JP5126984B2 - Method for producing SiC-containing castable refractory - Google Patents
Method for producing SiC-containing castable refractory Download PDFInfo
- Publication number
- JP5126984B2 JP5126984B2 JP2009126199A JP2009126199A JP5126984B2 JP 5126984 B2 JP5126984 B2 JP 5126984B2 JP 2009126199 A JP2009126199 A JP 2009126199A JP 2009126199 A JP2009126199 A JP 2009126199A JP 5126984 B2 JP5126984 B2 JP 5126984B2
- Authority
- JP
- Japan
- Prior art keywords
- sic
- refractory
- raw material
- castable refractory
- fired
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Ceramic Products (AREA)
- Furnace Housings, Linings, Walls, And Ceilings (AREA)
Description
本発明はSiC含有キャスタブル耐火物の製造方法に関するものである。 The present invention relates to a method for producing a SiC-containing castable refractory .
従来より、各種産業用の炉材として、急激な温度差に対する耐スポール性を備えたキャスタブル耐火材への需要があった。 Conventionally, as a furnace material for various industries, there has been a demand for a castable refractory material having a spall resistance against a rapid temperature difference.
耐火物施工体のスポーリング性を改善する技術として、炭化珪素(以下、SiC)を含有するSiC含有キャスタブル耐火物を高温焼成して耐火物施工体を得る手法が、広く採用されてきた。 As a technique for improving the spalling property of a refractory construction body, a technique for obtaining a refractory construction body by firing a SiC-containing castable refractory containing silicon carbide (hereinafter, SiC) at a high temperature has been widely adopted.
本願出願人は、キャスタブル耐火材の耐スポール性を更に改善する技術として、キャスタブル耐火材を構成する耐火材料の中に、事前に窒素雰囲気下で焼成された窒化珪素結合SiC耐火物を粉砕して得た粗粒(直径が3mm〜25mm)を含有させる技術を開示している(特許文献1)。 As a technology for further improving the spall resistance of the castable refractory material, the applicant of the present application pulverizes a silicon nitride-bonded SiC refractory fired in advance in a nitrogen atmosphere in the refractory material constituting the castable refractory material. The technique which contains the obtained coarse grain (a diameter is 3 mm-25 mm) is disclosed (patent document 1).
ただし、SiCは900℃以上の高温酸化雰囲気下において酸化されやすい性質を持ち、当該酸化が進行すると、該耐火物施工体に割れや耐蝕性低下などの悪影響が生じ、耐火物寿命が短くなることが知られている。このため、高温酸化雰囲気で使用される炉材としては、特許文献1記載の技術(900℃未満で使用されるアルミニウム溶湯炉材用途を前提とした技術)を採用することが困難であるという問題があった。 However, SiC has the property of being easily oxidized in a high-temperature oxidizing atmosphere of 900 ° C. or higher, and when the oxidation proceeds, the refractory construction body may be adversely affected such as cracking and corrosion resistance deterioration, and the refractory life may be shortened. It has been known. For this reason, as a furnace material used in a high-temperature oxidizing atmosphere, it is difficult to employ the technique described in Patent Document 1 (a technique based on the use of molten aluminum furnace material used at less than 900 ° C.). was there.
従来より、耐火物施工体に含有されるSiCの酸化を抑制するために、耐火物施工体を緻密化して酸素の侵入を防止することで酸化を抑制する方法や、キャスタブル耐火材に酸化防止剤を添加する方法が試みられている。 Conventionally, in order to suppress the oxidation of SiC contained in the refractory construction body, a method for suppressing oxidation by densifying the refractory construction body to prevent oxygen from entering, and an antioxidant for the castable refractory material Attempts have been made to add.
このうち、耐火物施工体の緻密化に関し、一般にキャスタブル耐火物の施工時には、水との混練が必要となるため、施工体組織を、十分な酸化抑制効果を発揮できるレベルにまで緻密化させることは困難であるという事情がある。 Among these, regarding the densification of the refractory construction body, since it is generally necessary to knead with water when constructing castable refractories, the construction body structure should be densified to a level that can exhibit a sufficient oxidation suppression effect. Is difficult.
一方、酸化防止剤の添加は、酸化防止剤として低融点物質(SiC粒子の酸化する温度以下で溶解する物質)を用い、SiC粒子の周囲を被覆させて酸化防止効果を発揮するものである。したがって、当該酸化防止剤の酸化防止効果が有効に発揮されるためには、耐火物施工体の温度が、当該キャスタブル耐火物に添加された酸化防止剤の融点以上にまで昇温されることが必要となる。しかし、一般にキャスタブル耐火物は、エンドユーザーの炉内に施工されて焼成されるため、該エンドユーザーの炉内温度を適切に管理して、耐火物施工体を該酸化防止剤の融点以上にまで昇温させることは困難であり、酸化防止剤の添加しても、十分な酸化抑制効果を発揮できない場合があるという問題があった。また、同一炉内であっても、キャスタブル耐火物の施工箇所ごとに耐火物施工体温度が異なり、該温度が1000℃以下に留まる箇所では、十分な酸化抑制効果を発揮できない場合があるという問題があった。 On the other hand, the addition of an antioxidant exhibits an antioxidant effect by using a low melting point substance (a substance that dissolves below the oxidation temperature of SiC particles) as an antioxidant and covering the periphery of the SiC particles. Therefore, in order for the antioxidant effect of the antioxidant to be effectively exhibited, the temperature of the refractory construction body may be raised to a temperature equal to or higher than the melting point of the antioxidant added to the castable refractory. Necessary. However, in general, castable refractories are installed in an end user's furnace and fired. Therefore, the temperature in the end user's furnace is appropriately controlled so that the refractory construction body exceeds the melting point of the antioxidant. It is difficult to raise the temperature, and there has been a problem that even if an antioxidant is added, there may be a case where a sufficient oxidation inhibitory effect cannot be exhibited. In addition, even in the same furnace, the refractory construction body temperature differs for each construction location of the castable refractory, and there may be a case where a sufficient oxidation suppression effect may not be exhibited at a location where the temperature stays below 1000 ° C. was there.
本発明の目的は、前記の問題を解決し、高温酸化雰囲気で使用される炉材として最適な耐スポール性と耐酸化性を兼ね備えた、SiC含有キャスタブル耐火物であって、該SiC含有キャスタブル耐火物の施工体温度が1000℃以下(500℃〜1000℃)でも十分な酸化抑制効果を発揮可能なSiC含有キャスタブル耐火物の製造方法を供することである。 An object of the present invention is an SiC-containing castable refractory material that solves the above-mentioned problems and has both spall resistance and oxidation resistance optimal as a furnace material used in a high-temperature oxidizing atmosphere, and comprising the SiC-containing castable refractory material. An object of the present invention is to provide a method for producing a SiC-containing castable refractory that can exhibit a sufficient oxidation-inhibiting effect even when the construction temperature of the object is 1000 ° C. or lower (500 ° C. to 1000 ° C.).
上記課題を解決するためになされた本発明は、SiCインゴットを粉砕し、直径5mm以下の粒子を分級してSiC原料とするSiC原料準備工程と、前記SiC原料を主原料とする成形体を900℃以上の高温酸化雰囲気下で焼成して、該成形体の表面に耐酸化被膜を形成する焼成工程と、前記焼成により得た焼成体を粉砕し、直径4〜25mmの粗粒を分級し、該粗粒の含有率が30〜80質量%となるように、キャスタブル耐火材を構成する耐火材料の中に配合する配合工程を有することを特徴とするものである。The present invention made in order to solve the above-mentioned problems is to provide a SiC raw material preparation step in which a SiC ingot is pulverized and particles having a diameter of 5 mm or less are classified to make a SiC raw material, and a molded body using the SiC raw material as a main raw material is 900 Firing in a high-temperature oxidizing atmosphere at a temperature of ℃ or higher to form an oxidation-resistant film on the surface of the molded body, pulverizing the fired body obtained by the firing, and classifying coarse particles having a diameter of 4 to 25 mm, It has the compounding process mix | blended in the refractory material which comprises a castable refractory material so that the content rate of this coarse grain may be 30-80 mass%.
請求項2記載の発明は、請求項1記載のSiC含有キャスタブル耐火物の製造方法において、該焼成工程において、前記SiC原料に、V、Ca、Fe、Ba、Cu、B、P、Si、Al、Tiの何れかをSiOThe invention according to
請求項3記載の発明は、請求項1記載のSiC含有キャスタブル耐火物の製造方法において、該焼成工程において、前記SiC原料を主原料とする成形体を、窒素雰囲気下、1350〜1500℃にて1〜30時間焼成後、続いて、酸化雰囲気下での焼成を行うことを特徴とするものである。Invention of
請求項4記載の発明は、請求項1記載のSiC含有キャスタブル耐火物の製造方法において、該焼成工程において、前記SiC原料を主原料とする成形体の上に所定量の金属Siを載置して、1450℃〜1650℃にて3〜30時間の焼成を行うことを特徴とするものである。According to a fourth aspect of the present invention, in the method for producing a SiC-containing castable refractory according to the first aspect, in the firing step, a predetermined amount of metallic Si is placed on a molded body using the SiC raw material as a main raw material. The firing is performed at 1450 ° C. to 1650 ° C. for 3 to 30 hours.
一般に、純粋なSiCインゴットは、高気孔率(30〜40%)の海綿状結晶であるため、SiCインゴットを粉砕しても、4〜5mm程度の粗粒しか得られない。本発明に係るSiC含有キャスタブル耐火物の製造方法では、SiCインゴットを粉砕し、直径5mm以下の粒子を分級してSiC原料とするSiC原料準備工程と、前記SiC原料を主原料とする成形体を900℃以上の高温酸化雰囲気下で焼成して、該成形体の表面に耐酸化被膜を形成する焼成工程と、前記焼成により得た焼成体を粉砕し、直径4〜25mmの粗粒を分級し、該粗粒の含有率が30〜80質量%となるように、キャスタブル耐火材を構成する耐火材料の中に配合する配合工程を有することにより、直径が4〜25mmの粗粒を得ることを可能とし、高温酸化雰囲気で使用される炉材として最適な耐スポール性と耐酸化性を兼ね備えた、SiC含有キャスタブル耐火物の提供を実現可能とした。また、予め耐酸化被膜を形成したSiCを含有する耐火物の粉砕粒を耐火材料として含有することにより、該SiC含有キャスタブル耐火物の施工体温度が1000℃以下(500℃〜1000℃)でも十分な酸化抑制効果を発揮可能なSiC含有キャスタブル耐火物の提供を実現可能とした。 In general, a pure SiC ingot is a spongy crystal having a high porosity (30 to 40%), so that only coarse particles of about 4 to 5 mm can be obtained even if the SiC ingot is pulverized. In the method for producing a SiC-containing castable refractory according to the present invention, a SiC raw material is prepared by pulverizing a SiC ingot , classifying particles having a diameter of 5 mm or less, and using the SiC raw material as a main raw material. Firing in a high-temperature oxidizing atmosphere of 900 ° C. or higher to form an oxidation-resistant film on the surface of the molded body, crushing the fired body obtained by the firing, and classifying coarse particles having a diameter of 4 to 25 mm In order to obtain a coarse particle having a diameter of 4 to 25 mm by having a blending step of blending in the refractory material constituting the castable refractory material so that the content of the coarse particle is 30 to 80% by mass. It was possible to provide a SiC-containing castable refractory material that has both spall resistance and oxidation resistance optimal as furnace materials used in high-temperature oxidizing atmospheres. In addition, the inclusion of SiC refractory crushed grains containing an oxidation-resistant coating formed in advance as a refractory material is sufficient even when the construction temperature of the SiC-containing castable refractory is 1000 ° C. or lower (500 ° C. to 1000 ° C.). It was possible to provide a castable refractory containing SiC capable of exhibiting an excellent oxidation inhibiting effect.
以下に本発明の好ましい実施形態を示す。 Preferred embodiments of the present invention are shown below.
本発明のSiC含有キャスタブル耐火物は、耐酸化機能を備えたSiC含有耐火物の粉砕粒を20〜80質量%含有し、該粉砕粒中には、直径が4〜25mmの粗粒を含むものである。 The SiC-containing castable refractory of the present invention contains 20 to 80% by mass of pulverized grains of SiC-containing refractory having an oxidation resistance function, and the crushed grains contain coarse grains having a diameter of 4 to 25 mm. .
以下、本発明に用いる各材料について説明する。 Hereinafter, each material used in the present invention will be described.
焼成により耐酸化被膜を形成したSiCを含有する耐火物は、例えば、以下の方法で製造することができる。 The refractory containing SiC in which an oxidation resistant film is formed by firing can be manufactured, for example, by the following method.
原料の珪石・珪砂と炭素材とをアチソン型電気炉で通電加熱し、珪石・珪砂(SiO2)を炭素(C)で還元してSiCを合成するいわゆるアチソン法によって、SiCインゴットを製造後粉砕し、4〜5mm以下の粒子を分級してSiC原料とする。次に、該SiC原料にV、Ca、Fe、Ba、Cu、B、P、Si、Al、Tiの何れかをSiO2膜形成促進剤として添加し、これらを混合・成形して、気孔率5〜15%、嵩比重2.5〜2.9の成形体とする。その後、該成形体を、酸化雰囲気下、900℃〜1500℃にて3時間以上焼成することにより、上記の酸化物結合SiC耐火物を製造する。 After the SiC ingot is manufactured and pulverized by the so-called Atchison method of synthesizing SiC by heating and heating the raw material silica stone / silica sand and carbon material in an Atchison-type electric furnace and reducing the silica stone / silica sand (SiO 2 ) with carbon (C) Then, particles of 4 to 5 mm or less are classified to obtain SiC raw materials. Next, any one of V, Ca, Fe, Ba, Cu, B, P, Si, Al, and Ti is added to the SiC raw material as a SiO 2 film formation accelerator, and these are mixed and molded to obtain a porosity. A molded body having 5 to 15% and a bulk specific gravity of 2.5 to 2.9 is obtained. Thereafter, the molded body is fired at 900 ° C. to 1500 ° C. for 3 hours or more in an oxidizing atmosphere to produce the oxide-bonded SiC refractory.
上記焼成では、成形体中のSiと雰囲気中の酸素とが反応してSiO2が生成され、該ガラス質のSiO2がSiC粒子の周り(粒界)を被覆することにより、SiC粒子を結合させている。このように、900℃〜1500℃にて3時間以上焼成することにより、SiC粒子の周り(粒界)に、均一かつ密な該SiO2の被覆膜を形成することができる。当該SiO2の被覆膜により、SiCの酸化を防止することができる。なお、より好ましくは、更に、該焼成物を酸化雰囲気下・600℃〜1000℃で3時間以上保持し、該焼成物の内部気孔表面にもSiO2の被覆膜を形成させる。 In the above baking, Si in the molded body reacts with oxygen in the atmosphere to generate SiO 2 , and the vitreous SiO 2 coats the surroundings (grain boundaries) of the SiC particles, thereby binding the SiC particles. I am letting. Thus, by baking at 900 ° C. to 1500 ° C. for 3 hours or more, a uniform and dense coating film of SiO 2 can be formed around the SiC particles (grain boundaries). The coating of SiO 2 can prevent the oxidation of SiC. More preferably, the fired product is further held in an oxidizing atmosphere at 600 ° C. to 1000 ° C. for 3 hours or longer to form a SiO 2 coating film on the surface of the internal pores of the fired product.
この方法で製造されたSiC耐火物には、V、Ca、Fe、Ba、Cu、B、P、Si、Al、Tiの酸化物、炭化物、硼化物の少なくとも何れか1種が、酸化物、炭化物、硼化物換算で0.01〜6質量%含有されている。このような無機酸化物は、成形体中のSiと雰囲気中の酸素とが反応してSiO2が生成する反応を促進するSiO2生成促進剤として働くものである。このような無機酸化物が0.010.1質量%未満しか含有されない場合には、耐酸化性が特に悪くなり、耐スポーリング性や耐食性も悪化する。一方、6質量%を超えて含有する場合には、耐スポーリング性や耐食性が悪化する。 In the SiC refractory manufactured by this method, at least one of oxides, carbides and borides of V, Ca, Fe, Ba, Cu, B, P, Si, Al, Ti is an oxide, It is contained in an amount of 0.01 to 6% by mass in terms of carbide and boride. Such an inorganic oxide acts as a SiO 2 production accelerator that promotes the reaction in which Si in the molded body and oxygen in the atmosphere react to produce SiO 2 . When such an inorganic oxide is contained less than 0.010.1% by mass, the oxidation resistance is particularly poor, and the spalling resistance and corrosion resistance are also deteriorated. On the other hand, when it contains exceeding 6 mass%, spalling resistance and corrosion resistance deteriorate.
また、焼成により耐酸化被膜を形成したSiCを含有する耐火物は、例えば、以下の方法で製造することもできる。 Moreover, the refractory containing SiC which formed the oxidation resistant film by baking can also be manufactured with the following method, for example.
原料の珪石・珪砂と炭素材とをアチソン型電気炉で通電加熱し、珪石・珪砂(SiO2)を炭素(C)で還元してSiCを合成するいわゆるアチソン法によって、SiCインゴットを製造後粉砕し、4〜5mm以下の粒子を分級してSiC原料とする。次に、該SiC粒子(粗粒と中間粒と微粒からなる)と所定量のSi粉末とを混合・成形して得られた成形体を、窒素雰囲気下で、1350〜1500℃にて1〜30時間(Hr)焼成することにより、窒化珪素結合SiC耐火物を製造し、その後、続いて、酸化雰囲気下での焼成を行う。この方法で製造されたSiC耐火物には、V、Ca、Fe、Ba、Cu、B、P、Si、Al、Tiの酸化物、炭化物、硼化物の少なくとも何れか1種が、酸化物、炭化物、硼化物換算で0.01〜6質量%含有されている。 After the SiC ingot is manufactured and pulverized by the so-called Atchison method of synthesizing SiC by heating and heating the raw material silica stone / silica sand and carbon material in an Atchison-type electric furnace and reducing the silica stone / silica sand (SiO 2 ) with carbon (C) Then, particles of 4 to 5 mm or less are classified to obtain SiC raw materials. Next, a molded body obtained by mixing and molding the SiC particles (consisting of coarse particles, intermediate particles, and fine particles) and a predetermined amount of Si powder is obtained at 1350 to 1500 ° C. in a nitrogen atmosphere. By baking for 30 hours (Hr), a silicon nitride-bonded SiC refractory is manufactured, and then baking is performed in an oxidizing atmosphere. In the SiC refractory manufactured by this method, at least one of oxides, carbides and borides of V, Ca, Fe, Ba, Cu, B, P, Si, Al, Ti is an oxide, It is contained in an amount of 0.01 to 6% by mass in terms of carbide and boride.
上記窒素雰囲気下での焼成により、成形体中のSiと雰囲気中の窒素とが反応し、窒化珪素がSiC粒子の周り(粒界)に生成され、SiC粒子を結合させることができる。更に、その後の酸素雰囲気下での焼成により、窒化珪素結合SiC耐火物の表面に、ガラス質のSiO2の被覆を形成することができる。 By firing in the nitrogen atmosphere, Si in the molded body reacts with nitrogen in the atmosphere, and silicon nitride is generated around the SiC particles (grain boundaries), so that the SiC particles can be bonded. Furthermore, a glassy SiO 2 coating can be formed on the surface of the silicon nitride-bonded SiC refractory by subsequent firing in an oxygen atmosphere.
更に、焼成により耐酸化被膜を形成したSiCを含有する耐火物は、例えば、以下の方法でも製造することもできる。 Furthermore, the refractory containing SiC in which the oxidation-resistant film is formed by firing can also be produced by the following method, for example.
原料の珪石・珪砂と炭素材とをアチソン型電気炉で通電加熱し、珪石・珪砂(SiO2)を炭素(C)で還元してSiCを合成するいわゆるアチソン法によって、SiCインゴットを製造後粉砕し、4〜5mm以下の粒子を分級してSiC原料とする。次に該SiC粒子(粗粒と中間粒と微粒からなる)と有機バインダーを用いて所定形状に成形した後、所定量の金属Siを成形体の上におき1450℃〜1650℃にて3〜30時間焼成することにより、耐酸化被膜を有する金属Si結合SiC耐火物を製造する。 After the SiC ingot is manufactured and pulverized by the so-called Atchison method of synthesizing SiC by heating and heating the raw material silica stone / silica sand and carbon material in an Atchison-type electric furnace and reducing the silica stone / silica sand (SiO 2 ) with carbon (C) Then, particles of 4 to 5 mm or less are classified to obtain SiC raw materials. Next, the SiC particles (consisting of coarse particles, intermediate particles, and fine particles) and an organic binder are formed into a predetermined shape, and then a predetermined amount of metal Si is placed on the formed body at 1450 ° C. to 1650 ° C. for 3 to 3 hours. By baking for 30 hours, a metal Si bonded SiC refractory having an oxidation resistant coating is produced.
本発明のSiC含有キャスタブル耐火物としては、上記のようにして製造された焼成により耐酸化被膜を形成したSiCを含有する耐火物を粉砕した粉砕粒の他に、セメントを含有する。セメントは、施工体の強度を向上させるものであり、通常不定形耐火物に用いられるものであれば特に限定する必要はないが、中でもJISの1種、2種及び3種クラスが適している。セメントの配合量は、1〜5質量%とするのが好ましく、2〜4質量%がより好ましい。セメントの配合量を1〜5質量%としたのは、結合材として充分に作用するためには、1質量%以上が必要であり、5質量%以下としたのは、これよりも多くなると施工時の混練のために必要な水の添加水量が増え、施工時の乾燥品の気孔率を大きくするからである。また、水分が多いと乾燥して強度を発現するまでに要する時間も長くかかるからである。
The SiC-containing castable refractory according to the present invention contains cement in addition to the pulverized particles obtained by pulverizing the refractory containing SiC having an oxidation-resistant film formed by firing as described above. Cement is intended to improve the strength of the construction body, and is not particularly limited as long as it is usually used for an irregular refractory. Among them,
焼成により耐酸化被膜を形成したSiCを含有する耐火物の粉砕粒は、直径が4〜25mmの粗粒を分級したものであり、含有率が20〜80質量%の範囲となるように配合される。含有量が20質量%未満の場合には、耐食性とともにスポーリング性が悪化する。一方、含有量が90質量%を超えると、耐食性が悪化し、強度が低下する。直径が4〜25mmの粗粒を含有することにより、耐火物のクラック進展抑制効果による耐スポーリング性の向上を図られる。なお、一般に、純粋なSiCインゴットは、高気孔率(30〜40%)の海綿状結晶であるため、SiCインゴットを粉砕しても、4〜5mm程度の粗粒しか得られない。本発明では、該SiCインゴットを粉砕して得た4〜5mm程度の粗粒を含有する耐火物を焼成することにより、該耐火物中に含有されるSiCの表面に耐酸化被膜を形成し、その後、該耐酸化被膜を形成したSiCを含有する耐火物を粉砕することにより、直径が4〜25mmの粗粒を得ることを可能としている。 The pulverized grains of refractory containing SiC, in which an oxidation resistant film is formed by firing, are obtained by classifying coarse grains having a diameter of 4 to 25 mm, and are blended so that the content is in the range of 20 to 80% by mass. The When the content is less than 20% by mass, the spalling properties are deteriorated together with the corrosion resistance. On the other hand, when the content exceeds 90% by mass, the corrosion resistance deteriorates and the strength decreases. By containing coarse grains having a diameter of 4 to 25 mm, it is possible to improve the spalling resistance due to the crack progress suppressing effect of the refractory. In general, a pure SiC ingot is a spongy crystal having a high porosity (30 to 40%), so that only coarse particles of about 4 to 5 mm can be obtained even if the SiC ingot is pulverized. In the present invention, by firing a refractory containing coarse particles of about 4 to 5 mm obtained by pulverizing the SiC ingot, an oxidation resistant film is formed on the surface of SiC contained in the refractory, Thereafter, by pulverizing the refractory containing SiC on which the oxidation resistant film is formed, coarse particles having a diameter of 4 to 25 mm can be obtained.
本発明のSiC含有キャスタブル耐火物においては、さらに、SiCの超微粉と、ムライトの超微粉を、超微粉の合計量で5〜30質量%含有する。当該SiCの超微粉は、表面に耐酸化被膜が形成されていないため、酸素共存下で酸化されやすく、強力な還元剤として機能する。従って、例えば、該SiCの超微粉を含むSiC含有キャスタブル耐火物を用いてリフターを製造する場合、該SiCの超微粉が還元剤として機能するため、リフター内の金属アンカーの酸化を効果的に防止することができる。 The SiC-containing castable refractory of the present invention further contains 5 to 30% by mass of the ultrafine powder of SiC and the ultrafine powder of mullite in the total amount of ultrafine powder. Since the SiC ultrafine powder does not have an oxidation-resistant film formed on the surface, it is easily oxidized in the presence of oxygen and functions as a powerful reducing agent. Therefore, for example, when manufacturing a lifter using a SiC-containing castable refractory containing the SiC ultrafine powder, the SiC ultrafine powder functions as a reducing agent, effectively preventing oxidation of metal anchors in the lifter. can do.
また、本発明のSiC含有キャスタブル耐火物には、通常、分散剤が0.001〜0.25質量%、好ましくは0.01〜0.2質量%の範囲で外配合されている。分散剤は、耐火材料中の微粒及び超微粉の集合体を分散させる作用を有しており、具体的には、ヘキサメタリン酸ソーダ、トリポリリン酸ソーダ、アルカリ金属ポリリン酸等の縮合リン酸塩、β−ナフタレンスルホン酸塩ホルマリン縮合物、メラミンスルホン酸塩ホルマリン縮合物、アミノスルホン酸及びその塩、リグニンスルホン酸及びその塩、ポリアクリル酸及びその塩、アルカリ金属炭酸塩、オキシカルボン酸塩、ポリカルボン酸及びその塩、クエン酸炭酸塩、酒石酸炭酸塩等の界面活性剤を用いるのが好ましく、これらを1種又は2種以上配合して使用することができる。分散剤の添加量が0.25質量%を超えると、硬化遅延、強度低下等の悪影響があるとともに、混練時の粘性が必要以上に増加し、施工性が悪化する。なお、分散剤の添加量が0.001質量%未満では、分散の効果が充分ではなくなる場合がある。 Further, the SiC-containing castable refractory according to the present invention usually contains a dispersant in the range of 0.001 to 0.25% by mass, preferably 0.01 to 0.2% by mass. The dispersant has an action of dispersing aggregates of fine particles and ultrafine powder in the refractory material, specifically, condensed phosphates such as sodium hexametaphosphate, sodium tripolyphosphate, alkali metal polyphosphoric acid, β -Naphthalene sulfonate formalin condensate, melamine sulfonate formalin condensate, amino sulfonic acid and its salt, lignin sulfonic acid and its salt, polyacrylic acid and its salt, alkali metal carbonate, oxycarboxylate, polycarboxylic acid It is preferable to use surfactants such as acids and salts thereof, citric acid carbonate, and tartaric acid carbonate, and these can be used alone or in combination. When the added amount of the dispersant exceeds 0.25% by mass, there are adverse effects such as curing delay and strength reduction, the viscosity at the time of kneading increases more than necessary, and workability deteriorates. In addition, if the addition amount of a dispersing agent is less than 0.001 mass%, the dispersion effect may not be sufficient.
本発明のSiC含有キャスタブル耐火物は、所定量の分散剤及び水を添加、混練して流し込みなどで所定形状に施工されるものである。例えば、該混練物をアンカーを配置した型枠内に流し込み、該型枠内で固化させて、図1に示すリフターを製造することができる。また、炉内に該リフターを配置後、その周囲に該混練物を直接流し込み、アンカ―が配置された炉壁を施工することができる。 The SiC-containing castable refractory of the present invention is constructed in a predetermined shape by adding, kneading and pouring a predetermined amount of a dispersant and water. For example, the lifter shown in FIG. 1 can be manufactured by pouring the kneaded material into a mold having an anchor and solidifying the mold. Moreover, after arrange | positioning this lifter in a furnace, this kneaded material can be poured directly into the circumference | surroundings, and the furnace wall in which the anchor is arrange | positioned can be constructed.
本発明に係るSiC含有キャスタブル耐火物を用いて施工された施工体の物理的特性としては、強度(曲げ強度として計測)が10MPa以上、耐スポール性(ΔMOR=標準焼成曲げ強度―(所定の試験温度の炉内への急激な出し入れを行い、その後に測定した曲げ強度))が2MPa以下の特性を有する。強度が10MPa未満では、耐火物の寿命に十分な強度でなくなり、耐熱衝撃性が2MPa以上になると、温度変化による耐火物の亀裂等、破損の原因となる。 As physical properties of the construction body constructed using the SiC-containing castable refractory according to the present invention, the strength (measured as bending strength) is 10 MPa or more and the spall resistance (ΔMOR = standard fired bending strength− (predetermined test) The bending strength)) measured after abruptly putting in and out of the temperature in the furnace has a characteristic of 2 MPa or less. If the strength is less than 10 MPa, the strength is not sufficient for the life of the refractory, and if the thermal shock resistance is 2 MPa or more, it may cause damage such as cracking of the refractory due to temperature change.
なお、本発明に係るSiC含有キャスタブル耐火物を用いて施工された施工体の物理的特性としては、熱伝導率が6W/(m・K)以上、強度が13MPa以上であり、見掛け気孔率が13%以下であることがより望ましい。 In addition, as a physical characteristic of the construction body constructed using the SiC-containing castable refractory according to the present invention, the thermal conductivity is 6 W / (m · K) or more, the strength is 13 MPa or more, and the apparent porosity is It is more desirable to be 13% or less.
次に本発明の具体的な実施例について述べる。
まず、表1に示すように、耐酸化機能を備えたSiC含有耐火物の粉砕粒、ムライト微粉、セメント、SiCとムライトの超微粉を含むSiC含有キャスタブル耐火物について、成分組成、含有量を変化させて試験を行った(実施例1〜11、比較例1〜3)。
Next, specific examples of the present invention will be described.
First, as shown in Table 1, the composition and content of SiC-containing castable refractories including SiC refractory crushed grains, mullite fine powder, cement, SiC and mullite ultra-fine powder having an oxidation resistance function are changed. The test was conducted (Examples 1 to 11, Comparative Examples 1 to 3).
表1の各組成からなるSiC含有キャスタブル耐火物に、水分を添加し混練後、乾燥させた試験片について、その物理的特性を測定し、評価した。その結果を表1に示す。物理的特性の測定方法、条件は次のとおりである。 The physical properties of the test pieces dried after adding water to the SiC-containing castable refractories having the respective compositions shown in Table 1 after being kneaded were measured and evaluated. The results are shown in Table 1. The measurement method and conditions of physical characteristics are as follows.
強度(曲げ強度):
強度(曲げ強度)は、試験片(40×40×160mm)を、試験機にて長手方向の両端下面を支持した状態で上面中心部に荷重を加え、最大荷重を求めた(基本的にはJIS R2213に準ずるが、サンプル形状、測定スパンが異なる)。
Strength (bending strength):
The strength (bending strength) was obtained by applying a load to the center of the upper surface of the test piece (40 × 40 × 160 mm) supported by the lower end of both ends in the longitudinal direction with a testing machine (basically, the maximum load was obtained). According to JIS R2213, sample shape and measurement span are different).
耐スポール性:
耐スポール性は、試験片(40×40×160mm)を、600℃または800℃の炉内への急激な出し入れを行い、その後に測定した曲げ強度を、下記式に代入して求めた。
ΔMOR=標準焼成曲げ強度―(所定の試験温度の炉内への急激な出し入れを行い、その後に測定した曲げ強度)
Spall resistance:
The spall resistance was obtained by putting a test piece (40 × 40 × 160 mm) into and out of a furnace at 600 ° C. or 800 ° C., and substituting the measured bending strength into the following formula.
ΔMOR = Standard fired bending strength— (The bending strength measured after abruptly moving into and out of the furnace at the specified test temperature)
熱伝導率:
熱伝導率の測定は、JIS R2168に準じて行った。
Thermal conductivity:
The measurement of thermal conductivity was performed according to JIS R2168.
評価:
実施例1〜4、実施例6〜11に示すように、耐酸化機能を備えたSiC含有耐火物の粉砕粒を20〜80質量%含有し、該粉砕粒中には、直径が4〜25mmの粗粒を含む場合には、施工体温度が600℃に留まる場合であっても、10MPa以上の曲げ強度を備え、十分な耐スポール性を備えていた。一方、比較例1に示すように、耐酸化機能を備えたSiC含有耐火物の粉砕粒の含有量が20質量%に満たない場合には、耐スポール性の低下が観察され、比較例2〜3に示すように、耐酸化機能を備えたSiC含有耐火物の粉砕粒の含有量が80質量%を超える場合には、曲げ強度の低下が観察された。
Rating:
As shown in Examples 1 to 4 and Examples 6 to 11 , the crushed particles of SiC-containing refractory having an oxidation resistance function are contained in an amount of 20 to 80% by mass, and the crushed particles have a diameter of 4 to 25 mm. In the case where the coarse particles were included, even when the construction body temperature remained at 600 ° C., it had a bending strength of 10 MPa or more and had sufficient spall resistance. On the other hand, as shown in Comparative Example 1, when the content of the pulverized grains of the SiC-containing refractory having an oxidation resistance function is less than 20% by mass, a decrease in spall resistance is observed. As shown in FIG. 3, when the content of pulverized grains of the SiC-containing refractory having an oxidation resistance function exceeds 80% by mass, a decrease in bending strength was observed.
1 リフター
2 SiC含有キャスタブル耐火物の施工体
3 アンカー
1
Claims (4)
前記SiC原料を主原料とする成形体を900℃以上の高温酸化雰囲気下で焼成して、該成形体の表面に耐酸化被膜を形成する焼成工程と、A firing step of firing a molded body mainly composed of the SiC raw material in a high-temperature oxidizing atmosphere of 900 ° C. or higher to form an oxidation-resistant film on the surface of the molded body;
前記焼成により得た焼成体を粉砕し、直径4〜25mmの粗粒を分級し、該粗粒の含有率が30〜80質量%となるように、キャスタブル耐火材を構成する耐火材料の中に配合する配合工程を有することを特徴とするSiC含有キャスタブル耐火物の製造方法。In the refractory material constituting the castable refractory material, the fired body obtained by the firing is pulverized, coarse particles having a diameter of 4 to 25 mm are classified, and the content of the coarse particles is 30 to 80% by mass. The manufacturing method of the SiC containing castable refractory characterized by having the mixing | blending process to mix | blend.
前記SiC原料に、V、Ca、Fe、Ba、Cu、B、P、Si、Al、Tiの何れかをSiOAny one of V, Ca, Fe, Ba, Cu, B, P, Si, Al, and Ti is added to the SiC raw material as SiO. 22 膜形成促進剤として添加し、これらを混合・成形し、得られた成形体を、酸化雰囲気下、900℃〜1500℃にて3時間以上の焼成を行うことを特徴とする請求項1記載のSiC含有キャスタブル耐火物の製造方法。The composition according to claim 1, which is added as a film formation accelerator, mixed and molded, and the obtained molded body is fired at 900 ° C to 1500 ° C for 3 hours or more in an oxidizing atmosphere. A method for producing a SiC-containing castable refractory.
前記SiC原料を主原料とする成形体を、窒素雰囲気下、1350〜1500℃にて1〜30時間焼成後、続いて、酸化雰囲気下での焼成を行うことを特徴とする請求項1記載のSiC含有キャスタブル耐火物の製造方法。The molded body containing the SiC raw material as a main raw material is fired at 1350 to 1500 ° C. for 1 to 30 hours in a nitrogen atmosphere, and subsequently fired in an oxidizing atmosphere. A method for producing a SiC-containing castable refractory.
前記SiC原料を主原料とする成形体の上に所定量の金属Siを載置して、1450℃〜1650℃にて3〜30時間の焼成を行うことを特徴とする請求項1記載のSiC含有キャスタブル耐火物の製造方法。The SiC according to claim 1, wherein a predetermined amount of metal Si is placed on a molded body containing the SiC raw material as a main raw material and fired at 1450 ° C. to 1650 ° C. for 3 to 30 hours. A method for producing a castable refractory material.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009126199A JP5126984B2 (en) | 2009-05-26 | 2009-05-26 | Method for producing SiC-containing castable refractory |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009126199A JP5126984B2 (en) | 2009-05-26 | 2009-05-26 | Method for producing SiC-containing castable refractory |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2010275120A JP2010275120A (en) | 2010-12-09 |
JP5126984B2 true JP5126984B2 (en) | 2013-01-23 |
Family
ID=43422446
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2009126199A Expired - Fee Related JP5126984B2 (en) | 2009-05-26 | 2009-05-26 | Method for producing SiC-containing castable refractory |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5126984B2 (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6415356B2 (en) * | 2015-03-04 | 2018-10-31 | 東京窯業株式会社 | Silicon carbide refractory block for molten iron and method for producing the same |
CN114163222B (en) * | 2021-12-01 | 2022-08-30 | 北京金隅通达耐火技术有限公司 | Titanium composite corundum silicon carbide wear-resistant castable for cement kiln mouths and preparation method thereof |
CN115141008B (en) * | 2022-07-25 | 2023-09-01 | 河北国亮新材料股份有限公司 | Long-service-life swing groove castable and preparation method thereof |
CN115650710A (en) * | 2022-11-28 | 2023-01-31 | 云南濮耐昆钢高温材料有限公司 | High-strength anti-skinning refractory castable and preparation method thereof |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06240323A (en) * | 1993-02-10 | 1994-08-30 | Kawasaki Refract Co Ltd | Lining material for tapping spout of blast furnace |
JP2990012B2 (en) * | 1994-05-09 | 1999-12-13 | ミンテックジャパン株式会社 | High fluidity castable |
JPH09157043A (en) * | 1995-12-08 | 1997-06-17 | Harima Ceramic Co Ltd | Casting refractory for blast-furnace launder |
JP2003321276A (en) * | 2002-04-30 | 2003-11-11 | Nippon Steel Corp | Silicon carbide material for monolithic refractory excellent in driability and monolithic refractory material |
JP4376579B2 (en) * | 2003-09-09 | 2009-12-02 | 日本碍子株式会社 | Silicon nitride bonded SiC refractory and method for producing the same |
JP4542343B2 (en) * | 2004-01-05 | 2010-09-15 | 品川リフラクトリーズ株式会社 | Precast block for coke oven door and manufacturing method thereof |
JP2008143757A (en) * | 2006-12-12 | 2008-06-26 | Ngk Insulators Ltd | Monolithic refractory |
-
2009
- 2009-05-26 JP JP2009126199A patent/JP5126984B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2010275120A (en) | 2010-12-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4681456B2 (en) | Low carbon magnesia carbon brick | |
US9546114B2 (en) | SiAlON bonded silicon carbide material | |
JP4704111B2 (en) | Oxide bonded silicon carbide material | |
TW201441176A (en) | Magnesia carbon brick | |
JPH0657619B2 (en) | Carbon-containing refractory | |
JP5126984B2 (en) | Method for producing SiC-containing castable refractory | |
JP2008143757A (en) | Monolithic refractory | |
JPH09202667A (en) | Castable refractory for slide gate | |
JP6077877B2 (en) | Castable refractories for blast furnace firewood | |
KR101798843B1 (en) | Refractory composition and well block for steel casting by using it | |
JP6219729B2 (en) | Magnesia carbon brick | |
JP2008069045A (en) | Magnesia-carbon brick | |
JP6959809B2 (en) | Amorphous refractory for pouring work | |
JP2874831B2 (en) | Refractory for pouring | |
CN113979761B (en) | Ternary composite self-repairing baking-free sliding plate brick and preparation method thereof | |
JP2002234776A (en) | Monolithic refractory composition for molten steel ladle | |
JP6266968B2 (en) | Blast furnace hearth lining structure | |
JP5341135B2 (en) | Alumina-magnesia casting material and method for producing the same | |
JP4160796B2 (en) | High thermal shock resistant sliding nozzle plate brick | |
WO2015132848A1 (en) | Castable refractory | |
JPH10130053A (en) | Refractory for casting, nozzle for continuous casting and production thereof | |
KR101066574B1 (en) | Castable for ladle | |
JPH11240747A (en) | Plate brick | |
JP2019042770A (en) | Aggregate for refractory, refractory, and plate for sliding nozzle | |
JP4671141B2 (en) | Upper nozzle brick |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20111219 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20120810 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20120821 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20121010 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20121026 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20121026 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 Ref document number: 5126984 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20151109 Year of fee payment: 3 |
|
LAPS | Cancellation because of no payment of annual fees |