JP2019126828A - Tundish lining structure and tundish permanent monolithic refractory - Google Patents

Tundish lining structure and tundish permanent monolithic refractory Download PDF

Info

Publication number
JP2019126828A
JP2019126828A JP2018010852A JP2018010852A JP2019126828A JP 2019126828 A JP2019126828 A JP 2019126828A JP 2018010852 A JP2018010852 A JP 2018010852A JP 2018010852 A JP2018010852 A JP 2018010852A JP 2019126828 A JP2019126828 A JP 2019126828A
Authority
JP
Japan
Prior art keywords
permanent
refractory
tundish
mass
thermal expansion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018010852A
Other languages
Japanese (ja)
Other versions
JP6962827B2 (en
Inventor
綾 中園
Aya Nakazono
綾 中園
辻 陽一
Yoichi Tsuji
陽一 辻
敏行 後藤
Toshiyuki Goto
敏行 後藤
祐輔 瓜田
Yusuke Urita
祐輔 瓜田
明慶 前川
Akiyoshi Maekawa
明慶 前川
雄史 筒井
Yuji Tsutsui
雄史 筒井
史晴 西嶋
Fumiharu Nishijima
史晴 西嶋
浩太郎 梅本
Kotaro Umemoto
浩太郎 梅本
真帆 久下
Maho Kuge
真帆 久下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Krosaki Harima Corp
Original Assignee
Nippon Steel Corp
Krosaki Harima Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp, Krosaki Harima Corp filed Critical Nippon Steel Corp
Priority to JP2018010852A priority Critical patent/JP6962827B2/en
Publication of JP2019126828A publication Critical patent/JP2019126828A/en
Application granted granted Critical
Publication of JP6962827B2 publication Critical patent/JP6962827B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Furnace Housings, Linings, Walls, And Ceilings (AREA)
  • Casting Support Devices, Ladles, And Melt Control Thereby (AREA)

Abstract

To provide a tundish lining structure and a tundish permanent monolithic refractory capable of inhibiting an occurrence of cracking in a permanent lining.SOLUTION: A tundish lining structure comprises an iron shell and a permanent monolithic refractory lined on an inner surface of the iron shell, and is characterized in that a difference (Ta-Tb) between a thermal expansion coefficient (Ta) at a temperature during heat reception in a central part in a thickness direction of the permanent monolithic refractory and a thermal expansion coefficient (Tb) at a temperature during heat reception on an inner surface of the iron shell is 0% or more and 0.20% or less. A tundish permanent monolithic refractory contains 5 mass% or more and 15 mass% or less of burned silica, at least one of an alumina-matter raw material and an alumina/silica-matter raw material as a remainder of a refractory raw material, and further at least one of a dispersant, a binder and a viscosity improver as an additive, and is characterized in that the thermal expansion coefficient at 300°C-700°C is 0.20% or higher and 0.70% or lower and the remaining line change rate at 300°C-700°C is 0% or higher and 0.18% or lower.SELECTED DRAWING: None

Description

本発明は、溶融金属を受けるタンディッシュのライニング構造及びタンディッシュ用パーマ不定形耐火物に関する。   The present invention relates to a lining structure for tundish receiving molten metal and a permanent refractory for tundish.

従来、タンディッシュにおけるパーマライニングは、レンガを1枚ずつ積み上げることで施工していた。このため、熟練者が時間をかけて築造しなければならず、その作業は極めて困難なものであった。そこで、パーマ材を不定形耐火物化することが検討されており、例えば特許文献1には、Al−SiO質のタンディッシュ用パーマ不定形耐火物が開示されている。 Conventionally, perma lining in tundish was constructed by stacking bricks one by one. For this reason, a skilled person had to build over time, and the work was extremely difficult. Therefore, it has been studied to convert a permanent material into an amorphous refractory. For example, Patent Document 1 discloses an amorphous amorphous refractory for tundish made of Al 2 O 3 —SiO 2 .

特許文献1によると、このAl−SiO質のタンディッシュ用パーマ不定形耐火物は、最大膨張が小さく亀裂の入りにくい材料であるとされているが、本発明者らがタンディッシュ用パーマ不定形耐火物として特許文献1と同様のAl−SiO質の材料を用いたところ、そのパーマライニングに亀裂を生じる結果となった。 According to Patent Document 1, this Al 2 O 3 —SiO 2 perm amorphous refractory for tundish is said to be a material that has a maximum expansion and is difficult to crack. When an Al 2 O 3 —SiO 2 material similar to that of Patent Document 1 was used as a permanent permanent refractory for use, a perm lining was cracked.

特開平10−156517号公報Japanese Patent Application Laid-Open No. 10-156517

本発明が解決しようとする課題は、パーマライニングに亀裂の発生を抑制できるタンディッシュのライニング構造及びタンディッシュ用パーマ不定形耐火物を提供することにある。   Problem to be solved by the invention is providing the lining structure of tundish which can suppress generation | occurrence | production of a crack to a perm lining, and a perm monolithic refractory for tundish.

本発明者らは、前述の課題を解決するには単にパーマ不定形耐火物の熱膨張を下げるのではなく、パーマ不定形耐火物と鉄皮との熱膨張特性の関係を考慮すべきと考えた。すなわち、タンディッシュのライニング構造においてパーマ不定形耐火物はスタッドにより鉄皮と固定される構成となるため、鉄皮の熱膨張とパーマ不定形耐火物の熱膨張との差が大きいと、パーマ不定形耐火物(パーマライニング)に亀裂を生じる原因となると考えたのである。具体的には、鉄皮の熱膨張とパーマ不定形耐火物の熱膨張との差が大きく、鉄皮の熱膨張>パーマ不定形耐火物の熱膨張であると、パーマ不定形耐火物には常に引張方向の力が働き、亀裂の原因となり、一方、鉄皮の熱膨張<パーマ不定形耐火物の熱膨張であると、パーマ不定形耐火物に圧縮方向の力が働き、セリ割れやセリ出しといった耐火物劣化の原因となるということである。そこで、本発明者らは前述の課題を解決するために、鉄皮の熱膨張とパーマ不定形耐火物の熱膨張との差に着目して検討を重ね、本発明に想到した。   In order to solve the above-mentioned problems, the present inventors considered that the relationship between the thermal expansion characteristics of the permanent unshaped refractories and the iron skin should be taken into consideration, rather than merely reducing the thermal expansion of the permanent unshaped refractories. The In other words, in the tundish lining structure, the permanent permanent refractory is fixed to the iron shell by the stud. Therefore, if the difference between the thermal expansion of the core and the permanent permanent refractory is large, the permanent permanent refractory It was thought that it causes a crack to occur in the fixed refractory (perm lining). Specifically, if the difference between the thermal expansion of the iron shell and the thermal expansion of the permanent non-permanent refractory is large, and the thermal expansion of the iron shell> the thermal expansion of the permanent non-perforate refractory, The tensile force always acts and causes cracking. On the other hand, if the thermal expansion of the iron skin is less than the thermal expansion of the permanent permanent refractory, the compressive force acts on the permanent permanent refractory, causing cracks and cracks. It is a cause of refractory deterioration such as out. Then, in order to solve the above-mentioned subject, the present inventors considered repeatedly to the present invention, paying attention to the difference between the thermal expansion of iron skin and the thermal expansion of a permanent unshaped refractories.

すなわち、本発明の一観点によれば、次のタンディッシュのライニング構造が提供される。
溶融金属を受けるタンディッシュのライニング構造であって、
鉄皮と、当該鉄皮の内面にライニングされたパーマ不定形耐火物と、を備え、
前記パーマ不定形耐火物の厚さ方向の中央部における受熱時温度の熱膨張率(Ta)と前記鉄皮の内面における受熱時温度の熱膨張率(Tb)との差(Ta−Tb)が0%以上0.20%以下であることを特徴とするタンディッシュのライニング構造。
That is, according to one aspect of the present invention, the following tundish lining structure is provided.
It is a lining structure of tundish which receives molten metal, and
An iron skin, and a permanent permanent refractory lined on the inner surface of the iron skin,
The difference (Ta−Tb) between the thermal expansion coefficient (Ta) at the time of heat reception at the center of the permanent permanent refractory in the thickness direction and the thermal expansion coefficient (Tb) at the heat reception temperature at the inner surface of the iron skin is A lining structure of tundish characterized by 0% or more and 0.20% or less.

また、本発明の他の観点によれば、次のタンディッシュ用パーマ不定形耐火物が提供される。
溶融金属を受けるタンディッシュの鉄皮の内面にライニングされるタンディッシュ用パーマ不定形耐火物であって、
耐火原料として、焼成珪石を5質量%以上15質量%以下含み、耐火原料の残部としてアルミナ質原料及びアルミナ・シリカ質原料の少なくとも一つを含み、さらに添加剤として分散剤、結合剤及び増粘剤の少なくとも一つを含み、
300℃〜700℃における熱膨張率が0.20%以上0.7%以下、300℃〜700℃における残存線変化率が0%以上0.18%以下であることを特徴とするタンディッシュ用パーマ不定形耐火物。
According to another aspect of the present invention, the following permanent tamper-resistant refractory for tundish is provided.
A permanate monolithic refractory for tundish lined with the inner surface of a tundish iron shell which receives molten metal,
As a refractory raw material, 5% by mass to 15% by mass of calcined silica is included, and at least one of an alumina raw material and an alumina / silica raw material is included as the balance of the refractory raw material, and further, a dispersant, a binder and a thickening agent are added as additives. Containing at least one of the
For tundish, characterized in that the coefficient of thermal expansion at 300 ° C. to 700 ° C. is 0.20% or more and 0.7% or less and the rate of change in residual line at 300 ° C. to 700 ° C. is 0% or more and 0.18% or less. Permanent unshaped refractory.

本発明によれば、タンディッシュのライニング構造においてパーマライニングの亀裂の発生を抑制できる。   ADVANTAGE OF THE INVENTION According to this invention, generation | occurrence | production of the crack of a perm lining can be suppressed in the lining structure of a tundish.

本発明のタンディッシュのライニング構造は、鉄皮と、当該鉄皮の内面にライニングされたパーマ不定形耐火物とを備える。一般的には、パーマ不定形耐火物はスタッドにより鉄皮と固定され、パーマ不定形耐火物の内面側にはウェア耐火物がライニングされる。このようなライニング構造において本発明では、パーマ不定形耐火物の厚さ方向の中央部における受熱時温度の熱膨張率(Ta)と鉄皮の内面における受熱時温度の熱膨張率(Tb)との差(Ta−Tb)が0%以上0.20%以下となるようにしている。このようにタンディッシュに溶融金属を受けているときの温度である受熱時温度を基準として、パーマ不定形耐火物の熱膨張率(Ta)と鉄皮の熱膨張率(Tb)との差(Ta−Tb)を0%以上とすることで引張応力の発生を抑え、さらに0.20%以下とすることでセリ出しおよびセリ割れを抑え、パーマ不定形耐火物(パーマライニング)の劣化を抑制できる。なお、前述の受熱時温度とは、パーマ不定形耐火物についてはその厚さ方向の中央部における温度とし、鉄皮についてはその内面における温度としている。   The lining structure of the tundish of the present invention comprises an iron shell and a permanent non-shaped refractory lined on the inner surface of the iron shell. Generally, the permanent non-uniform refractory is fixed to the iron skin by the studs, and the inner surface of the permanent non-uniform refractory is lined with a ware refractory. In the lining structure as described above, according to the present invention, the thermal expansion coefficient (Ta) of the temperature at the time of heat reception and the thermal expansion coefficient (Tb) of the temperature at the heat reception of the inner surface of the iron skin Difference (Ta-Tb) is set to be 0% or more and 0.20% or less. Thus, the difference between the coefficient of thermal expansion (Ta) of the permanent non-permanent refractory and the coefficient of thermal expansion (Tb) of the iron shell (based on the temperature at the time of heat reception, which is the temperature when the tundish receives molten metal) When Ta-Tb) is 0% or more, the generation of tensile stress is suppressed, and when it is 0.20% or less, scouring and cracking are suppressed and deterioration of permanent refractory (perm lining) is suppressed. it can. The temperature at the time of heat reception is the temperature at the central portion in the thickness direction of the permanent unshaped refractories, and the temperature at the inner surface of the iron shell.

本発明のタンディッシュ用パーマ不定形耐火物(以下、単に「パーマ不定形耐火物」という。)は、前述の熱膨張率の差(Ta−Tb)を0%以上0.20%以下にできるように設計されたもので、その熱膨張特性は、300℃〜700℃における熱膨張率が0.20%以上0.70%以下、300℃〜700℃における残存線変化率が0%以上0.18%以下である。すなわち、本発明者らが各種タンディッシュにおいてパーマ不定形耐火物の厚さ方向の中央部における受熱時温度を評価したところ、概ね300℃〜700℃の範囲にあることがわかったことから、本発明においてパーマ不定形耐火物の熱膨張特性は300℃〜700℃で評価することとした。また、鉄皮の受熱時温度を評価したところ、概ね170℃〜350℃の範囲にあり、この温度範囲における鉄皮の熱膨張率は0.20%以上0.5%以下であった。そして、前述の熱膨張率の差(Ta−Tb)を0%以上0.2%以下にする点から、パーマ不定形耐火物の300℃〜700℃における熱膨張率を0.20%以上0.70%以下に特定した。   The permanent monolithic refractory for tundish according to the present invention (hereinafter, simply referred to as “perma monolithic refractory”) can have the above-mentioned difference in thermal expansion coefficient (Ta−Tb) to be 0% or more and 0.20% or less The thermal expansion characteristics of the thermal expansion characteristics are 0.20% or more and 0.70% or less at 300 ° C. to 700 ° C., and 0% or more of the rate of change in residual line at 300 ° C. to 700 ° C. .18% or less. That is, when the present inventors evaluated the temperature at the time of heat reception at the central portion in the thickness direction of the permanent unshaped refractories in various tundishes, it was found that the temperature was approximately in the range of 300 ° C. to 700 ° C. In the invention, the thermal expansion characteristics of the permanent non-permanent refractory were evaluated at 300 ° C. to 700 ° C. Moreover, when the temperature at the time of heat reception of iron skin was evaluated, it was in the range of about 170 degreeC-350 degreeC, and the thermal expansion coefficient of iron skin in this temperature range was 0.20% or more and 0.5% or less. And from the point which makes the difference (Ta-Tb) of the above-mentioned coefficient of thermal expansion 0% or more and 0.2% or less, the coefficient of thermal expansion at 300 ° C. to 700 ° C. of permanent permanent compact 0.20 or more 0 .70% or less.

また、タンディッシュにおいては、稼働終了後にウェア耐火物の補修等を行う場合、パーマ不定形耐火物は室温程度まで冷却される。このとき、パーマ不定形耐火物の残存線変化率がマイナスであると、収縮亀裂が発生しやすくなるため、残存線変化率はプラス(0以上)にする必要がある。一方、残存線変化率の値がプラスに大きすぎると(0.18%を超えると)、稼働中の熱膨張率が大きくなりすぎてしまい(後述する比較例5参照)、亀裂を生じてしまう。このため、300℃〜700℃における残存線変化率を0%以上0.18%以下とすることで、熱膨張率の差(Ta−Tb)を小さくできることと相まって、パーマ不定形耐火物(パーマライニング)に亀裂の発生を抑制できる。   Further, in the tundish, when repair or the like of the ware refractory is carried out after the operation is finished, the permanent non-shaped refractory is cooled to about room temperature. At this time, if the residual linear change rate of the permanent unshaped refractory is negative, shrinkage cracks are likely to occur, so the residual linear change rate needs to be positive (0 or more). On the other hand, if the residual line change rate value is too large (more than 0.18%), the thermal expansion coefficient during operation becomes too large (see Comparative Example 5 described later), and cracks occur. . Therefore, by setting the residual linear change rate at 300 ° C. to 700 ° C. to be 0% or more and 0.18% or less, combined with the fact that the difference in thermal expansion coefficient (Ta-Tb) can be reduced, permanent permanent refractory (perm The occurrence of cracks in the lining can be suppressed.

また、本発明のパーマ不定形耐火物は、前述の熱膨張特性(300℃〜700℃における熱膨張率及び残存線変化率)を得るために、焼成珪石を5質量%以上15質量%以下含む。ここで焼成珪石とは、珪石を約1000℃以上の温度で焼成して、珪石の主鉱物である石英をトリジマイトやクリストバライト、あるいはこれらの混合相に転移させたものであり、この焼成珪石としては屑煉瓦や使用済み回収煉瓦を使用することもできる。本発明者らは、焼成珪石が鉱物(結晶相)としてクリストバライト、トリジマイトを多く含み、このことが前述の熱膨張特性(300℃〜700℃における熱膨張率及び残存線変化率)を得るのに有効であるとの知見に基づき、焼成珪石を使用することとした。   In addition, the permanent non-permanent refractory of the present invention contains 5% by mass or more and 15% by mass or less of calcined silica to obtain the above-mentioned thermal expansion characteristics (thermal expansion coefficient and residual linear change ratio at 300 ° C. to 700 ° C.). . Here, calcined silica is a silica obtained by firing silica at a temperature of about 1000 ° C. or more to convert quartz, which is the main mineral of silica, to tridymite, cristobalite, or a mixed phase of these, and such calcined silica is a calcined silica. Scrap bricks and used recovered bricks can also be used. The present inventors have found that calcined silica contains a large amount of cristobalite and tridymite as minerals (crystalline phase), and this provides the aforementioned thermal expansion characteristics (thermal expansion coefficient and residual linear change rate at 300 ° C. to 700 ° C.). Based on the finding that it is effective, it was decided to use calcined silica.

前述の熱膨張特性(300℃〜700℃における熱膨張率及び残存線変化率)をより確実に得る点から、焼成珪石100質量%中のクリストバライト及び/又はトリジマイトの含有量は合量で60質量%以上であることが好ましく、より具体的には、焼成珪石100質量%中に、トリジマイトを50質量%以上90質量%以下、クリストバライトを10質量%以上45質量%以下含み、かつ焼成珪石中の石英の含有量は5質量%以下(0を含む)であることが好ましい。   The content of cristobalite and / or tridymite in 100% by mass of calcined silica is 60% in total from the point of obtaining the above-mentioned thermal expansion characteristics (thermal expansion coefficient and residual linear change ratio at 300 ° C. to 700 ° C.) more reliably. More specifically, it contains 50% by mass to 90% by mass of tridymite and 10% by mass to 45% by mass of cristobalite in 100% by mass of the calcined silica, and in the calcined silica The content of quartz is preferably 5% by mass or less (including 0).

本発明のパーマ不定形耐火物はAl−SiO質とすることができ、耐火原料として焼成珪石を5質量%以上15質量%以下含むほか、耐火原料の残部としてアルミナ質原料及びアルミナ・シリカ質原料(シャモット質原料、ムライト質原料、シリマナイト質原料等)の少なくとも一つを含むことができ、さらに添加剤として、不定形耐火物で一般的に使用されている分散剤、結合剤及び増粘剤の少なくとも一つを含むことができる。なお、施工時には水を添加するが、本発明において水はパーマ不定形耐火物の配合100質量%には含めず、パーマ不定形耐火物の配合100質量%に対して外掛けで添加するものとする。 The permanent amorphous refractory of the present invention can be made of Al 2 O 3 —SiO 2 , and contains 5% by mass to 15% by mass of calcined silica as a refractory raw material, and an alumina raw material and alumina as the remainder of the refractory raw material -It can contain at least one of siliceous raw materials (chamotte raw materials, mullite raw materials, sillimanite raw materials, etc.), and as additives, dispersants and binders commonly used in amorphous refractories And at least one of thickeners. In addition, although water is added at the time of construction, in the present invention, water is not included in 100% by mass of the permanent permanent refractory, but is added to the outer periphery of 100% by weight of the permanent permanent refractory. Do.

表1及び表2に示す各例の配合によるパーマ不定形耐火物について、熱膨張率及び残存線変化率を評価した。また、各例のパーマ不定形耐火物によるタンディッシュのライニング構造について、パーマ不定形耐火物の厚さ方向の中央部における受熱時温度の熱膨張率(Ta)と鉄皮の内面における受熱時温度の熱膨張率(Tb)との差(Ta−Tb)(以下「鉄皮との熱膨張差」という。)を評価するとともに、実炉評価を行った。   The coefficient of thermal expansion and the rate of change in residual linear rate were evaluated for the permanent unstructured refractories according to the formulations shown in Tables 1 and 2. In addition, regarding the tundish lining structure of the permanent permanent refractory in each example, the thermal expansion coefficient (Ta) of the heat receiving temperature at the center in the thickness direction of the permanent permanent refractory and the heat receiving temperature on the inner surface of the iron skin While evaluating the difference (Ta-Tb) with the coefficient of thermal expansion (Tb) of (hereinafter referred to as "the difference in thermal expansion with iron skin"), the actual furnace evaluation was performed.

熱膨張率はJIS−R2207に準拠して、残存線変化率はJIS-R2254に準拠して、それぞれ300℃と700℃において測定した。
鉄皮との熱膨張差は、JIS−R2207に準拠して測定したTaとTbからTa−Tbを計算して求めた。なお、表1及び表2において「1)耐火物350℃、鉄皮200℃」とは、タンディッシュのライニング構造においてパーマ不定形耐火物の厚さ方向の中央部における受熱時温度が350℃、鉄皮の内面における受熱時温度が200℃の場合であることを表しており、「2)耐火物480℃、鉄皮273℃」「3)耐火物675℃、鉄皮320℃」についても同様である。これら1)〜3)の場合は、タンディッシュのライニング構造における受熱時温度の上限と下限をほぼ網羅する。
The coefficient of thermal expansion was measured at 300 ° C. and 700 ° C. according to JIS-R2207, and the residual linear change rate according to JIS-R2254.
The thermal expansion difference with the iron skin was calculated by calculating Ta-Tb from Ta and Tb measured according to JIS-R2207. In Tables 1 and 2, “1) refractory 350 ° C., iron skin 200 ° C.” means that the heat receiving temperature at the center in the thickness direction of the permanent refractory is 350 ° C. in the tundish lining structure, This also indicates that the heat receiving temperature on the inner surface of the iron skin is 200 ° C., and the same applies to “2) refractory 480 ° C., iron 273 ° C.” and “3) refractory 675 ° C., iron skin 320 ° C.” It is. In the cases of 1) to 3), the upper limit and lower limit of the heat receiving temperature in the tundish lining structure are almost covered.

実炉評価では、1炉代後における亀裂幅1mm以上の亀裂本数と耐用使用回数を評価した。ここで「1炉代後」とは、パーマライニングの内面側のウェアライニングが消失した後のことであり、実炉評価では、まずこの1炉代後においてパーマ不定形耐火物(パーマライニング)に生じている亀裂幅1mm以上の亀裂本数を評価した。表1及び表2では、この亀裂本数が10本未満の場合を◎(優)、10本以上20本未満の場合を○(良)、20本以上の場合を×(不良)と表記した。
また、タンディッシュのライニング構造では前述の1炉代後、ウェアライニングを再施工して使用を続け、2炉代後もパーマライニングが使用できる限りウェアライニングを再施工して使用を続ける。そこで、実炉評価では、パーマライニングを継続して使用できる炉代数を耐用使用回数として評価した。表1及び表2では、耐用使用回数が7炉代超(8炉代以上)の場合を◎(優)、6炉代又は7炉代の場合を○(良)、6炉代未満(5炉代以下)の場合を×(不良)と表記した。
In the actual furnace evaluation, the number of cracks with a crack width of 1 mm or more after one furnace cost and the number of times of service were evaluated. Here, “after one furnace” means that the wear lining on the inner side of the perma lining has disappeared. In the actual furnace evaluation, first, after this one furnace, the permanent refractory (perm lining) is used. The number of cracks having a width of 1 mm or more was evaluated. In Table 1 and Table 2, the case where the number of cracks is less than 10 is indicated as ◎ (excellent), the case where it is 10 or more and less than 20 is indicated as ◯ (good), and the case where it is 20 or more is indicated as × (defect).
In the tundish lining structure, the wear lining is reconstructed after the first furnace, and the wear lining is reconstructed as long as the perma lining can be used after the second furnace. Therefore, in the actual furnace evaluation, the furnace algebra that can continue to use perma lining was evaluated as the number of serviceable uses. In Tables 1 and 2, when the service life is over 7 furnaces (8 furnaces or more), ◎ (excellent), 6 or 7 furnaces (good), less than 6 furnaces (5 The case of the furnace cost or less) was described as x (defect).

表1及び表2には、各例の配合に使用した焼成珪石中の鉱物量も示している。この焼成珪石中の鉱物量は、内標準物質としてシリコンを使用した内部標準法によりX線最強回折強度から求めた。内部標準法とは、内標準物質と試料を一定の割合で混合し、成分濃度と回折線強度比との間には直線比例関係が得られることを利用して、濃度が既知の標準試料で検量線を作成し分析する公知の方法である。表1及び表2に示しているように、焼成珪石中の鉱物は、クリストバライト(Cri)とトリジマイト(Tri)が主体で、石英(Q)は少ない。一方、生珪石中の鉱物は石英(Q)が主体(概ね95質量%以上)である。   Tables 1 and 2 also show the amount of mineral in the calcined silica used in the formulation of each example. The amount of minerals in the calcined silica was determined from the X-ray strongest diffraction intensity by an internal standard method using silicon as an internal standard substance. The internal standard method is a standard sample whose concentration is known, using the fact that the internal standard substance and the sample are mixed in a certain ratio, and a linear proportional relationship is obtained between the component concentration and the diffraction line intensity ratio. This is a known method for creating and analyzing a calibration curve. As shown in Tables 1 and 2, minerals in calcined silica are mainly cristobalite (Cri) and tridymite (Tri), and less quartz (Q). On the other hand, the mineral in raw silica is mainly quartz (Q) (approximately 95% by mass or more).

なお、表1及び表2に示す各例の配合において「その他」とは、シリカ超微粉、分散剤、結合剤、増粘剤等である。   In addition, in the mixing | blending of each example shown to Table 1 and Table 2, "others" are a silica ultra-fine powder, a dispersing agent, a binder, a thickener, etc.

Figure 2019126828
Figure 2019126828

Figure 2019126828
Figure 2019126828

表1の実施例1〜6は、いずれも本発明の範囲内にあるパーマ不定形耐火物とタンディッシュのライニング構造である。1炉代後における亀裂幅1mm以上の亀裂本数が少なく、耐用使用回数も6炉代以上で良好な耐用性が得られた。   Examples 1 to 6 in Table 1 are lining structures of permanent non-shaped refractories and tundish all being within the scope of the present invention. The number of cracks with a crack width of 1 mm or more after one furnace cost was small, and good serviceability was obtained when the number of service life was 6 furnaces or more.

これに対して、表2の比較例1〜3は、焼成珪石の配合量が本発明の範囲を下回る例であり、その結果、300℃〜700℃における熱膨張率が小さくなり、鉄皮との熱膨張差が大きくなった(鉄皮の熱膨張>パーマ不定形耐火物の熱膨張)。したがって、比較例1〜3のパーマ不定形耐火物(パーマライニング)には常に引っ張りの力が働くことになり、実炉評価では亀裂本数が多くなった。
一方、表2の比較例4、5は、焼成珪石の配合量が本発明の範囲を上回る例であり、その結果、300℃〜700℃における熱膨張率が大きくなり、鉄皮との熱膨張差が大きくなった(鉄皮の熱膨張<パーマ不定形耐火物の熱膨張)。したがって、比較例4、5のパーマ不定形耐火物(パーマライニング)には常に圧縮方向の力が働くことになり、実炉評価ではせり出しが見られ亀裂本数が多くなった。
On the other hand, Comparative Examples 1-3 in Table 2 are examples in which the blended amount of the calcined silica falls below the range of the present invention, and as a result, the coefficient of thermal expansion at 300 ° C. to 700 ° C. decreases, (The thermal expansion of the iron skin> Thermal expansion of the permanent permanent refractory). Therefore, a tensile force always acts on the permanent refractories (perm lining) of Comparative Examples 1 to 3, and the number of cracks increased in the actual furnace evaluation.
On the other hand, Comparative Examples 4 and 5 in Table 2 are examples in which the blended amount of the calcined silica exceeds the range of the present invention, and as a result, the coefficient of thermal expansion at 300 ° C. to 700 ° C. increases and the thermal expansion with the iron skin. The difference became large (thermal expansion of the iron skin <thermal expansion of the permanent permanent refractory). Therefore, a force in the compression direction always acts on the permanent refractory material (perm lining) of Comparative Examples 4 and 5, and in the actual furnace evaluation, protrusion was seen and the number of cracks increased.

Claims (4)

溶融金属を受けるタンディッシュのライニング構造であって、
鉄皮と、当該鉄皮の内面にライニングされたパーマ不定形耐火物と、を備え、
前記パーマ不定形耐火物の厚さ方向の中央部における受熱時温度の熱膨張率(Ta)と前記鉄皮の内面における受熱時温度の熱膨張率(Tb)との差(Ta−Tb)が0%以上0.20%以下であることを特徴とするタンディッシュのライニング構造。
It is a lining structure of tundish which receives molten metal, and
An iron skin, and a permanent permanent refractory lined on the inner surface of the iron skin,
The difference (Ta−Tb) between the thermal expansion coefficient (Ta) at the time of heat reception at the center of the permanent permanent refractory in the thickness direction and the thermal expansion coefficient (Tb) at the heat reception temperature at the inner surface of the iron skin is A lining structure of tundish characterized by 0% or more and 0.20% or less.
溶融金属を受けるタンディッシュの鉄皮の内面にライニングされるタンディッシュ用パーマ不定形耐火物であって、
耐火原料として、焼成珪石を5質量%以上15質量%以下含み、耐火原料の残部としてアルミナ質原料及びアルミナ・シリカ質原料の少なくとも一つを含み、さらに添加剤として分散剤、結合剤及び増粘剤の少なくとも一つを含み、
300℃〜700℃における熱膨張率が0.20%以上0.70%以下、300℃〜700℃における残存線変化率が0%以上0.18%以下であることを特徴とするタンディッシュ用パーマ不定形耐火物。
A permanate monolithic refractory for tundish lined with the inner surface of a tundish iron shell which receives molten metal,
As a refractory raw material, 5% by mass to 15% by mass of calcined silica is included, and at least one of an alumina raw material and an alumina / silica raw material is included as the balance of the refractory raw material, and further, a dispersant, a binder and a thickening agent are added as additives. Containing at least one of the
For tundish characterized in that the coefficient of thermal expansion at 300 ° C to 700 ° C is 0.20% or more and 0.70% or less, and the residual linear change rate at 300 ° C to 700 ° C is 0% or more and 0.18% or less. Permanent unshaped refractory.
前記焼成珪石100質量%中に、クリストバライト及び/又はトリジマイトを合量で60質量%以上含む請求項2に記載のタンディッシュ用パーマ不定形耐火物。   The permanent monolithic refractory for tundish according to claim 2, wherein cristobalite and / or tridymite are contained in a total amount of 60% by mass or more in 100% by mass of the calcined silica. 前記焼成珪石100質量%中に、トリジマイトを50質量%以上90質量%以下、クリストバライトを10質量%以上45質量%以下含み、かつ前記焼成珪石中の石英の含有量が5質量%以下(0を含む)である請求項2に記載のタンディッシュ用パーマ不定形耐火物。   100% by mass of the calcined silica contains 50% by mass to 90% by mass of tridymite, 10% by mass to 45% by mass of cristobalite, and the content of quartz in the calcined silica is 5% by mass or less (0 The permanent refractory of claim 2, wherein the refractory is a tundish.
JP2018010852A 2018-01-25 2018-01-25 Tandish lining structure and perm amorphous refractory for tundish Active JP6962827B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018010852A JP6962827B2 (en) 2018-01-25 2018-01-25 Tandish lining structure and perm amorphous refractory for tundish

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018010852A JP6962827B2 (en) 2018-01-25 2018-01-25 Tandish lining structure and perm amorphous refractory for tundish

Publications (2)

Publication Number Publication Date
JP2019126828A true JP2019126828A (en) 2019-08-01
JP6962827B2 JP6962827B2 (en) 2021-11-05

Family

ID=67471666

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018010852A Active JP6962827B2 (en) 2018-01-25 2018-01-25 Tandish lining structure and perm amorphous refractory for tundish

Country Status (1)

Country Link
JP (1) JP6962827B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110860681A (en) * 2019-10-31 2020-03-06 张家港宏昌钢板有限公司 Continuous casting coating tundish spraying method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0442868A (en) * 1990-06-05 1992-02-13 Kurosaki Refract Co Ltd Amorphous refractories excellent in corrosion resistance and heat spalling resistance
JPH10156517A (en) * 1996-11-28 1998-06-16 Nisshin Steel Co Ltd Method for working monolithic back up lining in molten metal vessel
JP2004131310A (en) * 2002-10-08 2004-04-30 Kawasaki Refract Co Ltd Castable refractory for lining tundish
JP2017065956A (en) * 2015-09-29 2017-04-06 黒崎播磨株式会社 Alumina-silica-based brick

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0442868A (en) * 1990-06-05 1992-02-13 Kurosaki Refract Co Ltd Amorphous refractories excellent in corrosion resistance and heat spalling resistance
JPH10156517A (en) * 1996-11-28 1998-06-16 Nisshin Steel Co Ltd Method for working monolithic back up lining in molten metal vessel
JP2004131310A (en) * 2002-10-08 2004-04-30 Kawasaki Refract Co Ltd Castable refractory for lining tundish
JP2017065956A (en) * 2015-09-29 2017-04-06 黒崎播磨株式会社 Alumina-silica-based brick

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110860681A (en) * 2019-10-31 2020-03-06 张家港宏昌钢板有限公司 Continuous casting coating tundish spraying method

Also Published As

Publication number Publication date
JP6962827B2 (en) 2021-11-05

Similar Documents

Publication Publication Date Title
JP2017007901A (en) Spinel-magnesia-carbonaceous brick
JP6179534B2 (en) Unshaped refractories for blast furnace glazing
JP4484694B2 (en) Castable refractories
JP2008143757A (en) Monolithic refractory
JP2019126828A (en) Tundish lining structure and tundish permanent monolithic refractory
JP2019127401A (en) Castable refractory
JPH09202667A (en) Castable refractory for slide gate
JP6077877B2 (en) Castable refractories for blast furnace firewood
JP2874831B2 (en) Refractory for pouring
JP6823042B2 (en) Precast block refractory for coke oven
JP2004131310A (en) Castable refractory for lining tundish
JP2020100853A (en) Monolithic refractory for blast furnace runner cover
JP6219751B2 (en) Unshaped refractories for tundish lining
JP6303792B2 (en) Cast refractories for lance pipes
JP6266968B2 (en) Blast furnace hearth lining structure
JP6098834B2 (en) Amorphous refractories for molten aluminum alloys
US20170081244A1 (en) Unshaped refractory material
JP2000335980A (en) Graphite-containing monolithic refractory
JPS6049156B2 (en) Fireproof castable for ladle lining
JPH06144939A (en) Basic castable refractory
JPH03205367A (en) Amorphous refractory for casting
JP6464831B2 (en) Immersion nozzle for continuous casting and method for continuous casting of steel
JPH06172044A (en) Castable refractory of alumina spinel
JPH02141480A (en) Castable refractory
JP2023165768A (en) Castable refractories and molten steel ladle using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201104

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210825

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210831

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210917

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211005

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211014

R150 Certificate of patent or registration of utility model

Ref document number: 6962827

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150