained and continuously measured, the hydrogen concentration can be measured with high accuracy even in a harsh environment (high temperature and high pressure) as in the case (4).
[0043]
In addition, by forming a diaphragm or coating layer having a single or a plurality of diffusion holes around the measurement electrode (anode), it becomes possible to control the diffusion rate of hydrogen and easily create a limit current generation environment. For example, it is possible to detect the concentration of hydrogen molecules slightly dissolved in high-temperature hot water or hydrogen atoms slightly dissolved in a metal solution with high accuracy.
[Brief description of the drawings]
FIG. 1 is a schematic sectional view showing an embodiment of a concentration cell type hydrogen sensor according to the present invention.
FIG. 2 is a schematic view showing a test environment of a concentration cell type hydrogen sensor according to the present invention.
FIG. 3 is a graph showing response characteristics of a concentration cell type hydrogen sensor according to the present invention.
FIG. 4 is a graph showing a correspondence relationship between electromotive force and hydrogen concentration.
FIG. 5 is a graph for explaining partial equilibrium related to hydrogen.
FIG. 6 is a schematic sectional view showing one embodiment of a limiting current type hydrogen sensor according to the present invention.
FIG. 7 is a graph showing limit current characteristics of a limit current type hydrogen sensor according to the present invention.
FIG. 8 is a graph showing a correspondence relationship between limit current and hydrogen partial pressure.
FIG. 9 is a graph showing response characteristics of a limiting current type hydrogen sensor according to the present invention.
FIG. 10 is a schematic sectional view showing a state in which a diaphragm having a diffusion hole is provided around a measurement electrode (anode) of a limiting current type hydrogen sensor according to the present invention.
[Explanation of symbols]
1 Concentration cell type hydrogen sensor 2 Protective tube (main part)
3 Measuring electrode 3 'Anode
4 Gas distribution tube 5 Reference electrode
5 'cathode 6 Molten salt electrolyte
7 Gas introduction tube 7a Gas introduction hole
8 Gas exhaust hole 9 Sealing member
10 Sealing member 11, 12 Lead wire
13 Spacer 14 Voltmeter
15,16 Compression jig 20 Electric furnace
21 Glass tube 21a Gas inflow hole
21b Gas exhaust hole 30 straight line
31 Straight line 40 Limit current type hydrogen sensor
41 External power supply 42 Ammeter
43, 44, 45, 46 Limit current 47 Linear
50 Diaphragm 50a Diffusion hole

Claims (8)

金属パラジウムを主体とし、被測定物質中の水素を選択透過させる測定極を先端に設けた本体部と、この本体部内に配設され所定の水素濃度に対応する参照電位を規定する参照極と、前記測定極と参照極間に介在し且つ両電極に接する水素イオンを含むイオン伝導体と、を備えて濃淡電池を形成すると共に、前記測定極と参照極間の起電力を測定し、ネルンストの式に基づいて該起電力に対応する被測定物質中の水素濃度を算出する測定装置を備え、前記イオン伝導体が水酸化物イオン導電性の溶融塩電解質からなることを特徴とする水素センサ。A main body part mainly composed of metallic palladium and provided with a measuring electrode that selectively transmits hydrogen in the substance to be measured at the tip, and a reference electrode that is disposed in the main body part and defines a reference potential corresponding to a predetermined hydrogen concentration, An ion conductor including hydrogen ions interposed between the measurement electrode and the reference electrode and in contact with both electrodes, and forming a concentration cell, measuring an electromotive force between the measurement electrode and the reference electrode, hydrogen sensor comprising a measuring device for calculating the hydrogen concentration of the analyte in corresponding to electromotive force based on the formula, the ion conductor is characterized Rukoto such a hydroxide ion conductivity of the molten salt electrolyte . 所定の水素濃度を有する試料物質と接し、該試料物質中の水素を選択透過させる参照極を備えて濃淡電池を構成した請求項1記載の水素センサ。Hydrogen sensor of the sample material and contact with claim 1 Symbol placement to constitute a concentration cell equipped with a reference electrode which selectively transmits hydrogen in said sample substance having a predetermined hydrogen concentration. 前記試料物質として水素含有ガスを用いる請求項記載の水素センサ。The hydrogen sensor according to claim 2 , wherein a hydrogen-containing gas is used as the sample material. 被測定物質中の水素を選択透過させる測定極(アノード)を先端に設けた本体部と、この本体部内に配設され水素を取り込む参照極(カソード)と、この参照極(カソード)と前記測定極(アノード)間に介在し且つ両電極に接する水素イオンを含むイオン伝導体と、前記測定極(アノード)の内部または被測定物質側の隣接領域において水素の拡散律速を起こす拡散層とを備えると共に、前記測定極(アノード)と参照極(カソード)間に電圧を印加する外部電源と、両極間の限界電流値を測定し、該限界電流値に対応する被測定物質中の水素濃度を算出する測定装置とを備え、前記イオン伝導体が水酸化物イオン導電性の溶融塩電解質からなることを特徴とする水素センサ。A main body provided with a measuring electrode (anode) for selectively permeating hydrogen in the substance to be measured, a reference electrode (cathode) arranged in the main body for taking in hydrogen, the reference electrode (cathode), and the measurement An ion conductor including hydrogen ions interposed between the electrodes (anode) and in contact with both electrodes, and a diffusion layer that causes a rate of diffusion of hydrogen in the measurement electrode (anode) or in an adjacent region on the measured substance side are provided. In addition, an external power source that applies a voltage between the measurement electrode (anode) and the reference electrode (cathode) and a limit current value between both electrodes are measured, and a hydrogen concentration in a measured substance corresponding to the limit current value is calculated. and a measuring device for the hydrogen sensor in which the ionic conductor is characterized Rukoto such a hydroxide ion conductivity of the molten salt electrolyte. 金属パラジウムを主体とした測定極(アノード)を用いる請求項記載の水素センサ。The hydrogen sensor according to claim 4 , wherein a measurement electrode (anode) mainly composed of metallic palladium is used. 前記測定極(アノード)の周囲に、単または複数の拡散孔を有するダイアフラムもしくは被覆層を形成してなる請求項4又は5記載の水素センサ。The hydrogen sensor according to claim 4 or 5 , wherein a diaphragm or a coating layer having one or a plurality of diffusion holes is formed around the measurement electrode (anode). 前記測定極(アノード)および参照極(カソード)の分極により輸送される水素を選択透過させる参照極を備えた請求項4〜6の何れか1項に記載の水素センサ。The hydrogen sensor according to any one of claims 4 to 6 , further comprising a reference electrode that selectively transmits hydrogen transported by polarization of the measurement electrode (anode) and the reference electrode (cathode). 前記測定極(アノード)および参照極(カソード)の分極により輸送される水素と親和力のある活性金属もしくは水素吸蔵金属からなる参照極を用いた請求項4〜7の何れか1項に記載の水素センサ。The hydrogen according to any one of claims 4 to 7 , wherein a reference electrode made of an active metal or a hydrogen storage metal having an affinity for hydrogen transported by polarization of the measurement electrode (anode) and the reference electrode (cathode) is used. Sensor.
JP08500199A 1999-03-26 1999-03-26 Hydrogen sensor Expired - Lifetime JP4124536B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP08500199A JP4124536B2 (en) 1999-03-26 1999-03-26 Hydrogen sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP08500199A JP4124536B2 (en) 1999-03-26 1999-03-26 Hydrogen sensor

Publications (2)

Publication Number Publication Date
JP2000275209A JP2000275209A (en) 2000-10-06
JP4124536B2 true JP4124536B2 (en) 2008-07-23

Family

ID=13846441

Family Applications (1)

Application Number Title Priority Date Filing Date
JP08500199A Expired - Lifetime JP4124536B2 (en) 1999-03-26 1999-03-26 Hydrogen sensor

Country Status (1)

Country Link
JP (1) JP4124536B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107589217A (en) * 2017-08-22 2018-01-16 中国船舶重工集团公司第七八研究所 A kind of hydrogen gas sensor with alloy protective structure

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB0221393D0 (en) * 2002-09-14 2002-10-23 Univ Cambridge Tech Hydrogen sensing apparatus and method
JP5129553B2 (en) * 2007-12-03 2013-01-30 パナソニック株式会社 Hydrogen detection element
KR101293482B1 (en) 2012-03-19 2013-08-07 한국원자력연구원 Apparatus for hydrogen isotopes permeation
JP6366408B2 (en) * 2014-07-31 2018-08-01 株式会社富士技研 Hydrogen concentration detector
JP6872186B2 (en) * 2016-11-10 2021-05-19 国立大学法人東海国立大学機構 Hydrogen sensor and how to use it

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60111952A (en) * 1983-11-22 1985-06-18 Riken Keiki Kk Galvanic cell type gas sensor
JP2645558B2 (en) * 1987-07-27 1997-08-25 フィガロ技研株式会社 Method for detecting hydrogen in metal
GB8723222D0 (en) * 1987-10-02 1987-11-04 Fray D J Electrochemical sensor for hydrogen
JPH0827247B2 (en) * 1987-11-04 1996-03-21 株式会社豊田中央研究所 Broadband air-fuel ratio sensor and detector
JPH01221655A (en) * 1988-03-01 1989-09-05 Hitachi Ltd Method and instrument for measuring hydrogen concentration by using fuel battery
CH680165A5 (en) * 1988-03-23 1992-06-30 Gen Electric
JPH0434356A (en) * 1990-05-30 1992-02-05 Chino Corp Hydrogen sensor
JP2868913B2 (en) * 1991-02-28 1999-03-10 株式会社トクヤマ Solid electrolyte gas sensor
JP3242736B2 (en) * 1993-03-10 2001-12-25 三菱電機株式会社 Electrochemical device
JPH07128275A (en) * 1993-11-05 1995-05-19 Matsushita Electric Ind Co Ltd Gas sensor
JPH0829375A (en) * 1994-07-12 1996-02-02 Tokyo Yogyo Co Ltd Sensor for measuring quantity of hydrogen dissolved in molten metal
JP3013874B2 (en) * 1994-11-15 2000-02-28 日本電池株式会社 Diaphragm-type gas sensor device and its operation method
JP3498772B2 (en) * 1995-03-31 2004-02-16 株式会社豊田中央研究所 Thin film gas sensor and method of manufacturing the same
JPH08278278A (en) * 1995-04-03 1996-10-22 Tokyo Yogyo Co Ltd Hydrogen sensor probe and its manufacturing method
US5670115A (en) * 1995-10-16 1997-09-23 General Motors Corporation Hydrogen sensor
JP3307891B2 (en) * 1998-12-22 2002-07-24 株式会社豊田中央研究所 High heat-resistant polymer electrolyte and electrochemical device using the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107589217A (en) * 2017-08-22 2018-01-16 中国船舶重工集团公司第七八研究所 A kind of hydrogen gas sensor with alloy protective structure
CN107589217B (en) * 2017-08-22 2021-07-06 中国船舶重工集团公司第七一八研究所 Hydrogen sensor with alloy protective structure

Also Published As

Publication number Publication date
JP2000275209A (en) 2000-10-06

Similar Documents

Publication Publication Date Title
US3325378A (en) Electrochemical method and apparatus for measuring hydrogen content
US10598629B2 (en) Sensor and measurement method for measuring hydrogen content in metal melt
US4661211A (en) Gas detection with three-component membrane and sensor using said membrane
JP2001215214A (en) Hydrogen gas sensor
US4795533A (en) Gas detection apparatus and method with novel three-component membrane
Schiavon et al. Amperometric monitoring of sulphur dioxide in liquid and air samples of low conductivity by electrodes supported on ion-exchange membranes
US6090268A (en) CO gas sensor and CO gas concentration measuring method
US5118398A (en) Method and an apparatus for detecting ionizable substance
US6537824B1 (en) Process for metering hydrogen permeated in a metallurgical structure, and apparatus thereof
JP4124536B2 (en) Hydrogen sensor
US3565769A (en) Method and apparatus for determination of hydrogen content in a high temperature fluid
Kunimatsu et al. Deuterium loading ratio and excess heat generation during electrolysis of heavy water by a palladium cathode in a closed cell using a partially immersed fuel cell anode
US3649473A (en) Determination of hydrogen in a high temperature fluid and apparatus therefor
JP4538640B2 (en) Hydrogen sensor
Danielson et al. Recent Developments with High Temperature Stabilized‐Zirconia pH Sensors
Midgley Investigations into the use of gas-sensing membrane electrodes for the determination of carbon dioxide in power station waters
EP0096417B1 (en) Apparatus for measuring dissolved hydrogen concentration
Baker et al. The galvanic cell oxygen analyzer
Velayutham et al. Nafion based amperometric hydrogen sensor
Vogel et al. The Effect of Sulfur on the Anodic H 2 (Ni) Electrode in Fused Li2 CO 3‐K 2 CO 3 at 650° C
JPH0616024B2 (en) Apparatus and method for measuring hydrogen concentration in water
Alberti et al. Potentiometric and amperometric gas sensors based on the protonic conduction of layered zirconium phosphates and phosphonates
NO833886L (en) METHOD AND DEVICE FOR DETERMINING HYDROGEN FLOW.
US20110100841A1 (en) Corrosion Testing of Fuel-Cell Separator Plate Materials
US4065371A (en) Electrochemical carbon meter

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060315

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080205

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080312

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080408

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080502

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110516

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110516

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120516

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120516

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130516

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130516

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140516

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term