JP2019127401A - Castable refractory - Google Patents

Castable refractory Download PDF

Info

Publication number
JP2019127401A
JP2019127401A JP2018008307A JP2018008307A JP2019127401A JP 2019127401 A JP2019127401 A JP 2019127401A JP 2018008307 A JP2018008307 A JP 2018008307A JP 2018008307 A JP2018008307 A JP 2018008307A JP 2019127401 A JP2019127401 A JP 2019127401A
Authority
JP
Japan
Prior art keywords
mass
less
content
refractory
particle size
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018008307A
Other languages
Japanese (ja)
Other versions
JP7029299B2 (en
Inventor
辻 陽一
Yoichi Tsuji
陽一 辻
統一 白曼
Toichi Shirama
統一 白曼
上村 浩一
Koichi Kamimura
浩一 上村
加藤 雄一
Yuichi Kato
雄一 加藤
貴信 神子
Takanobu Kamiko
貴信 神子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Krosaki Harima Corp
Original Assignee
Nippon Steel Corp
Krosaki Harima Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp, Krosaki Harima Corp filed Critical Nippon Steel Corp
Priority to JP2018008307A priority Critical patent/JP7029299B2/en
Publication of JP2019127401A publication Critical patent/JP2019127401A/en
Application granted granted Critical
Publication of JP7029299B2 publication Critical patent/JP7029299B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Landscapes

  • Furnace Housings, Linings, Walls, And Ceilings (AREA)

Abstract

To improve a corrosion resistance while ensuring the heat insulation in castable refractory.SOLUTION: A castable refractory of this invention contains: a sillimanite group material having a particle size of less than 1 mm; a boron compound; and at least one of a lightweight aggregate, an air entraining agent, and organic fibers. And each content of the castable refractory as a percentage of 100% by mass of raw materials excluding refractory raw materials with a particle size of 8 mm or more is as follows: the content of the sillimanite group raw material having a particle size of less than 1 mm is 5 mass% or more and 70 mass% or less; the boron compound content is 0.08 mass% or more and 2 mass% or less as the boron content; when the lightweight aggregate is contained, its content is 10 mass% or more and 50 mass% or less; when the air entraining agent is contained, its content is 0.02 mass% or more and 0.5 mass% or less; when the organic fiber is contained, its content is 0.5 mass% or more and 3 mass% or less.SELECTED DRAWING: None

Description

本発明は、溶融金属を受けるタンディッシュの内張り用に好適に使用される不定形耐火物に関する。   The present invention relates to a monolithic refractory suitably used for the lining of a tundish receiving molten metal.

タンディッシュの内張り用の不定形耐火物には、鉄皮からの抜熱低減による省エネ効果を実現するため断熱性が要求される。一方、溶融金属に接触する稼働面側においては、高耐食性が要求される。すなわち、断熱性と高耐食性の両方を具備する特性が要求される。なお、断熱性と高耐食性の両方を具備する特性はタンディッシュの内張り用の不定形耐火物に限らず、各種用途の不定形耐火物にも要求される。   Insulated refractories for tundish linings are required to have heat insulation in order to achieve an energy saving effect by reducing heat removal from the iron skin. On the other hand, high corrosion resistance is required on the working surface side in contact with the molten metal. That is, the characteristic which has both heat insulation and high corrosion resistance is requested | required. In addition, the characteristic provided with both heat insulation and high corrosion resistance is requested | required not only for the monolithic refractory for lining of a tundish but for the monolithic refractory for various uses.

従来、炭化ホウ素(BC)を添加することで、耐食性を向上させる技術が知られている(例えば、特許文献1参照)。しかし、特許文献1には、断熱性を付与するための具体的な内容については記載がない。
また、断熱性を付与するための技術としては、軽量骨材を添加する技術が知られている(例えば、特許文献2参照)。しかし、特許文献2には耐食性を確保するための具体的な内容については記載がない。
Conventionally, there is known a technique for improving corrosion resistance by adding boron carbide (B 4 C) (see, for example, Patent Document 1). However, Patent Document 1 does not describe specific contents for imparting heat insulation.
Further, as a technique for imparting heat insulation, a technique of adding a lightweight aggregate is known (see, for example, Patent Document 2). However, Patent Document 2 does not describe specific contents for ensuring corrosion resistance.

特開平3−164479号公報Japanese Patent Laid-Open No. 3-164479 特開平11−268963号公報JP 11-268963 A

本発明が解決しようとする課題は、不定形耐火物において、断熱性を確保しつつ耐食性を向上させることにある。   The problem to be solved by the present invention is to improve corrosion resistance while securing heat insulation in a monolithic refractory.

本発明によれば次の(1)から(4)の不定形耐火物が提供される。
(1)粒径1mm未満のシリマナイト族原料と、ホウ素化合物と、軽量骨材、空気連行剤及び有機繊維の少なくとも1種とを含有し、
粒径8mm以上の耐火原料を除いた原料100質量%に占める割合で、
粒径1mm未満のシリマナイト族原料の含有量は5質量%以上70質量%以下、ホウ素化合物の含有量はホウ素量として0.08質量%以上2質量%以下であり、
軽量骨材を含有する場合その含有量は10質量%以上50質量%以下、空気連行剤を含有する場合その含有量は0.02質量%以上0.5質量%以下、有機繊維を含有する場合その含有量は0.5質量%以上3質量%以下である、不定形耐火物。
(2)粒径8mm以上の耐火原料を除いた原料100質量%に占める割合で、粒径75μm未満のアルミナ原料を5質量%以上40質量%以下含有する、(1)に記載の不定形耐火物。
(3)前記軽量骨材は、軽量シャモット、中空アルミナ、中空スピネル、バーミキュライト、パーライト、軽石、断熱れんが屑及びCaO・6Alを主たる鉱物組成とする断熱性骨材の少なくとも1種である、(1)又は(2)に記載の不定形耐火物。
(4)タンディッシュ内張り用の不定形耐火物である、(1)から(3)のいずれかに記載の不定形耐火物。
According to the present invention, the following amorphous refractories (1) to (4) are provided.
(1) A sillimanite group material having a particle size of less than 1 mm, a boron compound, and at least one of a lightweight aggregate, an air entrainer and an organic fiber,
In a proportion of 100% by mass of raw materials excluding refractory raw materials having a particle size of 8 mm or more,
The content of the sillimanite group raw material having a particle size of less than 1 mm is 5% by mass or more and 70% by mass or less, and the content of the boron compound is 0.08% by mass or more and 2% by mass or less as the amount of boron.
When the lightweight aggregate is contained, the content is 10% by mass to 50% by mass, when the air entraining agent is contained, the content is 0.02% by mass or more and 0.5% by mass or less, the organic fiber is contained The monolithic refractory whose content is 0.5 mass% or more and 3 mass% or less.
(2) The amorphous refractory according to (1), containing 5% by mass or more and 40% by mass or less of an alumina raw material having a particle size of less than 75 μm in a ratio of 100% by mass excluding the refractory raw material having a particle size of 8 mm or more. object.
(3) The light-weight aggregate is at least one of light-weight chamotte, hollow alumina, hollow spinel, vermiculite, pearlite, pumice, heat-insulated brick dust, and heat-insulating aggregate mainly composed of CaO · 6Al 2 O 3. The monolithic refractory as described in (1) or (2).
(4) The monolithic refractory according to any one of (1) to (3), which is a monolithic refractory for tundish lining.

本発明の不定形耐火物は、軽量骨材、空気連行剤及び有機繊維の少なくとも1種を含有することで断熱性を確保することができる。また、粒径1mm未満のシリマナイト族原料及びホウ素化合物を含有することで、粒径1mm未満のシリマナイト族原料からムライトが生成される際、ホウ素化合物が大気雰囲気中高温下においてBとなり、マトリクス部の液相率を向上させることでムライト生成が促進される。このムライト生成促進効果により、断熱質でありながら、緻密で高耐食性を実現することができる。 The amorphous refractory of the present invention can ensure heat insulation by containing at least one of a lightweight aggregate, an air entraining agent, and organic fibers. Further, by containing a sillimanite group raw material having a particle size of less than 1 mm and a boron compound, when mullite is generated from a sillimanite group raw material having a particle size of less than 1 mm, the boron compound becomes B 2 O 3 at a high temperature in the atmosphere, Mullite generation is promoted by improving the liquid phase ratio of the matrix portion. Due to this mullite generation promoting effect, it is possible to achieve dense and high corrosion resistance while being heat insulating.

本発明の不定形耐火物は、粒径1mm未満のシリマナイト族原料と、ホウ素化合物と、軽量骨材、空気連行剤及び有機繊維の少なくとも1種とを含有する。
なお、本発明の不定形耐火物は、亀裂の伸展を防いで亀裂や剥離の発生を少なくする、あるいは、緻密で大きな骨材によって耐食性を高める目的で、粒径8mm以上の耐火原料、いわゆる大粗粒を含有することもできる。ただし、本発明において粒径8mm以上の耐火原料(大粗粒)以外の各原料の含有量は、粒径8mm以上の耐火原料(大粗粒)を除いた原料100質量%に占める割合で規定している。
The amorphous refractory of the present invention contains a sillimanite group raw material having a particle size of less than 1 mm, a boron compound, a light aggregate, an air entraining agent, and organic fibers.
The monolithic refractory of the present invention is a refractory material having a particle diameter of 8 mm or more, so-called large, for the purpose of preventing extension of cracks and reducing the occurrence of cracks or peeling, or enhancing corrosion resistance by dense and large aggregate. Coarse grains can also be contained. However, in the present invention, the content of each raw material other than the refractory raw material (large coarse particles) having a particle size of 8 mm or more is defined as a ratio to 100% by mass of the raw material excluding the refractory raw materials (large coarse particles) having a particle size of 8 mm or more. doing.

シリマナイト族原料としては、アンダルサイト、カイヤナイト及びシリマナイトの3種の原料があるが、いずれもAl・SiOの化学式で表される。これらシリマナイト族原料は高温に加熱されると安定なムライトを生成する。ムライトは高い耐食性(耐溶損性)を有し、それ自身の熱膨張量が小さく耐熱衝撃性にも優れることから、シリマナイト族原料は耐火原料として高い有用性がある。 As the sillimanite group materials, there are three kinds of materials such as andalusite, kyanite and sillimanite, all of which are represented by a chemical formula of Al 2 O 3 .SiO 2 . These sillimanite materials produce stable mullite when heated to high temperatures. Since mullite has high corrosion resistance (melting resistance), its own thermal expansion is small and it has excellent thermal shock resistance, the sillimanite group raw material is highly useful as a refractory raw material.

シリマナイト族原料からのムライト生成は下記の式1にて示されるシリマナイト族原料の反応による一次ムライトの生成と、式1の反応により生成したSiOリッチなガラス層へAlが溶解し再析出する過程でムライトが生じる二次ムライト生成の2段階で生じる。そこで本発明者らは、シリマナイト族原料からのムライト生成を促進してムライトによる耐食性(耐溶損性)の向上効果を十分に発揮するには、液相を介する毛細管を埋めるように生成する二次ムライト生成を制御することが肝要であると考えた。さらに本発明者らは、二次ムライト生成を促進するには一次ムライト生成反応により生じたSiOリッチなガラス層でのAl拡散速度を上昇させる必要があると考え、種々検討した結果、ホウ素化合物の添加が有効であることを知見した。すなわち、ホウ素化合物が大気雰囲気中高温下においてBとなり、マトリクス部の液相率を向上させることでムライト生成が促進され、このムライト生成促進効果により緻密で高耐食性を実現することができるのである。
3(Al・SiO)=3Al・2SiO+SiO …式1
The production of mullite from the sillimanite group raw material is carried out by generating primary mullite by the reaction of the sillimanite group raw material represented by the following formula 1, and re-dissolving Al 2 O 3 in the SiO 2 rich glass layer produced by the reaction of the formula 1. It occurs in two stages of secondary mullite formation in which mullite is generated during the precipitation process. Therefore, the present inventors have promoted the generation of mullite from the sillimanite group raw material, and in order to sufficiently exhibit the effect of improving the corrosion resistance (melting resistance) due to mullite, the secondary generated to fill the capillary through the liquid phase. We thought it important to control mullite production. Furthermore, the present inventors considered that it is necessary to increase the Al 2 O 3 diffusion rate in the SiO 2 -rich glass layer generated by the primary mullite generation reaction in order to promote the generation of secondary mullite. It was found that the addition of a boron compound is effective. That is, the boron compound becomes B 2 O 3 at a high temperature in the atmosphere, and mullite generation is promoted by improving the liquid phase ratio of the matrix portion. By this mullite formation promoting effect, dense and high corrosion resistance can be realized. It is
3 (Al 2 O 3 · SiO 2 ) = 3Al 2 O 3 · 2SiO 2 + SiO 2 Formula 1

このようなムライト生成反応は主としてマトリクス部で発生すると考えられることから、本発明においてシリマナイト族原料の含有量は、マトリクス部を構成する粒径1mm未満のシリマナイト族原料の含有量で規定した。すなわち、本発明の不定形耐火物は、粒径1mm未満のシリマナイト族原料を5質量%以上70質量%以下含有する。粒径1mm未満のシリマナイト族原料の含有量が5質量%未満では、そもそもシリマナイト族原料からのムライト生成量が不足するので耐食性向上効果が得られない。一方、粒径1mm未満のシリマナイト族原料の含有量が70質量%を超えると、上記式1の反応によりSiOが過剰に生成して低融物が生成されるので耐食性が低下する。粒径1mm未満のシリマナイト族原料の好ましい含有量は20質量%以上40質量%以下である。 Since such mullite formation reaction is considered to occur mainly in the matrix portion, the content of the sillimanite group material in the present invention is defined by the content of the sillimanite group material having a particle diameter of less than 1 mm constituting the matrix portion. That is, the monolithic refractory of the present invention contains 5% by mass or more and 70% by mass or less of the sillimanite group raw material having a particle size of less than 1 mm. If the content of the sillimanite group raw material having a particle diameter of less than 1 mm is less than 5% by mass, the amount of mullite produced from the sillimanite group raw material is insufficient in the first place, so that the corrosion resistance improvement effect cannot be obtained. On the other hand, when the content of the sillimanite group raw material having a particle size of less than 1 mm exceeds 70% by mass, SiO 2 is excessively generated by the reaction of the above formula 1 and low melt is generated, so that the corrosion resistance is lowered. The preferred content of the sillimanite group material having a particle size of less than 1 mm is 20% by mass or more and 40% by mass or less.

上述のとおりシリマナイト族原料としては、アンダルサイト、カイヤナイト及びシリマナイトの3種の原料があるが、耐火原料としての熱膨張特性の点から主としてアンダルサイトを使用することが好ましい。具体的には粒径1mm未満のシリマナイト族原料の総量100質量%に占める割合で、粒径1mm未満のアンダルサイトの含有量は90質量%以上であることが好ましい。ただし、カイヤナイト及びシリマナイトもアンダルサイトと同様に、上記式1の反応によりムライトを生成するので、本発明においてカイヤナイト及びシリマナイトの使用は排除されない。   As described above, there are three types of raw materials of the sillimanite family, andalusite, kyanite and sillimanite, and it is preferable to use mainly andalusite in view of the thermal expansion characteristics as a refractory material. Specifically, the content of andalusite having a particle size of less than 1 mm is preferably 90% by mass or more based on 100% by mass of the total amount of the sillimanite group material having a particle size of less than 1 mm. However, since kayanite and sillimanite also produce mullite by the reaction of the above formula 1 as with andalusite, the use of kyanite and sillimanite is not excluded in the present invention.

なお、本発明の不定形耐火物は粒径1mm以上のシリマナイト族原料を含有することもできる。この場合も主としてアンダルサイトを使用することが好ましい。すなわち、シリマナイト族原料の総量100質量%に占める割合で、アンダルサイトの含有量は90質量%以上であることが好ましい。   The amorphous refractory of the present invention can also contain a sillimanite group raw material having a particle size of 1 mm or more. Also in this case, it is preferable to use mainly andalusite. That is, it is preferable that the content of the andalusite is 90% by mass or more in the ratio of the total amount of the sillimanite group raw material to 100% by mass.

ホウ素化合物は、上述のとおりシリマナイト族原料からのムライト生成を促進する。このムライト生成促進効果は、ホウ素化合物が大気雰囲気中高温下においてBとなることに基づくことから、本発明においてホウ素化合物の含有量はホウ素化合物中のホウ素量で規定した。すなわち、本発明の不定形耐火物はホウ素化合物をホウ素量として0.08質量%以上2質量%以下含有する。ホウ素量が0.08質量%未満では十分なムライト生成促進効果が得られない。一方、ホウ素量が2質量%を超えると、Bが過剰に生成して低融物が生成されるので耐食性が低下する。ホウ素化合物の好ましい含有量はホウ素量として0.2質量%以上1質量%以下である。 As described above, the boron compound promotes the generation of mullite from the sillimanite group raw material. Since the mullite formation promoting effect is based on the fact that the boron compound becomes B 2 O 3 at high temperature in the air atmosphere, the content of the boron compound in the present invention is defined by the amount of boron in the boron compound. That is, the monolithic refractory of the present invention contains the boron compound in an amount of 0.08% by mass to 2% by mass as boron. If the boron content is less than 0.08% by mass, a sufficient mullite production promoting effect cannot be obtained. On the other hand, when the amount of boron exceeds 2% by mass, B 2 O 3 is excessively formed to generate a low melt, so the corrosion resistance is lowered. A preferable content of the boron compound is 0.2% by mass or more and 1% by mass or less as the boron content.

ホウ素化合物としては、BC、ZrB、CaB、MgB、BN等、大気雰囲気中高温下(溶鋼等の溶融金属に接触する稼働面の温度環境下)においてBとなる各種のホウ素化合物を使用することができ、ホウ珪酸ガラスやBなどの酸化物も使用可能である。ただし、Bには硬化遅延作用があるため、不定形耐火物が流し込み材(キャスタブル)の場合は使用を避けることが好ましい。また、ホウ素化合物としては上述の各種ホウ素化合物を併用することもできる。 Various boron compounds such as B 4 C, ZrB 2 , CaB 6 , MgB 2 , BN, etc., which become B 2 O 3 at high temperatures in the atmosphere (under the temperature environment of the working surface in contact with molten metals such as molten steel) Boron compounds of the following can be used, and oxides such as borosilicate glass and B 2 O 3 can also be used. However, since B 2 O 3 has a hardening delaying action, it is preferable to avoid the use when the monolithic refractory is a castable material (castable). Further, as the boron compound, the above-mentioned various boron compounds can be used in combination.

本発明の不定形耐火物は断熱性を確保するために、軽量骨材、空気連行剤及び有機繊維の少なくとも1種を含有する。   The monolithic refractories according to the present invention contain at least one of a lightweight aggregate, an air entrainer and an organic fiber in order to ensure thermal insulation.

軽量骨材としては例えば、軽量シャモット、中空アルミナ、中空スピネル、バーミキュライト、パーライト、軽石、断熱れんが屑及びCaO・6Alを主たる鉱物組成とする断熱性骨材が挙げられ、これらの少なくとも1種を使用することができる。このような軽量骨材を含有する場合、その含有量は10質量%以上50質量%以下とする。軽量骨材の好ましい含有量は20質量%以上30質量%以下である。 Examples of the lightweight aggregate include lightweight chamotte, hollow alumina, hollow spinel, vermiculite, pearlite, pumice, heat insulating brick dust, and heat insulating aggregate mainly composed of CaO · 6Al 2 O 3 , at least one of these Seeds can be used. When such a lightweight aggregate is contained, the content is 10% by mass or more and 50% by mass or less. The preferable content of the lightweight aggregate is 20% by mass or more and 30% by mass or less.

空気連行剤は不定形耐火物を施工するときに当該不定形耐火物中に多くの独立した空気泡を一様に連行することで断熱性を確保するもので、具体例としては、アニオン界面活性剤、カチオン界面活性剤、両性界面活性剤、非イオン界面活性剤等の合成界面活性剤系起泡剤、樹脂せっけん系起泡剤、加水分解たん白系起泡剤等が挙げられる。このような空気連行剤を含有する場合、その含有量は0.02質量%以上0.5質量%以下とする。空気連行剤の好ましい含有量は0.05質量%以上0.1質量%以下である。   The air entraining agent ensures thermal insulation by uniformly entraining a large number of independent air bubbles in the monolithic refractories when constructing the monolithic refractories, and specific examples thereof include anionic surfactant And synthetic surfactant-based foaming agents such as agents, cationic surfactants, amphoteric surfactants, nonionic surfactants, etc., resin soap-based foaming agents, hydrolyzed protein-based foaming agents and the like. When such an air entraining agent is contained, the content is set to 0.02% by mass or more and 0.5% by mass or less. A preferable content of the air entraining agent is 0.05% by mass or more and 0.1% by mass or less.

有機繊維は高温下(溶鋼等の溶融金属に接触する稼働面の温度環境下)で消失(焼失)することで断熱性を確保するもので、具体例としては、ビニロン繊維、ポリエチレン繊維、ポリプロピレン繊維、パルプ繊維等が挙げられる。このような有機繊維を含有する場合、その含有量は0.5質量%以上3質量%以下とする。有機繊維の好ましい含有量は1質量%以上2質量%以下である。   Organic fibers ensure heat insulation by disappearing (burning down) under high temperature (under the temperature environment of the working surface in contact with molten metal such as molten steel). Specific examples include vinylon fiber, polyethylene fiber, polypropylene fiber And pulp fibers. When such an organic fiber is contained, the content is 0.5 mass% or more and 3 mass% or less. A preferable content of the organic fiber is 1% by mass or more and 2% by mass or less.

これら軽量骨材、空気連行剤及び有機繊維の含有量がぞれぞれの下限値を下回ると十分な断熱性を確保できない。一方、それぞれ含有量がぞれぞれの上限値を上回ると組織の緻密性が損なわれ耐食性が低下する。なお、これら軽量骨材、空気連行剤及び有機繊維は、いわゆる断熱性を付与する材料として共通の作用を有しており、単独で使用できるほか併用することもできるが、併用する場合であってもそれぞれの含有量はそれぞれ上述の範囲内とする。   When the contents of these lightweight aggregates, air entraining agents and organic fibers are below the lower limit values, sufficient heat insulation cannot be ensured. On the other hand, if the contents exceed the respective upper limits, the compactness of the structure is impaired and the corrosion resistance is lowered. The lightweight aggregate, the air entrainer and the organic fiber have a common action as a so-called heat insulating material, and they can be used alone or in combination. Each content is within the above-mentioned range.

本発明の不定形耐火物は、粒径75μm未満のアルミナ原料を5質量%以上40質量%以下含有することが好ましい。粒径75μm未満のアルミナ原料を5質量%以上40質量%以下含有することで、上述の二次ムライトの生成が促進される。   The amorphous refractory of the present invention preferably contains 5% by mass or more and 40% by mass or less of an alumina raw material having a particle size of less than 75 μm. By containing 5% by mass or more and 40% by mass or less of the alumina raw material having a particle size of less than 75 μm, the generation of the above-described secondary mullite is promoted.

また、本発明の不定形耐火物は、その他の耐火原料として、粘土原料、ろう石原料などのアルミナ−シリカ質原料、アルミナ原料(粒径75μm以上)、炭化珪素原料、炭素原料等を含有することができ、さらには上述のとおり粒径8mm以上の耐火原料(大粗粒)を使用することもできる。なお、粒径8mm以上の耐火原料(大粗粒)の使用量は、粒径8mm以上の耐火原料(大粗粒)を除いた原料100質量%に対して外掛けで40質量%以下にすることが好ましい。
さらに本発明の不定形耐火物は、結合剤、分散剤、硬化調整剤等の各種添加剤やシリカ超微粉といった、通常の不定形耐火物で使用されている各種副原料を含有することができる。なお、本発明でいう不定形耐火物とは上述の各種耐火原料及び各種副原料の配合物のことであり、施工時に添加される水は含まないものである。
In addition, the monolithic refractory of the present invention contains, as other refractory raw materials, clay raw materials, alumina-siliceous raw materials such as wax raw materials, alumina raw materials (particle diameter of 75 μm or more), silicon carbide raw materials, carbon raw materials, etc. Further, as described above, it is also possible to use a refractory material (large coarse particles) having a particle diameter of 8 mm or more. In addition, the usage-amount of a refractory raw material (large coarse grain) with a particle size of 8 mm or more shall be 40 mass% or less on the outside with respect to 100 mass% of raw materials except a refractory raw material (large coarse grain) with a particle size of 8 mm or more. Is preferred.
Furthermore, the amorphous refractory of the present invention can contain various auxiliary materials used in ordinary amorphous refractories such as various additives such as binders, dispersants, curing modifiers, and silica ultrafine powder. . In addition, the monolithic refractories referred to in the present invention are a combination of the above-mentioned various refractory materials and various auxiliary materials, and do not include water added at the time of construction.

以上説明した本発明の不定形耐火物はタンディッシュ内張り用の不定形耐火物として好適に使用されるが、その使用の形態は流し込み材(キャスタブル)として使用できるほか、吹き付け材、コテ塗り材やパッチング材としても使用可能である。   The monolithic refractories according to the present invention described above are suitably used as monolithic refractories for tundish linings, but the form of use thereof can be used as a cast material (castable), spray material, iron coating material, and It can also be used as a patching material.

表1及び表2に本発明の不定形耐火物の実施例及び比較例の原料構成と評価結果を示している。なお、表1及び表2において「その他」とは、粘土原料、シリカ超微粉、分散剤、硬化調整剤等である。また、各例の不定形耐火物には粒径8mm以上の耐火原料(大粗粒)は使用していない。
評価項目と評価方法は、以下のとおりである。
Tables 1 and 2 show the raw material configurations and the evaluation results of the examples and comparative examples of the monolithic refractories according to the present invention. In addition, in Table 1 and Table 2, "others" are a clay raw material, a silica ultrafine powder, a dispersing agent, a hardening regulator, etc. Moreover, the refractory raw material (large coarse grain) 8 mm or more in particle size is not used for the monolithic refractory of each case.
The evaluation items and the evaluation method are as follows.

<断熱性>
各例の不定形耐火物(原料配合物)に所定量の水を添加して混練後、230×114×65mmの型枠内に流し込んだ。その後、室温にて24時間養生、110℃で24時間乾燥させ、さらに300℃で24時間事前焼成を行った後、600℃の温度下での熱伝導率を熱線法により測定した。この600℃という温度はタンディッシュの内張りにおいて溶鋼と接する稼働面を除く大部分の領域がさらされる温度を代表するものである。
表1及び表2では、比較例1の熱伝導率の値を100としてその相対値を熱伝導指数として評価し、熱伝導指数が80以下の場合を◎(優)、80超90以下の場合を〇(良)、90超100以下の場合を×(不可)で表記した。この熱伝導指数が小さいほど断熱性が良好であることを示す。
<Adiabaticity>
A predetermined amount of water was added to the monolithic refractory (raw material mixture) of each example and the mixture was kneaded and then poured into a 230 × 114 × 65 mm mold. Then, after curing at room temperature for 24 hours, drying at 110 ° C. for 24 hours, and further pre-baking at 300 ° C. for 24 hours, the thermal conductivity at a temperature of 600 ° C. was measured by a hot wire method. The temperature of 600 ° C. is representative of the temperature to which most of the area of the tundish lining except the working surface in contact with the molten steel is exposed.
In Tables 1 and 2, the thermal conductivity value of Comparative Example 1 is set to 100, and the relative value is evaluated as the thermal conductivity index. The case where the thermal conductivity index is 80 or less is ◎ (excellent), and the case is more than 80 and 90 or less. Was marked with ◯ (good) and over 90 and 100 or less with x (impossible). The smaller the heat transfer index, the better the heat insulation.

<耐食性>
各例の不定形耐火物(原料配合物)に所定量の水を添加して混練し、型枠内に流し込んで養生、乾燥させて得た試験片について回転侵食法により評価した。侵食材としては下記組成のスラグを用いた。具体的には、大気雰囲気下1600℃において200gの侵食材により30分間侵食させた後、スラグを取り出し新たに200gの侵食材を投入し侵食させた。この30分毎のスラグの入れ替えを5回行い、計3時間の侵食の後、試験前後の試験片の寸法変化により最大溶損量を評価した。表1及び表2では、比較例2の最大溶損量を100としてその相対値を溶損指数として評価し、溶損指数が90未満の場合を◎(優)、90以上100未満の場合を〇(良)、100以上の場合を×(不可)と表記した。この溶損指数が小さいほど耐食性が良好であることを示す。
スラグ組成
CaO:51質量%、SiO:15.2質量%、FeO:18.2質量%、
MgO:8.3質量%、MnO:5.65質量%
<Corrosion resistance>
A predetermined amount of water was added to the indeterminate refractory (raw material mixture) of each example, the mixture was kneaded, poured into a mold, aged and dried, and the test pieces obtained were evaluated by the rotational erosion method. The slag of the following composition was used as an eroding material. Specifically, erosion was performed for 30 minutes with 200 g of erodible material at 1600 ° C. in an air atmosphere, and then slag was taken out and 200 g of erodant was newly added to cause erosion. The slag was replaced five times every 30 minutes, and after erosion for a total of 3 hours, the maximum dissolution amount was evaluated by the dimensional change of the test pieces before and after the test. In Tables 1 and 2, the maximum erosion amount of Comparative Example 2 was set to 100, and the relative value was evaluated as the erosion index. When the erosion index was less than 90, ◎ (excellent), and 90 to less than 100. ((Good), 100 or more cases were described as x (impossible). The smaller the melting index, the better the corrosion resistance.
Slag composition CaO: 51% by mass, SiO 2 : 15.2% by mass, FeO: 18.2% by mass,
MgO: 8.3 mass%, MnO 2 : 5.65 mass%

<総合評価>
断熱性及び耐食性の評価において、全て◎の場合は◎(優)、いずれか1つが〇の場合は〇(良)、いずれか1つが×の場合は×(不可)とした。
<Overall evaluation>
In the evaluation of heat insulation and corrosion resistance, ◎ (excellent) when all were ◎, ◯ (good) when any one was ◯, and x (impossible) when any one was ×.

Figure 2019127401
Figure 2019127401

Figure 2019127401
Figure 2019127401

表1に示している実施例1〜18は本発明の範囲内にある不定形耐火物である。いずれも総合評価は◎(優)又は○(良)であり、良好な結果が得られた。   Examples 1 to 18 shown in Table 1 are amorphous refractories within the scope of the present invention. In either case, the overall evaluation was ◎ (excellent) or ○ (good), and good results were obtained.

表2に示している比較例1は、軽量骨材等のいわゆる断熱性を付与する材料を含有しない例であり、断熱性が不十分であった。
比較例2は断熱性を付与する材料として軽量骨材を含有するものの、その含有量が少ない例である。比較例1と同様に断熱性が不十分であった。
比較例3は断熱性を付与する材料としての軽量骨材の含有量が多い例である。組織の緻密性が損なわれ耐食性が低下した。
The comparative example 1 shown in Table 2 is an example which does not contain the material which provides what is called heat insulation, such as a lightweight aggregate, and the heat insulation was inadequate.
Comparative Example 2 is an example in which the lightweight aggregate is contained as a material for providing heat insulation, but the content is small. As in Comparative Example 1, the heat insulation was insufficient.
The comparative example 3 is an example with much content of the lightweight aggregate as a material which provides heat insulation. The compactness of the structure is impaired and the corrosion resistance is lowered.

比較例4は粒径1mm未満のシリマナイト族原料の含有量が少ない例である。シリマナイト族原料からのムライト生成量が不足するので耐食性向上効果が得られなかった。
比較例5は粒径1mm未満のシリマナイト族原料の含有量が多い例である。上記式1の反応によりSiOが過剰に生成して低融物が生成されるので耐食性が低下した。
Comparative Example 4 is an example in which the content of the sillimanite group raw material having a particle size of less than 1 mm is small. The effect of improving the corrosion resistance was not obtained because the amount of mullite formed from the sillimanite family materials is insufficient.
Comparative Example 5 is an example in which the content of the sillimanite group raw material having a particle diameter of less than 1 mm is large. Since the reaction of the above-mentioned formula 1 generated SiO 2 in excess and a low melt was formed, the corrosion resistance was lowered.

比較例6はホウ素化合物を含有しない例である。ホウ素化合物によるムライト生成促進効果が得られず耐食性が不十分であった。比較例7はホウ素化合物のホウ素量としての含有量が多い例である。Bが過剰に生成して低融物が生成されるので耐食性が低下した。 Comparative Example 6 is an example containing no boron compound. The effect of promoting the formation of mullite by the boron compound was not obtained, and the corrosion resistance was insufficient. The comparative example 7 is an example with much content as a boron amount of a boron compound. Corrosion resistance decreased because B 2 O 3 was excessively formed to form a low melt.

Claims (4)

粒径1mm未満のシリマナイト族原料と、ホウ素化合物と、軽量骨材、空気連行剤及び有機繊維の少なくとも1種とを含有し、
粒径8mm以上の耐火原料を除いた原料100質量%に占める割合で、
粒径1mm未満のシリマナイト族原料の含有量は5質量%以上70質量%以下、ホウ素化合物の含有量はホウ素量として0.08質量%以上2質量%以下であり、
軽量骨材を含有する場合その含有量は10質量%以上50質量%以下、空気連行剤を含有する場合その含有量は0.02質量%以上0.5質量%以下、有機繊維を含有する場合その含有量は0.5質量%以上3質量%以下である、不定形耐火物。
A sillimanite group material having a particle size of less than 1 mm, a boron compound, and at least one of a lightweight aggregate, an air entrainer and an organic fiber,
In a proportion of 100% by mass of raw materials excluding refractory raw materials having a particle size of 8 mm or more,
The content of the sillimanite group raw material having a particle size of less than 1 mm is 5% by mass or more and 70% by mass or less, and the content of the boron compound is 0.08% by mass or more and 2% by mass or less as the amount of boron.
When the lightweight aggregate is contained, the content is 10% by mass to 50% by mass, when the air entraining agent is contained, the content is 0.02% by mass or more and 0.5% by mass or less, the organic fiber is contained The monolithic refractory whose content is 0.5 mass% or more and 3 mass% or less.
粒径8mm以上の耐火原料を除いた原料100質量%に占める割合で、粒径75μm未満のアルミナ原料を5質量%以上40質量%以下含有する、請求項1に記載の不定形耐火物。   The monolithic refractory according to claim 1, containing 5% by mass or more and 40% by mass or less of an alumina raw material having a particle size of less than 75 μm in a proportion of 100% by mass of the raw material excluding a refractory raw material having a particle size of 8 mm or more. 前記軽量骨材は、軽量シャモット、中空アルミナ、中空スピネル、バーミキュライト、パーライト、軽石、断熱れんが屑及びCaO・6Alを主たる鉱物組成とする断熱性骨材の少なくとも1種である、請求項1又は2に記載の不定形耐火物。 The light-weight aggregate is at least one of heat-insulating aggregates mainly composed of light-weight chamotte, hollow alumina, hollow spinel, vermiculite, pearlite, pumice, heat-insulated brick dust, and CaO · 6Al 2 O 3. The monolithic refractory as described in 1 or 2. タンディッシュ内張り用の不定形耐火物である、請求項1から3のいずれかに記載の不定形耐火物。   The amorphous refractory according to any one of claims 1 to 3, which is an irregular refractory for tundish lining.
JP2018008307A 2018-01-22 2018-01-22 Amorphous refractory Active JP7029299B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018008307A JP7029299B2 (en) 2018-01-22 2018-01-22 Amorphous refractory

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018008307A JP7029299B2 (en) 2018-01-22 2018-01-22 Amorphous refractory

Publications (2)

Publication Number Publication Date
JP2019127401A true JP2019127401A (en) 2019-08-01
JP7029299B2 JP7029299B2 (en) 2022-03-03

Family

ID=67471816

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018008307A Active JP7029299B2 (en) 2018-01-22 2018-01-22 Amorphous refractory

Country Status (1)

Country Link
JP (1) JP7029299B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112592202A (en) * 2020-12-31 2021-04-02 山东潍耐节能材料有限公司 Mullite heat-insulating brick and production process thereof
WO2022185893A1 (en) * 2021-03-01 2022-09-09 明智セラミックス株式会社 Insulation material for refractory object
CN115093206A (en) * 2022-05-11 2022-09-23 新密市鸿瑞冶金建材有限责任公司 Special castable for platform bag lining

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02102172A (en) * 1988-10-06 1990-04-13 Nippon Steel Corp Amorphous refractory for hot metal pretreatment vessel
JPH1149575A (en) * 1997-07-31 1999-02-23 Toshiba Ceramics Co Ltd Prepared unshaped refractory material
JPH11268963A (en) * 1998-03-20 1999-10-05 Harima Ceramic Co Ltd Castable refractory with thermal insulation property
JP2006513966A (en) * 2003-02-07 2006-04-27 アライド・ミネラル・プロダクツ・インコーポレーテッド Crack-resistant dry refractories
JP2007131478A (en) * 2005-11-09 2007-05-31 Taiko Rozai Kk Light weight castable refractory material for aluminum and aluminum alloy melt
JP2018140406A (en) * 2017-02-27 2018-09-13 黒崎播磨株式会社 Compound for mortar, mortar, and method for producing mortar

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02102172A (en) * 1988-10-06 1990-04-13 Nippon Steel Corp Amorphous refractory for hot metal pretreatment vessel
JPH1149575A (en) * 1997-07-31 1999-02-23 Toshiba Ceramics Co Ltd Prepared unshaped refractory material
JPH11268963A (en) * 1998-03-20 1999-10-05 Harima Ceramic Co Ltd Castable refractory with thermal insulation property
JP2006513966A (en) * 2003-02-07 2006-04-27 アライド・ミネラル・プロダクツ・インコーポレーテッド Crack-resistant dry refractories
JP2007131478A (en) * 2005-11-09 2007-05-31 Taiko Rozai Kk Light weight castable refractory material for aluminum and aluminum alloy melt
JP2018140406A (en) * 2017-02-27 2018-09-13 黒崎播磨株式会社 Compound for mortar, mortar, and method for producing mortar

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112592202A (en) * 2020-12-31 2021-04-02 山东潍耐节能材料有限公司 Mullite heat-insulating brick and production process thereof
WO2022185893A1 (en) * 2021-03-01 2022-09-09 明智セラミックス株式会社 Insulation material for refractory object
JP2022133051A (en) * 2021-03-01 2022-09-13 明智セラミックス株式会社 Heat insulation material for refractory
JP7251823B2 (en) 2021-03-01 2023-04-04 明智セラミックス株式会社 Thermal insulation for refractories
CN115093206A (en) * 2022-05-11 2022-09-23 新密市鸿瑞冶金建材有限责任公司 Special castable for platform bag lining
CN115093206B (en) * 2022-05-11 2023-04-21 新密市鸿瑞冶金建材有限责任公司 Special castable for ladle lining

Also Published As

Publication number Publication date
JP7029299B2 (en) 2022-03-03

Similar Documents

Publication Publication Date Title
CN108821785A (en) A kind of coating against binding slags for hot-rolling heating furnace water beam heat preservation lining
JP2019127401A (en) Castable refractory
JP2010235342A (en) Monolithic refractory for blast furnace iron spout
JP4484694B2 (en) Castable refractories
JP2011241093A (en) Inner lining pouring material
JP2011032118A (en) COATING MATERIAL WITH FeO RESISTANCE
JP6077877B2 (en) Castable refractories for blast furnace firewood
JP6959809B2 (en) Amorphous refractory for pouring work
JP2874831B2 (en) Refractory for pouring
JP2004131310A (en) Castable refractory for lining tundish
JP2000203953A (en) Castable refractory for trough of blast furnace
JPH0687667A (en) Zirconia-mullite containing castable refractory
JP6266968B2 (en) Blast furnace hearth lining structure
JP2020100853A (en) Monolithic refractory for blast furnace runner cover
JPH08259340A (en) Magnesia-carbon-based castable refractory
JP2000178074A (en) Castable refractory for blast furnace tapping spout
JP6412646B2 (en) Brick for hearth of hot metal production furnace
JP2021092339A (en) Unshaped refractory hardened body and method for producing the same
JP3908562B2 (en) Irregular refractory
JP2021004160A (en) Brick for hot metal ladle, and hot metal ladle lined with the same
JP6098834B2 (en) Amorphous refractories for molten aluminum alloys
JP2019126828A (en) Tundish lining structure and tundish permanent monolithic refractory
JP6694541B1 (en) Castable refractory for blast furnace gutter metal part
JP6609389B1 (en) Unshaped refractory for blast furnace
JP5193137B2 (en) Furnace

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201104

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20211021

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211116

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211206

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220201

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220218

R150 Certificate of patent or registration of utility model

Ref document number: 7029299

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150