JP2019132666A - 組電池の状態推定装置及び組電池の状態推定方法 - Google Patents

組電池の状態推定装置及び組電池の状態推定方法 Download PDF

Info

Publication number
JP2019132666A
JP2019132666A JP2018014009A JP2018014009A JP2019132666A JP 2019132666 A JP2019132666 A JP 2019132666A JP 2018014009 A JP2018014009 A JP 2018014009A JP 2018014009 A JP2018014009 A JP 2018014009A JP 2019132666 A JP2019132666 A JP 2019132666A
Authority
JP
Japan
Prior art keywords
battery
state
assembled
information
assembled battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018014009A
Other languages
English (en)
Other versions
JP7036605B2 (ja
Inventor
洋介 杉浦
Yosuke Sugiura
洋介 杉浦
尚志 赤嶺
Hisashi Akamine
尚志 赤嶺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Primearth EV Energy Co Ltd
Original Assignee
Primearth EV Energy Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Primearth EV Energy Co Ltd filed Critical Primearth EV Energy Co Ltd
Priority to JP2018014009A priority Critical patent/JP7036605B2/ja
Priority to US16/256,284 priority patent/US10895602B2/en
Publication of JP2019132666A publication Critical patent/JP2019132666A/ja
Application granted granted Critical
Publication of JP7036605B2 publication Critical patent/JP7036605B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/3644Constructional arrangements
    • G01R31/3648Constructional arrangements comprising digital calculation means, e.g. for performing an algorithm
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/367Software therefor, e.g. for battery testing using modelling or look-up tables
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/382Arrangements for monitoring battery or accumulator variables, e.g. SoC
    • G01R31/3842Arrangements for monitoring battery or accumulator variables, e.g. SoC combining voltage and current measurements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/396Acquisition or processing of data for testing or for monitoring individual cells or groups of cells within a battery
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • H01M10/482Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte for several batteries or cells simultaneously or sequentially
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • H01M10/486Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte for measuring temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Secondary Cells (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Tests Of Electric Status Of Batteries (AREA)

Abstract

【課題】組電池の電池状態を少ない演算で精度よく推定することのできる組電池の状態推定装置及び、組電池の状態推定方法を提供する。【解決手段】組電池15の状態推定部25は、電池情報取得部31で取得した電池モジュール16の電池情報に基づいて推定される組電池15の電池状態を状態変数とし、状態変数を用いて電池モデル50に含まれる状態方程式51及び出力方程式52に複数のシグマポイントの分布に基づく最適化を行うアンセンテッドカルマンフィルタ(UKF)を適用して上記推定される状態変数を修正するためにカルマンゲインを算出し、カルマンゲインを用いて組電池15の電池状態を逐次推定する。複数のシグマポイントのそれぞれには、複数の電池モジュール16から選択された1つの電池モジュール16がそれぞれ対応付けられ、対応付けられた電池モジュール16の電池情報に基づいて推定される組電池15の電池状態が割り当てられる。【選択図】図3

Description

本発明は、組電池の電池状態を推定する組電池の状態推定装置、及び、組電池の状態推定方法に関する。
従来から、カルマンフィルタを用いて二次電池の電池状態の1つである充電状態(SOC:State Of Charge)を推定する状態推定装置として、例えば特許文献1に記載されているような状態推定装置が知られている。
特許文献1に記載された状態推定装置は、二次電池(バッテリ)の等価回路モデルと、対数変換パラメータ値推定部と、逆対数変換部とを備える。バッテリの等価回路モデルは、フォスタ型RC梯子回路やカウエル型RC梯子回路等で構成する。対数変換パラメータ値推定部は、バッテリ等価回路モデルを実システムに近づけるように調整するカルマンフィルタを有している。バッテリの等価回路モデルは、パラメータを対数変換して得た対数変換パラメータ値を状態変数とする。状態推測装置は、バッテリの等価回路モデルの対数変換パラメータ値とバッテリの開放電圧とを、電圧センサからの端子電圧及び電流センサからの充放電電流に基づいて逐次推定する。逆対数変換部は、対数変換パラメータ値推定部で得たバッテリ等価回路モデルの対数変換パラメータ値が入力され、これを逆対数変換してその対数変換パラメータ値に対応する真数であるパラメータを得る。
特開2014−74682号公報
特許文献1に記載の技術によれば、カルマンフィルタを用いて二次電池の状態が推定されるようになる。
ところで、電気自動車やハイブリッド自動車等の電源装置として利用されている組電池は、電池状態が組電池毎に評価されると利便性が高い。そこで、組電池全体を1つの二次電池とみなして組電池の総電流や総電圧から評価することもできるが、総電流や総電圧に基づく評価であると、組電池を構成する各二次電池の影響が正しく評価されないおそれがある。一方、組電池を構成する個々の二次電池の電池状態を評価してから、これらの評価をとりまとめて組電池の電池状態を評価しようとすると演算が多くなるおそれがある。
本発明は、このような実情に鑑みてなされたものであり、その目的は、組電池の電池状態を少ない演算で精度よく推定することのできる組電池の状態推定装置及び、組電池の状態推定方法を提供することにある。
上記課題を解決する組電池の状態推定装置は、組電池を構成する複数の二次電池のそれぞれから前記二次電池の電池情報をそれぞれ取得する電池情報取得部と、前記組電池に対して前記二次電池の電池情報を含んだ電池モデルが設定された記憶部と、前記電池情報取得部で取得した前記二次電池の電池情報と前記組電池の電池モデルとに基づいて前記組電池の電池状態を推定する電池状態推定部とを備える組電池の状態推定装置であって、前記電池状態推定部は、前記電池情報取得部で取得した前記二次電池の電池情報を入力とし、前記入力した前記二次電池の電池情報に基づいて推定される前記組電池の電池状態を状態変数とし、該状態変数を用いて前記電池モデルに含まれる状態方程式及び出力方程式に複数のサンプル点の分布に基づく最適化を行う最適フィルタを適用して前記組電池の電池状態として前記推定される状態変数を修正するゲインを算出し、該ゲインを用いて前記組電池の電池状態を逐次推定するものであり、前記複数のサンプル点のそれぞれには、前記複数の二次電池から選択された1つの二次電池がそれぞれ対応付けられ、前記対応付けられた二次電池の電池情報に基づいて推定される前記組電池の電池状態が割り当てられる。
上記課題を解決する組電池の状態推定方法は、電池情報取得部で組電池を構成する複数の二次電池のそれぞれから前記二次電池の電池情報をそれぞれ取得する電池情報取得工程と、記憶部に前記組電池に対して前記二次電池の電池情報を含んだ電池モデルを設定する電池モデル設定工程と、前記電池情報取得部で取得した前記二次電池の電池情報と前記組電池の電池モデルとに基づいて前記組電池の電池状態を推定する電池状態推定工程とを備える組電池の状態推定方法であって、前記電池状態推定工程は、前記電池情報取得部で取得した前記二次電池の電池情報を入力とし、前記入力した前記二次電池の電池情報に基づいて推定される前記組電池の電池状態を状態変数とし、該状態変数を用いて前記電池モデルに含まれる状態方程式及び出力方程式に複数のサンプル点の分布に基づく最適化を行う最適フィルタを適用して前記組電池の電池状態として前記推定される状態変数を修正するゲインを算出し、該ゲインを用いて前記組電池の電池状態を逐次推定するものであり、前記複数のサンプル点のそれぞれには、前記複数の二次電池から選択された1つの二次電池がそれぞれ対応付けられ、前記対応付けられた二次電池の電池情報に基づいて推定される前記組電池の電池状態を割り当てる。
このような構成又は方法によれば、組電池の状態をそれを構成する複数の二次電池の状態から求めることができるようになる。組電池として使用されているとき、電池状態は組電池一体として取得されることが好適である。また、個別の二次電池の各電池情報を利用しつつ組電池としての電池状態が推定されるため、各二次電池の電池状態をそれぞれ個別に推定するための演算が不要になる。また、組電池の電池状態が各二次電池の電池情報に基づいて推定されていることから組電池に対して算出される電池状態の精度も高い。これにより、組電池の電池状態を少ない演算で精度よく推定することができる。
好ましい構成として、前記電池状態推定部は、前記複数のサンプル点に前記複数の二次電池のうちの全部の二次電池が対応付けられている。
このような構成によれば、複数の二次電池のうちの全部の二次電池がサンプル点に対応付けられるので最適フィルタにより推定される電池状態の精度の向上が期待される。
好ましい構成として、前記二次電池の電池情報は、二次電池の端子間電圧、二次電池の温度、及び、二次電池の電流の少なくとも1つを含んでいる情報である。
このような構成によれば、二次電池の端子間電圧、二次電池の温度、及び二次電池の電流の少なくとも1つを含んでいる電池情報から組電池の電池状態が推定できる。
好ましい構成として、前記二次電池の電池情報に基づいて推定される前記組電池の電池状態であって、前記複数の二次電池のそれぞれについて算出された複数の前記組電池の電池状態の間におけるばらつきの大きさを判定するばらつき判定部を備え、前記ばらつき判定部は、前記ゲインを、ばらつきを判定するための第1のばらつき判定値と比較することによりばらつきの大きさを判定する。
このような構成によれば、ゲインに基づいて組電池の電池状態を介して組電池を構成する二次電池の電池状態に生じたばらつきを検出することができる。
好ましい構成として、前記二次電池の電池情報に基づいて推定される前記組電池の電池状態であって、前記複数の二次電池のそれぞれについて算出された複数の前記組電池の電池状態の間におけるばらつきの大きさを判定するばらつき判定部を備え、前記ばらつき判定部は、前記最適フィルタに基づいて算出される誤差共分散行列を、ばらつきを判定するための第2のばらつき判定値と比較することによりばらつきの大きさを判定する。
このような構成によれば、誤差共分散行列に基づいて組電池の電池状態を介して組電池を構成する二次電池の電池状態に生じたばらつきを検出することができる。
好ましい構成として、前記電池状態推定部は、前記サンプル点のうちの1つを代表値として選択するものであり、前記ばらつき判定部がばらつきが大きいと判定したとき、前記選択した代表値に対応するサンプル点以外のサンプル点を新たな代表値として選択してから再度前記組電池の電池状態を推定する。
このような構成によれば、電池状態の推定に複数の二次電池の電池情報を利用するとき、一旦、最適フィルタの代表値として定めた電池状態を、他の二次電池に基づく電池状態に代えることで、最適フィルタによる電池状態の推定がより適切な電池情報に基づいて行われるようになる。
好ましい構成として、前記電池状態推定部は、前記状態方程式の初期値に前記複数の二次電池のうちの1つの二次電池の電池情報に基づいて推定される前記組電池の電池状態を設定する。
このような構成によれば、状態変数の初期値の選択が容易である。また、状態変数としてもその初期値が適切である蓋然性が高まる。
好ましい構成として、前記電池状態推定部は、前記二次電池の電池情報に基づいて推定される前記組電池の電池状態に基づいて調整された重みを前記サンプル点のそれぞれに設定し、前記設定された重みを考慮するかたちで前記サンプル点に基づいて前記ゲインを算出する。
このような構成によれば、ゲインの算出に際し、重みの設定によって重視されることになるサンプル点に対して影響を与えている電池状態が重視されるようになる。
好ましい構成として、前記電池状態推定部は、前記組電池の長手方向における端部に対応する二次電池に付与する重みと、前記長手方向における中央部に対応する二次電池に付与する重みとの間の相対的な大小関係を、前記組電池の外部環境に応じて調整する。
このような構成によれば、ゲインが組電池の外部環境に応じて調整されるようになる。例えば、組電池の端部の二次電池は温度が低下しやすく、中央部の二次電池は温度が上昇しやすいこと、そして、低温環境では温度が低下した二次電池が組電池の電池性能を規制しやすく、高温環境では温度の上昇した二次電池が組電池の電池性能を規制しやすいことを併せて考慮した上で重みを設定することができるようになる。
好ましい構成として、前記最適フィルタは、アンセンテッドカルマンフィルタ(UKF)であり、前記サンプル点は、シグマポイントであり、前記ゲインは、カルマンゲインである。
このような構成によれば、アンセンテッドカルマンフィルタに計測された電池情報を適用して組電池の電池状態を推定することができるようになる。
本発明によれば、組電池の電池状態を少ない演算で精度よく推定することができる。
組電池の状態推定装置の一実施形態の概略構成を示すブロック図。 同実施形態における電池モジュールのSOCの分布を示すグラフ。 同実施形態における状態推定装置の構成を示すブロック図。 同実施形態における組電池の電池状態の推定手順を示すフローチャート。 同実施形態における初期状態設定処理の手順を示すフローチャート。 同実施形態における重み設定処理の手順を示すフローチャート。 同実施形態における時間更新処理の手順を示すフローチャート。 同実施形態における異常判定処理の手順を示すフローチャート。
以下、図1〜図8を参照して、組電池の状態推定装置及び組電池の状態推定方法の一実施形態について説明する。
図1に示すように、ハイブリッド自動車等の車両に搭載される電池パック10は、組電池15と、組電池15の電池状態を推定する組電池の状態推定装置としての電池ECU20とを備えている。電池ECU20は、状態推定部25で組電池15の電池状態を推定する。組電池15は、複数の二次電池としての電池モジュール160〜16nが直列接続されている。ここで、nは1以上の整数であり、電池モジュールは0番目からn番目までのn+1個であるものとする。なお、以下では、各電池モジュール160〜16nを区別する必要がない場合は、電池モジュール16と記す。電池モジュール16は、ニッケル水素二次電池やリチウムイオン二次電池であり、外形が直方体形状の密閉式電池である。組電池15は、複数の電池モジュール16の積層される方向(以下、積層方向)に長手方向を有する。
状態推定部25は、複数の電池モジュール16のそれぞれの電池情報を取得する。電池情報は、電流、電圧、温度の少なくとも1つを含んでいる情報である。状態推定部25は、例えば、0番目の電池モジュール160からは電圧V0及び温度T0を取得し、1番目の電池モジュール161からは電圧V1及び温度T1を取得し、n番目の電池モジュール16nからは電圧Vn及び温度Tnを取得する。また、状態推定部25は、電流計測部22を介して組電池15に入出力される電流、すなわち、各電池モジュール16に入出力される入出力電流Ipを取得する。但し、nは、組電池15を構成する複数の電池モジュール16の「総数−1」の数であって、2以上の整数である。よって、電池モジュール16の総数は「n+1」であって、計算の必要に応じて「n=0」に対応する電池モジュール16と、「n≧1」に対応する電池モジュール16とを区別する。
状態推定部25は、組電池15から取得した複数の電圧V0,V1,V2,…,Vn、及び、複数の温度T0,T1,T2,…,Tn、及び、入出力電流Ipに基づいて、組電池15の電池状態を推定する。本実施形態では、電池状態の1つとして組電池15の充電状態(SOC:State Of Charge)を推定する。状態推定部25は、推定した組電池15の充電状態SOCpackを車両ECU100等に出力する。
本実施形態では、電池状態は充電状態SOC(%)であるものとする。また、充電状態SOCには、組電池15の充電状態SOCpack、各電池モジュール160〜16nの充電状態SOCM0〜SOCMn、各電池モジュール160〜16nの電池情報(電圧V0〜Vn)のそれぞれに対して推定される組電池15の充電状態SOC1〜SOC0nがある。また、各電池モジュール16の充電状態SOCMは、その電池モジュール16の電圧に基づいて推定された組電池15の充電状態SOCとの間に相関性を有している。
図2に示すように、本実施形態では、組電池15の充電状態は正規分布となる。そのため、組電池15の充電状態SOCpackが、各電池情報に基づいて推定されるn+1個の組電池15の充電状態SOC0〜SOCnの分布における最頻頻度に対応する。標準偏差σsocpは、組電池15が充電状態SOCpackであるときの標準偏差である。例えば、組電池15を構成する複数の電池モジュール16の各電池情報としての電圧V0,V1,V2,〜,Vnに対応して推定されるn+1個の組電池15の充電状態が標準偏差σsocp内に収まるようであれば、各電池モジュール16の各充電状態SOCM0〜SOCMnのばらつきも小さいと考えられる。なお、標準偏差σsocpは、「+/−1σ」が好適であるが、「+/−2σ」でもよいし、「+/−3σ」でもよい。
図1を参照して、状態推定部25は、最適フィルタを用いて、組電池15の充電状態SOCを推定する。本実施形態では、非線形のカルマンフィルタとしてアンセンテッドカルマンフィルタ(UKF:Unscented Kalman Filter)を用いる。状態推定部25は、UKFに対して、一般に、1つの平均値(代表値)と、その標準偏差から定まる複数のサンプル点としてのシグマポイントとを設定する。一般に、シグマポイントは、代表値と、そこから少しずれた点であり、状態の確率分布において定めたサンプル点である。
本実施形態では、状態推定部25は、UKFに対する複数のシグマポイントに、全ての電池モジュール16の各電池情報から推定されるそれぞれの電池状態として充電状態SOC0〜SOCnを割り当てる。そして、上記一般の代表値の代わりに、一つのシグマポイントを代表値に設定する。つまり、本実施形態では、0番目の電池モジュール160の電池情報に基づいて算出される組電池15の充電状態SOC0をシグマポイントであり、かつ、代表値として設定し、1〜n番目の電池モジュール161〜16nの電池情報に基づいて算出される組電池15の充電状態SOC1〜SOCnをシグマポイントに設定する。通常、組電池15を構成する各電池モジュール160〜16nに依拠する組電池15の充電状態SOC0〜SOCnは、所定の誤差範囲内に収まっていることが期待される。よって、UKFに設定される複数のシグマポイントとして、各電池モジュール160〜16nに依拠する組電池15の充電状態SOC0〜SOCnを設定することについて特段の制約は生じない。
図3を参照して、電池パック10の詳細について説明する。
電池ECU20は、電流計測部22が計測した組電池15の入出力電流Ipを取得する。また、各電圧計測部21が計測した各電池モジュール16の各電圧V0〜Vnを取得し、各温度計測部23が計測した各電池モジュール16の各温度T0〜Tnを取得する。
電池ECU20は、マイクロコンピュータを含み構成されており、演算装置や記憶部27を備えている。電池ECU20は、状態推定部25で充電状態SOCの推定を行う。状態推定部25は、演算装置での電池状態推定用のプログラムの演算処理に基づいて状態を推定する機能が発揮される。
記憶部27は、組電池15の数式モデルである電池モデル50と、パラメータ53とが設定され、記憶している。電池モデル50は、組電池15の電池状態を状態変数とする状態方程式51と、状態変数に基づく出力を示す出力方程式52とを備える。
パラメータ53は、複数の電池モジュール16の各内部抵抗であったり、起電圧であったりする。
状態方程式51は、状態ベクトルをx、入力ベクトルをuとする非線形関数であり、式(1)のように設定されている。また、出力方程式52は、非線形関数であり、式(2)のように設定されている。なお、「時刻k」はサンプリングしたタイミングであって、「時刻k−1」は「時刻k」に対して1回前のタイミングである。
Figure 2019132666
Figure 2019132666
但し、式(1),(2)及び以下の式において変数や記号は以下の通りである。
x(k):時刻kにおける状態変数(ベクトル)である。組電池15の電池状態を示すモデル値である。本実施形態では、モデル値は各電池モジュール16の電池情報のそれぞれに基づいて推定された組電池15の各充電状態SOC0〜SOCnである。
u(k):時刻kにおける入力(ベクトル)である。電池情報取得部31で取得した電流、電圧、温度等のうちの1つ以上に対応する。本実施形態では、入力は各電池モジュール16から計測された電圧V0〜Vnである。
y(k):時刻kにおける出力(ベクトル)である。組電池15の電池状態に基づいて算出される観測値である。本実施形態では、出力は推定された組電池15の各SOC0〜SOCnに基づいて各電池モジュール16のそれぞれに推定される各電圧V0〜Vnである。
:システム雑音に対応する。電池モデル50のモデル誤差と入力雑音に基づく状態変数のばらつきに対応するように設定される。
:観測雑音に対応する。例えば、電池情報取得部31等による電圧、電流、及び温度の計測誤差に対応するように設定される。
つまり、状態推定部25は、電池情報取得部31で取得した電圧V0〜Vnを入力とし、入力した各電圧V0〜Vnのそれぞれに依拠して組電池15に推定される各充電状態SOC0〜SOCnを状態変数x(k)とする。そして、状態変数x(k)を用いて電池モデル50に含まれる状態方程式51及び出力方程式52を演算して組電池15の充電状態SOCpackの推定を行う。また、状態推定部25は、状態推定におけるカルマンフィルタでは、各電池モジュール16に依拠して組電池15に推定された各充電状態SOC0〜SOCn、及び取得した電圧V0〜Vnに基づいて電池モデル50に対するカルマンゲインを逐次算出する。
状態推定部25は、組電池15の充電状態SOCpackを推定するために必要な処理を行う初期状態設定部30と、電池情報取得部31と、重み設定部32と、時間更新処理部33と、観測更新処理部34と、異常判定部35とを備える。
初期状態設定部30は、UKFの演算に先立ち、状態推定値の初期値x(0)の設定、及び状態共分散の初期値P(0)の設定を行う。状態推定値の初期値x(0)には、組電池15の充電状態SOCpackとして適切である値が設定される。状態共分散の初期値P(0)は、設定された状態推定値の初期値x(0)に基づいて設定される。
電池情報取得部31は、電流計測部22、各電圧計測部21、及び各温度計測部23から逐次、各電池モジュール16の入出力電流Ip、電圧V0〜Vn、及び、温度T0〜Tnを取得する。
重み設定部32は、組電池15に推定される各充電状態SOC0〜SOCnの分布に基づいて、各シグマポイントに付与する重みωiを設定する。例えば、重み設定部32は、各シグマポイントに付与する重みωiを、組電池15から取得される、又は、推定される電池情報(電流、電圧又は温度)の分布に基づいて算出してもよい。すなわち、異常等を検出したい電池情報(電流、電圧又は温度)の影響が強く現れる状態に対して大きな重みωiを設定することによって、大きな重みωiの設定された電池情報の影響を重視した状態推定の結果が得られるようになる。重みωiは、例えば、全てを足して「1」になる値として設定される。また、重みωiは、例えば、複数の電池情報を測定後、複数の電池情報から注目する電池情報を選択し、その選択した電池情報を重視するように設定してもよい。また、重みωiは、全ての重みωiが等価に設定されてもよく、このとき重みを考慮して加算される電池状態又は電池情報はいわゆる平均値として得られる。例えば、重みωiを、組電池の電池性能を規制するような状態に基づいて設定することで、電池性能を規制する状態について着目した推定結果が得られる。
時間更新処理部33は、UKFの演算を行う。UKFの演算では、時刻kを更新した電池モデル50の状態方程式51、及び出力方程式52が利用される。
観測更新処理部34は、事前の状態変数と、出力の観測値と事前の推定値との差分と、カルマンゲインとに基づいて、状態変数の値を更新する。
異常判定部35は、複数の電池モジュール16について、それらの電池状態の分布のばらつきを判定する。例えば、異常判定部35は、時間更新処理部33で算出されたカルマンゲインをばらつき判定用の第1のばらつき判定値と比較してばらつきの大きさを判定する。また例えば、異常判定部35は、誤差共分散行列を算出し、この算出した誤差共分散行列をばらつき判定用の第2のばらつき判定値と比較してばらつきの大きさを判定する。
ここで、時間更新処理部33について詳しく説明する。
時間更新処理部33は、UKF演算を行うため、状態の代表値設定部40と、シグマポイント設定部41と、事前状態推定値算出部42と、出力のシグマポイント算出部43と、事前出力推定値算出部44と、事前出力誤差共分散行列算出部45と、事前状態・出力誤差共分散行列算出部46と、カルマンゲイン算出部47とを備える。
状態の代表値設定部40は、複数の電池モジュール16のうちから任意に選択した電池モジュール160の電圧から算出される組電池15の充電状態SOC0を代表値として設定する。この代表値を基準にして、他の電池モジュール161〜16nの各電圧V1〜Vnから算出される状態変数(組電池15の充電状態SOC1〜SOCn)のばらつきが判断される。
シグマポイント設定部41は、状態変数の分布のサンプル点として代表値の近傍に代表値以外のシグマポイントを設定する。
一般に、シグマポイントは、式(3)及び式(4)に示すように、分布の平均とその標準偏差として自動的に定めることができる。
Figure 2019132666
Figure 2019132666
但し、式(3),(4)及び以下の式においての変数や記号は以下の通りである。
nx:x(k)の要素数であって、1以上の整数である。
r:スケーリングパラメータであって、平均のシグマポイントσからどれだけ遠くの値まで採用するかを示す値である。但し、ここでは平均のシグマポイントは、代表値である。
サーカムフレックス「^」の付く変数等は、その値が推定値である。
オーバーライン「 ̄」の付く変数等は、その値が更新前の予測値である。
P(k):時刻kにおける共分散行列である。
σ(k):時刻kにおけるシグマポイントである。本実施形態では、各電池モジュール16から計測された電圧V1〜Vnに基づいてそれぞれ推定される組電池15の充電状態SOC1〜SOCnが設定される。
ω:値の重みである(式(9)参照)。各電池モジュール16に基づいて推定される組電池15の充電状態SOC0〜SOCnに応じた値が設定される。
本実施形態では、シグマポイント設定部41は、任意に選択した電池モジュール160の電圧V0から推定される組電池15の充電状態SOC0を代表値とする。その他の電池モジュール16の電圧V1〜Vnから推定される組電池15の充電状態SOC1〜SOCnを代表値の近傍であると見なす。そして、その他の電池モジュール16の電圧から推定される組電池15の充電状態SOC1〜SOCnをシグマポイントに設定するようにする。
事前状態推定値算出部42は、状態変数の事前状態を重みとシグマポイントとに基づいて算出する。例えば、電池モジュール16の各充電状態SOC0〜SOCnの重みが反映された上での電池モジュール16の充電状態の平均値が算出される。
出力のシグマポイント算出部43は、シグマポイントから予測される出力を算出する。例えば、シグマポイントに対応する各電池モジュール16の充電状態に依拠して算出された組電池15の各充電状態SOC0〜SOCnから各電池モジュール16に予測される電圧が算出される。
事前出力推定値算出部44は、シグマポイントから事前の出力が算出される。
事前出力誤差共分散行列算出部45は、シグマポイントから事前出力誤差共分散行列を算出する。
事前状態・出力誤差共分散行列算出部46は、シグマポイントから事前状態・出力誤差共分散行列を算出する。
カルマンゲイン算出部47は、事前出力誤差共分散行列と、事前状態・出力誤差共分散行列とからカルマンゲインを算出する。
(電池状態の推定動作)
図4〜図8を参照して、電池状態の推定処理の動作について説明する。
まず、図4を参照して、電池状態の推定処理の概略を説明する。なお、電池状態の推定処理に先立ち、記憶部27から電池モデル50が取得されて状態推定部25で利用可能に設定される(電池モデル設定工程)。
電池状態の推定処理は、必要に応じて開始される。電池状態の推定処理が開始されると、状態の代表値設定部40は、初期状態設定処理(図4のステップS10)を行う。
図5に示すように、初期状態設定処理では、状態推定値に初期値が設定(図5のステップS11)され、状態共分散行列に初期値が設定(図5のステップS12)される。状態推定値の初期値は式(5)に基づいて設定され、状態共分散行列の初期値は式(6)に基づいて設定される。例えば、xには組電池15の充電状態SOCpackが設定される。
Figure 2019132666
Figure 2019132666
図4に示すように、初期状態設定処理が終了すると、時間更新処理部33は、「ループ1」の開始で終了条件を判断する(図4のステップS15)。なお、「ループ1」は、開始(図4のステップS15)と終了(図4のステップS16)との間に挟まれた処理を「ループ1」の終了条件が成立するまで繰り返す処理である。「ループ1」の終了条件は、推定処理終了の指示信号の検出等である。「ループ1」の開始で終了条件が成立したと判断されると、「ループ1」の終了(図4のステップS16)から初期状態設定処理が終了される。一方、「ループ1」の開始で終了条件が成立していないと判断されると、「ループ1」の開始から「ループ1」内のステップS20に進む。
すなわち、電池情報取得部31は、入出力電流Ip、電圧V0〜Vn、及び温度T0〜Tnの計測値を取得する計測値取得処理を行う(図4のステップS20:電池情報取得工程)。
次に、重み設定部32は、重み設定処理(図4のステップS30)を行う。
図6に示すように、重み設定処理(図4のステップS30)が開始されると、重みの設定(図4のステップS31)が行われる。重みの設定では、重み設定部32で算出した重みωiが推定値の算出用等に設定される。
次に、図4に示すように、時間更新処理部33は、時間更新処理を行う(図4のステップS40:電池状態推定工程)。
図7に示すように、時間更新処理が開始されると、状態の代表値設定部40で状態の代表値設定処理(図7のステップS41)が行われる。状態の代表値は、式(7)に基づいて設定される。例えば、入力は代表値の電圧V0であり、状態変数は、代表値の電圧V0に基づいて推定される組電池15の充電状態SOCpackである。左辺の代表値は、代表値の電圧V0に基づく更新前の組電池15の充電状態SOCpackである。
Figure 2019132666
続いて、シグマポイント設定部41で、シグマポイント設定処理(図7のステップS42)が行われる。代表値以外のシグマポイントは、式(8)に基づいて設定される。例えば、代表値以外のシグマポイントは、各電池モジュール161〜16nの各電圧V1〜Vnに基づく更新前の組電池15の各充電状態SOC1〜SOCnである。
Figure 2019132666
また、事前状態推定値算出部42で、事前状態推定値が算出される(図7のステップS43)。事前状態推定値は、式(9)に基づいて算出される。例えば、組電池15の各充電状態SOC0〜SOCnの重みが考慮された平均値である組電池15の事前の充電状態(平均値)が推定算出される。なお、「l」は、0以上の整数である。
Figure 2019132666
また、出力のシグマポイント算出部43で、シグマポイントに基づいて出力が算出される(図7のステップS44)。つまり、式(10)及び式(11)に基づいてシグマポイントに基づいて予測される出力が算出される。例えば、推定された組電池15の各充電状態SOC0〜SOCnに基づいて、その推定の基になった電池モジュール160〜16nに予測される電圧が出力される。
Figure 2019132666
Figure 2019132666
次に、事前出力推定値算出部44で、事前出力推定値が算出される(図7のステップS45)。つまり、式(12)に基づいて、シグマポイントに基づいて事前出力が推定される。例えば、電池モジュール160〜16nに予測される電圧の平均値が算出される。
Figure 2019132666
続いて、事前出力誤差共分散行列算出部45で、事前出力誤差共分散行列が算出される(図7のステップS46)。つまり、式(13)に基づいて、シグマポイントに基づいて事前出力誤差共分散行列が算出される。例えば、電池モジュール160〜16nに予測される電圧と、それら電圧の平均値との間の誤差に基づいて事前出力誤差共分散行列が算出される。
Figure 2019132666
また、事前状態・出力誤差共分散行列算出部46で、事前状態・出力誤差共分散行列が算出される(図7のステップS47)。つまり、式(14)に基づいて、シグマポイントに基づいて事前状態・出力誤差共分散行列が計算される。例えば、シグマポイントと組電池15の事前の充電状態(平均値)との差と、電池モジュール160〜16nに予測される電圧と電池モジュール160〜16nに予測される電圧の平均値との差とに基づいて事前状態・出力誤差共分散行列が算出される。
Figure 2019132666
次に、カルマンゲイン算出部47で、カルマンゲインが算出される(図7のステップS48)。つまり、式(15)に基づいて、下記式(16)における状態推定値の算出に適用される重みが算出される。
Figure 2019132666
そして、カルマンゲインが算出されることで時間更新処理が終了して、電池状態の推定処理が次のステップに進む。
つまり、図4に示すように、観測更新処理部34は、観測更新処理(図4のステップS50)を行う。観測更新処理では、式(16)に基づいて状態推定値が更新される。例えば、組電池15の事前の充電状態SOCから更新された充電状態SOCが算出される。
Figure 2019132666
ここで、式(16)のカルマンゲイン「g(k)」を状態変数「x(k)」に対する補正値として考えると、補正量の大小に基づいて組電池の異常を検知することが可能になると考えられる。また、出力関数hがベクトルである場合、カルマンゲイン「g(k)」もベクトルになるため、補正値のばらつき、すなわち、複数の電池モジュール16の電池状態(充電状態SOC)のばらつきを検出することもできる。例えば、推定された組電池15の各充電状態SOC1〜SOCnは、それらを推定した各電池モジュール16の各充電状態SOCに相関があることから、カルマンゲイン「g(k)」を各電池モジュール16の電池状態(充電状態SOC)、又は、電池情報(電圧)に生じたばらつきの判定に利用することができる。
続いて、異常判定部35で、異常判定処理(図4のステップS60)が行われる。異常判定部35は、カルマンゲイン「g(k)」をばらつき判定、及び、誤差共分散行列Pxxをばらつき判定の少なくとも一方を行う。
例えば、異常判定部35は、カルマンゲイン「g(k)」をばらつき判定用の第1のばらつき判定値と比較して、カルマンゲイン「g(k)」の大きさが第1のばらつき判定値よりも大きい場合、ばらつきが大きいと判定する。逆に、カルマンゲイン「g(k)」の大きさが第1のばらつき判定値以下である場合、ばらつきは大きくない(正常である)と判定する。なお、第1のばらつき判定値は、カルマンゲインがスカラーであれば、スカラーでもよいし、カルマンゲインが行列であれば行列でもスカラーでもよい。
また例えば、異常判定部35は、誤差共分散行列Pxxをばらつき判定用の第2のばらつき判定値と比較して、誤差共分散行列Pxxの大きさが第2のばらつき判定値よりも大きい場合、ばらつきが大きいと判定する。逆に、誤差共分散行列Pxxの大きさが第2のばらつき判定値以下である場合、ばらつきは大きくない(正常である)と判定する。
詳述すると、図8に示すように、異常判定処理(図4のステップS60)が開始されると、異常判定部35で誤差共分散行列算出処理(図8のステップS61)が行われる。誤差共分散行列は、式(17)に基づいて、代表の電池モジュール16とそれ以外の電池モジュール16とを比較することにより算出される行列である。
Figure 2019132666
誤差共分散行列Pxxの値に基づいて複数の電池モジュール16の間のばらつきの拡大や縮小を検出することが可能である。また、誤差共分散行列Pxxの値が第2のばらつき判定値より大きい値である場合、ばらつきが拡大したことを検出することが可能である。
また、異常判定部35は、計測系の異常を検出することができてもよい。電池状態の推定処理は、シグマポイントを利用したUKF演算を行うことから、式(3)及び(4)に基づいて自動的に求めたシグマポイントに基づいた第1の推定結果を算出することができる。また、組電池15からの計測値を割り当てたシグマポイントに基づいた第2の推定結果を算出することができる。そして、これら算出した第1の推定結果と第2の推定結果とを比較して乖離の大きさを取得し、取得した乖離の大きさが所定以上である場合、組電池15から計測値を計測する計測系に何らかの異常が生じていることを検出することも可能である。
(作用)
本実施形態では、シグマポイント設定部41は、任意に選択した電池モジュール160に基づいて推定される組電池15の充電状態SOC0を代表値とし、その他の電池モジュール161〜16nに基づいて推定される組電池15の充電状態SOC1〜SOCnを代表値の近傍であると見なす。そして、これら電池モジュール160〜16nに基づいて推定される組電池15の充電状態SOC0〜SOCnをシグマポイントに設定するようにする。よって、組電池15の電池状態の遷移が電池モジュール160〜16nからの実測値により演算されるので精度の向上が望まれる。
また、電池モジュール160〜16nの実測値から推定される組電池15の電池状態がシグマポイントであるのでシグマポイントの算出処理を軽減することができる。
本実施形態では、状態変数が電池モジュールの総数に応じて算出される複数の電池状態(各充電状態SOC0〜SOCn)からなる。つまり、組電池15の電池状態は、各電池モジュール16の電池情報や電池状態が反映されたかたちで推定される。換言すると、組電池15の電池状態に各電池モジュール16の電池情報が含まれるかたちになることから、組電池15から組電池15のものとして得られる1つの電池情報を取得して電池状態を推定することに比べて、電池状態の推定精度を高くすることができる。
以上説明したように、上記実施形態の組電池の状態推定装置、及び組電池の状態推定方法によれば、以下に列挙する効果を得ることができる。
(1)組電池15の電池状態をそれを構成する複数の電池モジュール16の電池状態から求めることができるようになる。組電池15として使用されているとき、電池状態は組電池一体として取得されることが好適である。また、個別の電池モジュール16の各電池情報を利用しつつ組電池15としての電池状態が推定されるため、各電池モジュール16の電池状態をそれぞれ個別に推定するための演算が不要になる。また、組電池15の電池状態が各電池モジュール16の電池情報に基づいて推定されていることから組電池15に対して算出される電池状態の精度も高い。これにより、組電池15の電池状態を少ない演算で精度よく推定することができる。
(2)複数の電池モジュール16のうちの全部の電池モジュールの各電池情報をシグマポイントに設定するのでカルマンフィルタにより推定される電池状態の精度の向上が期待される。
(3)電池情報を電圧V0〜Vnとすることから、電池モジュールの端子間電圧を含んでいる電池情報から組電池15の電池状態が推定できる。
(4)カルマンゲインに基づいて組電池15を構成する電池モジュールの電池状態に生じたばらつきを検出することができる。
(5)誤差共分散行列に基づいて組電池15を構成する電池モジュールの電池状態に生じたばらつきを検出することができる。
(6)電池モジュール16の計測値を用いることで、状態変数の初期値の選択が容易である。また、状態変数としてもその初期値が適切である蓋然性が高まる。
(7)カルマンゲインの算出に際し、重みωiの設定によって重視されることになるシグマポイントに対して影響を与えている電池状態が重視されるようになる。
なお、上記実施形態は、以下のように適宜変更して実施することもできる。
・重みを、温度以外の電池パック10の外部環境や電池パック10内における電池モジュール16の環境に応じて設定してもよい。例えば、組電池15内における電池モジュール16の配置位置に応じて重みを設定してもよい。複数の電池モジュール16が積層された組電池15は、積層方向において電池モジュール16の放熱効果が、両端部は高い一方、中央部は低い傾向にある。また、電池モジュール16は温度が基準値よりも高くなると組電池15の電池性能を規制するおそれがあり、逆に、温度が基準値よりも低くなると組電池15の電池性能を規制するおそれがある。
そこで、組電池15が基準値よりも高温の環境にある場合、温度が高くなりやすい中央部の電池モジュール16によって電池性能が規制されるおそれが高いことから、中央部に近い電池モジュール16の電池情報や電池状態に設定する重みが相対的に大きくなるように重みを設定する。つまり、重みの大小関係を、中央部用>端部用とする。
逆に、組電池15が基準値よりも低温の環境にある場合、温度が低くなりやすい両端部の電池モジュール16によって電池性能が規制されるおそれが高いことから、両端部に近い電池モジュール16の電池情報や電池状態に設定する重みが相対的に大きくするように重みを設定する。つまり、重みの大小関係を、中央部用<端部用とする。
これにより、組電池の電池モジュールは端部にあると温度が低下しやすく、中央部にあると温度が上昇しやすいことが考慮される。これに併せて、組電池の電池性能は、低温環境では温度が低下した電池モジュールによって規制されやすく、高温環境では温度の上昇した電池モジュールによって規制されやすいことを考慮した上で重みが設定できるようになる。
・重みは、電池モジュール16の内部抵抗や充電状態SOCに着目して設定してもよいし、1つのみならず、複数の電池情報や電池状態に着目して設定してもよい。
・上記実施形態では電池モジュール160に基づく組電池15の充電状態SOC0を代表値とする場合について例示した。しかしこれに限らず、電池状態推定部は、シグマポイントのうちの1つを代表値として選択してばらつきを判定したとき、ばらつき判定部が電池状態のばらつきが大きいと判定することがある。このとき、選択していた代表値以外のシグマポイントを新たな代表値として選択し、再度組電池の電池状態を推定するようにしてもよい。
これにより、電池状態の推定に複数の電池モジュールの電池情報を利用するとき、一旦、カルマンフィルタの代表値として定めた電池状態を、他の電池モジュールの電池状態に代えることで、カルマンフィルタによる電池状態の推定がより適切な電池情報に基づいて行われるようになる。
・上記実施形態では代表値が電池モジュール160に基づく組電池15の充電状態SOC0である場合について例示した。しかしこれに限らず、代表値は、電池モジュールから計測された値に基づいて設定される値であれば、複数の電池モジュールに基づいて推定された組電池の充電状態や、複数の電池モジュールに基づいて推定された組電池の複数の充電状態の平均値等であってもよい。
・複数のシグマポイントには各電池モジュール160〜16nの任意の二次電池の電池情報に基づく値を設定してもよい。
・シグマポイントには任意の電池状態を設定してもよい。例えば、任意の電池状態には、SOCや電流、端子間電圧、温度の少なくとも1つが含まれる。
・上記実施形態では、複数のシグマポイントに全ての電池モジュール16のSOCを割り当てる場合について例示したが、これに限らず、複数のシグマポイントに、一部の電池モジュールの電池情報を割り当ててもよい。また、複数のシグマポイントのうちの一部のシグマポイントに各電池モジュールの電池情報を割り当ててもよい。また、一部の電池モジュールの電池情報がシグマポイントに割り当てられなくてもよい。
また、1つのシグマポイントに複数の電池モジュール16に基づいて推定される組電池15の電池状態を割り当ててもよい。
・上記実施形態では、1つの電池情報(電流、電圧及び温度)が、1つの電池モジュール16から取得される場合について例示した。しかしこれに限らず、1つの電池情報が複数の電池モジュールから取得されてもよい。
・上記実施形態では、二次電池が電池モジュールである場合について例示したが、これに限らず、二次電池が単電池であってもよい。例えば、組電池が複数の単電池より構成されていてもよい。
・上記実施形態では、組電池の電池状態を推定する場合について例示したが、これに限らず、複数の単電池から構成される電池モジュールの電池状態を推定してもよい。
・組電池15の状態変数(ベクトル)は、SOCのみならず、電圧、電流、温度、SOH(State Of Health:劣化状態)、SOP(State of Power:充放電能力)、及びモデル化できるパラメータ等の少なくとも1つとしてもよい。
・入力ベクトルu(k)は、電池モジュール16から計測できる電流、電圧、温度、及び、任意のパラメータ、演算等で算出できる任意のパラメータのうちの少なくとも1つを含んで構成されてもよい。
・状態変数x(k)は、組電池15に対して演算できる充電状態SOC、電流、電圧、温度、及び、任意のパラメータ、演算等で算出できる任意のパラメータのうちの少なくとも1つを含んで構成されてもよい。
・出力ベクトルy(k)は、電池モジュール16の充電状態、電流、電圧、温度等のうちの少なくとも1つを含んで構成されてもよい。
・上記実施形態では、最適フィルタが非線形のカルマンフィルタのアンセンテッドカルマンフィルタである場合について例示した。しかしこれに限らず、最適フィルタは、サンプル点の分布状態を用いて状態方程式における状態推定を行うことができるフィルタであればよく、例えば、EnKF(アンサンブルKF)、PF(パーティクルフィルタ)等であってもよい。
・上記実施形態では、電池モジュール16の外形が直方体形状の密閉式電池である場合について例示したが、これに限らず、電池モジュールの外形は、円筒形状や立方体形状等、直方体形状以外の形状であってもよい。
・上記実施形態では、電池モジュール16はリチウムイオン二次電池やニッケル水素二次電池である場合について例示したが、これに限らず、その他の二次電池であってもよい。
・上記実施形態では、組電池15は電池パック10に含まれてハイブリッド自動車等の車両に電源として搭載される場合について例示した。しかしこれに限らず、組電池は、電源として用いられるものであれば、各種の移動体や固定体など自動車以外の電源として用いられてもよい。
10…電池パック、15…組電池、16,161〜16n…電池モジュール、20…電池ECU、21…電圧計測部、22…電流計測部、23…温度計測部、25…状態推定部、27…記憶部、30…初期状態設定部、31…電池情報取得部、32…重み設定部、33…時間更新処理部、34…観測更新処理部、35…異常判定部、40…代表値設定部、41…シグマポイント設定部、42…事前状態推定値算出部、43…シグマポイント算出部、44…事前出力推定値算出部、45…事前出力誤差共分散行列算出部、46…事前状態・出力誤差共分散行列算出部、47…カルマンゲイン算出部、50…電池モデル、51…状態方程式、52…出力方程式、100…車両ECU。

Claims (11)

  1. 組電池を構成する複数の二次電池のそれぞれから前記二次電池の電池情報をそれぞれ取得する電池情報取得部と、前記組電池に対して前記二次電池の電池情報を含んだ電池モデルが設定された記憶部と、前記電池情報取得部で取得した前記二次電池の電池情報と前記組電池の電池モデルとに基づいて前記組電池の電池状態を推定する電池状態推定部とを備える組電池の状態推定装置であって、
    前記電池状態推定部は、前記電池情報取得部で取得した前記二次電池の電池情報を入力とし、前記入力した前記二次電池の電池情報に基づいて推定される前記組電池の電池状態を状態変数とし、該状態変数を用いて前記電池モデルに含まれる状態方程式及び出力方程式に複数のサンプル点の分布に基づく最適化を行う最適フィルタを適用して前記組電池の電池状態として前記推定される状態変数を修正するゲインを算出し、該ゲインを用いて前記組電池の電池状態を逐次推定するものであり、前記複数のサンプル点のそれぞれには、前記複数の二次電池から選択された1つの二次電池がそれぞれ対応付けられ、前記対応付けられた二次電池の電池情報に基づいて推定される前記組電池の電池状態が割り当てられる
    ことを特徴とする組電池の状態推定装置。
  2. 前記電池状態推定部は、前記複数のサンプル点に前記複数の二次電池のうちの全部の二次電池が対応付けられている
    請求項1に記載の組電池の状態推定装置。
  3. 前記二次電池の電池情報は、二次電池の端子間電圧、二次電池の温度、及び、二次電池の電流の少なくとも1つを含んでいる情報である
    請求項1又は2に記載の組電池の状態推定装置。
  4. 前記二次電池の電池情報に基づいて推定される前記組電池の電池状態であって、前記複数の二次電池のそれぞれについて算出された複数の前記組電池の電池状態の間におけるばらつきの大きさを判定するばらつき判定部を備え、
    前記ばらつき判定部は、前記ゲインを、ばらつきを判定するための第1のばらつき判定値と比較することによりばらつきの大きさを判定する
    請求項1〜3のいずれか一項に記載の組電池の状態推定装置。
  5. 前記二次電池の電池情報に基づいて推定される前記組電池の電池状態であって、前記複数の二次電池のそれぞれについて算出された複数の前記組電池の電池状態の間におけるばらつきの大きさを判定するばらつき判定部を備え、
    前記ばらつき判定部は、前記最適フィルタに基づいて算出される誤差共分散行列を、ばらつきを判定するための第2のばらつき判定値と比較することによりばらつきの大きさを判定する
    請求項1〜3のいずれか一項に記載の組電池の状態推定装置。
  6. 前記電池状態推定部は、前記サンプル点のうちの1つを代表値として選択するものであり、前記ばらつき判定部がばらつきが大きいと判定したとき、前記選択した代表値に対応するサンプル点以外のサンプル点を新たな代表値として選択してから再度前記組電池の電池状態を推定する
    請求項4又は5に記載の組電池の状態推定装置。
  7. 前記電池状態推定部は、前記状態方程式の初期値に前記複数の二次電池のうちの1つの二次電池の電池情報に基づいて推定される前記組電池の電池状態を設定する
    請求項1〜6のいずれか一項に記載の組電池の状態推定装置。
  8. 前記電池状態推定部は、前記二次電池の電池情報に基づいて推定される前記組電池の電池状態に基づいて調整された重みを前記サンプル点のそれぞれに設定し、前記設定された重みを考慮するかたちで前記サンプル点に基づいて前記ゲインを算出する
    請求項1〜7のいずれか一項に記載の組電池の状態推定装置。
  9. 前記電池状態推定部は、前記組電池の長手方向における端部に対応する二次電池に付与する重みと、前記長手方向における中央部に対応する二次電池に付与する重みとの間の相対的な大小関係を、前記組電池の外部環境に応じて調整する
    請求項8に記載の組電池の状態推定装置。
  10. 前記最適フィルタは、アンセンテッドカルマンフィルタ(UKF)であり、
    前記サンプル点は、シグマポイントであり、
    前記ゲインは、カルマンゲインである
    請求項1〜9のいずれか一項に記載の組電池の状態推定装置。
  11. 電池情報取得部で組電池を構成する複数の二次電池のそれぞれから前記二次電池の電池情報をそれぞれ取得する電池情報取得工程と、記憶部に前記組電池に対して前記二次電池の電池情報を含んだ電池モデルを設定する電池モデル設定工程と、前記電池情報取得部で取得した前記二次電池の電池情報と前記組電池の電池モデルとに基づいて前記組電池の電池状態を推定する電池状態推定工程とを備える組電池の状態推定方法であって、
    前記電池状態推定工程は、前記電池情報取得部で取得した前記二次電池の電池情報を入力とし、前記入力した前記二次電池の電池情報に基づいて推定される前記組電池の電池状態を状態変数とし、該状態変数を用いて前記電池モデルに含まれる状態方程式及び出力方程式に複数のサンプル点の分布に基づく最適化を行う最適フィルタを適用して前記組電池の電池状態として前記推定される状態変数を修正するゲインを算出し、該ゲインを用いて前記組電池の電池状態を逐次推定するものであり、前記複数のサンプル点のそれぞれには、前記複数の二次電池から選択された1つの二次電池がそれぞれ対応付けられ、前記対応付けられた二次電池の電池情報に基づいて推定される前記組電池の電池状態を割り当てる
    ことを特徴とする組電池の状態推定方法。
JP2018014009A 2018-01-30 2018-01-30 組電池の状態推定装置及び組電池の状態推定方法 Active JP7036605B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2018014009A JP7036605B2 (ja) 2018-01-30 2018-01-30 組電池の状態推定装置及び組電池の状態推定方法
US16/256,284 US10895602B2 (en) 2018-01-30 2019-01-24 Battery assembly state estimation device and battery assembly state estimation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018014009A JP7036605B2 (ja) 2018-01-30 2018-01-30 組電池の状態推定装置及び組電池の状態推定方法

Publications (2)

Publication Number Publication Date
JP2019132666A true JP2019132666A (ja) 2019-08-08
JP7036605B2 JP7036605B2 (ja) 2022-03-15

Family

ID=67393307

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018014009A Active JP7036605B2 (ja) 2018-01-30 2018-01-30 組電池の状態推定装置及び組電池の状態推定方法

Country Status (2)

Country Link
US (1) US10895602B2 (ja)
JP (1) JP7036605B2 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111245099A (zh) * 2020-03-19 2020-06-05 山东科技大学 基于事件触发传输机制和混合量测的配电网状态估计方法
CN116224099A (zh) * 2023-05-06 2023-06-06 力高(山东)新能源技术股份有限公司 一种动态自适应估算电池soc的方法
JP2023528793A (ja) * 2020-11-05 2023-07-06 エルジー エナジー ソリューション リミテッド バッテリー診断装置及び方法
WO2023149011A1 (ja) * 2022-02-07 2023-08-10 株式会社デンソー 二次電池状態検出装置、学習部、二次電池状態検出方法

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019181727A1 (ja) * 2018-03-20 2019-09-26 株式会社Gsユアサ 異常要因判定装置、劣化判定装置、コンピュータプログラム、劣化判定方法及び異常要因判定方法
JP6935793B2 (ja) * 2018-12-04 2021-09-15 株式会社デンソー 電池システム
CN110320472B (zh) * 2019-05-17 2021-06-01 枣庄学院 一种用于矿用锂电池的自修正soc估计方法
CN114051671A (zh) * 2019-08-30 2022-02-15 株式会社杰士汤浅国际 推定装置以及推定方法
KR102682497B1 (ko) * 2019-11-26 2024-07-08 현대자동차주식회사 차량 및 차량의 제어 방법
CN111123131A (zh) * 2020-01-02 2020-05-08 江苏方天电力技术有限公司 一种基于集合卡尔曼滤波的锂电池荷电状态估计方法
WO2021226505A1 (en) * 2020-05-07 2021-11-11 Zitara Technologies, Inc. Battery analysis system and method
CN111988017B (zh) * 2020-08-31 2023-07-25 郑州轻工业大学 一种基于标准偏差变尺度采样的平方根ukf计算方法
CN112733411B (zh) * 2020-12-18 2022-09-30 武汉大学 基于二阶差分粒子滤波的锂电池soc估计方法及系统
EP4413386A1 (en) 2021-10-04 2024-08-14 Zitara Technologies, Inc. System and method for battery management
WO2023107710A2 (en) 2021-12-09 2023-06-15 Zitara Technologies, Inc. System and method for determining a battery condition

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011027449A1 (ja) * 2009-09-03 2011-03-10 トヨタ自動車株式会社 組電池の充電状態検出装置および充電状態検出方法
US20120041698A1 (en) * 2011-10-27 2012-02-16 Sakti3, Inc. Method and system for operating a battery in a selected application
WO2012098968A1 (ja) * 2011-01-17 2012-07-26 プライムアースEvエナジー株式会社 二次電池の充電状態推定装置
JP2013072677A (ja) * 2011-09-27 2013-04-22 Primearth Ev Energy Co Ltd 二次電池の充電状態推定装置
JP2014074682A (ja) * 2012-10-05 2014-04-24 Calsonic Kansei Corp バッテリのパラメータ等推定装置およびその推定方法
CN105182246A (zh) * 2015-09-08 2015-12-23 盐城工学院 基于无迹卡尔曼滤波的并联型电池系统荷电状态估计方法
CN105182245A (zh) * 2015-09-08 2015-12-23 盐城工学院 基于无迹卡尔曼滤波的大容量电池系统荷电状态估计方法
CN105353314A (zh) * 2015-09-30 2016-02-24 盐城工学院 一种并联型电池系统荷电状态估计方法
CN105353315A (zh) * 2015-09-30 2016-02-24 盐城工学院 一种基于无迹卡尔曼滤波的电池系统荷电状态估计方法

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6205656B1 (en) * 1997-10-01 2001-03-27 Arthur Henry Adams Automated application of photovoltaic cells to printed circuit boards
US6679324B2 (en) * 1999-04-29 2004-01-20 Shell Oil Company Downhole device for controlling fluid flow in a well
DE60028907T2 (de) * 1999-11-24 2007-02-15 Donnelly Corp., Holland Rückspiegel mit Nutzfunktion
FR2862558B1 (fr) * 2003-11-20 2006-04-28 Pellenc Sa Outil portatif electrique autonome de puissance
US7798669B2 (en) * 2006-10-11 2010-09-21 Automatic Power, Inc. Marine lantern controlled by GPS signals
US20120046119A1 (en) * 2008-10-09 2012-02-23 Golf Impact Llc Golf Swing Measurement and Analysis System
WO2014112982A1 (en) * 2013-01-15 2014-07-24 Advanced Bionics Ag Sound processor apparatuses that facilitate battery type detection and communication with a programming system
EP2964318B1 (en) * 2013-03-05 2020-05-06 Advanced Bionics AG Sound processor apparatuses that facilitate low power component type detection and communication with a programming system
US9423152B2 (en) * 2013-03-15 2016-08-23 R. J. Reynolds Tobacco Company Heating control arrangement for an electronic smoking article and associated system and method
US9586494B2 (en) * 2015-06-05 2017-03-07 Nissan North America, Inc. Alignment method for a vehicle wireless charging structure
US9586491B2 (en) * 2015-06-05 2017-03-07 Nissan North America, Inc. Vehicle wireless charging structure
HUE063946T2 (hu) * 2017-08-31 2024-02-28 Bosch Gmbh Robert Vezeték nélküli feltöltési eljárás összeszerelõ sorhoz
CN107571784A (zh) * 2017-10-13 2018-01-12 薛迪宋 一种智能应急切割机车
CN107799111A (zh) * 2017-10-20 2018-03-13 维沃移动通信有限公司 一种保护壳组件和声波消除方法
CN207290177U (zh) * 2017-10-24 2018-05-01 佛山市焕之醒科技有限公司 一种充电式电动剃须刀

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011027449A1 (ja) * 2009-09-03 2011-03-10 トヨタ自動車株式会社 組電池の充電状態検出装置および充電状態検出方法
WO2012098968A1 (ja) * 2011-01-17 2012-07-26 プライムアースEvエナジー株式会社 二次電池の充電状態推定装置
JP2013072677A (ja) * 2011-09-27 2013-04-22 Primearth Ev Energy Co Ltd 二次電池の充電状態推定装置
US20120041698A1 (en) * 2011-10-27 2012-02-16 Sakti3, Inc. Method and system for operating a battery in a selected application
JP2014074682A (ja) * 2012-10-05 2014-04-24 Calsonic Kansei Corp バッテリのパラメータ等推定装置およびその推定方法
CN105182246A (zh) * 2015-09-08 2015-12-23 盐城工学院 基于无迹卡尔曼滤波的并联型电池系统荷电状态估计方法
CN105182245A (zh) * 2015-09-08 2015-12-23 盐城工学院 基于无迹卡尔曼滤波的大容量电池系统荷电状态估计方法
CN105353314A (zh) * 2015-09-30 2016-02-24 盐城工学院 一种并联型电池系统荷电状态估计方法
CN105353315A (zh) * 2015-09-30 2016-02-24 盐城工学院 一种基于无迹卡尔曼滤波的电池系统荷电状态估计方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111245099A (zh) * 2020-03-19 2020-06-05 山东科技大学 基于事件触发传输机制和混合量测的配电网状态估计方法
JP2023528793A (ja) * 2020-11-05 2023-07-06 エルジー エナジー ソリューション リミテッド バッテリー診断装置及び方法
JP7389279B2 (ja) 2020-11-05 2023-11-29 エルジー エナジー ソリューション リミテッド バッテリー診断装置及び方法
WO2023149011A1 (ja) * 2022-02-07 2023-08-10 株式会社デンソー 二次電池状態検出装置、学習部、二次電池状態検出方法
CN116224099A (zh) * 2023-05-06 2023-06-06 力高(山东)新能源技术股份有限公司 一种动态自适应估算电池soc的方法

Also Published As

Publication number Publication date
JP7036605B2 (ja) 2022-03-15
US10895602B2 (en) 2021-01-19
US20190235027A1 (en) 2019-08-01

Similar Documents

Publication Publication Date Title
JP7036605B2 (ja) 組電池の状態推定装置及び組電池の状態推定方法
JP6182025B2 (ja) バッテリの健全度推定装置および健全度推定方法
US10312699B2 (en) Method and system for estimating battery open cell voltage, state of charge, and state of health during operation of the battery
JP6403746B2 (ja) 電池状態推定装置
JP5442583B2 (ja) 電源装置用状態検知装置及び電源装置
JP6657967B2 (ja) 状態推定装置、状態推定方法
EP3410137B1 (en) Cell state estimation device, cell control device, cell system, and cell state estimation method
KR101227417B1 (ko) 리튬이온전지의 충전상태 추정방법 및 이 방법을 구현하기 위한 시스템
JP6369340B2 (ja) 蓄電装置および蓄電装置の制御方法
Wehbe et al. Battery equivalent circuits and brief summary of components value determination of lithium ion: A review
JP2014044074A (ja) 電池状態推定装置、電池制御装置、電池システム、電池状態推定方法
JP6450565B2 (ja) バッテリのパラメータ推定装置
JP6455914B2 (ja) 蓄電残量推定装置、蓄電池の蓄電残量を推定する方法、及びコンピュータプログラム
JP6947937B2 (ja) 電池状態推定装置、電池制御装置
JPWO2019116815A1 (ja) 二次電池監視装置、二次電池状態演算装置および二次電池状態推定方法
JP5832380B2 (ja) 組電池のセルの状態推定装置
JP2018146343A (ja) バッテリ管理装置及びバッテリ管理方法
WO2018029849A1 (ja) 推定装置、推定プログラムおよび充電制御装置
WO2018025306A1 (ja) 推定装置、推定プログラムおよび充電制御装置
JP2021144886A (ja) 電池管理装置、電池管理システム及び電池管理方法
Kustiman et al. Battery state of charge estimation based on coulomb counting combined with recursive least square and pi controller
JP6895537B2 (ja) 電池状態推定装置
Kim et al. Enhanced Li-ion battery modeling using recursive parameters correction

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200722

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210617

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210720

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210915

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20220111

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220124

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20220124

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20220201

C21 Notice of transfer of a case for reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C21

Effective date: 20220208

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220301

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220303

R150 Certificate of patent or registration of utility model

Ref document number: 7036605

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150