JP2021189058A - Device and method for measuring gas concentration inside nuclear reactor containment - Google Patents

Device and method for measuring gas concentration inside nuclear reactor containment Download PDF

Info

Publication number
JP2021189058A
JP2021189058A JP2020095346A JP2020095346A JP2021189058A JP 2021189058 A JP2021189058 A JP 2021189058A JP 2020095346 A JP2020095346 A JP 2020095346A JP 2020095346 A JP2020095346 A JP 2020095346A JP 2021189058 A JP2021189058 A JP 2021189058A
Authority
JP
Japan
Prior art keywords
reactor containment
water vapor
concentration
oxygen
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2020095346A
Other languages
Japanese (ja)
Inventor
幸基 岡崎
Yukimoto Okazaki
基茂 柳生
Motoshige Yagyu
寛史 岡部
Hiroshi Okabe
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Toshiba Energy Systems and Solutions Corp
Original Assignee
Toshiba Corp
Toshiba Energy Systems and Solutions Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Toshiba Energy Systems and Solutions Corp filed Critical Toshiba Corp
Priority to JP2020095346A priority Critical patent/JP2021189058A/en
Publication of JP2021189058A publication Critical patent/JP2021189058A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Measuring Oxygen Concentration In Cells (AREA)

Abstract

To provide a device and the like for measuring gas concentrations inside a nuclear reactor containment that allow measurement of concentrations of oxygen and water vapor in the nuclear reactor containment, by eliminating the need for gas sampling.SOLUTION: A device for measuring gas concentrations inside a nuclear reactor containment is equipped with: water vapor detecting means that is installed inside a nuclear reactor containment in order to detect water vapor inside the nuclear reactor containment by detecting a first electric physical quantity output from a limiting current type sensor using solid electrolytes; oxygen concentration measuring means that is installed inside the nuclear reactor containment in order to measure an oxygen concentration inside the nuclear reactor containment according to a concentration cell type sensor using solid electrolytes; and water vapor concentration measuring means for obtaining a value of a water vapor concentration inside the nuclear reactor containment, from a value of the first electric physical quantity acquired from the water vapor detecting means, and a value of the oxygen concentration inside the nuclear reactor containment acquired from the oxygen concentration measuring means, by referring to data showing a relationship between a first electric physical quantity given in beforehand and an oxygen concentration of gas to be measured, and data showing a relationship between a first electric physical quantity and a water vapor concentration of gas to be measured.SELECTED DRAWING: Figure 1

Description

本発明の実施形態は、原子炉格納容器内のガス濃度計測装置及びガス濃度計測方法に関する。 An embodiment of the present invention relates to a gas concentration measuring device and a gas concentration measuring method in a reactor containment vessel.

原子力発電所には、事故の未然防止、及び、過酷事故発生時の事故拡大防止等の観点から原子炉格納容器内の酸素濃度を計測するシステムが導入されている。上記の原子炉格納容器内の酸素濃度計測システムでは、サンプリング装置により原子炉格納容器内のガスを原子炉格納容器外へ吸引しサンプリングした後、上記のサンプリングガスを冷却器で冷却し、除湿器で除湿したうえで、酸素ガス分析計に導入し酸素濃度を計測する(特許文献1参照)。 Nuclear power plants have introduced a system for measuring the oxygen concentration in the reactor containment vessel from the viewpoint of preventing accidents and preventing the spread of accidents in the event of a severe accident. In the above-mentioned oxygen concentration measurement system in the reactor containment vessel, the gas in the reactor containment vessel is sucked out of the reactor containment vessel by a sampling device and sampled, and then the above-mentioned sampled gas is cooled by a cooler and dehumidified. After dehumidifying with, it is introduced into an oxygen gas analyzer and the oxygen concentration is measured (see Patent Document 1).

特許第3699804号公報Japanese Patent No. 369804

上記の酸素濃度計測システムは、原子炉格納容器内のガスを原子炉格納容器外へ吸引してサンプリングするサンプリング装置と、上記のサンプリングガスを冷却するための冷却器と、上記のサンプリングガスを除湿するための除湿器とを備えているため、上記のサンプリング装置、冷却器および除湿器にトラブルが発生すると原子炉格納容器内の酸素濃度計測が困難になる。 The oxygen concentration measurement system described above includes a sampling device that sucks the gas inside the reactor containment vessel to the outside of the reactor containment vessel for sampling, a cooler for cooling the sampling gas, and dehumidifies the sampling gas. Since it is equipped with a dehumidifier for this purpose, it becomes difficult to measure the oxygen concentration in the reactor containment vessel if a trouble occurs in the above-mentioned sampling device, cooler and dehumidifier.

サンプリング装置のトラブルには、サンプリング配管の破損や、交流電源喪失による吸引用ポンプの停止が挙げられる。また、サンプリング配管に付設されている結露防止用ヒータが交流電源喪失により停止して、サンプリング配管内に結露水が充満し、配管内が閉止されてしまう場合もある。また、冷却器及び除湿器は冷却水を必要とするため、冷却水源を喪失した場合には、サンプリングガスの冷却及び除湿ができなくなる。上記のようなトラブルが発生した場合は、サンプリングガスの酸素濃度計測が困難な状態に陥ってしまう。 Problems with the sampling device include damage to the sampling pipe and stoppage of the suction pump due to loss of AC power. Further, the dew condensation prevention heater attached to the sampling pipe may be stopped due to the loss of the AC power supply, the sampling pipe may be filled with dew condensation water, and the inside of the pipe may be closed. Further, since the cooler and the dehumidifier require cooling water, if the cooling water source is lost, the sampling gas cannot be cooled and dehumidified. When the above trouble occurs, it becomes difficult to measure the oxygen concentration of the sampling gas.

一方、ガスをサンプリングせず、原子炉格納容器内にセンサを設置し直接計測する場合は、水蒸気を含んだ状態での酸素濃度が計測されるが、上記の既存の原子炉格納容器内の酸素濃度計測システムでは、水蒸気を除いた状態での酸素濃度が計測されるため、両者では異なる基準で酸素濃度が計測されてしまう。既存の酸素濃度計測システムと併用して事故の発生及び拡大の防止に活用するためには、同じ基準で酸素濃度を計測することが望ましく、そのためには、水蒸気濃度も計測して水蒸気を除いた状態での酸素濃度を評価する必要がある。 On the other hand, when the sensor is installed in the reactor containment vessel and the measurement is performed directly without sampling the gas, the oxygen concentration in the state containing water vapor is measured, but the oxygen in the existing reactor containment vessel described above is measured. In the concentration measurement system, the oxygen concentration is measured in the state where the water vapor is removed, so the oxygen concentration is measured by different standards for both. In order to utilize it in combination with the existing oxygen concentration measurement system to prevent the occurrence and spread of accidents, it is desirable to measure the oxygen concentration according to the same standard, and for that purpose, the water vapor concentration was also measured and the water vapor was removed. It is necessary to evaluate the oxygen concentration in the state.

本発明は、このような事情を考慮してなされたもので、原子炉格納容器内のガスのサンプリングを不要にし、原子炉格納容器内の酸素と水蒸気の濃度を計測可能な原子炉格納容器内のガス濃度計測装置及びガス濃度計測方法を提供することを目的とする。 The present invention has been made in consideration of such circumstances, and in the reactor containment vessel, which eliminates the need for sampling of gas in the reactor containment vessel and can measure the concentrations of oxygen and water vapor in the reactor containment vessel. It is an object of the present invention to provide a gas concentration measuring device and a gas concentration measuring method.

実施形態の原子炉格納容器内のガス濃度計測装置は、原子炉格納容器内に配置され、固体電解質を用いた限界電流式のセンサから出力される第1の電気的物理量を検出することによって、前記原子炉格納容器内の水蒸気を検出する水蒸気検出手段と、前記原子炉格納容器内に配置され、固体電解質を用いた濃淡電池式のセンサにより前記原子炉格納容器内の酸素濃度を計測する酸素濃度計測手段と、予め与えられる前記第1の電気的物理量と被計測ガスの酸素濃度との関係を示すデータ及び前記第1の電気的物理量と被計測ガスの水蒸気濃度との関係を示すデータを参照し、前記水蒸気検出手段から取得する前記第1の電気的物理量の値と、前記酸素濃度計測手段から取得する前記原子炉格納容器内の酸素濃度の値から、前記原子炉格納容器内の水蒸気濃度の値を得る水蒸気濃度計測手段と、を具備する。 The gas concentration measuring device in the reactor containment vessel of the embodiment is arranged in the reactor containment vessel and detects a first electric physical quantity output from a critical current type sensor using a solid electrolyte. Oxygen that measures the oxygen concentration in the reactor containment vessel by a steam detection means that detects steam in the reactor containment vessel and a light and light battery type sensor that is arranged in the reactor containment vessel and uses a solid electrolyte. Data showing the relationship between the concentration measuring means and the first electrically physical quantity given in advance and the oxygen concentration of the gas to be measured and data showing the relationship between the first electrical physical quantity and the steam concentration of the gas to be measured are provided. With reference to the value of the first electrical physical quantity obtained from the steam detecting means and the value of the oxygen concentration in the reactor storage container acquired from the oxygen concentration measuring means, the steam in the reactor storage container is referred to. It is provided with a steam concentration measuring means for obtaining a concentration value.

実施形態に係わる原子炉格納容器内ガス濃度計測装置の基本的な構成を示す図。The figure which shows the basic structure of the gas concentration measuring apparatus in the reactor containment vessel which concerns on embodiment. 実施形態に係わる酸素センサとヒータ制御装置と酸素検出信号計測装置の概略的な構成を示す図。The figure which shows the schematic structure of the oxygen sensor, the heater control device, and the oxygen detection signal measurement device which concerns on embodiment. 実施形態に係わる水蒸気センサとヒータ制御装置と水蒸気検出信号計測装置の概略的な構成を示す図。The figure which shows the schematic structure of the water vapor sensor, the heater control device, and the water vapor detection signal measurement device which concerns on embodiment.

以下、原子炉格納容器内のガス濃度計測装置及びガス濃度計測方法の実施形態について、図面を参照して説明する。 Hereinafter, embodiments of the gas concentration measuring device and the gas concentration measuring method in the reactor containment vessel will be described with reference to the drawings.

図1は、実施形態に係わる原子炉格納容器内のガス濃度計測装置の基本的な構成を示している。図1に示すように、原子炉格納容器内のガス濃度計測装置100は、酸素センサ1と、ヒータ制御装置2と、酸素検出信号計測装置3と、酸素濃度計測装置4と、水蒸気センサ5と、ヒータ制御装置6と、水蒸気検出信号計測装置7と、水蒸気濃度計測装置8と、監視装置9と、ペネトレーション装置10を具備している。 FIG. 1 shows a basic configuration of a gas concentration measuring device in a reactor containment vessel according to an embodiment. As shown in FIG. 1, the gas concentration measuring device 100 in the reactor containment vessel includes an oxygen sensor 1, a heater control device 2, an oxygen detection signal measuring device 3, an oxygen concentration measuring device 4, and a steam sensor 5. A heater control device 6, a water vapor detection signal measuring device 7, a water vapor concentration measuring device 8, a monitoring device 9, and a penetration device 10 are provided.

酸素センサ1と、水蒸気センサ5は原子炉格納容器12内に設置され、他の装置は中央制御室等の原子炉格納容器12外に設置される。ペネトレーション装置10は格納容器壁11を貫通し、原子炉格納容器12の内側と外側とでケーブルを接続する。 The oxygen sensor 1 and the water vapor sensor 5 are installed inside the reactor containment vessel 12, and the other devices are installed outside the reactor containment vessel 12 such as the central control room. The penetration device 10 penetrates the containment vessel wall 11 and connects cables inside and outside the reactor containment vessel 12.

図2は、上記した酸素センサ1と、ヒータ制御装置2と、酸素検出信号計測装置3の概略的な構成を示している。酸素センサ1には、固体電解質を用いた濃淡電池式のものが使用され、この酸素センサ1は、固体電解質16と、それに付属した2つの電極17a,17bと、カバー19とヒータ13とを具備している。 FIG. 2 shows a schematic configuration of the oxygen sensor 1, the heater control device 2, and the oxygen detection signal measurement device 3 described above. A concentration cell type oxygen sensor 1 using a solid electrolyte is used, and the oxygen sensor 1 includes a solid electrolyte 16, two electrodes 17a and 17b attached thereto, a cover 19 and a heater 13. is doing.

固体電解質16には、酸素イオン30を伝導するジルコニア等が使用される。固体電解質16の両面に電極17a,17bが付設される。電極17a,17bには、触媒性能の低いサマリウムーストロンチウムコバルテート(SSC)、ランタンストロンチウムマンガネード(LSM)等の酸化物材料等が用いられる。カバー19は、固体電解質16の電極17b側を覆い基準ガス室18を形成している。基準ガス室18には、濃度が既知の高濃度の酸素(例えば100%の酸素)が封入されている。酸素検出信号計測装置3は電圧計20から構成される。ヒータ13を制御するヒータ制御装置2には、直流定電圧電源15が使用される。なお、図2において14はケーブルである。 As the solid electrolyte 16, zirconia or the like that conducts oxygen ions 30 is used. Electrodes 17a and 17b are attached to both surfaces of the solid electrolyte 16. For the electrodes 17a and 17b, oxide materials such as samarium strontium cobaltate (SSC) and lanthanum strontium manganate (LSM) having low catalytic performance are used. The cover 19 covers the electrode 17b side of the solid electrolyte 16 to form a reference gas chamber 18. The reference gas chamber 18 is filled with high-concentration oxygen (for example, 100% oxygen) having a known concentration. The oxygen detection signal measuring device 3 is composed of a voltmeter 20. A DC constant voltage power supply 15 is used for the heater control device 2 that controls the heater 13. In FIG. 2, 14 is a cable.

図3は、上記した水蒸気センサ5と、ヒータ制御装置6と水蒸気検出信号計測装置7の概略的な構成を示している。 FIG. 3 shows a schematic configuration of the water vapor sensor 5, the heater control device 6, and the water vapor detection signal measurement device 7 described above.

水蒸気センサ5は、固体電解質21と電極(カソード22、アノード23)とカバー24とヒータ13から構成される。固体電解質21には酸素イオン30を伝導するジルコニア等が使用される。2つの電極(カソード22、アノード23)は、固体電解質21の両面に付設されている。2つの電極(カソード22、アノード23)には、プラチナ等の触媒性能が高い貴金属材料が用いられる。 The water vapor sensor 5 is composed of a solid electrolyte 21, an electrode (cathode 22, anode 23), a cover 24, and a heater 13. Zirconia or the like that conducts oxygen ions 30 is used as the solid electrolyte 21. The two electrodes (cathode 22 and anode 23) are attached to both sides of the solid electrolyte 21. For the two electrodes (cathode 22 and anode 23), a noble metal material having high catalytic performance such as platinum is used.

カバー24には、拡散孔25が設けられ、固体電解質21のカソード22側を覆いガス検出室26を形成している。上記の拡散孔25は、原子炉格納容器12内のガス31が拡散によりガス検出室26へ流入するようにするものであり、直径の小さな孔や多孔質材料が用いられる。 The cover 24 is provided with a diffusion hole 25 and covers the cathode 22 side of the solid electrolyte 21 to form a gas detection chamber 26. The diffusion hole 25 is for allowing the gas 31 in the reactor containment vessel 12 to flow into the gas detection chamber 26 by diffusion, and a hole having a small diameter or a porous material is used.

ヒータ13を制御するヒータ制御装置6には、直流定電圧電源15が使用される。水蒸気検出信号計測装置7は、可変直流電源27と、電流計28と、電圧計29から構成される。なお、図3において14はケーブルである。 A DC constant voltage power supply 15 is used for the heater control device 6 that controls the heater 13. The water vapor detection signal measuring device 7 includes a variable DC power supply 27, an ammeter 28, and a voltmeter 29. In FIG. 3, 14 is a cable.

次に、原子炉格納容器内のガス濃度計測装置100の作用と効果を説明する。
ヒータ制御装置2の直流定電圧電源15から酸素センサ1のヒータ13に電流が供給され、酸素センサ1の固体電解質16は加熱され一定の温度に保持される。固体電解質16は加熱されることにより、酸素イオン30を容易に伝導することができる。例えば、ジルコニアの場合は通常、400℃〜800℃に加熱され、酸素イオン伝導体として使用される。
Next, the operation and effect of the gas concentration measuring device 100 in the reactor containment vessel will be described.
A current is supplied from the DC constant voltage power supply 15 of the heater control device 2 to the heater 13 of the oxygen sensor 1, and the solid electrolyte 16 of the oxygen sensor 1 is heated and maintained at a constant temperature. The solid electrolyte 16 can easily conduct oxygen ions 30 by being heated. For example, in the case of zirconia, it is usually heated to 400 ° C. to 800 ° C. and used as an oxygen ion conductor.

本実施形態では、酸素イオン30を伝導可能な最低の温度、例えば、ジルコニアの場合は400℃程度に保持する。固体電解質16は、濃淡電池式センサとして作用し、原子炉格納容器12内と基準ガス室18の酸素濃度により、電極17a,17b間にエルンストの式に従った起電力が生じる。基準ガス室18の酸素濃度は一定に保たれているので、上記の起電力は原子炉格納容器12内の酸素濃度に依存することになり、したがって、電極17a,17b間の電位差を計測することにより、原子炉格納容器12内の酸素濃度を求めることができる。 In the present embodiment, the oxygen ion 30 is maintained at the lowest temperature that can be conducted, for example, about 400 ° C. in the case of zirconia. The solid electrolyte 16 acts as a concentration cell type sensor, and an electromotive force according to Ernst's equation is generated between the electrodes 17a and 17b depending on the oxygen concentration in the reactor containment vessel 12 and the reference gas chamber 18. Since the oxygen concentration in the reference gas chamber 18 is kept constant, the above electromotive force depends on the oxygen concentration in the reactor containment vessel 12, and therefore, the potential difference between the electrodes 17a and 17b should be measured. Therefore, the oxygen concentration in the reactor containment vessel 12 can be obtained.

過酷事故発生時には、原子炉格納容器12内に水素が発生する場合があるが、電極17aに触媒性能の低い材料を用い、かつ、固体電解質16の温度を低く保つことにより、電極17aでの水素燃焼の発生を抑制し、酸素濃度を精度よく計測することができる。電極17a,17b間の電位差を酸素検出信号計測装置3の電圧計20で測定し、その測定信号を酸素濃度計測装置4へ出力する。 When a severe accident occurs, hydrogen may be generated in the reactor containment vessel 12. However, by using a material having low catalytic performance for the electrode 17a and keeping the temperature of the solid electrolyte 16 low, hydrogen at the electrode 17a It is possible to suppress the occurrence of combustion and accurately measure the oxygen concentration. The potential difference between the electrodes 17a and 17b is measured by the voltmeter 20 of the oxygen detection signal measuring device 3, and the measured signal is output to the oxygen concentration measuring device 4.

酸素濃度計測装置4では、基準ガス室18の酸素濃度値及び固体電解質16の設定温度を用いてエルンストの式から原子炉格納容器12内の酸素濃度を計算し、その信号を監視装置9と水蒸気濃度計測装置8へ出力する。 In the oxygen concentration measuring device 4, the oxygen concentration in the reactor containment vessel 12 is calculated from Ernst's equation using the oxygen concentration value in the reference gas chamber 18 and the set temperature of the solid electrolyte 16, and the signal is sent to the monitoring device 9 and the water vapor. Output to the concentration measuring device 8.

水蒸気センサ5では、水蒸気センサのカバー24に設けられた拡散孔25から、原子炉格納容器12内のガスがガス検出室26へ流入する。水蒸気検出信号計測装置7の可変直流電源27によって固体電解質21に設けられた2つの電極(カソード22、アノード23)間に電圧が印加され、水蒸気検出信号計測装置7の電圧計29の計測値を用いてフィードバック制御することにより、上記の印加電圧は水の電気分解を生じる値以上で一定になるように調整される。 In the water vapor sensor 5, the gas in the reactor containment vessel 12 flows into the gas detection chamber 26 from the diffusion hole 25 provided in the cover 24 of the water vapor sensor. A voltage is applied between two electrodes (cathode 22 and anode 23) provided on the solid electrolyte 21 by the variable DC power supply 27 of the water vapor detection signal measuring device 7, and the measured value of the voltmeter 29 of the water vapor detection signal measuring device 7 is measured. By feedback control using the above-mentioned applied voltage, the applied voltage is adjusted so as to be constant above a value that causes electrolysis of water.

上記のガス検出室26へ流入したガス31に含まれる水蒸気は、電極(カソード22、アノード23)間に印加された電圧の作用によって酸素分子と水素分子へ電気分解され、さらにカソード22に用いられている貴金属の触媒作用により酸素分子は酸素イオン30と電子に解離される。 The water vapor contained in the gas 31 flowing into the gas detection chamber 26 is electrolyzed into oxygen molecules and hydrogen molecules by the action of the voltage applied between the electrodes (cathode 22 and anode 23), and is further used for the cathode 22. Oxygen molecules are dissociated into oxygen ions 30 and electrons by the catalytic action of the noble metal.

ヒータ制御装置6の直流定電圧電源15から水蒸気センサ5のヒータ13に電流が供給され、水蒸気センサ5の固体電解質21は加熱され一定の温度に保持される。固体電解質21は加熱されることにより酸素イオン30を容易に伝導することができる。例えば、ジルコニアの場合は通常、400℃〜800℃に加熱され、酸素イオン伝導体として使用される。 A current is supplied from the DC constant voltage power supply 15 of the heater control device 6 to the heater 13 of the steam sensor 5, and the solid electrolyte 21 of the steam sensor 5 is heated and maintained at a constant temperature. The solid electrolyte 21 can easily conduct oxygen ions 30 by being heated. For example, in the case of zirconia, it is usually heated to 400 ° C. to 800 ° C. and used as an oxygen ion conductor.

加熱された固体電解質21に印加された電圧の作用により、酸素イオン30はカソード22側からアノード23側へ輸送され、電極(カソード22、アノード23)間に電流が流れる。電極(カソード22、アノード23)間の印加電圧を適切に設定し、固体電解質21に酸素イオン30が十分に流れるようにすることにより、酸素原子の流れは拡散孔25での水蒸気の拡散過程が律速となる。この場合、固体電解質21に設けられた電極(カソード22、アノード23)間に流れる電流は限界電流と呼ばれ、ガス31中の水蒸気濃度の変化に応じて変化する特性をもつようになる。 Due to the action of the voltage applied to the heated solid electrolyte 21, the oxygen ion 30 is transported from the cathode 22 side to the anode 23 side, and a current flows between the electrodes (cathode 22 and anode 23). By appropriately setting the applied voltage between the electrodes (cathode 22 and anode 23) so that the oxygen ions 30 sufficiently flow through the solid electrolyte 21, the flow of oxygen atoms is caused by the diffusion process of water vapor in the diffusion holes 25. It becomes rate-determining. In this case, the current flowing between the electrodes (cathode 22 and anode 23) provided in the solid electrolyte 21 is called a limiting current, and has a characteristic of changing according to a change in the water vapor concentration in the gas 31.

一方、上記のガス検出室26へ流入したガス31に含まれる酸素は、カソード22に用いられている貴金属の触媒作用により酸素イオン30と電子に解離され、酸素イオン30は加熱された固体電解質21の中を印加電圧の作用によりカソード22側からアノード23側へ輸送され、電極(カソード22、アノード23)間に電流が流れる。電極(カソード22、アノード23)間の印加電圧を適切に設定し、固体電解質21に酸素イオン30が十分に流れるようにすることにより、酸素原子の流れは拡散孔25での酸素の拡散過程が律速となり、固体電解質21に設けられた電極(カソード22、アノード23)間に限界電流が流れる。 On the other hand, the oxygen contained in the gas 31 flowing into the gas detection chamber 26 is dissociated into oxygen ions 30 and electrons by the catalytic action of the noble metal used in the cathode 22, and the oxygen ions 30 are heated solid electrolyte 21. It is transported from the cathode 22 side to the anode 23 side by the action of the applied voltage, and a current flows between the electrodes (cathode 22 and anode 23). By appropriately setting the applied voltage between the electrodes (cathode 22 and anode 23) so that the oxygen ion 30 sufficiently flows through the solid electrolyte 21, the flow of oxygen atoms is caused by the diffusion process of oxygen in the diffusion holes 25. It becomes rate-determining, and a limit current flows between the electrodes (cathode 22 and anode 23) provided in the solid electrolyte 21.

この限界電流も、ガス中の酸素濃度の変化に応じて変化する特性を持つようになる。なお、ガス検出室26へ流入するガス31に水素が含まれる場合は、カソード22に用いられている貴金属の触媒作用により酸素と水素が化学反応を起こし水蒸気を形成するが、形成された水蒸気は電極(カソード22、アノード23)間に印加された電圧の作用によって酸素分子と水素分子へ電気分解されるため、本実施形態のように電極(カソード22、アノード23)間に水の電気分解を生じる値以上の電圧を印加する場合、上記の酸素濃度と限界電流との相関は影響を受けない。 This critical current also has the property of changing in response to changes in the oxygen concentration in the gas. When hydrogen is contained in the gas 31 flowing into the gas detection chamber 26, oxygen and hydrogen cause a chemical reaction to form water vapor due to the catalytic action of the noble metal used in the cathode 22, but the formed water vapor is generated. Since it is electrolyzed into oxygen molecules and hydrogen molecules by the action of the voltage applied between the electrodes (cathode 22 and anode 23), water is electrolyzed between the electrodes (cathode 22 and anode 23) as in the present embodiment. When a voltage higher than the generated value is applied, the correlation between the above oxygen concentration and the critical current is not affected.

上記のように、固体電解質21に設けられた電極(カソード22、アノード23)間に、水の電気分解を生じる値以上で、かつ、固体電解質21に酸素イオン30が十分に流れるような電圧を印加する場合、電極(カソード22、アノード23)間に流れる電流は、水蒸気由来の限界電流と酸素由来の限界電流の和となる。 As described above, between the electrodes (cathode 22 and anode 23) provided in the solid electrolyte 21, a voltage that is equal to or higher than the value that causes electrolysis of water and that allows oxygen ions 30 to sufficiently flow through the solid electrolyte 21 is applied. When applied, the current flowing between the electrodes (cathode 22 and anode 23) is the sum of the limit current derived from water vapor and the limit current derived from oxygen.

電極間(カソード22、アノード23)に流れる電流を水蒸気検出信号計測装置7の電流計28で計測し、その計測信号を水蒸気濃度計測装置8へ出力する。水蒸気濃度計測装置8には、予め、被計測ガス31の水蒸気濃度と電極(カソード22、アノード23)間に流れる水蒸気由来の限界電流値との相関を調べたデータ、及び、被計測ガス31の酸素濃度と電極(カソード22、アノード23)間に流れる酸素由来の限界電流値との相関を調べたデータが収納されている。 The current flowing between the electrodes (cathode 22 and anode 23) is measured by the ammeter 28 of the water vapor detection signal measuring device 7, and the measured signal is output to the water vapor concentration measuring device 8. In the water vapor concentration measuring device 8, the data obtained by examining the correlation between the water vapor concentration of the measured gas 31 and the critical current value derived from the water vapor flowing between the electrodes (cathode 22 and anode 23) in advance, and the data of the measured gas 31 It contains data investigating the correlation between the oxygen concentration and the limit current value derived from oxygen flowing between the electrodes (cathode 22 and anode 23).

酸素検出信号計測装置3から入力された酸素濃度から、上記のデータを参照して酸素由来の限界電流値を求め、水蒸気検出信号計測装置7から入力された電流値から上記の酸素由来の限界電流値を差し引くことにより水蒸気由来の限界電流値を求め、上記のデータを参照して水蒸気由来の限界電流値から水蒸気濃度を求めることができる。 From the oxygen concentration input from the oxygen detection signal measuring device 3, the limit current value derived from oxygen is obtained with reference to the above data, and the limit current derived from oxygen is obtained from the current value input from the water vapor detection signal measuring device 7. By subtracting the value, the limit current value derived from water vapor can be obtained, and the water vapor concentration can be obtained from the limit current value derived from water vapor with reference to the above data.

求められた水蒸気濃度の信号は、監視装置9へ出力され、監視装置9は、原子炉格納容器12内のガス31に含まれる水蒸気濃度と酸素濃度を表示する。 The obtained signal of the water vapor concentration is output to the monitoring device 9, and the monitoring device 9 displays the water vapor concentration and the oxygen concentration contained in the gas 31 in the reactor containment vessel 12.

上記のように本実施形態によれば、原子炉格納容器12内のガス31をサンプリングせずに、酸素と水蒸気の濃度を計測することができる。すなわち、原子炉格納容器内のガスを原子炉格納容器外へ吸引してサンプリングするサンプリング装置、サンプリングガスを冷却するための冷却器、サンプリングガスを除湿するための除湿器等を用いることなく、また、交流電源を必要とすることなく、水蒸気を除いた状態での酸素濃度を評価することができる。 As described above, according to the present embodiment, the concentrations of oxygen and water vapor can be measured without sampling the gas 31 in the reactor containment vessel 12. That is, without using a sampling device for sucking and sampling the gas inside the reactor containment vessel to the outside of the reactor containment vessel, a cooler for cooling the sampling gas, a dehumidifier for dehumidifying the sampling gas, and the like. , The oxygen concentration in the state where water vapor is removed can be evaluated without the need for an AC power source.

以上、本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。 Although some embodiments of the present invention have been described above, these embodiments are presented as examples and are not intended to limit the scope of the invention. These novel embodiments can be implemented in various other embodiments, and various omissions, replacements, and changes can be made without departing from the gist of the invention. These embodiments and modifications thereof are included in the scope and gist of the invention, and are also included in the scope of the invention described in the claims and the equivalent scope thereof.

1……酸素センサ、2……ヒータ制御装置、3……酸素検出信号計測装置、4……酸素濃度計測装置、5……水蒸気センサ、6……ヒータ制御装置、7……水蒸気検出信号計測装置、8……水蒸気濃度計測装置、9……監視装置、10……ペネトレーション装置、11……格納容器壁、12……原子炉格納容器、13……ヒータ、14……ケーブル、15……直流定電圧電源、16……固体電解質、17a,17b……電極、18……基準ガス室、19……カバー、20……電圧計、21……固体電解質、22……電極(カソード)、23……電極(アノード)、24……カバー、25……拡散孔、26……ガス検出室、27……可変直流電源、28……電流計、29……電圧計、30……酸素イオン、31……ガス、100……原子炉格納容器内のガス濃度計測装置。 1 ... Oxygen sensor, 2 ... Heater control device, 3 ... Oxygen detection signal measurement device, 4 ... Oxygen concentration measurement device, 5 ... Steam sensor, 6 ... Heater control device, 7 ... Water vapor detection signal measurement Equipment, 8 ... Water vapor concentration measuring device, 9 ... Monitoring device, 10 ... Penetration device, 11 ... Storage container wall, 12 ... Reactor storage container, 13 ... Heater, 14 ... Cable, 15 ... DC constant voltage power supply, 16 ... solid electrolyte, 17a, 17b ... electrode, 18 ... reference gas chamber, 19 ... cover, 20 ... voltmeter, 21 ... solid electrolyte, 22 ... electrode (cathode), 23 ... Electrode (anode), 24 ... Cover, 25 ... Diffuse hole, 26 ... Gas detection chamber, 27 ... Variable DC power supply, 28 ... Current meter, 29 ... Voltage meter, 30 ... Oxygen ion , 31 ... Gas, 100 ... Gas concentration measuring device in the reactor containment vessel.

Claims (3)

原子炉格納容器内に配置され、固体電解質を用いた限界電流式のセンサから出力される第1の電気的物理量を検出することによって、前記原子炉格納容器内の水蒸気を検出する水蒸気検出手段と、
前記原子炉格納容器内に配置され、固体電解質を用いた濃淡電池式のセンサにより前記原子炉格納容器内の酸素濃度を計測する酸素濃度計測手段と、
予め与えられる前記第1の電気的物理量と被計測ガスの酸素濃度との関係を示すデータ及び前記第1の電気的物理量と被計測ガスの水蒸気濃度との関係を示すデータを参照し、前記水蒸気検出手段から取得する前記第1の電気的物理量の値と、前記酸素濃度計測手段から取得する前記原子炉格納容器内の酸素濃度の値から、前記原子炉格納容器内の水蒸気濃度の値を得る水蒸気濃度計測手段と、
を具備することを特徴とする原子炉格納容器内のガス濃度計測装置。
A steam detection means for detecting steam in the reactor containment vessel by detecting a first electrical physical quantity that is arranged in the reactor containment vessel and is output from a limit current type sensor using a solid electrolyte. ,
An oxygen concentration measuring means arranged in the reactor containment vessel and measuring the oxygen concentration in the reactor containment vessel by a concentration cell type sensor using a solid electrolyte.
With reference to the data showing the relationship between the first electric physical quantity and the oxygen concentration of the measured gas given in advance and the data showing the relationship between the first electric physical quantity and the water vapor concentration of the measured gas, the water vapor The value of the water vapor concentration in the reactor storage container is obtained from the value of the first electrical physical quantity acquired from the detection means and the value of the oxygen concentration in the reactor storage container acquired from the oxygen concentration measuring means. Water vapor concentration measuring means and
A gas concentration measuring device in a reactor containment vessel, which is characterized by being equipped with.
前記第1の電気的物理量の値は、前記水蒸気検出手段の前記固体電解質に付加された2個の電極間に水の電気分解を生じる電位以上の直流電圧を印加し、前記2個の電極間に流れる電流値であることを特徴とする請求項1に記載の原子炉格納容器内のガス濃度計測装置。 The value of the first electrical physical quantity is obtained by applying a DC voltage equal to or higher than the potential that causes electrolysis of water between the two electrodes added to the solid electrolyte of the water vapor detecting means, and between the two electrodes. The gas concentration measuring device in the reactor storage container according to claim 1, wherein the current value flows through the reactor. 原子炉格納容器内に配置された固体電解質を用いた濃淡電池式の酸素センサと、前記原子炉格納容器内に配置された固体電解質を用いた限界電流式のセンサとを併用し、
前記濃淡電池式の酸素センサで計測した酸素濃度と、前記限界電流式のセンサの電極間に水の電気分解を生じる電位以上の直流電圧を印加した際に前記電極間に流れる電流値とから、前記原子炉格納容器内の水蒸気濃度を計測する
ことを特徴とする原子炉格納容器内のガス濃度計測方法。
A concentration cell type oxygen sensor using a solid electrolyte placed in the reactor containment vessel and a limit current type sensor using the solid electrolyte placed in the reactor containment vessel are used in combination.
From the oxygen concentration measured by the concentration cell type oxygen sensor and the current value flowing between the electrodes when a DC voltage higher than the potential that causes water electrolysis is applied between the electrodes of the limit current type sensor. A method for measuring a gas concentration in a reactor storage container, which comprises measuring the water vapor concentration in the reactor storage container.
JP2020095346A 2020-06-01 2020-06-01 Device and method for measuring gas concentration inside nuclear reactor containment Pending JP2021189058A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020095346A JP2021189058A (en) 2020-06-01 2020-06-01 Device and method for measuring gas concentration inside nuclear reactor containment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020095346A JP2021189058A (en) 2020-06-01 2020-06-01 Device and method for measuring gas concentration inside nuclear reactor containment

Publications (1)

Publication Number Publication Date
JP2021189058A true JP2021189058A (en) 2021-12-13

Family

ID=78849424

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020095346A Pending JP2021189058A (en) 2020-06-01 2020-06-01 Device and method for measuring gas concentration inside nuclear reactor containment

Country Status (1)

Country Link
JP (1) JP2021189058A (en)

Similar Documents

Publication Publication Date Title
Schonvogel et al. Impact of accelerated stress tests on high temperature PEMFC degradation
US3691023A (en) Method for polarographic measurement of oxygen partial pressure
Abbou et al. High potential excursions during PEM fuel cell operation with dead-ended anode
US20120237843A1 (en) Electrochemical reactor, such as a fuel cell or an electrolyser, provided with a device for measuring a parameter of a gas specific to the operation of said reactor
GB1372245A (en) Electrochemical cells
JP2016524789A (en) Estimating the charge state of the positive electrolyte solution in a working redox flow battery cell without a reference electrode
JP6952578B2 (en) Oxygen concentration measuring device and oxygen concentration measuring method
JP6071870B2 (en) Hydrogen oxygen concentration measuring device, hydrogen oxygen concentration measuring system, and hydrogen oxygen concentration measuring method
US5118398A (en) Method and an apparatus for detecting ionizable substance
US6662633B2 (en) Method and apparatus for locating internal transfer leaks within fuel cell stacks
JP2021189058A (en) Device and method for measuring gas concentration inside nuclear reactor containment
Hu et al. Interfacial studies of solid-state cells based on electrolytes of mixed ionic–electronic conductors
EP0096417B1 (en) Apparatus for measuring dissolved hydrogen concentration
JPS63313058A (en) Current titration method and apparatus for quantitatively determining varied gases, electrolytic cell and application thereof
Matsumoto et al. Electromotive Force of Hydrogen Isotope Cell with a High Temperature Proton‐Conducting Solid Electrolyte CaZr0. 90In0. 10 O 3− α
JPH0417387B2 (en)
US4235689A (en) Apparatus for detecting traces of a gas
US8268160B2 (en) Corrosion testing of fuel-cell separator plate materials
JP6906454B2 (en) Oxygen measuring device for containment vessel and its oxygen sensor
KR101294182B1 (en) Apparatus and method for testing electrolyte membrane in fuel cell
Kurita et al. Measuring apparatus for hydrogen permeation using oxide proton conductor
JP2000275209A (en) Hydrogen sensor
Porat et al. Double‐Solid Electrochemical Cell for Controlling Oxygen Concentration in Oxides
CN205786429U (en) A kind of all solid state type high-temperature gas sensors
RU2821167C1 (en) Method for determining content of components in high-temperature gaseous media