JP3498772B2 - Thin film gas sensor and method of manufacturing the same - Google Patents

Thin film gas sensor and method of manufacturing the same

Info

Publication number
JP3498772B2
JP3498772B2 JP10372996A JP10372996A JP3498772B2 JP 3498772 B2 JP3498772 B2 JP 3498772B2 JP 10372996 A JP10372996 A JP 10372996A JP 10372996 A JP10372996 A JP 10372996A JP 3498772 B2 JP3498772 B2 JP 3498772B2
Authority
JP
Japan
Prior art keywords
thin film
sensor
gas sensor
gas
resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP10372996A
Other languages
Japanese (ja)
Other versions
JPH08327592A (en
Inventor
忠司 稲葉
英昭 高橋
啓市 佐治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Central R&D Labs Inc
Original Assignee
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Central R&D Labs Inc filed Critical Toyota Central R&D Labs Inc
Priority to JP10372996A priority Critical patent/JP3498772B2/en
Publication of JPH08327592A publication Critical patent/JPH08327592A/en
Application granted granted Critical
Publication of JP3498772B2 publication Critical patent/JP3498772B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、薄膜式ガスセンサ及び
その製造方法、更に詳しくは、プロトン伝導性固体電解
質蒸着層を有することにより前記電解質の抵抗が非常に
小さくなり、測定精度及び再現性に優れ、信頼性が高
く、構造が簡単で且つ著しく小形化可能な薄膜式ガスセ
ンサ、並びに蒸着法を用いて基板上に電極層、前記電解
質層、電極層を順次積層形成することからなる、その製
造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a thin-film gas sensor and a method for manufacturing the same, and more specifically, by having a proton conductive solid electrolyte vapor deposition layer, the resistance of the electrolyte becomes extremely small, which improves measurement accuracy and reproducibility. A thin-film gas sensor that is excellent, highly reliable, has a simple structure, and can be made extremely small, and its production, which comprises sequentially forming an electrode layer, the electrolyte layer, and an electrode layer on a substrate by using a vapor deposition method. It is about the method.

【0002】[0002]

【従来の技術】近年、高温で特定のイオンのみを伝導す
る固体電解質の基礎研究、更に、その応用開発が精力的
に進められている。種々の固体電解質の中でも、酸素イ
オン伝導体を用いた固体電解質は古くから基礎研究がな
されており、又、その応用に関しても、例えば自動車の
エンジン制御用O2 センサ、更に、金属の溶解鋳造プロ
セス管理用酸素濃度測定センサとして実用化されてい
る。
2. Description of the Related Art In recent years, basic research on a solid electrolyte that conducts only specific ions at high temperature and further development of its application have been vigorously pursued. Among various solid electrolytes, solid electrolytes using oxygen ion conductors have been subjected to basic research for a long time, and also regarding their applications, for example, an O 2 sensor for controlling an engine of an automobile, and a metal melt casting process. It has been put to practical use as a control oxygen concentration measurement sensor.

【0003】一方、高温で良好なプロトン伝導性を示す
固体電解質の研究は、1980年代に岩原(名大)らに
よって精力的に行われ、SrCeO3 、CaZrO3
のCe又はZrの一部を3価のカチオンで置換したペロ
ブスカイト型酸化物が、高温で高いプロトン伝導性を発
現することが明らかにされた。これを機に、ペロブスカ
イト型酸化物を利用した燃料電池、水素生成装置、化学
センサ等の検討が進められている。
On the other hand, research on solid electrolytes showing good proton conductivity at high temperatures was energetically carried out by Iwahara (Nagoya Univ.) And others in the 1980s, and some of Ce or Zr such as SrCeO 3 and CaZrO 3 was analyzed. It was clarified that the perovskite type oxide substituted with a trivalent cation exhibits high proton conductivity at high temperature. Taking this opportunity, studies are underway on fuel cells, hydrogen generators, chemical sensors, etc. that use perovskite oxides.

【0004】高温プロトン伝導性酸化物(固体電解質)
を用いた化学センサとしては、主として濃淡電池起電力
を利用したガス(例えば、水素や水蒸気など)センサが
研究されている。これらのセンサは金属の水素脆性の原
因となる溶融金属中の水素濃度を管理するセンサとして
注目され、これまでに例えば、焼結法にて作成された素
子〔一端が閉鎖された筒状(コップ型)の電解質からな
る素子〕を用いて溶融アルミニウム中の水素濃度を検知
する濃淡電池式(起電力型)水素濃度センサが実用化さ
れている。
High temperature proton conductive oxide (solid electrolyte)
As a chemical sensor using, a gas (for example, hydrogen or water vapor) sensor mainly utilizing the electromotive force of the concentration cell has been studied. These sensors have attracted attention as sensors for controlling the hydrogen concentration in molten metal that causes hydrogen embrittlement of metals. For example, elements manufactured by the sintering method (a cylinder with one end closed (cup) Type) electrolyte element], a concentration cell type (electromotive force type) hydrogen concentration sensor for detecting the hydrogen concentration in molten aluminum has been put to practical use.

【0005】又、限界電流式水素濃度センサも研究され
ており、例えば特開昭62−269054号公報には、
プロトン伝導性固体電解質(焼結体)の一方の面にアノ
ード電極を設け、他方の面にカソード電極を設け、アノ
ード電極の上を、小孔付きキャップでアノード電極と前
記キャップとの間に間隙を設けて覆ったセンサ素子が提
案されている。
A limiting current type hydrogen concentration sensor has also been studied, for example, in Japanese Patent Laid-Open No. 62-269054.
An anode electrode is provided on one surface of the proton-conducting solid electrolyte (sintered body), and a cathode electrode is provided on the other surface, and a cap with a small hole is provided over the anode electrode to form a gap between the anode electrode and the cap. There has been proposed a sensor element provided with and covered with.

【0006】[0006]

【発明が解決しようとする課題】上述の如く、イオン伝
導体を用いたガスセンサは、濃淡電池式と限界電流式に
大別されるが、この両方式にはそれぞれ特徴がある。す
なわち、濃淡電池式ガスセンサは、微量のガス濃度を高
精度に測定できる反面、出力には直線性がないため、出
力補正回路が必要である。これに対し限界電流式センサ
は、ガス濃度に対し出力が直線的に得られるので、広範
囲の濃度測定が可能である。又、濃淡電池式センサで必
要とされる基準極を必要とせず構造が簡単である。この
ことから、広範囲の濃度測定が必要な場合には限界電流
式センサが都合が良い。
As described above, the gas sensor using an ionic conductor is roughly classified into a concentration cell type and a limiting current type, but both types have their respective characteristics. That is, while the concentration battery type gas sensor can measure a minute amount of gas concentration with high accuracy, the output has no linearity, and therefore an output correction circuit is required. On the other hand, the limiting current sensor can output the concentration linearly with respect to the gas concentration, and thus can measure the concentration in a wide range. Further, the structure is simple without requiring the reference electrode required in the concentration battery type sensor. From this fact, the limiting current type sensor is convenient when a wide range of concentration measurement is required.

【0007】ところで、従来報告されているプロトン伝
導性酸化物は、導電率が酸素イオン伝導性酸化物(8mo
l/% YSZ)に比べて1〜3桁小さく、電解質抵抗が非
常に大きい。よって、高温プロトン伝導性酸化物を限界
電流式センサに適用した場合には、全抵抗が大きいこ
とから大きな電流を流すことができず、S/N比が小さ
く精度が悪い、全抵抗に占める電解質抵抗の割合が大
きく広範囲の濃度測定を行うことができない、といった
問題があった。このため、被測定ガスの濃度に合わせて
気体拡散孔の大きさを変化させなければならなかったの
で、一つの拡散制御体(センサ素子に達する被測定ガス
の量を制限するためのもの)で広範囲の濃度測定が可能
な限界電流式センサを実現するためには、電解質抵抗の
低減が大きな課題となっていた。
By the way, the proton-conducting oxides reported so far have an oxygen-conducting oxide (8 mo
It is 1 to 3 orders of magnitude smaller than (l /% YSZ), and the electrolyte resistance is very large. Therefore, when the high temperature proton conductive oxide is applied to the limiting current type sensor, a large current cannot flow due to the large total resistance, the S / N ratio is small and the accuracy is low, and the electrolyte occupies the total resistance. There is a problem that the ratio of resistance is large and it is impossible to measure the concentration in a wide range. For this reason, the size of the gas diffusion hole had to be changed according to the concentration of the gas to be measured, so one diffusion control body (for limiting the amount of gas to be measured that reaches the sensor element) was used. In order to realize a limiting current type sensor capable of measuring concentration over a wide range, reduction of electrolyte resistance has been a major issue.

【0008】プロトン伝導体の抵抗を低減する方法とし
ては、例えば電解質を薄膜化することにより抵抗を低減
する(導電率を向上させる)方法が考えられる。しかし
ながら、従来プロトン伝導機能は焼結法でしか得られて
おらず、焼結法では例えば膜厚数十μmまで薄膜化する
ことは困難なので、極めて薄いプロトン伝導性固体電解
質は従来得られていない。又、プロトンは固体電解質の
結晶粒内を移動するため、焼結法により得られた焼結体
では粒子と粒子の間に介在する粒界が全体の抵抗を増大
させていた。
As a method of reducing the resistance of the proton conductor, for example, a method of reducing the resistance (improving the conductivity) by thinning the electrolyte can be considered. However, since the proton conducting function has been obtained only by the sintering method, and it is difficult to form a thin film having a thickness of, for example, several tens of μm by the sintering method, an extremely thin proton conducting solid electrolyte has not been obtained so far. . Further, since the protons move inside the crystal grains of the solid electrolyte, the grain boundary interposed between the grains in the sintered body obtained by the sintering method increases the overall resistance.

【0009】又、従来のプロトン伝導性固体電解質を用
いた限界電流式センサは水素しか検出できなかった。通
常、これらのセンサが多用される還元雰囲気には水蒸気
(水)、更には、炭化水素(HC)ガス、一酸化炭素
(CO)、水素(H2 )が存在する。しかしながら、水
素及び水蒸気(水)の濃度を同時に測定し、更には一酸
化炭素や炭化水素ガスの濃度を測定することは、従来、
報告例がない。それ故、従来は詳細な雰囲気検知や雰囲
気制御が不可能であった。
Further, the conventional limiting current type sensor using the proton conductive solid electrolyte can detect only hydrogen. Usually, water vapor (water), hydrocarbon (HC) gas, carbon monoxide (CO), and hydrogen (H 2 ) are present in the reducing atmosphere where these sensors are frequently used. However, measuring the concentrations of hydrogen and water vapor (water) at the same time, and further measuring the concentrations of carbon monoxide and hydrocarbon gas have hitherto been
There are no reports. Therefore, detailed atmosphere detection and atmosphere control have heretofore been impossible.

【0010】更に、従来のプロトン伝導性固体電解質を
用いた限界電流式センサは、固体電解質として焼結体を
用いていたので、センサ素子の熱容量が大きくなり、そ
れ故、センサ素子を最適な測定温度にするためには発熱
量の大きな電解質加熱装置を設けなければならず、又、
センサ素子の昇温性も悪く且つ不均一に加熱される可能
性もあった。したがって、従来はセンサの初期作動性の
向上や小型化が図れず、又、充分な信頼性が得られない
という問題があった。
Further, since the conventional limiting current type sensor using the proton conductive solid electrolyte uses a sintered body as the solid electrolyte, the heat capacity of the sensor element becomes large, and therefore the sensor element is optimally measured. In order to reach the temperature, it is necessary to provide an electrolyte heating device that generates a large amount of heat, and
There was also a possibility that the temperature rise of the sensor element was poor and that the sensor element was unevenly heated. Therefore, conventionally, there has been a problem that the initial operability of the sensor cannot be improved and the sensor cannot be downsized, and sufficient reliability cannot be obtained.

【0011】本発明は前記従来技術の問題点を解決する
ためのものである。本発明において、固体電解質の粒界
抵抗が低減されて高いプロトン伝導性を有するプロトン
伝導性固体電解質膜の成膜法を確立した。又、センサ素
子の内部抵抗が低減されると共に、水素濃度更に水蒸気
濃度の測定範囲が広く、再現性に優れ、信頼性の高い薄
膜式ガスセンサが得られた。それ故、本発明の目的とす
るところは、緻密なプロトン伝導性固体電解質薄膜を備
えた薄膜式ガスセンサ、並びに前記プロトン伝導性固体
電解質薄膜を容易に得ることができる前記薄膜式ガスセ
ンサの製造方法を提供することにある。
The present invention is to solve the above-mentioned problems of the prior art. In the present invention, a method for forming a proton conductive solid electrolyte membrane having high proton conductivity by reducing the grain boundary resistance of the solid electrolyte was established. Further, the internal resistance of the sensor element was reduced, the measurement range of hydrogen concentration and water vapor concentration was wide, the reproducibility was excellent, and the thin-film gas sensor with high reliability was obtained. Therefore, an object of the present invention is to provide a thin-film gas sensor provided with a dense proton-conducting solid electrolyte thin film, and a method for manufacturing the thin-film gas sensor capable of easily obtaining the proton-conducting solid electrolyte thin film. To provide.

【0012】[0012]

【課題を解決するための手段】本発明者らは、高エネル
ギー蒸着が可能なPVD法を用いることにより、電解質
抵抗(一般に粒子抵抗と粒界抵抗からなる)に占める粒
界抵抗の割合が小さく、プロトン導電率の高いプロトン
伝導性固体電解質薄膜が得られることを見出し、且つ前
記薄膜をセンサに採用することにより、水素、水蒸気、
一酸化炭素、炭化水素ガスの各々の濃度を広範囲で測定
することができる薄膜式ガスセンサを想到した。
By using the PVD method capable of high-energy vapor deposition, the present inventors have reduced the proportion of grain boundary resistance in electrolyte resistance (generally composed of particle resistance and grain boundary resistance). It was found that a proton conductive solid electrolyte thin film having high proton conductivity can be obtained, and by adopting the thin film as a sensor, hydrogen, water vapor,
We have come up with a thin-film gas sensor that can measure the concentrations of carbon monoxide and hydrocarbon gas in a wide range.

【0013】すなわち本発明の薄膜式ガスセンサは、多
孔質セラミック基板上に、多孔質電極層、プロトン伝導
性固体電解質蒸着層、多孔質電極層が順次積層されて構
成されたセンサ素子を備えてなることを特徴とする。
That is, the thin-film gas sensor of the present invention comprises a sensor element composed of a porous ceramic substrate, a porous electrode layer, a proton conductive solid electrolyte vapor deposition layer, and a porous electrode layer which are sequentially laminated. It is characterized by

【0014】プロトン伝導性固体電解質としては、例え
ば、一般式(1): AB1-x x3-y (1) 〔式中、AはCa,Ba,Srから選択された少なくと
も1種の元素を表わし、BはZr,Ceから選択された
少なくとも1種の元素を表わし、MはYb,Y,Sc,
Zn,Nd,Mg,In,Sm,Dy,Eu,Ho,G
d,Tm,Ca,Laから選択された少なくとも1種の
元素を表わし、0≦x、y≦0.5である〕で表わされ
るペロブスカイト型複合酸化物が好ましい。又、前記物
質の性状は、ガス分子不透過性であり(例えば、酸化物
の理論密度の90%以上の密度を有する程に緻密であ
る)、粒界抵抗が粒子抵抗の半分以下であることが好ま
しい。粒界抵抗の低減は、導電率の向上に有効である。
Examples of the proton conductive solid electrolyte include, for example, general formula (1): AB 1-x M x O 3-y (1) [wherein A is at least one selected from Ca, Ba and Sr. B represents at least one element selected from Zr and Ce, and M represents Yb, Y, Sc,
Zn, Nd, Mg, In, Sm, Dy, Eu, Ho, G
A perovskite-type composite oxide represented by the formula: at least one element selected from d, Tm, Ca, and La, and 0 ≦ x, y ≦ 0.5. Further, the property of the substance is that it is impermeable to gas molecules (for example, it is dense enough to have a density of 90% or more of the theoretical density of oxide), and the grain boundary resistance is half or less of the particle resistance. Is preferred. Reducing the grain boundary resistance is effective in improving the conductivity.

【0015】電極は適する金属材料から形成されていて
よいが、例えばPt,Pd,Rh,Re,Ni,W,F
e,Ag,Auから選択された少なくとも1種の金属元
素からなることが好ましい。電極の大きさや形状は、セ
ンサ素子の大きさや形状に応じて適宜選択する。
The electrodes may be made of any suitable metallic material, for example Pt, Pd, Rh, Re, Ni, W, F.
It is preferably composed of at least one metal element selected from e, Ag and Au. The size and shape of the electrode are appropriately selected according to the size and shape of the sensor element.

【0016】 多孔質セラミック基板は、耐火性で入手
及び取り扱いの容易な適するセラミック材料から形成さ
れていてよい。多孔質セラミック基板において、ガス通
気率が0.05〜0.5mL・mm/atm・min・
cm2であるものが好ましい。多孔質セラミック基板の
大きさや形状は、目的とするセンサ素子が得られる範囲
内で決定する。多孔質アルミナ基板は特に好ましい。
The porous ceramic substrate may be formed of any suitable ceramic material that is refractory and readily available and handleable. The gas permeability of the porous ceramic substrate is 0.05 to 0.5 mL · mm / atm · min ·
Those of cm 2 are preferred. The size and shape of the porous ceramic substrate are determined within a range where the target sensor element can be obtained. Porous alumina substrates are especially preferred.

【0017】センサ素子を好適に作動させるためには、
センサ素子を加熱するための加熱手段(例えばヒータ)
を適する位置に設けるとよい。ヒータなどの加熱手段を
設ける加熱部を多孔質セラミック基板のセンサ素子部が
設けられた側又はその反対側に設けると、センサ素子を
容易且つ効率よく加熱することができてよい。
In order to operate the sensor element preferably,
Heating means (for example, a heater) for heating the sensor element
Should be provided at an appropriate position. If the heating unit provided with heating means such as a heater is provided on the side of the porous ceramic substrate where the sensor element unit is provided or on the opposite side, the sensor element may be heated easily and efficiently.

【0018】本発明の薄膜式ガスセンサは、濃淡電池式
であってもよいし、又は限界電流式であってもよいが、
構造が簡単で且つ広範囲の濃度測定が可能であるなどの
点から、薄膜限界電流式ガスセンサが好ましい。センサ
素子への被測定ガスの流入を制限する手段としては、限
界電流式酸素濃度センサにおける慣用手段、例えば
(a)センサ素子を、多孔質セラミックを用いたガス拡
散律速層で被覆する方法、(b)センサ素子上に間隙を
設けて、センサ素子を小さな孔を有するキャップで覆う
方法、等の種々の方法を用いてよい。
The thin film gas sensor of the present invention may be of the concentration cell type or the limiting current type,
The thin film limiting current type gas sensor is preferable because it has a simple structure and can measure concentration over a wide range. As means for limiting the flow of the gas to be measured into the sensor element, a conventional means in a limiting current type oxygen concentration sensor, for example, (a) a method of coating the sensor element with a gas diffusion rate controlling layer using a porous ceramic, ( b) Various methods may be used such as providing a gap on the sensor element and covering the sensor element with a cap having a small hole.

【0019】本発明の薄膜式ガスセンサにおけるプロト
ン伝導性固体電解質層は、スパッタリングなどの蒸着法
を用いて形成する必要があるが、多孔質電極層は例えば
印刷法などの他の方法を用いて形成してもよい。多孔質
セラミック基板上に、蒸着法により、多孔質電極層、プ
ロトン伝導性固体電解質層、多孔質電極層を順次積層形
成すると、非常に生産効率よくセンサ素子を得ることが
できる。前記センサ素子を慣用の方法(例えば、限界電
流式酸素濃度センサの分野で慣用の方法)で組み込む
と、本発明の薄膜式ガスセンサを製造することができ
る。
The proton conductive solid electrolyte layer in the thin film gas sensor of the present invention needs to be formed by a vapor deposition method such as sputtering, but the porous electrode layer is formed by another method such as a printing method. You may. When a porous electrode layer, a proton conductive solid electrolyte layer, and a porous electrode layer are sequentially laminated on a porous ceramic substrate by a vapor deposition method, a sensor element can be obtained with extremely high production efficiency. When the sensor element is incorporated by a conventional method (for example, a method commonly used in the field of limiting current type oxygen concentration sensor), the thin film gas sensor of the present invention can be manufactured.

【0020】[0020]

【作用】導電率が高く、良好なプロトン伝導性を示すプ
ロトン伝導性固体電解質薄膜が容易に得られるようにな
ったことから、ガス検知部と加熱部を一体化した小形セ
ンサ素子が形成可能となった。このことからセンサの消
費電力が低減でき、始動時間も短縮できる。本センサ
は、内部抵抗の低減を図ったことから、同一の拡散制御
体で0%から数十%までの広範囲の水素濃度測定が可能
となった。又、一酸化炭素濃度や炭化水素ガス濃度も測
定できるようになった。更にセンサへの印加電圧を変化
させることにより水素のみならず水蒸気濃度の検出も可
能となった。又、得られたプロトン伝導性薄膜は、粒界
抵抗の寄与が小さいため粒界に存在する不純物の影響が
低減され、特性が安定性し、信頼性が向上した。
[Function] Since a proton conductive solid electrolyte thin film having high conductivity and good proton conductivity can be easily obtained, it is possible to form a small sensor element in which a gas detection part and a heating part are integrated. became. Therefore, the power consumption of the sensor can be reduced and the starting time can be shortened. Since this sensor aims to reduce the internal resistance, it is possible to measure a wide range of hydrogen concentration from 0% to several tens of% with the same diffusion control body. Further, it has become possible to measure the carbon monoxide concentration and the hydrocarbon gas concentration. Furthermore, by changing the voltage applied to the sensor, not only hydrogen but also water vapor concentration can be detected. Further, in the obtained proton conductive thin film, the contribution of the grain boundary resistance was small, so that the influence of impurities existing in the grain boundary was reduced, the characteristics were stable, and the reliability was improved.

【0021】[0021]

【実施例】以下、本発明を実施例に基づいて更に詳細に
説明する。 実施例1:プロトン伝導体電解質試料を作成するため
に、以下のような製作手順で焼結体試料、薄膜試料を製
作し、成膜条件及び製作した試料の結晶性、組成、導電
率特性等を検討した。
EXAMPLES The present invention will now be described in more detail based on examples. Example 1: In order to prepare a proton conductor electrolyte sample, a sintered body sample and a thin film sample were manufactured by the following manufacturing procedures, and film forming conditions and crystallinity, composition, conductivity characteristics of the manufactured sample, etc. It was investigated.

【0022】A.試料の製作 焼結体試料 図1に焼結体試料の製作手順のフローチャートを示す。
焼結法にてプロトン伝導性固体電解質(組成比:CaZ
0.9 In0.1 3-a )試料を作るために、CaO、Z
rO2 、In2 3 をモル比1:0.9:0.05にな
るように100.09g:110.89g:13.88
2gの割合で調合してアルミナ製ポットの中にメノウボ
ール、メタノール液と共に入れ、ボールミルにて約10
時間回転させて混合した。所定の混合作業が終わった
後、乾燥した。しかる後、上記混合原料をアルミナ磁器
製の容器に入れ、シリコニット電気炉にて、大気中で昇
温スピード350℃/hの速度で1300℃まで昇温し
て5時間保持した。その後、電源を切り室温まで下げて
原料の仮焼を完了した。仮焼が終わった原料をメノウば
ちにて粉砕し一次粒子を作った。その後、水にポリビニ
ールアルコール(PVA)を10%溶解したPVA溶液
を加え、仮焼した原料を造粒した。次いで、造粒した粉
末を120℃で30分乾燥し、乾燥粉末を作った。この
乾燥粉末を直径10mmの型に約1g入れ、単位平方セ
ンチメートル当たり700〜900Kgの圧力でプレス
した。次いで、成形したペレットを大気中にて昇温スピ
ード350℃/hで600℃まで昇温した。600℃で
2時間保持した後、引き続き、昇温スピード350℃/
hで1400℃まで昇温し、10時間保持し、その後電
気炉の電源を切り大気中で除冷した。
A. Manufacture of sample Sintered body sample Fig. 1 shows a flowchart of a procedure for manufacturing a sintered body sample.
Proton conductive solid electrolyte (composition ratio: CaZ
r 0.9 In 0.1 O 3-a ) To prepare a sample, CaO, Z
rO 2 and In 2 O 3 were adjusted to have a molar ratio of 1: 0.9: 0.05 (100.09 g: 110.89 g: 13.88).
Prepared at a rate of 2 g and put it in an alumina pot with agate balls and methanol solution, and use a ball mill to make about 10
Mix by rotating for hours. After the predetermined mixing work was completed, it was dried. Then, the mixed raw material was placed in a container made of alumina porcelain and heated to 1300 ° C. at a heating rate of 350 ° C./h in the atmosphere in a silicon nitride electric furnace and held for 5 hours. Then, the power was turned off and the temperature was lowered to room temperature to complete the calcination of the raw material. The calcined raw material was crushed with an agate to make primary particles. Then, a PVA solution in which 10% of polyvinyl alcohol (PVA) was dissolved in water was added, and the calcined raw material was granulated. Next, the granulated powder was dried at 120 ° C. for 30 minutes to prepare a dry powder. About 1 g of this dry powder was put into a mold having a diameter of 10 mm and pressed at a pressure of 700 to 900 Kg per square centimeter. Then, the molded pellets were heated to 600 ° C. in the atmosphere at a heating rate of 350 ° C./h. After holding at 600 ℃ for 2 hours, the temperature rising speed is 350 ℃ /
The temperature was raised to 1400 ° C. for 10 hours and kept for 10 hours, and then the electric furnace was turned off and cooled in the atmosphere.

【0023】焼成を完了したペレットの表面にはガラス
質が析出していた。これは、プロトン伝導の妨げにな
る。よって、析出したガラス質を取り除くため、研磨粉
#1200にて表面から約200μm研磨して上下面を
削り採った。その後、研磨粉#200にかえて仕上げ研
磨をした。そして、50%HF溶液中で10時間エッチ
ングし、純水中で約1時間超音波洗浄し、その後、純水
にて洗浄し、フレッシュな粒子表面を析出させた。析出
したフレッシュなペレット上下面に、スパッタ装置にて
Ptを約0.5μm蒸着し3mm角の電極とした。そし
て、Pt電極上に直径0.3μmのPt線を接合して、
抵抗測定・プロトン伝導性確認試料を作成した。
Vitreous material was deposited on the surface of the pellets that had been fired. This hinders proton conduction. Therefore, in order to remove the precipitated glassy material, the upper and lower surfaces were scraped off by polishing the surface with polishing powder # 1200 for about 200 μm. After that, the polishing powder # 200 was used for final polishing. Then, etching was performed in a 50% HF solution for 10 hours, ultrasonic cleaning was performed in pure water for about 1 hour, and then cleaning was performed with pure water to deposit fresh particle surfaces. Pt of about 0.5 μm was vapor-deposited on the upper and lower surfaces of the fresh pellet thus deposited to form a 3 mm square electrode. Then, a Pt wire having a diameter of 0.3 μm is bonded onto the Pt electrode,
A resistance measurement / proton conductivity confirmation sample was prepared.

【0024】 薄膜試料 薄膜法による試料の作成は、シリコン又は多孔質アルミ
ナ基板上に、市販品であるCaZr0.9 In0.1 3-a
ターゲットを用い、RFスパッタリング装置にて下記表
1に示す条件で成膜することにより行った。
Thin film sample A thin film sample was prepared by placing a commercially available CaZr 0.9 In 0.1 O 3-a on a silicon or porous alumina substrate.
It was performed by using a target and forming a film under the conditions shown in Table 1 below by an RF sputtering device.

【表1】 [Table 1]

【0025】スパッタ条件の違い、及びその後の熱処理
によって得られた膜がどのような結晶構造、組成になっ
たのかを、X線回折、EPMAにて調査した。その結果
を下記表2に示す。
The difference in sputtering conditions and the crystal structure and composition of the film obtained by the subsequent heat treatment were investigated by X-ray diffraction and EPMA. The results are shown in Table 2 below.

【表2】 [Table 2]

【0026】X線回折の結果によれば、成膜直後は、全
ての試料がアモルファス構造を示した。しかし、その後
の800℃熱処理により、ペロブスカイト型構造になる
物とアモルファス構造のままで構造変化しないものとが
認められた。ペロブスカイト構造となった試料A1のX
線回折の結果を図2に示す。図2(a)は成膜(スパッ
タ)直後のアモルファス構造のX線回折図を示し、図2
(b)は800℃熱処理後のペロブスカイト構造のX線
回折図を示し、図2(c)は比較のためのCaZrO3
のASTMデータ(下は回折角)を示す。
According to the result of X-ray diffraction, all the samples showed an amorphous structure immediately after the film formation. However, by the subsequent heat treatment at 800 [deg.] C., it was confirmed that the material has a perovskite structure and the material has an amorphous structure and does not change in structure. X of sample A1 with perovskite structure
The result of the line diffraction is shown in FIG. FIG. 2A shows an X-ray diffraction diagram of an amorphous structure immediately after film formation (sputtering).
2B shows an X-ray diffraction pattern of the perovskite structure after heat treatment at 800 ° C., and FIG. 2C shows CaZrO 3 for comparison.
ASTM data (below is a diffraction angle) is shown.

【0027】EPMAによる成膜後の組成比分析結果に
よると、Ar雰囲気ではターゲット組成とほぼ同等の膜
が得られるが、Ar+O2 雰囲気中で成膜した場合には
Zr,Ca,Inの比が所定比とならず、組成比のずれ
が生じることが判った。次にペロブスカイト構造となっ
た薄膜電解質試料A1の緻密度について検討した。X線
回折の結果より、この試料の格子定数はa=5.74
8、b=8.006、c=5.590[Å]と算出で
き、EPMAの結果より得られた膜組成CaZr0.84
0.123-a を用いて試料の密度を算出した。ここでa
は0.025と仮定した。その結果、試料の密度は4.
59g/cm3 となり、CaZr0.9In0.1 2.975
の理論密度4.67g/cm3 (格子定数はASTMカ
ード値を使用)の98.4%となり、かなり緻密な膜が
できていることが判った。
According to the compositional ratio analysis result after the film formation by EPMA, a film almost equivalent to the target composition is obtained in the Ar atmosphere, but the ratio of Zr, Ca, In is found when the film is formed in the Ar + O 2 atmosphere. It was found that the composition ratio did not reach the predetermined ratio and the composition ratio was displaced. Next, the denseness of the thin film electrolyte sample A1 having the perovskite structure was examined. From the result of X-ray diffraction, the lattice constant of this sample was a = 5.74.
8, b = 8.006, c = 5.590 [Å], and the film composition CaZr 0.84 I obtained from the EPMA results.
The density of the sample was calculated using n 0.12 O 3-a . Where a
Was assumed to be 0.025. As a result, the sample density is 4.
59 g / cm 3 next, CaZr 0.9 In 0.1 O 2.975
Of the theoretical density of 4.67 g / cm 3 (using the ASTM card value for the lattice constant) was 98.4%, indicating that a fairly dense film was formed.

【0028】B.導電率の測定 プロトン伝導体を、石英ガラス基板上にAr雰囲気下で
約1μm成膜し、900℃にて熱処理した後、Pt電極
を4本取り出し、導電率測定試料(薄膜)を製作した
(薄膜法)。1%H2 +1%H2 O/N2 雰囲気下に試
料を放置し、4端子法にて導電率の温度依存性を調査し
た。又、焼結法にて製作した試料(焼結体)についても
同様に導電率測定を行ない、薄膜法との比較を行なっ
た。その結果を図3に示す。図3の測定結果より、薄膜
法にて製作した試料は、焼結法にて製作した試料よりも
導電率が半桁から1桁向上していることが判った。
B. Conductivity Measurement A proton conductor was formed into a film on a quartz glass substrate in an Ar atmosphere in a thickness of about 1 μm and heat-treated at 900 ° C., and then four Pt electrodes were taken out to prepare a conductivity measurement sample (thin film) ( Thin film method). The sample was left in an atmosphere of 1% H 2 + 1% H 2 O / N 2 and the temperature dependence of the conductivity was investigated by the 4-terminal method. In addition, the conductivity of the sample (sintered body) manufactured by the sintering method was also measured and compared with the thin film method. The result is shown in FIG. From the measurement results shown in FIG. 3, it was found that the sample manufactured by the thin film method had a conductivity improved by half to one digit compared to the sample manufactured by the sintering method.

【0029】C.プロトン伝導性の確認 薄膜法にて形成された薄膜がプロトン伝導性を有するか
否かの確認は、濃淡電池起電力試験にて調べることがで
きる。そこで、多孔質アルミナ基板上にPt(膜厚0.
5μm)/CaZr0.9 In0.1 3-a (膜厚5μm)
/Pt(膜厚0.5μm)の順に成膜し、積層構造の試
料を製作した。起電力試験は、試料温度500℃及び9
00℃にて行ない、多孔質アルミナ基板の片面には基準
極として10%H2 +1%H2 O/N2 ガスを導入し、
他面にサンプルガスとして0.1〜20%H2 +1%H
2 O/H2 のガスを吹き付けた。結果を図4に示す。測
定結果は、H2 ガスに対して500℃及び900℃で、
次式で表わされる理論値に近い起電力が得られた。しか
し、酸素ガスに対しては、殆ど起電力の発生が認められ
なかった。
C. Confirmation of Proton Conductivity Whether or not the thin film formed by the thin film method has proton conductivity can be checked by a concentration cell electromotive force test. Therefore, Pt (film thickness of 0.
5 μm) / CaZr 0.9 In 0.1 O 3-a (film thickness 5 μm)
/ Pt (film thickness 0.5 μm) was formed in this order to manufacture a sample having a laminated structure. The electromotive force test was conducted at a sample temperature of 500 ° C and 9
Conducting at 00 ° C., introducing 10% H 2 + 1% H 2 O / N 2 gas as a reference electrode on one surface of the porous alumina substrate,
0.1-20% H 2 + 1% H as sample gas on the other side
A gas of 2 O / H 2 was blown. The results are shown in Fig. 4. The measurement results are at 500 ° C and 900 ° C for H 2 gas,
An electromotive force close to the theoretical value expressed by the following equation was obtained. However, almost no electromotive force was observed with respect to oxygen gas.

【数1】 [E:起電力、R:気体定数、F:ファラデー定数、P
1 /P2 :分圧比] これらの結果から、製作した試料は500〜900℃の
温度範囲で、酸素イオン伝導性を示さない良好なプロト
ン伝導体として有効に動作することが確認された。
[Equation 1] [E: electromotive force, R: gas constant, F: Faraday constant, P
1 / P 2 : partial pressure ratio] From these results, it was confirmed that the manufactured sample effectively operates as a good proton conductor that does not show oxygen ion conductivity in the temperature range of 500 to 900 ° C.

【0030】D.電子顕微鏡(SEM)による試料断面
の観察と交流インピーダンス法による試料抵抗の検討 焼結法、薄膜法の各々の方法にて製作した試料につい
て、断面を電子顕微鏡(SEM)にて観察して比較し
た。更に、交流インピーダンス法によりセンサ温度70
0℃、1%H2 +0.1%H2 O/N2 雰囲気下で試料
抵抗を測定した。測定は、電圧振幅5mV、周波数10
mHz〜10MHzにて行なった。その結果をcole
−coleプロットとして図5に示す。図5(a)は焼
結法にて製作した試料を示し、板状のプロトン伝導性焼
結体1(板厚0.3mm)の両面に薄膜状の白金電極
2,3(共に膜厚0.5μm)が形成されている。図5
(b)はセンサ素子の断面図、図5(c)は図5(a)
のセンサ素子の700℃での交流インピーダンス法によ
る粒子、粒界、界面抵抗の測定結果を示す。図6(a)
は薄膜法にて製作した試料を示し、板状のアルミナ基板
4上に白金電極5(膜厚0.5μm)、プロトン伝導性
薄膜6(膜厚5μm)、白金電極7(膜厚0.5μm)
が順次形成されている。図6(b)はセンサ素子の断面
図、図6(c)は図6(b)のセンサ素子の700℃で
の交流インピーダンス法による粒子、粒界、界面抵抗の
測定結果を示す。
D. Observation of cross section of sample by electron microscope (SEM) and examination of sample resistance by AC impedance method The cross section of the sample manufactured by each of the sintering method and the thin film method was observed by electron microscope (SEM) and compared. . Further, the sensor temperature is 70 by the AC impedance method.
The sample resistance was measured in an atmosphere of 0 ° C. and 1% H 2 + 0.1% H 2 O / N 2 . Measurement is voltage amplitude 5 mV, frequency 10
It was performed at mHz to 10 MHz. The result is
It is shown in FIG. 5 as a −cole plot. FIG. 5 (a) shows a sample manufactured by the sintering method, in which thin film platinum electrodes 2 and 3 (both of which have a thickness of 0) are formed on both sides of a plate-shaped proton conductive sintered body 1 (a thickness of 0.3 mm). .5 μm) is formed. Figure 5
5B is a sectional view of the sensor element, and FIG. 5C is FIG. 5A.
3 shows the measurement results of particles, grain boundaries, and interface resistance of the sensor element of FIG. Figure 6 (a)
Indicates a sample manufactured by the thin film method, and a platinum electrode 5 (film thickness 0.5 μm), a proton conductive thin film 6 (film thickness 5 μm), a platinum electrode 7 (film thickness 0.5 μm) on a plate-shaped alumina substrate 4. )
Are sequentially formed. 6B is a cross-sectional view of the sensor element, and FIG. 6C shows the measurement results of particles, grain boundaries, and interface resistance of the sensor element of FIG. 6B at 700 ° C. by the AC impedance method.

【0031】図5(c)では2つの円弧状軌跡が観測さ
れたが、図6(c)では1つの円弧状軌跡しか観測され
なかった。又、水素濃度を0.5%、5%とした時、交
流インピーダンス特性は低周波側の円弧の大きさのみが
変化した。ここで、一般に固体電解質の交流インピーダ
ンス特性は図7に示す電気回路の特性により表わされ、
図7中、R1 は粒子抵抗を、R2 は粒界抵抗を、R3
電極界面抵抗を各々示すとされている。低周波側の円弧
は水素ガス濃度に依存して変化したことから、この円弧
は電極反応に起因する電極界面抵抗であることが判っ
た。このことから、プロトン伝導性焼結体1の抵抗は、
粒子抵抗、粒界抵抗及び界面抵抗の和からなり、プロト
ン伝導性薄膜6の抵抗は、粒界抵抗の小さな電解質抵抗
(粒子抵抗と粒界抵抗が一緒になったもの;主として粒
子抵抗)と界面抵抗の和からなることが判った。図5
(c)において、Iは粒子抵抗1.6kΩ(10MH
z)を示し、IIは粒子抵抗+粒界抵抗を示し(粒界抵抗
20.5kΩ)、III は粒子抵抗+粒界抵抗+界面抵抗
を示す(界面抵抗39.9kΩ;10MHz)。又、図
6(c)において、IVは電解質抵抗30Ω(10MH
z)を示し、Vは電解質抵抗+界面抵抗を示す(界面抵
抗2.2kΩ;10MHz)。
Two arcuate loci were observed in FIG. 5 (c), but only one arcuate locus was observed in FIG. 6 (c). Also, when the hydrogen concentration was 0.5% and 5%, the AC impedance characteristics changed only in the size of the arc on the low frequency side. Here, the AC impedance characteristic of the solid electrolyte is generally represented by the characteristic of the electric circuit shown in FIG.
In FIG. 7, R 1 is the grain resistance, R 2 is the grain boundary resistance, and R 3 is the electrode interface resistance. Since the arc on the low frequency side changed depending on the hydrogen gas concentration, it was found that this arc was the electrode interface resistance caused by the electrode reaction. From this, the resistance of the proton conductive sintered body 1 is
It consists of the sum of particle resistance, grain boundary resistance and interface resistance, and the resistance of the proton conductive thin film 6 is an electrolyte resistance with a small grain boundary resistance (particle resistance and grain boundary resistance combined; mainly particle resistance) and interface. It turned out to consist of the sum of resistance. Figure 5
In (c), I is a particle resistance of 1.6 kΩ (10 MH
z), II indicates grain resistance + grain boundary resistance (grain boundary resistance 20.5 kΩ), and III indicates grain resistance + grain boundary resistance + interface resistance (interface resistance 39.9 kΩ; 10 MHz). Further, in FIG. 6 (c), IV is electrolyte resistance 30Ω (10 MH
z), and V represents electrolyte resistance + interfacial resistance (interfacial resistance 2.2 kΩ; 10 MHz).

【0032】ここで、プロトン伝導性焼結体1及びプロ
トン伝導性薄膜6の粒子抵抗、粒界抵抗の抵抗率を算出
し比較を行なった。プロトン伝導性焼結体1の粒子の低
抗率は5.3×102 [Ω/cm]、粒界の抵抗率は
6.8×103 [Ω/cm]であり、プロトン伝導性薄
膜6の電解質抵抗率は6.4×102 [Ω/cm]であ
った。プロトン伝導性薄膜6の電解質抵抗率が、プロト
ン伝導性焼結体1の粒子抵抗率とほぼ一致することか
ら、プロトン伝導性薄膜6では電解質抵抗に占める粒界
抵抗の寄与が小さいことが判った。
Here, the resistivity of the grain boundary resistance and grain resistance of the proton conductive sintered body 1 and the proton conductive thin film 6 were calculated and compared. The low resistivity of the particles of the proton conductive sintered body 1 is 5.3 × 10 2 [Ω / cm], and the resistivity of the grain boundary is 6.8 × 10 3 [Ω / cm]. The electrolyte resistivity of No. 6 was 6.4 × 10 2 [Ω / cm]. Since the electrolyte resistivity of the proton conductive thin film 6 substantially matches the particle resistivity of the proton conductive sintered body 1, it was found that the contribution of the grain boundary resistance to the electrolyte resistance is small in the proton conductive thin film 6. .

【0033】実施例2:実施例1にて得られたプロトン
伝導性薄膜を用いて限界電流式センサを構成し、水素ガ
ス濃度測定が可能であるかどうかを検討した。センサ素
子の製作手順及びセンサ構造を図8に示す。図8(a)
はセンサ素子の製作手順を示し、図8(a)において、
蒸着法を用いて、ガス通気率0.05[mL・mm/a
tm・min・cm2 ]の多孔質アルミナ基板8の片面
に、折り返し形状(ジグザグ状)の白金ヒータ9を成膜
し、他面には陽極10(白金電極)/プロトン伝導性薄
膜11(組成比CaZr0.9 In0.1 3-a の固体電解
質)/陰極12(白金電極)を順次積層形成して限界電
流式センサのセンサ素子を得た。これに白金リード線1
3などの必要な部品及びセンサ素子への被測定ガスの制
限手段(図示せず)を組み込んで、図8(b)に示す限
界電流式センサを構成した。図9(a)は図8(b)に
示す限界電流式センサのセンサ素子の平面図である。
又、図9(b)に、図9(a)のセンサ素子の断面図
(断面SEM写真を模式化したもの)を示す。得られた
固体電解質膜は、均質で、通常空孔として観察される粒
界は殆ど認められなかった。すなわち、図5(a)に特
性を示すような従来の焼結センサでは粒界が観察される
が、本発明の薄膜センサでは粒界が観察されず、交流イ
ンピーダンス法を用いて示されたように、本発明の薄膜
センサでは抵抗率が小さくなったことが判る。
Example 2 A limiting current type sensor was constructed using the proton conductive thin film obtained in Example 1, and it was examined whether or not hydrogen gas concentration measurement was possible. The manufacturing procedure of the sensor element and the sensor structure are shown in FIG. Figure 8 (a)
Shows the manufacturing procedure of the sensor element, and in FIG.
Gas evaporation rate of 0.05 [mL ・ mm / a
tm.min.cm < 2 >] porous alumina substrate 8 with a folded (zigzag) platinum heater 9 formed on one surface, and the other surface has an anode 10 (platinum electrode) / proton conductive thin film 11 (composition). A solid electrolyte having a ratio of CaZr 0.9 In 0.1 O 3-a ) / cathode 12 (platinum electrode) were sequentially laminated to obtain a sensor element of a limiting current type sensor. Platinum lead wire 1
The limiting current type sensor shown in FIG. 8B was configured by incorporating necessary components such as No. 3 and the means for limiting the gas to be measured (not shown) into the sensor element. FIG. 9A is a plan view of the sensor element of the limiting current type sensor shown in FIG. 8B.
Further, FIG. 9B shows a cross-sectional view (a schematic view of a cross-sectional SEM photograph) of the sensor element of FIG. 9A. The obtained solid electrolyte membrane was homogeneous and almost no grain boundaries that were normally observed as voids were observed. That is, although grain boundaries are observed in the conventional sintered sensor having the characteristics shown in FIG. 5A, no grain boundaries are observed in the thin film sensor of the present invention, and it is shown by the AC impedance method. It can be seen that the thin film sensor of the present invention has a smaller resistivity.

【0034】前記センサ素子を650℃に加熱し、窒素
雰囲気下で水素を0〜10%の範囲で変化させた時の電
流[mA]−電圧[V]特性を検討した。測定結果を図
10(a)に示す。更に、印加電圧0.6Vの時の水素
濃度[%]と出力電流[mA]との関係を図10(b)
に示す。図10(a)の測定結果より、水素濃度に対応
した飽和電流が得られ、その電流値から水素濃度の検出
が可能であることが判った。又、図10(b)の関係よ
り、水素濃度[%]に比例して出力電流[mA]が増大
することが判った。
The current [mA] -voltage [V] characteristics when the sensor element was heated to 650 ° C. and hydrogen was changed in the range of 0 to 10% under a nitrogen atmosphere were examined. The measurement result is shown in FIG. Furthermore, the relationship between the hydrogen concentration [%] and the output current [mA] when the applied voltage is 0.6 V is shown in FIG.
Shown in. From the measurement result of FIG. 10A, it was found that the saturation current corresponding to the hydrogen concentration was obtained, and the hydrogen concentration can be detected from the current value. Further, from the relationship of FIG. 10B, it was found that the output current [mA] increased in proportion to the hydrogen concentration [%].

【0035】次に、1%H2 /N2 雰囲気下でH2 Oを
0〜20%まで変化させたときの電流[mA]−電圧
[V]特性を検討した。その結果を図11(a)に示
す。図11(a)の特性曲線は、前述の水素雰囲気下に
おける図10(a)の特性曲線とは異なり、印加電圧が
約0.9V以上で更に大きな飽和電流を示すことが判っ
た。又、この飽和電流は水蒸気濃度によって異なり、水
蒸気濃度に対応していることが判る。このことから、印
加電圧0.9V未満の飽和電流は水素濃度に対応し、そ
れ以上の印加電圧における飽和電流は水蒸気濃度に対応
していることが判った。よって、二つの異なる飽和電流
を用いることにより、水素濃度と水蒸気濃度を分離して
測定することができる。更に、印加電圧1.5Vの時の
水素濃度[%]と出力電流[mA]との関係を図11
(b)に示す。図11(b)の関係より、水素濃度
[%]に直線的に比例して出力電流[mA]が増大する
ことが判った。
Next, the current [mA] -voltage [V] characteristics when H 2 O was changed from 0 to 20% in a 1% H 2 / N 2 atmosphere were examined. The result is shown in FIG. It has been found that the characteristic curve of FIG. 11A shows a larger saturation current when the applied voltage is about 0.9 V or more, unlike the characteristic curve of FIG. 10A under the hydrogen atmosphere described above. Further, it can be seen that this saturation current depends on the water vapor concentration and corresponds to the water vapor concentration. From this, it was found that the saturated current with an applied voltage of less than 0.9 V corresponds to the hydrogen concentration, and the saturated current with an applied voltage higher than that corresponds to the water vapor concentration. Therefore, the hydrogen concentration and the water vapor concentration can be measured separately by using two different saturation currents. Further, FIG. 11 shows the relationship between the hydrogen concentration [%] and the output current [mA] when the applied voltage is 1.5V.
It shows in (b). From the relationship in FIG. 11B, it was found that the output current [mA] increased linearly in proportion to the hydrogen concentration [%].

【0036】次に、水素以外の可燃性ガスの検出特性を
検討した。10%H2 O/N2 雰囲気下でC3 8 ガス
又はCOガスを0〜1%の間で変化させ、その時のセン
サの電流−電圧特性を測定した。その結果を図12
(a),(b)に示す。C3 8ガス、COガスに対し
ても、各濃度に対応した飽和電流が得られることが判っ
た。これは、C3 8 ガスの直接分解による水素、又
は、C3 8 ,COとH2 Oとの反応によって生成され
る水素を検出しているものと考えられる。この結果か
ら、本センサは、水素や水蒸気の検出の外に、炭化水素
ガスや一酸化炭素ガスといった可燃性ガスの検出にも有
効であることが判った。
Next, the detection characteristics of combustible gases other than hydrogen were examined. The 10% H 2 O / N C 3 H 8 gas or CO gas under a 2 atmosphere was varied between 0 to 1%, the current of the sensor at that time - voltage characteristics were measured. The result is shown in FIG.
Shown in (a) and (b). It was found that a saturation current corresponding to each concentration can be obtained for C 3 H 8 gas and CO gas. It is considered that this is because hydrogen generated by the direct decomposition of C 3 H 8 gas or hydrogen generated by the reaction between C 3 H 8 CO and H 2 O is detected. From this result, it was found that the present sensor is effective not only for detecting hydrogen and water vapor but also for detecting flammable gas such as hydrocarbon gas and carbon monoxide gas.

【0037】実施例3:多孔質アルミナ基板のガス通気
率を変化させ、ガス通気率が限界電流特性に与える影響
を調査した。ガス通気率が各々、約0.01、0.0
5、0.1、0.5、1、5[mL・mm/atm・m
in・cm2 ]で板厚0.3mmの多孔質アルミナ基板
を使用し、実施例1と同様の方法で限界電流式センサを
製作した。センサ素子を650℃に加熱し、ガス流量5
[L/min]、1%H2 O+1%H2 /N2 の雰囲気
下でその限界電流特性を測定した。そして、印加電圧
0.6Vの時の飽和電流を求め、基板のガス通気率[m
L・mm/atm・min・cm2 ]と飽和電流[m
A]の関係を検討した。結果を図13に示す。本結果よ
り、ガス通気率が0.05〜0.5[mL・mm/at
m・min・cm2 ]の範囲で、飽和電流とガス通気率
が比例することが判った。このことから水素ガス拡散制
御基板としては、0.05〜0.5[mL・mm/at
m・min・cm2 ]のガス通気率をもった多孔質基板
が望ましいことが判った。
Example 3 The gas permeability of the porous alumina substrate was changed and the effect of the gas permeability on the limiting current characteristics was investigated. Gas permeability is about 0.01 and 0.0, respectively
5, 0.1, 0.5, 1, 5 [mL · mm / atm · m
in.cm 2 ] and using a porous alumina substrate having a plate thickness of 0.3 mm, a limiting current sensor was manufactured in the same manner as in Example 1. The sensor element is heated to 650 ° C and the gas flow rate is 5
[L / min] The limiting current characteristics were measured in an atmosphere of 1% H 2 O + 1% H 2 / N 2 . Then, the saturation current when the applied voltage is 0.6 V is obtained, and the gas permeability of the substrate [m
L · mm / atm · min · cm 2 ] and saturation current [m
A] was examined. The results are shown in Fig. 13. From this result, the gas permeability is 0.05 to 0.5 [mL · mm / at
It was found that the saturation current was proportional to the gas permeability in the range of [m · min · cm 2 ]. From this, as a hydrogen gas diffusion control substrate, 0.05 to 0.5 [mL · mm / at
It was found that a porous substrate having a gas permeability of [m · min · cm 2 ] is desirable.

【0038】実施例4:プロトン伝導体(プロトン伝導
性薄膜)を構成する元素以外の物(不純物)が成膜中に
混入した場合、プロトン伝導性が低下する。よって、ど
の程度の混入量までならば問題はないのかを明らかにす
るために以下の様な検討を行なった。前記検討は、電解
質膜中に予め不純物を混入させ、水素濃淡起電力試験に
よりその影響を検討する方法で行なった。試料は、多孔
質アルミナ基板上に白金電極/プロトン伝導体薄膜/白
金電極の順に積層し、製作した。プロトン伝導性薄膜
は、CaZr0.9 In0.1 3-a ターゲット上にFe、
Ni、Crの砕片(数mm角)を置き、不純物を混入さ
せて成膜した。尚、不純物の混入量の変更は、砕片の大
きさを変え、EPMAによるX線強度比でFe、Ni、
Crの分析値が0、0.1、0.5、1、2近傍になる
ように調製することにより行なった。水素濃淡起電力試
験の結果を下記表3に示す。評価は、良い[○]、普通
[△]、悪い[×]の3段階定性評価にて行なった。本
結果より、プロトン伝導体への不純物混入量が0.1%
以内であればプロトン伝導性に与える影響が小さいこと
が判った。
Example 4: When a substance (impurity) other than the elements constituting the proton conductor (proton conductive thin film) is mixed in during film formation, the proton conductivity is lowered. Therefore, the following study was conducted in order to clarify up to what level of mixing there was no problem. The above-mentioned examination was performed by mixing impurities in the electrolyte membrane in advance and examining the influence by a hydrogen concentration electromotive force test. The sample was manufactured by stacking a platinum electrode / proton conductor thin film / platinum electrode on a porous alumina substrate in this order. The proton-conducting thin film was prepared by using Fe on a CaZr 0.9 In 0.1 O 3-a target.
A crushed piece of Ni and Cr (several mm square) was placed, and impurities were mixed to form a film. In addition, the amount of impurities mixed is changed by changing the size of the crushed pieces, and by using X-ray intensity ratio by EPMA, Fe, Ni,
It was carried out by preparing so that the analysis value of Cr was near 0, 0.1, 0.5, 1, 2. The results of the hydrogen concentration electromotive force test are shown in Table 3 below. The evaluation was performed by a three-level qualitative evaluation of good [○], normal [△], and bad [x]. From this result, the amount of impurities mixed in the proton conductor is 0.1%.
It was found that if it is within the range, the influence on the proton conductivity is small.

【0039】[0039]

【表3】 [Table 3]

【0040】[0040]

【発明の効果】本発明の薄膜式ガスセンサは、多孔質セ
ラミック基板上に、多孔質電極層、プロトン伝導性固体
電解質蒸着層、多孔質電極層が順次積層されて構成され
たセンサ素子を備えてなるため、構造が簡単で且つ著し
く小形化可能である。又、プロトン伝導性固体電解質薄
膜(蒸着層)は導電率が高く、良好なプロトン伝導性を
示すので、センサ素子の内部抵抗が低減され、例えば0
%から数十%までの広範囲の水素濃度測定が可能となる
など適用範囲が広い。更にセンサへの印加電圧を変化さ
せることにより水素、一酸化炭素、炭化水素ガスのみな
らず水蒸気濃度の検出も可能となり、水素センサ、一酸
化炭素センサ、炭化水素ガスセンサ及び/又は水蒸気セ
ンサとして使用可能である。又、プロトン伝導性固体電
解質薄膜は、粒界抵抗の寄与が小さいため粒界に存在す
る不純物の影響が低減されたので、センサ素子の特性が
安定性し、耐久性及び信頼性が向上した。
The thin-film gas sensor of the present invention comprises a sensor element composed of a porous ceramic substrate, a porous electrode layer, a proton conductive solid electrolyte vapor deposition layer, and a porous electrode layer which are sequentially laminated. Therefore, the structure is simple and the size can be remarkably reduced. Further, since the proton conductive solid electrolyte thin film (deposited layer) has high conductivity and exhibits good proton conductivity, the internal resistance of the sensor element is reduced, and for example, 0
Wide range of application, such as wide range hydrogen concentration measurement from 10 to 10%. Furthermore, by changing the voltage applied to the sensor, it is possible to detect not only hydrogen, carbon monoxide, hydrocarbon gas but also water vapor concentration, and it can be used as a hydrogen sensor, carbon monoxide sensor, hydrocarbon gas sensor and / or water vapor sensor. Is. In addition, since the contribution of the grain boundary resistance to the proton conductive solid electrolyte thin film is small, the influence of impurities existing at the grain boundaries is reduced, so that the characteristics of the sensor element are stable, and the durability and reliability are improved.

【0041】本発明の薄膜式ガスセンサにおいて、プロ
トン伝導性固体電解質が一般式(1): AB1-x x3-y (1) 〔式中、AはCa,Ba,Srから選択された少なくと
も1種の元素を表わし、BはZr,Ceから選択された
少なくとも1種の元素を表わし、MはYb,Y,Sc,
Zn,Nd,Mg,In,Sm,Dy,Eu,Ho,G
d,Tm,Ca,Laから選択された少なくとも1種の
元素を表わし、0≦x、y≦0.5である〕で表わされ
るペロブスカイト型複合酸化物であり、ガス分子不透過
性であり、粒界抵抗が粒子抵抗の半分以下であるもの
は、測定精度及び再現性に優れ、信頼性が高い。
In the thin film gas sensor of the present invention, the proton-conducting solid electrolyte is represented by the general formula (1): AB 1-x M x O 3-y (1) [wherein A is selected from Ca, Ba and Sr. Represents at least one element, B represents at least one element selected from Zr and Ce, and M represents Yb, Y, Sc,
Zn, Nd, Mg, In, Sm, Dy, Eu, Ho, G
d, Tm, Ca, La, which represents at least one element selected from the group, 0 ≦ x, y ≦ 0.5], and is a gas molecule impermeable, When the grain boundary resistance is less than half of the grain resistance, the measurement accuracy and reproducibility are excellent and the reliability is high.

【0042】電極を、Pt,Pd,Rh,Re,Ni,
W,Fe,Ag,Auから選択された少なくとも1種の
金属元素で形成すると、良好な性能の多孔質電極を容易
に得ることができる。
The electrodes are Pt, Pd, Rh, Re, Ni,
When formed of at least one metal element selected from W, Fe, Ag and Au, a porous electrode having good performance can be easily obtained.

【0043】 多孔質セラミック基板が多孔質アルミナ
基板であり、且つガス通気率が0.05〜0.5mL・
mm/atm・min・cm2である本発明の薄膜式ガ
スセンサは、好ましい性状の前記アルミナ基板の入手が
容易で使用し易く、又、センサ特性において飽和電流と
ガス通気率が比例しているので、センサ特性が安定して
いる。
The porous ceramic substrate is a porous alumina substrate, and the gas permeability is 0.05 to 0.5 mL.
The thin-film gas sensor of the present invention having a size of mm / atm · min · cm 2 is easy to obtain and can easily use the alumina substrate having the preferable properties, and the saturation current and the gas permeability are proportional in the sensor characteristics. , The sensor characteristics are stable.

【0044】本発明の薄膜式ガスセンサにおいて、多孔
質セラミック基板のセンサ素子部が設けられた側又はそ
の反対側に加熱部が設けられ、且つ薄膜限界電流式ガス
センサであるものは、ガス検知部と加熱部が一体化され
ているので、センサ素子の形状を非常に小型に形成する
ことができる。又、センサ素子の加熱効率が良いのでセ
ンサの消費電力を低減することができ、更に、センサの
始動時間を短縮することができるので、センサの始動性
が良い。
In the thin-film gas sensor of the present invention, a heating unit is provided on the side of the porous ceramic substrate on which the sensor element section is provided or on the opposite side, and the thin-film limiting current type gas sensor is a gas detection section. Since the heating unit is integrated, the shape of the sensor element can be made very small. Further, since the heating efficiency of the sensor element is good, the power consumption of the sensor can be reduced, and further, since the starting time of the sensor can be shortened, the starting performance of the sensor is good.

【0045】本発明の薄膜式ガスセンサの製造方法は、
多孔質セラミック基板上に、蒸着法により、多孔質電極
層、プロトン伝導性固体電解質層、多孔質電極層を順次
積層形成してセンサ素子を得、該センサ素子を組み込ん
でなるため、上述の如き優れた性能を有する本発明の薄
膜式ガスセンサを、容易且つ生産効率良く得ることがで
きる。
The method of manufacturing the thin film gas sensor of the present invention is as follows.
A porous electrode layer, a proton conductive solid electrolyte layer, and a porous electrode layer are sequentially laminated on a porous ceramic substrate by a vapor deposition method to obtain a sensor element, and the sensor element is incorporated. The thin film gas sensor of the present invention having excellent performance can be obtained easily and with high production efficiency.

【図面の簡単な説明】[Brief description of drawings]

【図1】プロトン伝導性焼結体の製作手順の一例のフロ
ーチャートである。
FIG. 1 is a flowchart of an example of a procedure for producing a proton conductive sintered body.

【図2】プロトン伝導性固体電解質試料のX線回折の結
果を示す図である。
FIG. 2 is a view showing a result of X-ray diffraction of a proton conductive solid electrolyte sample.

【図3】薄膜試料と焼結体試料の導電率の測定結果を示
す図である。
FIG. 3 is a diagram showing measurement results of electric conductivity of a thin film sample and a sintered body sample.

【図4】薄膜法にて形成された薄膜試料の濃淡電池起電
力試験の測定結果を示す図である。
FIG. 4 is a diagram showing measurement results of a concentration cell electromotive force test of a thin film sample formed by a thin film method.

【図5】焼結法にて製作した試料についての、交流イン
ピーダンス法による試験結果を示す図である。
FIG. 5 is a diagram showing test results by an AC impedance method for a sample manufactured by a sintering method.

【図6】薄膜法にて製作した試料についての、交流イン
ピーダンス法による試験結果を示す図である。
FIG. 6 is a diagram showing test results by an AC impedance method for a sample manufactured by a thin film method.

【図7】固体電解質の交流インピーダンス特性を示す電
気回路についての説明図である。
FIG. 7 is an explanatory diagram of an electric circuit showing AC impedance characteristics of a solid electrolyte.

【図8】本発明におけるセンサ素子の一例の製作手順及
びセンサ構造を示す説明図である。
FIG. 8 is an explanatory diagram showing a manufacturing procedure and a sensor structure of an example of a sensor element according to the present invention.

【図9】本発明におけるセンサ素子の一例の平面図及び
断面図である。
9A and 9B are a plan view and a sectional view of an example of a sensor element according to the present invention.

【図10】本発明におけるセンサ素子を650℃に加熱
し、窒素雰囲気下で水素を0〜10%の範囲で変化させ
た時の電流−電圧特性の説明図である。
FIG. 10 is an explanatory diagram of current-voltage characteristics when the sensor element of the present invention is heated to 650 ° C. and hydrogen is changed in a range of 0 to 10% under a nitrogen atmosphere.

【図11】本発明におけるセンサ素子の、1%H2 /N
2 雰囲気下でH2 Oを0〜20%まで変化させたときの
電流−電圧特性の説明図である。
FIG. 11: 1% H 2 / N of the sensor element according to the present invention
Current when of H 2 O was changed to 0-20% under 2 atmosphere - it is an explanatory diagram of the voltage characteristic.

【図12】本発明におけるセンサ素子の、10%H2
/N2 雰囲気下でプロパン(C38 )ガス又は一酸化
炭素(CO)ガスを0〜1%まで変化させたときの電流
−電圧特性の説明図である。
FIG. 12: 10% H 2 O of the sensor element according to the present invention
/ N 2 atmosphere in propane (C 3 H 8) current when a gas or carbon monoxide (CO) gas is changed from 0 to 1% - is an explanatory diagram of the voltage characteristic.

【図13】本発明における多孔質セラミック基板のガス
通気率と飽和電流の関係を示す図である。
FIG. 13 is a diagram showing the relationship between gas permeability and saturation current of the porous ceramic substrate according to the present invention.

【符号の説明】[Explanation of symbols]

1:プロトン伝導性焼結体 2,3,5,7:白金電極 4,8:アルミナ基板 6,11:プロトン伝導性薄膜 9:白金ヒータ 10:陽極 12:陰極 13:白金リード線 1: Proton conductive sintered body 2, 3, 5, 7: Platinum electrode 4, 8: Alumina substrate 6, 11: Proton conductive thin film 9: Platinum heater 10: Anode 12: cathode 13: Platinum lead wire

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭62−144063(JP,A) 特開 昭63−172952(JP,A) 特開 昭63−94145(JP,A) 特開 昭62−269054(JP,A) (58)調査した分野(Int.Cl.7,DB名) G01N 27/41 G01N 27/409 G01N 27/416 G01N 27/406 JICSTファイル(JOIS)─────────────────────────────────────────────────── ─── Continuation of the front page (56) Reference JP-A-62-144063 (JP, A) JP-A-63-172952 (JP, A) JP-A-63-94145 (JP, A) JP-A-62- 269054 (JP, A) (58) Fields surveyed (Int.Cl. 7 , DB name) G01N 27/41 G01N 27/409 G01N 27/416 G01N 27/406 JISC file (JOIS)

Claims (5)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 多孔質セラミック基板上に、多孔質電極
層、プロトン伝導性固体電解質蒸着層、多孔質電極層が
順次積層されて構成されたセンサ素子を備えてなる薄膜
式ガスセンサであって、 該プロトン伝導性固体電解質蒸着層は、一般式(1): AB 1-x x 3-y (1) 〔式中、AはCa、Ba、Srから選択された少なくと
も1種の元素を表わし、BはZr、Ceから選択された
少なくとも1種の元素を表わし、MはYb、Y、Sc、
Zn、Nd、Mg、In、Sm、Dy、Eu、Ho、G
d、Tm、Ca、Laから選択された少なくとも1種の
元素を表わし、0≦x、y≦0.5である。〕で表わさ
れるペロブスカイト型複合酸化物からなり、成膜後の熱
処理によりアモルファス構造の薄膜をペロブスカイト構
造のものに変えて得られたガス分子不透過性の薄膜であ
って、且つ粒界抵抗は粒子抵抗の半分以下であることを
特徴とする薄膜式ガスセンサ。
To 1. A porous ceramic substrate were formed comprising a porous electrode layer, a proton-conducting solid electrolyte deposition layer, the sensor element porous electrode layers are configured by sequentially laminating a thin film
In the formula gas sensor, the proton conductive solid electrolyte vapor deposition layer has the general formula (1): AB 1-x M x O 3-y (1) [wherein A is selected from Ca, Ba and Sr. At least
Also represents one element, B was selected from Zr and Ce.
Represents at least one element, M is Yb, Y, Sc,
Zn, Nd, Mg, In, Sm, Dy, Eu, Ho, G
at least one selected from d, Tm, Ca, La
Representing an element, 0 ≦ x and y ≦ 0.5. ]]
Of perovskite type complex oxide
Amorphous thin film is processed into perovskite structure
It is a gas molecule impermeable thin film obtained by replacing
And, the grain boundary resistance is less than half of the grain resistance.
Characteristic thin-film gas sensor.
【請求項2】 電極がPt、Pd、Rh、Re、Ni、
W、Fe、Ag、Auから選択された少なくとも1種の
金属元素からなることを特徴とする請求項1記載の薄膜
式ガスセンサ。
2. The electrode is Pt, Pd, Rh, Re, Ni,
The thin film gas sensor according to claim 1, wherein the thin film gas sensor comprises at least one metal element selected from W, Fe, Ag, and Au.
【請求項3】多孔質セラミック基板が多孔質アルミナ基
板であり、且つガス通気率が0.05〜0.5mL・m
m/atm・min・cm2であることを特徴とする請
求項1記載の薄膜式ガスセンサ。
3. The porous ceramic substrate is a porous alumina substrate, and the gas permeability is 0.05 to 0.5 mL · m.
The thin-film gas sensor according to claim 1, wherein m / atm · min · cm 2 .
【請求項4】 多孔質セラミック基板のセンサ素子部が
設けられた側又はその反対側に加熱部が設けられ、且つ
薄膜限界電流式ガスセンサであることを特徴とする請求
項1記載の薄膜式ガスセンサ。
4. The thin-film gas sensor according to claim 1, wherein a heating portion is provided on the side of the porous ceramic substrate where the sensor element portion is provided or on the opposite side thereof, and the thin-film limiting current type gas sensor. .
【請求項5】 多孔質セラミック基板上に、蒸着法によ
り、多孔質電極層、プロトン伝導性固体電解質層、多孔
質電極層を順次積層形成してセンサ素子を得、該センサ
素子を組み込んでなる薄膜式ガスセンサの製造方法であ
って、 該プロトン伝導性固体電解質蒸着層は、一般式(1): AB 1-x x 3-y (1) 〔式中、AはCa、Ba、Srから選択された少なくと
も1種の元素を表わし、 BはZr、Ceから選択された
少なくとも1種の元素を表わし、MはYb、Y、Sc、
Zn、Nd、Mg、In、Sm、Dy、Eu、Ho、G
d、Tm、Ca、Laから選択された少なくとも1種の
元素を表わし、0≦x、y≦0.5である。〕で表わさ
れるペロブスカイト型複合酸化物からなり、成膜後の熱
処理によりアモルファス構造の薄膜をペロブスカイト構
造のものに変えて得られたガス分子不透過性の薄膜であ
って、且つ粒界抵抗は粒子抵抗の半分以下であることを
特徴とする薄膜式ガスセンサの製造方法。
5. A sensor element is obtained by sequentially laminating a porous electrode layer, a proton conductive solid electrolyte layer, and a porous electrode layer on a porous ceramic substrate by a vapor deposition method, and incorporating the sensor element. A method of manufacturing a thin film gas sensor.
Thus, the proton conductive solid electrolyte vapor-deposited layer has the following general formula (1): AB 1-x M x O 3-y (1) [wherein A is at least selected from Ca, Ba and Sr.
Also represents one element, B was selected from Zr and Ce
Represents at least one element, M is Yb, Y, Sc,
Zn, Nd, Mg, In, Sm, Dy, Eu, Ho, G
at least one selected from d, Tm, Ca, La
Representing an element, 0 ≦ x and y ≦ 0.5. ]]
Of perovskite type complex oxide
Amorphous thin film is processed into perovskite structure
It is a gas molecule impermeable thin film obtained by replacing
And, the grain boundary resistance is less than half of the grain resistance.
A method for manufacturing a thin-film gas sensor, which is characterized.
JP10372996A 1995-03-31 1996-03-29 Thin film gas sensor and method of manufacturing the same Expired - Fee Related JP3498772B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10372996A JP3498772B2 (en) 1995-03-31 1996-03-29 Thin film gas sensor and method of manufacturing the same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP7-99878 1995-03-31
JP9987895 1995-03-31
JP10372996A JP3498772B2 (en) 1995-03-31 1996-03-29 Thin film gas sensor and method of manufacturing the same

Publications (2)

Publication Number Publication Date
JPH08327592A JPH08327592A (en) 1996-12-13
JP3498772B2 true JP3498772B2 (en) 2004-02-16

Family

ID=26440965

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10372996A Expired - Fee Related JP3498772B2 (en) 1995-03-31 1996-03-29 Thin film gas sensor and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP3498772B2 (en)

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2298850A1 (en) 1999-02-17 2000-08-17 Matsushita Electric Industrial Co., Ltd. Mixed ionic conductor and device using the same
JP4608506B2 (en) * 1999-02-17 2011-01-12 パナソニック株式会社 Mixed ionic conductor and device using the same
JP4608047B2 (en) * 1999-02-17 2011-01-05 パナソニック株式会社 Mixed ionic conductor and device using the same
JP3953677B2 (en) * 1999-03-12 2007-08-08 日本特殊陶業株式会社 Gas sensor
JP4124536B2 (en) * 1999-03-26 2008-07-23 山里産業株式会社 Hydrogen sensor
KR20010021013A (en) * 1999-06-22 2001-03-15 오카무라 가네오 Solid electrolyte containing insulating ceramic grains for gas sensor, and method for fabricating same
JP2001215214A (en) 1999-11-24 2001-08-10 Ngk Spark Plug Co Ltd Hydrogen gas sensor
US6517693B2 (en) 2000-02-14 2003-02-11 Matsushita Electric Industrial Co., Ltd. Ion conductor
US7235171B2 (en) 2001-07-24 2007-06-26 Matsushita Electric Industrial Co., Ltd. Hydrogen sensor, hydrogen sensor device and method of detecting hydrogen concentration
JP3868419B2 (en) * 2002-12-27 2007-01-17 日本特殊陶業株式会社 Gas sensor
JP4589683B2 (en) * 2003-09-03 2010-12-01 パナソニック株式会社 Mixed ionic conductor
KR20060119701A (en) 2003-09-03 2006-11-24 마쯔시다덴기산교 가부시키가이샤 Mixed ion conductor
JP4583800B2 (en) * 2004-04-21 2010-11-17 新コスモス電機株式会社 Hydrogen gas sensor using oxide ion conductor
US7625653B2 (en) 2005-03-15 2009-12-01 Panasonic Corporation Ionic conductor
EP1864955B1 (en) * 2005-03-15 2012-05-23 Panasonic Corporation Ion conductor
JP2007024796A (en) * 2005-07-20 2007-02-01 Fujitsu Ten Ltd Hydrogen detection element control device and hydrogen detection element control method
DE102013208939A1 (en) * 2013-05-15 2014-11-20 Robert Bosch Gmbh Micromechanical sensor device
JP7025203B2 (en) * 2017-12-26 2022-02-24 東京窯業株式会社 Hydrogen concentration detection method and hydrogen sensor
JP7117009B2 (en) * 2019-06-27 2022-08-12 矢部川電気工業株式会社 GAS MEASURING DEVICE, GAS MEASURING METHOD AND PROGRAM

Also Published As

Publication number Publication date
JPH08327592A (en) 1996-12-13

Similar Documents

Publication Publication Date Title
JP3498772B2 (en) Thin film gas sensor and method of manufacturing the same
Drennan et al. Characterisation, conductivity and mechanical properties of the oxygen-ion conductor La 0.9 Sr 0.1 Ga 0.8 Mg 0.2 O 3-x
US6319626B1 (en) Cathode composition for solid oxide fuel cell
Leng et al. Development of LSM/YSZ composite cathode for anode-supported solid oxide fuel cells
Lee et al. Conditioning effects on La1− xSrxMnO3-yttria stabilized zirconia electrodes for thin-film solid oxide fuel cells
JP3287096B2 (en) Gas sensor using ionic conductor and method of manufacturing the same
TW201708160A (en) Substrate/orientational apatite type composite oxide film composite and manufacturing method thereof
CN111919113B (en) Solid electrolyte assembly having intermediate layer
US6548203B2 (en) Cathode composition for solid oxide fuel cell
Su et al. Effects of interlayer thickness on the electrochemical and mechanical properties of bi-layer cathodes for solid oxide fuel cells
JP7291031B2 (en) Solid electrolyte junction
Gaudon et al. Evaluation of a sol–gel process for the synthesis of La1− xSrxMnO3+ δ cathodic multilayers for solid oxide fuel cells
JP7123078B2 (en) Oxygen permeable element and sputtering target material
JP3121993B2 (en) Method for producing conductive ceramics
Joseph et al. Preparation of La 0.9 Sr 0.1 Ga 0.85 Mg 0.15 O 2.875 thin films by pulsed-laser deposition and conductivity studies
Grimm et al. Screening of cathode materials for inert-substrate-supported solid oxide fuel cells
JP3389407B2 (en) Conductive ceramics and fuel cells
Hwang et al. The effects of LSM coating on 444 stainless steel as SOFC interconnect
Konycheva et al. Comparison of chromium poisoning by the ods alloy Cr5Fe1Y2O3 and the high chromium ferritic steel crofer 22 APU
JP7309702B2 (en) Solid electrolyte and solid electrolyte junction
JP7291057B2 (en) Oxygen sensor element for exhaust gas
JP7300440B2 (en) Solid electrolyte junction
JP3370446B2 (en) Method for producing conductive ceramics
JP3325388B2 (en) Conductive ceramics and fuel cell using the same
Parkc et al. Conditioning Effects on La1-xSrxMnO3-Yttria Stabilized Zirconia Electrodes for Thin-Film Solid Oxide Fuel Cells

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071205

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081205

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091205

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101205

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees