JP2645558B2 - Method for detecting hydrogen in metal - Google Patents

Method for detecting hydrogen in metal

Info

Publication number
JP2645558B2
JP2645558B2 JP62188362A JP18836287A JP2645558B2 JP 2645558 B2 JP2645558 B2 JP 2645558B2 JP 62188362 A JP62188362 A JP 62188362A JP 18836287 A JP18836287 A JP 18836287A JP 2645558 B2 JP2645558 B2 JP 2645558B2
Authority
JP
Japan
Prior art keywords
hydrogen
metal
conductor
oxygen
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62188362A
Other languages
Japanese (ja)
Other versions
JPS6431044A (en
Inventor
宏二 山川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FUIGARO GIKEN KK
Original Assignee
FUIGARO GIKEN KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by FUIGARO GIKEN KK filed Critical FUIGARO GIKEN KK
Priority to JP62188362A priority Critical patent/JP2645558B2/en
Publication of JPS6431044A publication Critical patent/JPS6431044A/en
Application granted granted Critical
Publication of JP2645558B2 publication Critical patent/JP2645558B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Measuring Oxygen Concentration In Cells (AREA)
  • Testing Resistance To Weather, Investigating Materials By Mechanical Methods (AREA)

Description

【発明の詳細な説明】 [発明の利用分野] この発明は金属中水素の検出に関し、特に鋼中水素濃
度の検出に関する。この発明は例えば、鋼等の金属への
水素の溶解による金属の脆化等の検出に用いる。
Description: FIELD OF THE INVENTION The present invention relates to the detection of hydrogen in metal, and more particularly to the detection of hydrogen concentration in steel. The present invention is used for detecting, for example, embrittlement of a metal due to dissolution of hydrogen in a metal such as steel.

[従来技術] 鉄鋼等の金属中に、水素が溶解する現象は良く知られ
ている。そして金属中への水素の溶解が進行すると、金
属の侵食、クラッド合金の界面剥離、金属の脆化等をも
たらす。ここで水素による侵食は、金属に溶解した水素
原子が炭素と反応してメタン等の気泡を形成し、この圧
力により鋼等の金属が破壊される現象である。また界面
剥離は、クラッド合金の境界部に水素が蓄積され、界面
でのクラッド合金の剥離を生じる現象である。更に、水
素による脆化は、高温高圧の水素と接触して水素を吸収
した金属が、冷却特に脆化して破壊される現象である。
[Prior Art] The phenomenon of dissolution of hydrogen in metals such as steel is well known. As the dissolution of hydrogen in the metal proceeds, erosion of the metal, interfacial separation of the clad alloy, embrittlement of the metal, and the like occur. Here, the erosion by hydrogen is a phenomenon in which hydrogen atoms dissolved in a metal react with carbon to form bubbles such as methane, and this pressure destroys a metal such as steel. In addition, interface delamination is a phenomenon in which hydrogen is accumulated at a boundary portion of a clad alloy, causing delamination of the clad alloy at the interface. Further, embrittlement due to hydrogen is a phenomenon in which a metal that has absorbed hydrogen upon contact with high-temperature and high-pressure hydrogen is cooled, particularly embrittled, and destroyed.

水素の溶解による金属の破壊や劣化の問題は、プラン
ト配管や反応器等で高温高圧の水素を用いる場合に特に
著しい。即ち管壁や器壁に用いたステンレス等の金属
が、水素により破壊される危険性がある。これらの現象
を防止するため、金属中の水素を検出する必要が生じ
る。
The problem of metal destruction and deterioration due to dissolution of hydrogen is particularly significant when high-temperature and high-pressure hydrogen is used in plant piping, reactors, and the like. That is, there is a risk that the metal such as stainless steel used for the pipe wall and the vessel wall is destroyed by hydrogen. In order to prevent these phenomena, it is necessary to detect hydrogen in the metal.

金属中の水素の検出は、Pd等による水素の精製や輸
送、あるいはZrやNb等の金属の水素吸蔵能力を利用した
水素の貯蔵の制御等にも必要である。
Detection of hydrogen in a metal is also necessary for purification and transport of hydrogen by Pd or the like, or control of hydrogen storage using the hydrogen storage capacity of a metal such as Zr or Nb.

これとは別に、CaOやY2O3等で安定化したZrO2や、CeO
2、β−アルミナ等の酸素イオン導電性が知られてい
る。これらの酸素イオン導電体は、自動者エンジンから
の排ガスの酸素濃度の測定等に用いられている。またSr
CeO3、あるいはこの内のCe元素を1〜10%程度やYやY
b,あるいはSc等で置換した水素イオン導電体(プロトン
導電体)も知られている。例えば、岩原他、“高温型水
素イオン導電体とその起電力型ガスセンサへの応用”、
「第1回化学センサ国際会議」1983年講談社発行227頁
参照。SrCe0.95−Yb0.05O3等のプロトン導電体は、高温
でプロトン導電性を示し、水素センサとして用いられて
いる。
Separately, ZrO 2 stabilized with CaO or Y 2 O 3 or CeO
2. Oxygen ion conductivity such as β-alumina is known. These oxygen ion conductors are used, for example, for measuring the oxygen concentration of exhaust gas from an automatic engine. Also Sr
CeO 3 , or Ce element among them, about 1 to 10%, Y or Y
A hydrogen ion conductor (proton conductor) substituted by b or Sc is also known. For example, Iwahara et al., “High-temperature hydrogen ion conductor and its application to electromotive force gas sensor”,
See "The 1st International Conference on Chemical Sensors", Kodansha, 1983, p.227. Proton conductors such as SrCe 0.95- Yb 0.05 O 3 exhibit proton conductivity at high temperatures and are used as hydrogen sensors.

[発明の課題] この発明の課題は、金属中の水素濃度を検出するこ
と、及びその場合の検出出力を水素濃度にほぼ比例させ
ることにある。
[Problems of the Invention] An object of the present invention is to detect the hydrogen concentration in a metal and to make the detection output in that case substantially proportional to the hydrogen concentration.

[発明の構成] この発明の金属中水素の検出方法は、気密条件下でイ
オン導電性固体電解質を金属に取り付け、金属中を拡
散、透過した水素流を固体電解質へのイオン化電流に変
換し、このイオン化電流から金属中の水素を検出するこ
とを特徴とする。
[Constitution of the Invention] The method for detecting hydrogen in a metal according to the present invention comprises attaching an ion-conductive solid electrolyte to a metal under airtight conditions, diffusing and permeating the metal in the metal, and converting the hydrogen flow into an ionization current to the solid electrolyte It is characterized in that hydrogen in the metal is detected from the ionization current.

今例えば、金属の一方の面が、高温高圧の水素に接触
しているとする。水素は、主として原子状の水素として
金属中に拡散する。この金属の他面にプロトン導電体を
接触させると、水素濃度の差により、水素は金属中を拡
散、透過する。金属の他面に到達した水素はプロトンに
転換され、導電体中を移動する。ここでプロトン導電体
の他面を、低インピーダンス負荷等を介して、金属に接
続する。負荷を流れる電流は、導電体中のプロトン伝導
が支配的で、金属と導電体との接触面での他の副反応を
無視できれば、金属中の水素の透過速度に等しい。そし
て水素の透過速度が分かれば、拡散係数により補正し、
金属中の水素濃度や、金属中での水素の濃度分布を知る
ことができる。そして負荷電流を出力すると、この出力
は金属中の水素濃度にほぼ比例する。
For example, suppose that one side of the metal is in contact with high temperature, high pressure hydrogen. Hydrogen diffuses into the metal mainly as atomic hydrogen. When a proton conductor is brought into contact with the other surface of the metal, hydrogen diffuses and permeates through the metal due to the difference in hydrogen concentration. Hydrogen reaching the other surface of the metal is converted into protons and moves through the conductor. Here, the other surface of the proton conductor is connected to a metal via a low impedance load or the like. The current flowing through the load is equal to the permeation rate of hydrogen in the metal if proton conduction in the conductor is dominant and other side reactions at the contact surface between the metal and the conductor can be neglected. And if the permeation rate of hydrogen is known, it is corrected by the diffusion coefficient,
It is possible to know the hydrogen concentration in the metal and the concentration distribution of the hydrogen in the metal. When a load current is output, this output is almost proportional to the hydrogen concentration in the metal.

ここでは、金属中の水素流をプロトン導電体へのイオ
ン化電流に変換し、金属中の水素濃度を測定することを
示した。次にこれを一般化する。第1に、プロトン導電
体は、酸素イオン導電体等の、水素と反応し得るキァリ
アーの導電体に変えても良い。例えばZrO2やCeO2等の酸
素イオン導電体を金属と接触させ、導電体の他面を微量
の酸素と接触させる。金属と導電体との接触面で、水素
と酸素との反応が生じ、酸素イオンは導電体中を金属側
へ移動する。拡散した水素が全て酸素イオンと反応する
ものとすれば、酸素イオンの移動に伴う電流は水素の透
過速度に等しい。現在得られている固体電解質の主なも
のは、プロトン導電体と酸素イオン導電体であるが、こ
れ以外にも水素と反応するイオンを輸送する導電体が得
られればこれも用い得る。
Here, it has been shown that the hydrogen flow in the metal is converted into an ionization current to the proton conductor, and the hydrogen concentration in the metal is measured. Next, this is generalized. First, the proton conductor may be changed to a carrier conductor capable of reacting with hydrogen, such as an oxygen ion conductor. For example, an oxygen ion conductor such as ZrO 2 or CeO 2 is brought into contact with a metal, and the other surface of the conductor is brought into contact with a small amount of oxygen. At the contact surface between the metal and the conductor, a reaction between hydrogen and oxygen occurs, and oxygen ions move to the metal side in the conductor. Assuming that all the diffused hydrogen reacts with oxygen ions, the current accompanying the movement of oxygen ions is equal to the permeation rate of hydrogen. The main solid electrolytes currently available are proton conductors and oxygen ion conductors, but they can also be used if a conductor capable of transporting ions that react with hydrogen can be obtained.

室温で、金属中を透過した水素のプロトンへの酸化を
行うには、PdやPt等の活性な電極が必要である。しかし
金属の水素による破壊は、主として高温高圧の水素との
接触で生じる現象である。従って検出自体も、例えば50
0℃程度の高温で行う場合が多い。系の温度が高いた
め、プロトン導電体での水素のプロトンへの酸化やプロ
トンの水素分子への還元、また酸素イオン導電体での酸
素分子の酸素イオンへの還元や酸素イオンと水素原子等
との反応は容易に進行する。従って電極活性自体は2次
的な要素に過ぎない。電極に関してより重要なことは、
導電体と金属との接触面に軟質で展延性の高い材料、例
えばPdを用い、導電体と金属との接触面をシールするこ
とである。
At room temperature, an active electrode such as Pd or Pt is required to oxidize hydrogen permeated into the metal into protons. However, the destruction of metal by hydrogen is a phenomenon mainly caused by contact with high-temperature and high-pressure hydrogen. Therefore, the detection itself, for example, 50
It is often performed at a high temperature of about 0 ° C. Because the temperature of the system is high, oxidation of hydrogen to protons and reduction of protons to hydrogen molecules in a proton conductor, reduction of oxygen molecules to oxygen ions in an oxygen ion conductor, and conversion of oxygen ions to hydrogen atoms The reaction proceeds easily. Thus, electrode activity itself is only a secondary factor. More importantly about the electrodes,
The purpose is to seal the contact surface between the conductor and the metal by using a soft and highly extensible material such as Pd for the contact surface between the conductor and the metal.

検出の誤差原因に付いて検討する。導電体と金属との
接触面に酸素が侵入すると、酸素と水素との副反応によ
り、水素が消費されてしまう。また周知のように水素は
極めて拡散係数の大きな物質であり、ガラス等のち密な
物質でさへも透過してしまう。そこで導電体を金属と分
離した位置に配置し、透過した水素をサンプリングして
導くようにすると、サンプリングの家庭で水素が失われ
る。
Examine the causes of detection errors. When oxygen enters the contact surface between the conductor and the metal, hydrogen is consumed by a side reaction between oxygen and hydrogen. Also, as is well known, hydrogen is a substance having a very large diffusion coefficient, and is a dense substance such as glass and permeates again. Therefore, if the conductor is arranged at a position separated from the metal and the permeated hydrogen is sampled and guided, hydrogen is lost at the sampling home.

これらの問題を解決するため、導電体を金属表面に気
密に配置する。導電体は好ましくは金属表面に直接接触
させるが、シール材を介しスペースを置いて配置しても
良い。また好ましくは、Pd、Au、Ag等の軟質で展延性に
富んだ検出電極を導電体と金属との接触面に用い、この
電極で周囲からの酸素の侵入を防止するようにする。
In order to solve these problems, a conductor is airtightly arranged on a metal surface. The conductor is preferably in direct contact with the metal surface, but may be spaced apart via a seal. Preferably, a soft and highly extensible detection electrode such as Pd, Au, or Ag is used for the contact surface between the conductor and the metal, and this electrode is used to prevent intrusion of oxygen from the surroundings.

次に金属に対する導電体の電位を適当な値に保ち、鋼
等の金属の酸化を防止することが好ましい。導電体の金
属表面への接触電位を1〜2V以上とすると、鋼等の金属
の酸化が生じる。生じた酸化物は水素の拡散を抑制し、
検出誤差の原因となる。この問題を防止するには、金属
表面に対する導電体の接触面の電位を0.5V以下、より好
ましくは0.2V以下に保ち、金属の酸化を防止するのが好
ましい。
Next, it is preferable to keep the potential of the conductor with respect to the metal at an appropriate value to prevent oxidation of a metal such as steel. When the contact potential of the conductor to the metal surface is 1 to 2 V or more, oxidation of a metal such as steel occurs. The resulting oxide suppresses the diffusion of hydrogen,
This may cause a detection error. In order to prevent this problem, it is preferable that the potential of the contact surface of the conductor with respect to the metal surface is kept at 0.5 V or less, more preferably at 0.2 V or less, to prevent oxidation of the metal.

[実施例] 第1図に、基本的実施例を示す。図において、02は化
学プラント等の高温高圧水素に用いるステンレス等の配
管で、その内部の水素濃度を測定する。ここでは水素に
よる金属破壊の予知のための実施例を示すが、同様にし
てPdやZr,Nb等の水素吸蔵金属の水素含有量の検出を行
うこともできる。
Embodiment FIG. 1 shows a basic embodiment. In the figure, reference numeral 02 denotes a pipe made of stainless steel or the like used for high-temperature and high-pressure hydrogen in a chemical plant or the like, and measures the hydrogen concentration in the pipe. Although an example for predicting metal destruction by hydrogen is shown here, the hydrogen content of a hydrogen storage metal such as Pd, Zr, or Nb can be similarly detected.

2はSrCe0.95Yb0.05O3等のプロトン導電性固体電解質
で、YbはYやScに置換しても良く、単味のSrCeO3を用い
ても良い。これらのプロトン導電体は300〜800℃程度の
範囲で高いプロトン導電性を示し、耐熱性が高いため高
温での検出に適している。プロトン導電体2には、これ
以外に室温から300℃程度で作動するアンチモン酸(Sb2
O5・nH2O:nは通常2程度)等を用いても良い。実施例で
はプロトン導電体を中心に説明するが、これに変えCaO
やY2O3等で安定化したZrO2や、CeO2,β−アルミナ等の
酸素イオン導電性固体電解質を用いても良い。4は検出
極で、ここではPd、Au,Ag、RuO2、あるいはこれらの合
金や混合物等の展延性の高い導電性材料を用いた。これ
らの材料は展延性が高いため配管02の表面に密着し、雰
囲気中の残存酸素が検出極4に拡散して水素と反応する
のを防止する。6は比較極でPtやPd、SnO,LaNiO3、炭素
等の任意の電極材料を用い得る。8は対極で任意の電極
材料を用い得、導電体2と3つの電極4,6,8とで水素セ
ンサ10とする。なお実施例では500℃程度の温度でセン
サ10を作動させたため、プロトン導電体2自体の活性で
電極反応を起こさせることも可能である。従って電極4,
6,8は特に設けなくても良い。
Reference numeral 2 denotes a proton conductive solid electrolyte such as SrCe 0.95 Yb 0.05 O 3. Yb may be substituted with Y or Sc, or plain SrCeO 3 may be used. These proton conductors exhibit high proton conductivity in the range of about 300 to 800 ° C., and are suitable for detection at high temperatures because of their high heat resistance. Proton conductor 2 also includes antimonic acid (Sb 2
O 5 · nH 2 O: n is usually about 2) or the like. In the embodiment, description will be made mainly on the proton conductor.
Oxygen ion conductive solid electrolytes such as ZrO 2 stabilized with Y 2 O 3 and the like, CeO 2 and β-alumina may be used. Reference numeral 4 denotes a detection electrode, in which a conductive material having high spreadability such as Pd, Au, Ag, RuO 2 , or an alloy or a mixture thereof is used. Since these materials have high extensibility, they adhere to the surface of the pipe 02 and prevent the residual oxygen in the atmosphere from diffusing to the detection electrode 4 and reacting with hydrogen. Reference numeral 6 denotes a comparison electrode, which can use any electrode material such as Pt, Pd, SnO, LaNiO 3 , and carbon. Reference numeral 8 denotes a counter electrode which can use an arbitrary electrode material. The conductor 2 and the three electrodes 4, 6, 8 constitute a hydrogen sensor 10. In the embodiment, since the sensor 10 is operated at a temperature of about 500 ° C., the electrode reaction can be caused by the activity of the proton conductor 2 itself. Therefore electrode 4,
6 and 8 need not be provided.

12は基準雰囲気の設定用カバーで、センサ10を外部雰
囲気から遮断し、検出極4への酸素の拡散を更に防止す
る。カバー12にはArやHe、N2等の不活性ガスを流すが、
対極8に到達したプロトンを反応して消費する程度の酸
素を含んでいても良く、許容酸素濃度は検出極4の気密
性で定まる。
Reference numeral 12 denotes a reference atmosphere setting cover which shuts off the sensor 10 from the external atmosphere and further prevents diffusion of oxygen to the detection electrode 4. The cover 12 Ar and He, but flowing inert gas such as N 2,
It may contain oxygen enough to react and consume the protons that have reached the counter electrode 8, and the allowable oxygen concentration is determined by the airtightness of the detection electrode 4.

14は演算増幅器、16は記述電位設定用の電源で出力は
0、あるいは負の値でも良く、比較極6と電源16の出力
端とを等電位とする。18はプロトン電流を測定するため
の電流計である。そして例えば電源16の一端子と配管02
や検出極4を接続し、導電体2を流れた電流が電源16を
介して配管02や検出極4に流れるように配置する。
Reference numeral 14 denotes an operational amplifier, 16 denotes a power supply for setting the described potential, and the output may be 0 or a negative value. Reference numeral 18 denotes an ammeter for measuring a proton current. Then, for example, one terminal of the power supply 16 and the pipe 02
And the detection electrode 4 are connected so that the current flowing through the conductor 2 flows through the power supply 16 to the pipe 02 and the detection electrode 4.

なおプロトン導電体2のプロトン輸率は厳密には1で
はなく、電子等のキャリアーも関与し得る。また配管金
属が検出極4の表面での酸化されると、酸化に伴う暗電
流が生じる。これらの暗電流を補償した回路を、図の鎖
線以降に示す。この場合例えば、電流計18に変え抵抗20
等の負荷を配置し、その電圧を差動増幅器22で増幅す
る。差動増幅器22の出力を、電源24,抵抗26,28で定まる
基準電位により暗電流に対応して補償し、2つの出力の
差を差動増幅器30で取り出し、メータ32等に表示する。
Note that the proton transport number of the proton conductor 2 is not strictly 1 and carriers such as electrons can also be involved. When the pipe metal is oxidized on the surface of the detection electrode 4, a dark current is generated due to the oxidation. Circuits for compensating for these dark currents are shown after the chain line in the figure. In this case, for example, replace the ammeter 18 with a resistor 20
And the like, and the voltage is amplified by the differential amplifier 22. The output of the differential amplifier 22 is compensated for the dark current by a reference potential determined by the power supply 24 and the resistors 26 and 28, and the difference between the two outputs is extracted by the differential amplifier 30 and displayed on a meter 32 or the like.

実施例の動作を説明する。配管02の内部の水素は、主
として原子状の水素として配管金属に拡散する。配管02
の外部での水素濃度は低く、配管金属の内部にはフィッ
クの拡散法則に従い直線状の水素濃度分布が形成され
る。配管金属に固溶した水素は外部へ透過し、検出極4
でプロトンに酸化される。生じたプロトンはカバー12内
部の水素濃度が低いため、対極へ移動する。一方水素の
プロトンへの酸化の伴い検出極4で生じた電子は、電源
16を介し電流計18から対極8に流れる。対極8ではプロ
トンと電子が再結合し、水素分子や水蒸気としてAr気流
と共に排出される。
The operation of the embodiment will be described. Hydrogen inside the pipe 02 diffuses into the pipe metal mainly as atomic hydrogen. Piping 02
Is low, and a linear hydrogen concentration distribution is formed inside the pipe metal according to Fick's law of diffusion. Hydrogen dissolved in the pipe metal permeates to the outside,
Is oxidized to protons. The generated protons move to the counter electrode because the hydrogen concentration inside the cover 12 is low. On the other hand, the electrons generated at the detection electrode 4 accompanying the oxidation of hydrogen to protons are
The current flows from the ammeter 18 to the counter electrode 8 via 16. At the counter electrode 8, the protons and electrons recombine and are discharged as hydrogen molecules and water vapor together with the Ar gas flow.

ここで電流計18を流れる電流は、導電体2の内部のプ
ロトン電流に等しく、検出極4での副反応がないものと
すれば、水素の透過速度に等しい。そして水素の透過速
度は、配管金属の内部での水素濃度に比例し、配管金属
の水素拡散定数で割ると、内部の水素濃度が得られる。
Here, the current flowing through the ammeter 18 is equal to the proton current inside the conductor 2, and is equal to the hydrogen permeation rate if there is no side reaction at the detection electrode 4. The permeation rate of hydrogen is proportional to the hydrogen concentration inside the pipe metal, and when divided by the hydrogen diffusion constant of the pipe metal, the internal hydrogen concentration is obtained.

実施例では、カバー12で外気を遮断し、検出極4に展
延性と気密性に富んだPd等を用いたため、検出極での水
素と酸素との副反応は少ない。次に比較極6の電位を制
御し、配管金属に対する検出極4の電位を定める。比較
極6の電位は演算増幅器14を用いたため、電源16の電位
に等しい。比較極6に対する検出極4の電位は、2つの
電極4,6とプロトン導電体2との界面電位の差と、プロ
トン導電体2での電圧降下との和で定まる。そごで配管
金属に対する検出極4の電位を0.5V以下、より好ましく
は、0.2V以下に保ち、配管金属の酸化を防止するのが好
ましい。なお水素の拡散以外の要素による暗電流を補償
するには、暗電流に対応した出力を別に求めて、補償す
れば良い。次に用いるSrCe0.95Yb0.05O3やZrO2等は安定
なセラミック材料であり、金属を腐蝕することがない。
またアンモチン酸等の酸性でかすかな腐蝕性のある導電
体を用いる場合でも、検出極4で配管金属と遮断すれ
ば、腐蝕の危険を解消できる。
In the embodiment, since the outside air is blocked by the cover 12 and Pd or the like, which is highly extensible and airtight, is used for the detection electrode 4, the side reaction between hydrogen and oxygen at the detection electrode is small. Next, the potential of the comparison electrode 6 is controlled to determine the potential of the detection electrode 4 with respect to the pipe metal. The potential of the comparison electrode 6 is equal to the potential of the power supply 16 because the operational amplifier 14 is used. The potential of the detection electrode 4 with respect to the comparison electrode 6 is determined by the sum of the difference in the interface potential between the two electrodes 4, 6 and the proton conductor 2 and the voltage drop in the proton conductor 2. It is preferable that the potential of the detection electrode 4 with respect to the pipe metal is maintained at 0.5 V or less, more preferably at 0.2 V or less, to prevent oxidation of the pipe metal. In order to compensate for dark current due to factors other than hydrogen diffusion, an output corresponding to dark current may be separately obtained and compensated. SrCe 0.95 Yb 0.05 O 3 and ZrO 2 used next are stable ceramic materials and do not corrode metals.
In addition, even when an acidic and slightly corrosive conductor such as ammonic acid is used, the danger of corrosion can be eliminated by cutting off the pipe metal at the detection electrode 4.

第2に、SrCe0.95Yb0.05O3をプロトン導電体2に用い
た際の測定結果を示す。配管02に厚さ2.0mmの炭素鋼を
用い、500℃1気圧のH2と500℃1気圧のArとを交互にラ
ンダムな間隔で16サイクル流した。配管金属の内部での
水素濃度計を、電流計18の電流から求め表示する。なお
水素濃度は配管02の内側表面近傍の値を示し、配管金属
での水素の拡散係数は第5図に示した過渡応答法により
求めた。またここでは、電源16の出力を0Vとした。
Secondly, a measurement result when SrCe 0.95 Yb 0.05 O 3 is used for the proton conductor 2 is shown. Using carbon steel having a thickness of 2.0 mm for the pipe 02, H 2 at 500 ° C. and 1 atm and Ar at 500 ° C. and 1 atm were alternately flowed at random intervals for 16 cycles. A hydrogen concentration meter inside the pipe metal is obtained from the current of the ammeter 18 and displayed. The hydrogen concentration indicates a value near the inner surface of the pipe 02, and the diffusion coefficient of hydrogen in the pipe metal was determined by the transient response method shown in FIG. Here, the output of the power supply 16 was set to 0V.

水素濃度の平均値は0.137ppmで標準偏差は0.024ppm、
暗電流に対する値は水素濃度に換算して、平均値0.017p
pm、標準偏差0.006ppmである。暗電流を補償すると、水
素濃度の平均値0.12ppm、標準偏差が0.03ppmとの結果が
得られた。
The average value of the hydrogen concentration is 0.137ppm, the standard deviation is 0.024ppm,
The value for dark current is converted to hydrogen concentration, and the average value is 0.017p
pm, standard deviation 0.006 ppm. When the dark current was compensated, the result was that the average value of the hydrogen concentration was 0.12 ppm and the standard deviation was 0.03 ppm.

なお実施例ではプロトン導電体を中心に説明したが、
酸素イオン導電体を用いても良い。この場合、Ar気流中
に酸素を混合しておくと、対極8でイオン化した酸素は
導電体内部を移動し、検出極4で水素と反応する。生成
した水蒸気は導電体2の内部や導電体2と検出極4との
界面等を拡散し、外部へ排出される。そして、検出極4
で水素と酸素が完全に反応するとすると、酸素イオンに
よる電流は水素の透過速度に比例する。しかしこの場合
は、雰囲気中に酸素を存在させるため、検出極4に侵入
した酸素による副反応の問題がより大きい。
Although the description has been made mainly of the proton conductor in the embodiment,
An oxygen ion conductor may be used. In this case, if oxygen is mixed in the Ar gas flow, the oxygen ionized at the counter electrode 8 moves inside the conductor and reacts with hydrogen at the detection electrode 4. The generated water vapor diffuses inside the conductor 2 and the interface between the conductor 2 and the detection electrode 4 and is discharged to the outside. And the detection pole 4
Assuming that the hydrogen and oxygen completely react with each other, the current caused by the oxygen ions is proportional to the permeation rate of hydrogen. However, in this case, since oxygen is present in the atmosphere, the problem of side reactions due to oxygen that has entered the detection electrode 4 is greater.

第3図、第4図に、他の実施例を示す。第3図では、
比較極6を設けず、対極8に直接電流計18と電源16とを
接続した。また第4図では、配管02にリング状の台座40
を設け、台座40にセンサ10を固定した。
3 and 4 show another embodiment. In FIG.
An ammeter 18 and a power supply 16 were directly connected to the counter electrode 8 without providing the comparison electrode 6. In FIG. 4, a ring-shaped pedestal 40 is
And the sensor 10 was fixed to the base 40.

第5図に、過渡応答による水素の拡散定数の測定概要
を示す。配管02の内部の水素濃度を急激に変化させる
と、センサ10の出力電流は配管金属内部への水素の拡散
に対応した過渡現象を示す。この応答波形はフィックの
拡散法則で定まり、水素導入後の出力の立ち上がりまで
の時間等から、拡散定数を求めることができる。図には
模式的に、拡散定数が減少する順に3つの応答波形I,I
I,IIIを示した。例えば発明者は、この方法で2.25%Cr
−1%Mo鋼の水素拡散定数を求めた。得られた拡散定数
は、2.4×10-3・Exp(−4200/RT)cm2/sec(Rは気体定
数、Tは絶対温度)であった。
FIG. 5 shows an outline of the measurement of the diffusion constant of hydrogen by the transient response. When the hydrogen concentration inside the pipe 02 is rapidly changed, the output current of the sensor 10 shows a transient phenomenon corresponding to the diffusion of hydrogen into the pipe metal. The response waveform is determined by Fick's diffusion law, and the diffusion constant can be obtained from the time until the output rises after hydrogen is introduced. The diagram schematically shows three response waveforms I and I in order of decreasing diffusion constant.
I and III are shown. For example, the inventor uses this method to
The hydrogen diffusion constant of -1% Mo steel was determined. The obtained diffusion constant was 2.4 × 10 −3 · Exp (−4200 / RT) cm 2 / sec (R is a gas constant, T is an absolute temperature).

[発明の効果] この発明では、金属中の水素濃度を求めることがで
き、しかも検出出力は水素濃度にほぼ比例する。
[Effect of the Invention] According to the present invention, the hydrogen concentration in the metal can be obtained, and the detection output is almost proportional to the hydrogen concentration.

【図面の簡単な説明】[Brief description of the drawings]

第1図は実施例に用いた検出装置を示す図、第2図は実
施例での検出結果を示す特性図である。第3図は他の実
施例に用いた検出装置を示す図、第4図は更に他の実施
例に用いた検出装置を示す図である。第5図は、水素圧
の変化に対する実施例の応答波形を示す特性図である。 図において、2……イオン導電性固体電解質、4……検
出極、6……比較極、8……対極。
FIG. 1 is a diagram showing a detection device used in the embodiment, and FIG. 2 is a characteristic diagram showing a detection result in the embodiment. FIG. 3 is a diagram showing a detection device used in another embodiment, and FIG. 4 is a diagram showing a detection device used in still another embodiment. FIG. 5 is a characteristic diagram showing a response waveform of the embodiment to a change in hydrogen pressure. In the figure, 2 ... an ion-conductive solid electrolyte, 4 ... a detection electrode, 6 ... a comparison electrode, 8 ... a counter electrode.

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】気密条件下でイオン導電性固体電解質を金
属に取り付け、金属中を拡散、透過した水素流を固体電
解質へのイオン化電流に変換し、このイオン化電流から
金属中の水素を検出することを特徴とする、金属中水素
の検出方法。
1. An ion-conductive solid electrolyte is attached to a metal under airtight conditions, a hydrogen flow diffused and permeated through the metal is converted into an ionization current to the solid electrolyte, and hydrogen in the metal is detected from the ionization current. A method for detecting hydrogen in a metal, comprising:
【請求項2】特許請求の範囲第1項記載の金属中水素の
検出方法において、 前記固体電解質をプロトン導電性固体電解質としたこと
を特徴とする、金属中水素の検出方法。
2. The method for detecting hydrogen in a metal according to claim 1, wherein said solid electrolyte is a proton-conductive solid electrolyte.
【請求項3】特許請求の範囲第1項記載の金属中水素の
検出方法において、 前記固体電解質を酸素イオン導電性固体電解質としたこ
とを特徴とする、金属中水素の検出方法。
3. The method for detecting hydrogen in metal according to claim 1, wherein said solid electrolyte is an oxygen ion conductive solid electrolyte.
JP62188362A 1987-07-27 1987-07-27 Method for detecting hydrogen in metal Expired - Lifetime JP2645558B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62188362A JP2645558B2 (en) 1987-07-27 1987-07-27 Method for detecting hydrogen in metal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62188362A JP2645558B2 (en) 1987-07-27 1987-07-27 Method for detecting hydrogen in metal

Publications (2)

Publication Number Publication Date
JPS6431044A JPS6431044A (en) 1989-02-01
JP2645558B2 true JP2645558B2 (en) 1997-08-25

Family

ID=16222294

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62188362A Expired - Lifetime JP2645558B2 (en) 1987-07-27 1987-07-27 Method for detecting hydrogen in metal

Country Status (1)

Country Link
JP (1) JP2645558B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101661016B (en) * 2009-09-18 2012-11-21 东北大学 Method for measuring hydrogen pressure in solid steel and device

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4124536B2 (en) * 1999-03-26 2008-07-23 山里産業株式会社 Hydrogen sensor
DE19926331C2 (en) * 1999-06-09 2001-12-13 Thyssenkrupp Stahl Ag Test procedure for the behavior of hydrogen in a metal sample as well as measuring equipment for the execution of the test procedure
JP4061556B2 (en) * 2005-08-12 2008-03-19 株式会社新潟Tlo Hydrogen amount sensor and hydrogen storage device
JP5898106B2 (en) * 2013-02-18 2016-04-06 日本電信電話株式会社 Method for measuring hydrogen content in metal structures
CN113049485B (en) * 2021-02-08 2022-11-29 中国船舶重工集团公司第七二五研究所 Metal material marine atmosphere corrosion in-situ monitoring device

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3337332A1 (en) * 1982-10-15 1984-04-19 Nat Res Dev Hydrogen concentration meter

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101661016B (en) * 2009-09-18 2012-11-21 东北大学 Method for measuring hydrogen pressure in solid steel and device

Also Published As

Publication number Publication date
JPS6431044A (en) 1989-02-01

Similar Documents

Publication Publication Date Title
US4025412A (en) Electrically biased two electrode, electrochemical gas sensor with a H.sub.2
US3325378A (en) Electrochemical method and apparatus for measuring hydrogen content
US5397442A (en) Sensor and method for accurately measuring concentrations of oxide compounds in gas mixtures
US5667652A (en) Multi-functional sensor for combustion systems
EP0759552A1 (en) Nitrogen oxide sensor
US5124021A (en) Solid electrolyte gas sensor and method of measuring concentration of gas to be detected in gas mixture
US4326927A (en) Method and device for the detection and measurement of electrochemically active compounds
US4661211A (en) Gas detection with three-component membrane and sensor using said membrane
EP1635171B1 (en) Hydrocarbon sensor
Gauthier et al. Progress in the Development of Solid‐State Sulfate Detectors for Sulfur Oxides
JP2004219405A (en) Gas sensor
EP0517366A1 (en) Method and apparatus for sensing oxides of Nitrogen
CN112382423B (en) Hydrogen concentration measuring device and hydrogen measuring probe resistant to high-temperature high-pressure high-humidity radiation
US20110212376A1 (en) Amperometric sensor
JP2645558B2 (en) Method for detecting hydrogen in metal
JPH03267753A (en) Ionic substance detector
Matsumoto et al. Electromotive Force of Hydrogen Isotope Cell with a High Temperature Proton‐Conducting Solid Electrolyte CaZr0. 90In0. 10 O 3− α
JPH05180798A (en) Solid electrolyte gas sensor
JP3487330B2 (en) Nitrogen oxide sensor
JP2000275209A (en) Hydrogen sensor
Kurita et al. Measuring apparatus for hydrogen permeation using oxide proton conductor
Liu et al. Limiting-current chlorine gas sensor based on β ″-alumina solid electrolyte
TW200525146A (en) Electrochemical sensor
JP2016521855A (en) Gas sensor for measuring a plurality of different gases and associated manufacturing method
Ghetta et al. Control and monitoring of oxygen content in molten metals. Application to lead and lead-bismuth melts