JP2008143757A - Monolithic refractory - Google Patents

Monolithic refractory Download PDF

Info

Publication number
JP2008143757A
JP2008143757A JP2006335045A JP2006335045A JP2008143757A JP 2008143757 A JP2008143757 A JP 2008143757A JP 2006335045 A JP2006335045 A JP 2006335045A JP 2006335045 A JP2006335045 A JP 2006335045A JP 2008143757 A JP2008143757 A JP 2008143757A
Authority
JP
Japan
Prior art keywords
refractory
mass
composite material
amorphous refractory
silicon nitride
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006335045A
Other languages
Japanese (ja)
Inventor
Kazuma Nishiuchi
一磨 西内
Masaaki Hasegawa
雅章 長谷川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
NGK Adrec Co Ltd
Original Assignee
NGK Insulators Ltd
NGK Adrec Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd, NGK Adrec Co Ltd filed Critical NGK Insulators Ltd
Priority to JP2006335045A priority Critical patent/JP2008143757A/en
Publication of JP2008143757A publication Critical patent/JP2008143757A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Ceramic Products (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a monolithic refractory which has an excellent spalling resistance, improved oxidation and corrosion resistances, high heat conductivity and high strength. <P>SOLUTION: The monolithic refractory contains a refractory comprising coarse particles, intermediate-sized particles and fine particles, and an alumina cement. The monolithic refractory contains 20-90 mass% of a composite material of silicon carbide and silicon nitride. The composite material contains at least one selected from among the group consisting of Al, Ca, Fe, Ti, Zr and Mg in an amount of 0.1-8 mass% in terms of oxide. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、窒化珪素結合炭化珪素(SiC)耐火物などの炭化珪素と窒化珪素の複合材料を含有する不定形耐火物に関するものである。   The present invention relates to an amorphous refractory containing a composite material of silicon carbide and silicon nitride such as silicon nitride bonded silicon carbide (SiC) refractory.

従来から工業用炉材として不定形耐火物が使用されており、アルミナセメントに耐火原料の粒径1μm以下の超微粉を加え、耐火物を低気孔率かつ小気孔径にすることによって耐食性及び強度特性を向上させた低セメントキャスタブルを使用することが知られている(特許文献1を参照。)。   Conventionally, amorphous refractories have been used as industrial furnace materials. Corrosion resistance and strength are achieved by adding ultrafine powder with a particle size of 1 μm or less of refractory raw material to alumina cement to make the refractory low porosity and small pore diameter. It is known to use a low cement castable with improved properties (see Patent Document 1).

しかし、特許文献1の低セメントキャスタブルでは、工業用炉材として施工後の乾燥品が低気孔率かつ小さな気孔径を有し、乾燥品の耐酸化性の向上、耐食性の向上が図れたが、乾燥品が高強度となる反面、乾燥品内の応力、熱変化によるスポーリング特性が低下するという課題があった。そこで、この課題を解決するものとして、アルミニウム溶融炉に用いられる耐火物の分野において、耐火材料中にシリカ、クロミア、チタニア、ジルコニア及びアルミナより選ばれた1種以上の超微粉を1〜15質量%配合し、且つ施工時に0.5〜5質量%の弗素化合物と0.25%以下の分散剤を添加することにより、耐火材の乾燥品がアルミニウム溶融用として溶融アルミニウムからの侵食を受けにくくし、従来の乾燥品の強度、耐摩耗性を備え、高温強度、耐クリープ性、耐火度等の熱間特性を損なうことなく、流動性、硬化性等の施工性を高めた耐火物を得る試みが行われたが(特許文献2を参照。)、依然スポーリング特性において十分な効果は得られなかった。   However, in the low cement castable of Patent Document 1, the dried product after construction as an industrial furnace material has a low porosity and a small pore diameter, and the oxidation resistance and the corrosion resistance of the dried product can be improved. While the dry product has high strength, there is a problem that the spalling characteristics due to stress and thermal change in the dry product are reduced. Therefore, in order to solve this problem, in the field of refractories used in aluminum melting furnaces, 1 to 15 masses of one or more ultrafine powders selected from silica, chromia, titania, zirconia and alumina in the refractory material. %, And 0.5-5 mass% fluorine compound and 0.25% or less dispersant are added at the time of construction, so that the dried refractory material is less susceptible to erosion from molten aluminum for melting aluminum. In addition, it has the strength and wear resistance of conventional dry products, and obtains a refractory with improved workability such as fluidity and curability without impairing hot properties such as high temperature strength, creep resistance and fire resistance. Although an attempt was made (see Patent Document 2), a sufficient effect on spalling characteristics was still not obtained.

上記の他に、特許文献3によれば、溶湯に濡れ難い性質を利用した窒化アルミニウムや窒化ほう素系耐火物を配合した材料について記載されているが、これらの耐火物は高価であり実用性に乏しい。
また、炭化珪素は耐熱衝撃性に優れるが耐食性に劣り、窒化珪素は耐食性に優れるが、耐酸化性に劣りかつ高価であるデメリットがあった。
In addition to the above, according to Patent Document 3, a material containing aluminum nitride or boron nitride-based refractory that utilizes the property of being difficult to get wet with molten metal is described, but these refractories are expensive and practical. It is scarce.
Further, silicon carbide is excellent in thermal shock resistance but inferior in corrosion resistance, and silicon nitride is excellent in corrosion resistance, but has a disadvantage of being inferior in oxidation resistance and expensive.

特開昭62−91472号公報JP-A-62-91472 特許第2131507号公報Japanese Patent No. 2131507 特開平3−183665号公報Japanese Patent Laid-Open No. 3-183665

本発明は上記した従来技術の問題点に鑑みてなされたものであり、スポーリング特性に優れるとともに、耐酸化性及び耐食性が向上し、熱伝導率が高く、高強度である不定形耐火物を提供することを目的とするものである。   The present invention has been made in view of the above-described problems of the prior art, and has excellent spalling characteristics, improved oxidation resistance and corrosion resistance, high thermal conductivity, and high strength amorphous refractory. It is intended to provide.

上記目的を達成するため、本発明者らは鋭意検討を重ねた結果、本発明に到達したものである。
すなわち、本発明によれば、粗粒と中間粒と微粒とからなる耐火材料と、アルミナセメントを含む不定形耐火物であって、該不定形耐火物中、炭化珪素と窒化珪素の複合材料を20〜90質量%含有するとともに、該複合材料中に、Al、Ca、Fe、Ti、Zr及びMgからなる群より選択される少なくとも1種を酸化物換算で0.1〜8質量%含有する不定形耐火物が提供される。
In order to achieve the above object, the present inventors have intensively studied and as a result, have reached the present invention.
That is, according to the present invention, a refractory material composed of coarse grains, intermediate grains, and fine grains, and an amorphous refractory containing alumina cement, a composite material of silicon carbide and silicon nitride is contained in the amorphous refractory. While containing 20 to 90% by mass, the composite material contains 0.1 to 8% by mass in terms of oxide of at least one selected from the group consisting of Al, Ca, Fe, Ti, Zr and Mg. An amorphous refractory is provided.

本発明においては、さらに、シリカ、クロミア、チタニア、ジルコニア及びアルミナより選ばれた1種以上の超微粉が1〜15質量%配合された不定形耐火物であることが好ましい。   In the present invention, it is further preferably an amorphous refractory in which 1 to 15% by mass of one or more ultrafine powders selected from silica, chromia, titania, zirconia and alumina are blended.

また、本発明の不定形耐火物は、熱伝導率が4W/(m・K)以上、曲げ強さが7MPa以上であり、見掛け気孔率が20%以下である物性を有することが好ましい。   The amorphous refractory of the present invention preferably has physical properties such that the thermal conductivity is 4 W / (m · K) or more, the bending strength is 7 MPa or more, and the apparent porosity is 20% or less.

本発明の不定形耐火物によれば、スポーリング特性に優れるとともに、耐酸化性及び耐食性が向上し、熱伝導率が高く、高強度であるため、侵食や損傷が、従来の不定形耐火物に比較して大幅に減少し、長寿命であり、炉のメンテナンス、補修サイクルの延長が可能になりトータルコストの削減が可能となる。   According to the amorphous refractory of the present invention, it has excellent spalling characteristics, improved oxidation resistance and corrosion resistance, high thermal conductivity, and high strength. Compared to the above, the service life is significantly reduced and the service life is longer. The furnace maintenance and repair cycle can be extended, and the total cost can be reduced.

また、本発明に係る不定形耐火物の原料として、炉材として使用されている窒化珪素結合炭化珪素(SiC)耐火物などの炭化珪素と窒化珪素の複合材料の廃材を有効に利用でき、リサイクルが可能となるという利点を有する。   Moreover, as a raw material for the amorphous refractory according to the present invention, the waste material of the silicon carbide and silicon nitride composite material such as silicon nitride-bonded silicon carbide (SiC) refractory used as a furnace material can be effectively used and recycled. Has the advantage of becoming possible.

以下、本発明の実施の形態について説明するが、本発明は以下の実施形態に限定されるものではなく、発明の範囲を逸脱しない限りにおいて、変更、修正、改良を加え得るものである。   Hereinafter, embodiments of the present invention will be described. However, the present invention is not limited to the following embodiments, and changes, modifications, and improvements can be added without departing from the scope of the invention.

本発明の不定形耐火物は、粗粒と中間粒と微粒とからなる耐火材料と、アルミナセメントを含む不定形耐火物であって、該不定形耐火物中、炭化珪素と窒化珪素の複合材料を20〜90質量%含有し、かつ該複合材料中に、Al、Ca、Fe、Ti、Zr及びMgからなる群より選択される少なくとも1種を酸化物換算で0.1〜8質量%含有するものである。   The amorphous refractory of the present invention is a refractory material comprising coarse grains, intermediate grains, and fine grains, and an amorphous refractory containing alumina cement, and is a composite material of silicon carbide and silicon nitride in the amorphous refractory. 20 to 90% by mass and 0.1 to 8% by mass in terms of oxide of at least one selected from the group consisting of Al, Ca, Fe, Ti, Zr and Mg in the composite material To do.

以下、本発明に用いる各材料について説明する。
本発明の不定形耐火物は、耐火材料とアルミナセメントを含む。耐火材料は、粗粒と中間粒と微粒とからなり、主要成分を構成する。ここで、粗粒とは、直径が3mm〜25mmの耐火材料を指し、中間粒は直径0.2mm〜3mmの耐火材料、微粒は直径1μm〜0.2mmの耐火材を指すものである。また、後述するように、耐火材料はさらに超微粉を含むこともできる。ここで、超微粉とは、直径が1μm未満の粒子を指す。
Hereinafter, each material used in the present invention will be described.
The amorphous refractory of the present invention includes a refractory material and an alumina cement. The refractory material is composed of coarse grains, intermediate grains, and fine grains, and constitutes a main component. Here, the coarse grain refers to a refractory material having a diameter of 3 mm to 25 mm, the intermediate grain refers to a refractory material having a diameter of 0.2 mm to 3 mm, and the fine grain refers to a refractory material having a diameter of 1 μm to 0.2 mm. Moreover, as will be described later, the refractory material can further contain ultrafine powder. Here, the ultrafine powder refers to particles having a diameter of less than 1 μm.

また、本発明において、炭化珪素と窒化珪素の複合材料とは、図1に示すように、多数の炭化珪素(SiC)粒子1を窒化珪素(Si)2で被覆し結合してなる窒化珪素結合SiC耐火物をいう。 In the present invention, the composite material of silicon carbide and silicon nitride is formed by coating a large number of silicon carbide (SiC) particles 1 with silicon nitride (Si 3 N 4 ) 2 as shown in FIG. A silicon nitride bonded SiC refractory.

このような窒化珪素結合SiC耐火物は、例えば次に示す方法で製造される。
SiC粒子(粗粒と中間粒と微粒からなる)と所定量のSi粉末とを混合し、次いで成形して得られた成形体を、窒素雰囲気下で、1350〜1500℃にて1〜30時間(Hr)焼成することにより、上記の窒化珪素結合SiC耐火物を製造することができる。上記方法によれば、成形体中のSiと雰囲気中の窒素とが反応し、窒化珪素がSiC粒子の周り(粒界)に生成され、SiC粒子を結合させることができる。
Such a silicon nitride bonded SiC refractory is manufactured, for example, by the following method.
A shaped product obtained by mixing SiC particles (consisting of coarse particles, intermediate particles and fine particles) and a predetermined amount of Si powder and then forming the mixture is obtained at 1350 to 1500 ° C. for 1 to 30 hours in a nitrogen atmosphere. By firing (Hr), the above-mentioned silicon nitride bonded SiC refractory can be produced. According to the above method, Si in the molded body reacts with nitrogen in the atmosphere, silicon nitride is generated around the SiC particles (grain boundaries), and the SiC particles can be bonded.

また、この方法で製造されたSiC耐火物には、Al、Ca、Fe、Ti、Zr及びMgからなる群より選択される少なくとも1種が酸化物換算で0.1〜8質量%含有されている。このような無機酸化物が0.1質量%未満しか含有されない場合には、耐酸化性が特に悪くなり、耐熱衝撃性(スポーリング性)や耐食性も悪化する。一方、8質量%を超えて含有する場合には、耐熱衝撃性(スポーリング性)や耐食性が悪化する。   Further, the SiC refractory manufactured by this method contains at least one selected from the group consisting of Al, Ca, Fe, Ti, Zr and Mg in an amount of 0.1 to 8% by mass in terms of oxide. Yes. When such an inorganic oxide is contained in an amount of less than 0.1% by mass, the oxidation resistance is particularly deteriorated, and the thermal shock resistance (spoling property) and the corrosion resistance are also deteriorated. On the other hand, when it contains exceeding 8 mass%, a thermal shock resistance (spalling property) and corrosion resistance deteriorate.

なお、本発明の耐火材料としては、上記窒化珪素結合SiC耐火物(炭化珪素と窒化珪素の複合材料)以外に、アルミナ、ムライトなどを用いることができる。粗粒と中間粒と微粒の組成割合としては、特に限定されないが、不定形耐火物全体(耐火材料、超微粉、及びアルミナセメントの合計)のうち、粗粒が10〜50質量%、中間粒が25〜60質量%、微粒が20〜60質量%の範囲であり、粗粒と中間粒と微粒の合計量は、85〜98質量であることが好ましい。   As the refractory material of the present invention, alumina, mullite, or the like can be used in addition to the silicon nitride-bonded SiC refractory (composite material of silicon carbide and silicon nitride). Although it does not specifically limit as a composition ratio of a coarse grain, an intermediate grain, and a fine grain, Coarse grain is 10-50 mass% and an intermediate grain among the whole amorphous refractories (a total of a refractory material, a superfine powder, and an alumina cement). Is in the range of 25 to 60% by mass, fine particles are in the range of 20 to 60% by mass, and the total amount of coarse particles, intermediate particles and fine particles is preferably 85 to 98% by mass.

本発明の不定形耐火物においては、窒化珪素結合SiC耐火物(炭化珪素と窒化珪素の複合材料)が20〜90質量%含有されていることが重要であり、より好ましくは30〜70質量%、更に好ましくは40〜60質量%含有される。複合材料の含有量が20質量%未満の場合には、耐食性とともに耐熱衝撃性(スポーリング性)が悪化する。一方、複合材料の含有量が90質量%を超えると、耐食性が悪化し、強度が低下する。   In the amorphous refractory of the present invention, it is important that the silicon nitride bonded SiC refractory (composite material of silicon carbide and silicon nitride) is contained in an amount of 20 to 90% by mass, more preferably 30 to 70% by mass. More preferably, it is contained in an amount of 40 to 60% by mass. When the content of the composite material is less than 20% by mass, the thermal shock resistance (spalling property) is deteriorated together with the corrosion resistance. On the other hand, if the content of the composite material exceeds 90% by mass, the corrosion resistance deteriorates and the strength decreases.

本発明の不定形耐火物においては、さらに、シリカ、クロミア、チタニア、ジルコニアおよびアルミナより選ばれた1種以上の超微粉を1〜15質量%含有することが好ましい。その理由は、超微粉の含有量が1質量%未満の場合、超微粉は耐火物の気孔や毛管を埋めることによって、平均気孔径が小さくなり、アルミナセメントと関連して結合成分として作用するものであるため、施工時に必要な水の添加量を少なくすることができるという効果が小さくなること、また、超微粉の含有量が15質量%を超えると、型に流し込む時の流動性が悪くなり、型への充填性が低下するためである。   The amorphous refractory of the present invention preferably further contains 1 to 15% by mass of one or more ultrafine powders selected from silica, chromia, titania, zirconia and alumina. The reason is that when the content of ultrafine powder is less than 1% by mass, the ultrafine powder becomes smaller in average pore diameter by filling pores and capillaries of the refractory, and acts as a binding component in connection with alumina cement. Therefore, the effect of reducing the amount of water required during construction is reduced, and if the content of ultrafine powder exceeds 15% by mass, the fluidity when pouring into the mold is deteriorated. This is because the mold filling property is lowered.

本発明の不定形耐火物は、耐火材料のほかアルミナセメントを含有する。アルミナセメントは、施工体の強度を向上させる。使用するアルミナセメントは、通常不定形耐火物に用いられるものであれば特に限定する必要はないが、中でもJISの1種、2種及び3種クラスが適している。   The amorphous refractory of the present invention contains alumina cement in addition to the refractory material. Alumina cement improves the strength of the construction body. The alumina cement to be used is not particularly limited as long as it is usually used for an amorphous refractory, but among them, JIS class 1, class 2 and class 3 are suitable.

アルミナセメントの配合量は、1〜5質量%とするのが好ましく、2〜4質量%がより好ましい。アルミナセメントの配合量を1〜5質量%としたのは、結合材として充分に作用するためには、1質量%以上が必要であり、5質量%以下としたのは、これよりも多くなると施工時の混練のために必要な水の添加水量が増え、施工時の乾燥品の気孔率を大きくするからである。また、水分が多いと乾燥して強度を発現するまでに要する時間も長くかかるからである。   The blending amount of the alumina cement is preferably 1 to 5% by mass, and more preferably 2 to 4% by mass. When the amount of alumina cement is set to 1 to 5% by mass, 1% by mass or more is necessary in order to sufficiently act as a binder, and when it is set to 5% by mass or less This is because the amount of water added for kneading during construction increases and the porosity of the dried product during construction is increased. In addition, when the amount of water is large, it takes a long time to dry and develop strength.

なお、本発明の不定形耐火物においては、前記したように、複合材料中にAl、Ca、Fe、Ti、Zr、及びMgの少なくともいずれか1種を、酸化物換算で0.1〜8質量%含有しているが、AlやFeが0.1質量%以上存在すると炭化珪素と窒化珪素の結合部にガラス相が出来、耐酸化性を向上する。8質量%以上になるとガラス相が増して耐熱衝撃性や耐食性が悪化する。 In the amorphous refractory of the present invention, as described above, at least one of Al, Ca, Fe, Ti, Zr, and Mg is contained in the composite material in an amount of 0.1 to 8 in terms of oxide. However, if Al 2 O 3 or Fe 2 O 3 is present in an amount of 0.1% by mass or more, a glass phase is formed at the bonding portion between silicon carbide and silicon nitride, and the oxidation resistance is improved. When it becomes 8 mass% or more, a glass phase will increase and a thermal shock resistance and corrosion resistance will deteriorate.

上記したような本発明に係る不定形耐火物は、これに所定量の分散剤及び水を添加、混練して流し込みなどで所定形状に施工されるものである。本発明に係る不定形耐火物を用いて施工された耐火物の物理的特性としては、強度(曲げ強度として計測)が5MPa以上、見掛け気孔率が25%以下、熱伝導率が1.5(W/m・k)以上の特性を有するという利点がある。   The above-mentioned amorphous refractory according to the present invention is prepared by adding a predetermined amount of a dispersant and water, kneading and pouring it into a predetermined shape. As physical properties of the refractory constructed using the irregular refractory according to the present invention, the strength (measured as bending strength) is 5 MPa or more, the apparent porosity is 25% or less, and the thermal conductivity is 1.5 ( (W / m · k) or more.

耐火物の強度が5MPa未満では、耐火物の寿命に十分な強度でなくなり、見掛け気孔率が25%を超えると、耐火物の緻密さに欠けることになる。また、熱伝導率が1.5(W/m・k)未満では、耐火物の表面だけが高温にさらされ、耐火物の内側と外側との温度差が大きくなり、耐火物の亀裂等、破損の原因となる。   When the strength of the refractory is less than 5 MPa, the strength of the refractory is not sufficient, and when the apparent porosity exceeds 25%, the refractory is not dense enough. In addition, if the thermal conductivity is less than 1.5 (W / m · k), only the surface of the refractory is exposed to a high temperature, the temperature difference between the inside and outside of the refractory increases, Cause damage.

なお、本発明に係る不定形耐火物を用いて施工された耐火物の物理的特性としては、熱伝導率が4W/(m・K)以上、強度が7MPa以上であり、見掛け気孔率が20%以下であることがより望ましい。   The physical properties of the refractory constructed using the amorphous refractory according to the present invention include a thermal conductivity of 4 W / (m · K) or more, a strength of 7 MPa or more, and an apparent porosity of 20 % Or less is more desirable.

また、本発明に係る不定形耐火物には、通常、分散剤が0.001〜0.25質量%、好ましくは0.01〜0.2質量%の範囲で外配合されている。分散剤は、耐火材料中の微粒及び超微粉の集合体を分散させる作用を有しており、具体的には、ヘキサメタリン酸ソーダ、トリポリリン酸ソーダ、アルカリ金属ポリリン酸等の縮合リン酸塩、β−ナフタレンスルホン酸塩ホルマリン縮合物、メラミンスルホン酸塩ホルマリン縮合物、アミノスルホン酸及びその塩、リグニンスルホン酸及びその塩、ポリアクリル酸及びその塩、アルカリ金属炭酸塩、オキシカルボン酸塩、ポリカルボン酸及びその塩、クエン酸炭酸塩、酒石酸炭酸塩等の界面活性剤を用いるのが好ましく、これらを1種又は2種以上配合して使用することができる。   Moreover, the amorphous refractory according to the present invention usually contains a dispersant in the range of 0.001 to 0.25% by mass, preferably 0.01 to 0.2% by mass. The dispersant has an action of dispersing aggregates of fine particles and ultrafine powder in the refractory material, specifically, condensed phosphates such as sodium hexametaphosphate, sodium tripolyphosphate, alkali metal polyphosphoric acid, β -Naphthalene sulfonate formalin condensate, melamine sulfonate formalin condensate, amino sulfonic acid and its salt, lignin sulfonic acid and its salt, polyacrylic acid and its salt, alkali metal carbonate, oxycarboxylate, polycarboxylic acid It is preferable to use surfactants such as acids and salts thereof, citric acid carbonate, and tartaric acid carbonate, and these can be used alone or in combination.

分散剤の添加量が0.25質量%を超えると、硬化遅延、強度低下等の悪影響があるとともに、混練時の粘性が必要以上に増加し、施工性が悪化する。なお、分散剤の添加量が0.001質量%未満では、分散の効果が充分ではなくなる場合がある。   When the added amount of the dispersant exceeds 0.25% by mass, there are adverse effects such as curing delay and strength reduction, the viscosity at the time of kneading increases more than necessary, and workability deteriorates. In addition, if the addition amount of a dispersing agent is less than 0.001 mass%, the dispersion effect may not be sufficient.

次に本発明の具体的な実施例について述べる。
まず、表1に示すように、粗粒と中間粒と微粒とからなる耐火材料、超微粉、アルミナセメント、分散剤を含む不定形耐火物について、成分組成、含有量を変化させて試験を行った(実施例1乃至7と比較例1乃至4)。
Next, specific examples of the present invention will be described.
First, as shown in Table 1, the refractory material consisting of coarse particles, intermediate particles and fine particles, ultrafine powder, alumina cement, and amorphous refractory containing a dispersant were tested by changing the composition and content. (Examples 1 to 7 and Comparative Examples 1 to 4).

得られた耐火物(水分を添加し混練後、乾燥させたもの)について、その物理的特性を測定し、評価した。その結果を表1に示す。
また、物理的特性の測定方法、条件は次のとおりである。
About the obtained refractory (water added and kneaded and dried), its physical characteristics were measured and evaluated. The results are shown in Table 1.
The physical property measurement method and conditions are as follows.

耐酸化性:
耐酸化性は、各不定形耐火物から形成した試験片(40×40×40mm)を110℃で恒量になるまで十分乾燥しておき、室温とした後、試験前に重量を測定しておく。試験片を1000℃の温度で100時間保持した後、室温になるまで放冷する。室温になった後、質量を測定して試験片の重量変化量を算出する。(基本的にはJIS R1609に準ずるが、サンプル形状、評価時間が異なる。)評価については、良好であったものを○、やや劣るものを△、不良のものを×で表1に示す。
Oxidation resistance:
For oxidation resistance, test pieces (40 × 40 × 40 mm) formed from each amorphous refractory were sufficiently dried at 110 ° C. until a constant weight was obtained, and after measuring at room temperature, the weight was measured before the test. . The test piece is held at a temperature of 1000 ° C. for 100 hours and then allowed to cool to room temperature. After reaching room temperature, the mass is measured to calculate the weight change of the test piece. (Basically, it conforms to JIS R1609, but the sample shape and the evaluation time are different.) Evaluation is shown in Table 1 with ○ being good, Δ being slightly inferior and × being poor.

耐食性:
耐食性は、各不定形耐火物から形成したルツボ型の供試体(70mmの立方体の上部に35H×30φの穴を開けたもの)に、25gのスラグ微粉を充填し、1400℃−12時間の保持を行い、冷却後、供試体を中央部にて切断し、切断面の侵食状態を観察した。評価については、良好であったものを○、やや劣るものを△、不良のものを×で表1に示す(基本的にはJIS R2214に準ずるが評価温度、評価時間が異なる)。
Corrosion resistance:
Corrosion resistance is obtained by filling a crucible-shaped specimen formed from each irregular refractory (with a hole of 35H × 30φ on the top of a 70mm cube) filled with 25g of slag fine powder and holding at 1400 ° C for 12 hours. After cooling, the specimen was cut at the center, and the erosion state of the cut surface was observed. About evaluation, it was shown in Table 1 by (circle), what was a little inferior, (triangle | delta), and a poor thing in x (basically it applies to JISR2214, but evaluation temperature and evaluation time differ).

強度(曲げ強度):
強度(曲げ強度)は、各不定形耐火物から形成した試験片(40×40×160mm)を、試験機にて長手方向の両端下面を支持した状態で上面中心部に荷重を加え、最大荷重を求めた(基本的にはJIS R2213に準ずるが、サンプル形状、測定スパンが異なる)。
Strength (bending strength):
For the strength (bending strength), a test piece (40 × 40 × 160 mm) formed from each irregular refractory is loaded at the center of the upper surface while supporting the lower surfaces at both ends in the longitudinal direction with a testing machine. (Basically, it conforms to JIS R2213, but the sample shape and measurement span are different).

気孔率:
気孔率の測定は、JIS R2205に準じて行った。
Porosity:
The porosity was measured according to JIS R2205.

熱伝導率:
熱伝導率の測定は、JIS R2168に準じて行った。
Thermal conductivity:
The measurement of thermal conductivity was performed according to JIS R2168.

Figure 2008143757
Figure 2008143757

評価:
表1からわかるように、耐火物中の複合材料(窒化珪素結合SiC)含有量が23〜90質量%の実施例1乃至7では、強度、気孔率、熱伝導率、耐熱衝撃性、耐酸化率、及び耐食性などのすべての物理的特性がすぐれており、またバランスも良かった。
Rating:
As can be seen from Table 1, in Examples 1 to 7 in which the content of the composite material (silicon nitride-bonded SiC) in the refractory is 23 to 90% by mass, strength, porosity, thermal conductivity, thermal shock resistance, oxidation resistance All physical properties such as rate and corrosion resistance were excellent and well balanced.

また、実施例1乃至7、比較例1及び2に示すように、複合材料中のAl、Ca、Fe、Ti、Zr及びMg含有量(酸化物換算)が0.1質量%以上7.5質量%で耐酸化性が良好であり、比較例3では、複合材料中のAl、Ca、Fe、Ti、Zr及びMg含有量(酸化物換算)が0%のため耐酸化性が不良であり、比較例4では、複合材料中のAl、Ca、Fe、Ti、Zr及びMg含有量(酸化物換算)が10質量%のため、耐熱衝撃性や耐食性が不良であった。   Further, as shown in Examples 1 to 7 and Comparative Examples 1 and 2, the contents of Al, Ca, Fe, Ti, Zr and Mg (as oxides) in the composite material are 0.1 mass% or more and 7.5. The oxidation resistance is good at mass%, and in Comparative Example 3, the oxidation resistance is poor because the content of Al, Ca, Fe, Ti, Zr and Mg (as oxides) in the composite material is 0%. In Comparative Example 4, since the Al, Ca, Fe, Ti, Zr, and Mg contents (as oxides) in the composite material were 10% by mass, the thermal shock resistance and corrosion resistance were poor.

本発明の不定形耐火物は、耐食性、耐酸化性に優れた金属溶解炉、焼却炉、各種セラミックスの焼成炉等の炉材として広く利用可能である。また、従来耐火物の合成不良品で窒化珪素結合SiCを含む材料も原料とすることができ、リサイクルを兼ね備えた、環境的に優れたものである。   The amorphous refractories of the present invention can be widely used as furnace materials for metal melting furnaces, incinerators, and various ceramic firing furnaces having excellent corrosion resistance and oxidation resistance. In addition, a conventional refractory poorly synthesized material containing silicon nitride-bonded SiC can also be used as a raw material, which is excellent in terms of environment and is also recycled.

本発明に係る不定形耐火物の一部拡大断面を表す模式図である。It is a schematic diagram showing the partial expanded cross section of the amorphous refractory which concerns on this invention.

符号の説明Explanation of symbols

1:SiC、2:窒化珪素 1: SiC, 2: Silicon nitride

Claims (3)

粗粒と中間粒と微粒とからなる耐火材料と、アルミナセメントを含む不定形耐火物であって、
該不定形耐火物中、炭化珪素と窒化珪素の複合材料を20〜90質量%含有するとともに、該複合材料中に、Al、Ca、Fe、Ti、Zr及びMgからなる群より選択される少なくとも1種を酸化物換算で0.1〜8質量%含有する不定形耐火物。
A refractory material comprising coarse grains, intermediate grains and fine grains, and an amorphous refractory containing alumina cement,
The amorphous refractory contains 20 to 90% by mass of a composite material of silicon carbide and silicon nitride, and the composite material contains at least selected from the group consisting of Al, Ca, Fe, Ti, Zr and Mg. An amorphous refractory containing one kind of 0.1 to 8% by mass in terms of oxide.
さらに、シリカ、クロミア、チタニア、ジルコニア及びアルミナより選ばれた1種以上の超微粉が1〜15質量%配合された請求項1記載の不定形耐火物。   The amorphous refractory according to claim 1, further comprising 1 to 15% by mass of at least one ultrafine powder selected from silica, chromia, titania, zirconia and alumina. 熱伝導率が4W/(m・K)以上、曲げ強さが7MPa以上であり、見掛け気孔率が20%以下である請求項1又は2に記載の不定形耐火物。   The amorphous refractory according to claim 1 or 2, wherein the thermal conductivity is 4 W / (m · K) or more, the bending strength is 7 MPa or more, and the apparent porosity is 20% or less.
JP2006335045A 2006-12-12 2006-12-12 Monolithic refractory Pending JP2008143757A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006335045A JP2008143757A (en) 2006-12-12 2006-12-12 Monolithic refractory

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006335045A JP2008143757A (en) 2006-12-12 2006-12-12 Monolithic refractory

Publications (1)

Publication Number Publication Date
JP2008143757A true JP2008143757A (en) 2008-06-26

Family

ID=39604337

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006335045A Pending JP2008143757A (en) 2006-12-12 2006-12-12 Monolithic refractory

Country Status (1)

Country Link
JP (1) JP2008143757A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010275120A (en) * 2009-05-26 2010-12-09 Ngk Insulators Ltd SiC-CONTAINING CASTABLE REFRACTORY, METHOD OF PRODUCING PRECAST BLOCK USING SiC-CONTAINING CASTABLE REFRACTORY AND METHOD OF CONSTRUCTING SiC-CONTAINING CASTABLE REFRACTORY
CN102234199A (en) * 2011-04-18 2011-11-09 西峡县新锦耐化有限责任公司 High-titanium furnace protection stemming
CN104140232A (en) * 2013-05-07 2014-11-12 中国石化工程建设有限公司 A 1350 DEG C grade low-iron thermally-insulating castable used for industrial furnaces and a preparing method thereof
CN104140233A (en) * 2013-05-07 2014-11-12 中国石化工程建设有限公司 A 1200 DEG C grade low-iron thermally-insulating castable used for industrial furnaces and a preparing method thereof
JP2017508429A (en) * 2014-09-10 2017-03-23 カリリオン ユーティリティ サーヴィシーズ リミテッド Materials and related arrangements, systems, and methods
CN117263662A (en) * 2023-11-21 2023-12-22 山东耐材集团鲁耐窑业有限公司 Low-internal-stress dry quenching column part brick and preparation method thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07300370A (en) * 1994-05-09 1995-11-14 Mintetsuku Japan Kk High-fluidity
JP2005082451A (en) * 2003-09-09 2005-03-31 Ngk Insulators Ltd SILICON NITRIDE-COMBINED SiC REFRACTORY AND ITS PRODUCING METHOD

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07300370A (en) * 1994-05-09 1995-11-14 Mintetsuku Japan Kk High-fluidity
JP2005082451A (en) * 2003-09-09 2005-03-31 Ngk Insulators Ltd SILICON NITRIDE-COMBINED SiC REFRACTORY AND ITS PRODUCING METHOD

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010275120A (en) * 2009-05-26 2010-12-09 Ngk Insulators Ltd SiC-CONTAINING CASTABLE REFRACTORY, METHOD OF PRODUCING PRECAST BLOCK USING SiC-CONTAINING CASTABLE REFRACTORY AND METHOD OF CONSTRUCTING SiC-CONTAINING CASTABLE REFRACTORY
CN102234199A (en) * 2011-04-18 2011-11-09 西峡县新锦耐化有限责任公司 High-titanium furnace protection stemming
CN104140232A (en) * 2013-05-07 2014-11-12 中国石化工程建设有限公司 A 1350 DEG C grade low-iron thermally-insulating castable used for industrial furnaces and a preparing method thereof
CN104140233A (en) * 2013-05-07 2014-11-12 中国石化工程建设有限公司 A 1200 DEG C grade low-iron thermally-insulating castable used for industrial furnaces and a preparing method thereof
CN104140233B (en) * 2013-05-07 2016-04-06 中国石化工程建设有限公司 A kind of low iron heat insulating casting material of 1200 DEG C of levels used for industrial furnace and preparation method
CN104140232B (en) * 2013-05-07 2016-08-17 中国石化工程建设有限公司 A kind of 1350 DEG C of level low ferrum heat insulating casting materials used for industrial furnace and preparation method
JP2017508429A (en) * 2014-09-10 2017-03-23 カリリオン ユーティリティ サーヴィシーズ リミテッド Materials and related arrangements, systems, and methods
CN117263662A (en) * 2023-11-21 2023-12-22 山东耐材集团鲁耐窑业有限公司 Low-internal-stress dry quenching column part brick and preparation method thereof
CN117263662B (en) * 2023-11-21 2024-02-27 山东耐材集团鲁耐窑业有限公司 Low-internal-stress dry quenching column part brick and preparation method thereof

Similar Documents

Publication Publication Date Title
JP6541535B2 (en) Alumina-silica brick
JP4376579B2 (en) Silicon nitride bonded SiC refractory and method for producing the same
EP3255024B1 (en) Heat-insulating monolithic refractory material
JP2008143757A (en) Monolithic refractory
JP3283883B2 (en) Alumina-magnesia-graphite refractory for continuous casting
MX2009001360A (en) Fired refractory ceramic product.
JP2015081225A (en) High-chromia-enriched castable refractory, precast block using the refractory and waste melting furnace lined with the refractory and/or the block
JP5126984B2 (en) Method for producing SiC-containing castable refractory
JP2874831B2 (en) Refractory for pouring
JP2007112701A (en) Kiln furniture for use in non-oxidizing atmosphere
JP2596681B2 (en) Castable refractories containing zirconia and mullite
JP2005008496A (en) Monolithic refractory
JP6098834B2 (en) Amorphous refractories for molten aluminum alloys
JP7130903B2 (en) Refractory materials for low-melting non-ferrous metals
JP6412646B2 (en) Brick for hearth of hot metal production furnace
US20170081244A1 (en) Unshaped refractory material
JP4388190B2 (en) Unshaped refractory for hot metal ladle hot water
JP4410459B2 (en) Castable refractories for ladle
JP3741595B2 (en) Unshaped refractory raw material and unshaped refractory
JP3088096B2 (en) High corrosion resistant alumina-chromium refractory
JP2019126828A (en) Tundish lining structure and tundish permanent monolithic refractory
JP3579231B2 (en) Zirconia / graphite refractories containing boron nitride
JP7155464B2 (en) Fused quartz-silicon nitride refractory
JP4475724B2 (en) Method for manufacturing amorphous refractory having a close-packed structure excellent in strength and spall resistance
JP2000335980A (en) Graphite-containing monolithic refractory

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080709

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100614

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100622

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100810

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100831