JP2021004160A - Brick for hot metal ladle, and hot metal ladle lined with the same - Google Patents

Brick for hot metal ladle, and hot metal ladle lined with the same Download PDF

Info

Publication number
JP2021004160A
JP2021004160A JP2019120191A JP2019120191A JP2021004160A JP 2021004160 A JP2021004160 A JP 2021004160A JP 2019120191 A JP2019120191 A JP 2019120191A JP 2019120191 A JP2019120191 A JP 2019120191A JP 2021004160 A JP2021004160 A JP 2021004160A
Authority
JP
Japan
Prior art keywords
mass
less
hot metal
particle size
raw material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019120191A
Other languages
Japanese (ja)
Other versions
JP7377635B2 (en
Inventor
信作 高原
Shinsaku Takahara
信作 高原
一茉 橋本
Kazumi Hashimoto
一茉 橋本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Krosaki Harima Corp
Original Assignee
Nippon Steel Corp
Krosaki Harima Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp, Krosaki Harima Corp filed Critical Nippon Steel Corp
Priority to JP2019120191A priority Critical patent/JP7377635B2/en
Publication of JP2021004160A publication Critical patent/JP2021004160A/en
Application granted granted Critical
Publication of JP7377635B2 publication Critical patent/JP7377635B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

To provide a brick for a hot metal ladle, which is excellent in corrosion resistance and has residual expansion properties, and to provide the hot metal ladle lined with the same.SOLUTION: A brick for a hot metal ladle is obtained by adding an organic binder to a refractory raw material compound, mixing them, molding the resultant mixture, and then heating the molded mixture. The refractory raw material compound comprises: 5 mass% or more and 20 mass% or less of a silica having a particle size of 1 mm or more and less than 5 mm; 45 mass% or more and 80 mass% or less of an alumina-based raw material; 5 mass% or more and 20 mass% or less of graphite; and 0.3 mass% or more and 4 mass% or less of aluminum and/or aluminum alloy, wherein a content ratio of silicon carbide is 20 mass% or less (including 0), a content ratio of pyrophyllite having a particle size of 1 mm or more and less than 5 mm is 10 mass% or less (including 0), and when the brick comprises the pyrophyllite having the particle size of 1 mm or more and less than 5 mm, the total of the content ratio of pyrophyllite and a content ratio of silica having the particle size of 1 mm or more and less than 5 mm is 20 mass% or less. The brick is lined to the hot metal ladle.SELECTED DRAWING: None

Description

本発明は、溶銑を運搬するための溶銑鍋に内張り材として使用される溶銑鍋用れんが及びこれをライニングした溶銑鍋に関する。 The present invention relates to a brick for a hot metal pot used as a lining material for a hot metal pot for transporting hot metal, and a hot metal pot lined with the brick.

溶銑鍋の内張り材としては、加熱冷却に伴う熱衝撃に対応する容積安定性が特に重要であることから、従前よりアルミナ・炭化珪素・炭素耐火物を基本に、冷却時の目地開きを回避するために残存膨張性を付与するための残存膨張性原料が添加されている。冷却時に目地開きが生じると稼働時に溶銑侵入を生じやすいからである。 As the lining material for hot metal pots, volume stability that responds to thermal shock caused by heating and cooling is particularly important, so joint openings during cooling are avoided based on alumina, silicon carbide, and carbon refractories. Therefore, a residual expandable raw material for imparting residual expandability is added. This is because if joint opening occurs during cooling, hot metal intrusion is likely to occur during operation.

例えば特許文献1には、「粒径80μm以上の粒を80重量%以上含む高熱膨張性かつ高残存膨張性のシリカまたはシリカ・アルミナ質原料20〜80重量%、アルミナ質原料20〜77重量%、炭素材料または炭素材料と炭化珪素3〜30質量%と樹脂系結合剤よりなることを特徴とする溶銑容器用不焼成耐火物」が開示されている(特許請求の範囲参照)。また、特許文献1によれば、「シリカあるいはシリカ・アルミナ質原料中のSiO成分は加熱されることでα石英からβ石英、クリストバライトへの変態や、さらに高温でのブローチングによる高熱膨張と高残存膨張性のためれんがの目地開きが防止される」とされている(2頁左下欄12〜16行参照)。そして、特許文献1の実施例には、耐火原料配合物100質量%中に、粒度65μm以上が85%以上のシリカ・アルミナ質原料としてろう石を20質量%含有する例(第1表実施例1)や、粒度65μm以上が85%以上のシリカとして珪石を25質量%含有する例(第1表実施例3)が開示されている。
しかしながら、ろう石は、パイロフィライトを主体として石英、カオリナイト、セイサイトなどの副構成鉱物も含んでおり、これらのうちの石英は前述のようにれんがに残存膨張を与えるが、ろう石を20質量%含有する場合、ろう石中のパイロフィライトやアルカリ成分、及び他の原料中の不純物により、れんが中の液相生成量が増加するため耐食性が低下する問題がある。
一方、珪石を25質量%含有する場合、シリカ成分の増加が耐スラグ侵食性の低下に直結し、寿命の低下を生じることになる。さらに、れんが中のアルミナ骨材とシリカ成分と他の低融成分(酸化鉄、アルカリ等)との反応により生成する液相の増加で焼結が促進され、れんがの緻密化や塑性変形を生じる。その結果、長期間の使用による稼働面側の変質や、焼結進行に伴う緻密化が進み、末期には亀裂や剥離、目地開きに伴う目地への溶銑侵入が表面化し、耐用不安定を生じることになる。
For example, Patent Document 1 states, "Highly thermally expandable and highly residual expandable silica or silica-alumina raw material 20 to 80% by weight, alumina raw material 20 to 77% by weight containing 80% by weight or more of grains having a particle size of 80 μm or more. , A non-firing refractory for hot metal containers, which comprises a carbon material or a carbon material, 3 to 30% by mass of silicon carbide, and a resin-based binder "(see the scope of patent claims). Further, according to Patent Document 1, "The SiO 2 component in silica or silica / alumina raw material is transformed from α-quartz to β-quartz and cristobalite by heating, and high thermal expansion due to broaching at a higher temperature. High residual swelling prevents the opening of brick joints "(see lines 12 to 16 in the lower left column on page 2). Then, in the example of Patent Document 1, 20% by mass of pyrophyllite as a silica-alumina raw material having a particle size of 65 μm or more and 85% or more is contained in 100% by mass of the fireproof raw material mixture (Example in Table 1). 1) and an example in which 25% by mass of silica stone is contained as silica having a particle size of 65 μm or more and 85% or more (Example 3 in Table 1) are disclosed.
However, pyrophyllite is mainly pyrophyllite and also contains sub-constituent minerals such as quartz, kaolinite, and seisite. Quartz among these gives residual expansion to bricks as described above, but pyrophyllite When it is contained in an amount of 20% by mass, there is a problem that the corrosion resistance is lowered because the amount of liquid phase formed in the brick is increased due to the pyrophyllite and the alkaline component in the pyrophyllite and the impurities in other raw materials.
On the other hand, when silica stone is contained in an amount of 25% by mass, an increase in the silica component is directly linked to a decrease in slag erosion resistance, resulting in a decrease in life. Furthermore, sintering is promoted by increasing the liquid phase generated by the reaction of the alumina aggregate in the brick, the silica component, and other low-melting components (iron oxide, alkali, etc.), resulting in densification and plastic deformation of the brick. .. As a result, deterioration on the working surface side due to long-term use and densification due to the progress of sintering progress, and in the final stage, cracking and peeling, and invasion of hot metal into the joint due to joint opening surface, resulting in durability instability. It will be.

特開平2−22167号公報Japanese Unexamined Patent Publication No. 2-22167

本発明が解決しようとする課題は、耐食性に優れしかも残存膨張性を有する溶銑鍋用れんが及びこれをライニングした溶銑鍋を提供することにある。 An object to be solved by the present invention is to provide a brick for a hot metal pot having excellent corrosion resistance and residual expandability, and a hot metal pot lined with the brick.

本発明者らは、アルミナ及び黒鉛を主体とする溶銑鍋用れんがにおいて、耐火原料配合物中に粒度1mm以上5mm未満の珪石を5質量%以上20質量%以下使用することで、耐食性及び残存膨張性に優れる溶銑鍋用れんがが得られることを知見した。 The present inventors use silica stone having a particle size of 1 mm or more and less than 5 mm in a fire-resistant raw material formulation in an amount of 5% by mass or more and 20% by mass or less in a brick for a hot pot mainly composed of alumina and graphite to provide corrosion resistance and residual expansion. It was found that bricks for hot metal pots with excellent properties can be obtained.

すなわち、本発明によれば、次の1〜4に記載の溶銑鍋用れんが及びこれをライニングした溶銑鍋が提供される。
1.
耐火原料配合物に有機バインダーを添加して混練し成形後、熱処理して得られる溶銑鍋用れんがであって、
耐火原料配合物は、粒度1mm以上5mm未満の珪石を5質量%以上20質量%以下、アルミナ質原料を45質量%以上80質量%以下、黒鉛を5質量%以上20質量%以下、アルミニウム及び/又はアルミニウム合金を0.3質量%以上4質量%以下含有すると共に、炭化珪素の含有率が20質量%以下(0を含む)、粒度1mm以上5mm未満のろう石の含有率が10質量%以下(0を含む)であり、
かつ、粒度1mm以上5mm未満のろう石を含有する場合、粒度1mm以上5mm未満の珪石の含有率との合計が20質量%以下である、溶銑鍋用れんが。
2.
アルミナ質原料は、バンケツ、ボーキサイト、ムライト、焼結アルミナ、及び電融アルミナから選択される1種又は2種以上である、前記1に記載の溶銑鍋用れんが。
3.
さらにシリコン、炭化ホウ素、ガラス粉末、マグネシア、カーボンブラック、ピッチ粉末のうち1種又は2種以上を耐火原料配合物100質量%中に占める割合として合量で5質量%以下含有することを特徴とする前記1又は2に記載の溶銑鍋用れんが。
4.
前記1乃至3のいずれか1項に記載の溶銑鍋用れんがをライニングした溶銑鍋。
That is, according to the present invention, the bricks for hot metal pots according to the following 1 to 4 and the hot metal pots lined with the bricks are provided.
1. 1.
Brick for hot metal pots obtained by adding an organic binder to a fire-resistant raw material compound, kneading, molding, and then heat-treating.
The fire-resistant raw material formulation includes 5% by mass or more and 20% by mass or less of silicate having a particle size of 1 mm or more and less than 5 mm, 45% by mass or more and 80% by mass or less of an alumina raw material, 5% by mass or more and 20% by mass or less of graphite, aluminum and /. Alternatively, the content of aluminum alloy is 0.3% by mass or more and 4% by mass or less, the content of silicon carbide is 20% by mass or less (including 0), and the content of brazingite having a particle size of 1 mm or more and less than 5 mm is 10% by mass or less. (Including 0)
In addition, when pyrophyllite having a particle size of 1 mm or more and less than 5 mm is contained, the total content of silica stone having a particle size of 1 mm or more and less than 5 mm is 20% by mass or less.
2. 2.
The brick for hot metal pot according to 1 above, wherein the alumina raw material is one or more selected from banquet, bauxite, mullite, sintered alumina, and fused alumina.
3. 3.
Furthermore, it is characterized in that one or more of silicon, boron carbide, glass powder, magnesia, carbon black, and pitch powder are contained in a total amount of 5% by mass or less as a ratio in 100% by mass of the fireproof raw material compound. The hot metal pot brick according to 1 or 2 above.
4.
A hot metal pan lined with the brick for hot metal pan according to any one of 1 to 3 above.

なお、本発明でいう粒度とは、耐火原料粒子を篩いで篩って分離したときの篩い目の大きさのことであり、例えば粒度1mm以上の珪石とは、篩い目が1mmの篩い目を通過しない珪石のことで、粒度5mm未満の珪石とは、篩い目が5mmの篩いを通過する珪石のことである。 The particle size referred to in the present invention is the size of the sieve mesh when the fireproof raw material particles are sieved and separated. For example, a silica stone having a particle size of 1 mm or more has a sieve mesh of 1 mm. A silica stone that does not pass through, and a silica stone having a particle size of less than 5 mm is a silica stone that passes through a sieve having a sieve mesh of 5 mm.

本発明によれば、耐火原料配合物中に粒度1mm以上5mm未満の珪石を特定量使用することで、耐食性の低下を抑制しつつ、十分な残存膨張を得ることができる。これにより溶銑鍋の寿命を大幅に向上することができる。 According to the present invention, by using a specific amount of silica stone having a particle size of 1 mm or more and less than 5 mm in the fire-resistant raw material compound, it is possible to obtain sufficient residual expansion while suppressing a decrease in corrosion resistance. As a result, the life of the hot metal pot can be significantly improved.

本発明の溶銑鍋用れんがにおいて、まずその耐火原料配合物には、粒度1mm以上5mm未満の珪石を5質量%以上20質量%以下、アルミナ質原料を45質量%以上80質量%以下、黒鉛を5質量%以上20質量%以下、アルミニウム及び/又はアルミニウム合金を0.3質量%以上4質量%以下、並びに炭化珪素を20質量%以下(0を含む)で、それぞれ使用する。 In the hot metal pot brick of the present invention, first, the refractory raw material compound contains 5% by mass or more and 20% by mass or less of silica stone having a particle size of 1 mm or more and less than 5 mm, 45% by mass or more and 80% by mass or less of an alumina raw material, and graphite. 5% by mass or more and 20% by mass or less, aluminum and / or aluminum alloy in 0.3% by mass or more and 4% by mass or less, and silicon carbide in 20% by mass or less (including 0) are used.

このように本発明の耐火原料配合物には、粒度1mm以上5mm未満の珪石を使用する。アルミナ及び黒鉛を主体とするれんが中において、珪石を含有するとシリカ量が増加するため耐スラグ性が低下する問題があるが、珪石の粒度が大きいほど耐スラグ性の低下を抑制することができる。
また、本発明の溶銑鍋用れんがはマトリックス部に黒鉛を含有しており、粒度1mm未満の微粒の珪石の膨張はこのマトリックス部に一部が吸収されるため、れんが全体としては十分な残存膨張効果が得られないことになる。これに対して、粒度1mm以上の粗粒の珪石は、その珪石の粗粒及びアルミナ質原料の粗粒と接する部分が多いこと、さらには粗粒どうしの距離が近いことから珪石の膨張は黒鉛の多いマトリックス部にほとんど吸収されることなく、れんが全体を膨張することができる。
As described above, silica stone having a particle size of 1 mm or more and less than 5 mm is used for the fireproof raw material compound of the present invention. In bricks mainly composed of alumina and graphite, when silica stone is contained, the amount of silica increases, so that there is a problem that the slag resistance is lowered. However, the larger the particle size of the silica stone, the more the deterioration of the slag resistance can be suppressed.
Further, the brick for hot metal pot of the present invention contains graphite in the matrix portion, and the expansion of fine silica stone having a particle size of less than 1 mm is partially absorbed by this matrix portion, so that the brick as a whole has sufficient residual expansion. The effect will not be obtained. On the other hand, coarse-grained silica stone with a particle size of 1 mm or more has many parts in contact with the coarse-grained silica stone and the coarse-grained alumina-based raw material, and the distance between the coarse-grained silica stones is short, so that the expansion of the silica stone is graphite. The entire brick can be expanded with almost no absorption by the matrix portion with a large amount of silica.

以上の観点からは、本発明の耐火原料配合物には、粒度1mm以上の珪石を使用する。なお、珪石の粒度が大きくなりすぎると成形時の坏土の充填性が悪くなるため、本発明の耐火原料配合物に使用する珪石の粒度は1mm以上5mm未満とする。
ただし、粒度1mm未満の珪石は、粒度1mm以上5mm未満の珪石との合量を100質量%としたときに20質量%以下であれば含有していても大きな影響がないため許容できる。また、粒度5mm以上の珪石も少量であれば許容でき、例えば5質量%以下とすることができる。
耐火原料配合物100質量%中に占める割合で、粒度1mm以上5mm未満の珪石の含有率が5質量%未満では残存膨張の効果が不十分となり、20質量%を超えると耐食性が低下する。
From the above viewpoint, silica stone having a particle size of 1 mm or more is used in the fireproof raw material compound of the present invention. If the particle size of the silica stone becomes too large, the filling property of the clay during molding deteriorates. Therefore, the particle size of the silica stone used in the fireproof raw material compound of the present invention is set to 1 mm or more and less than 5 mm.
However, silica stone having a particle size of less than 1 mm is acceptable as long as it is 20% by mass or less when the total amount of silica stone with a particle size of 1 mm or more and less than 5 mm is 100% by mass, because there is no significant effect. Further, a small amount of silica stone having a particle size of 5 mm or more is acceptable, and can be, for example, 5% by mass or less.
When the content of silica stone having a particle size of 1 mm or more and less than 5 mm is less than 5% by mass in the proportion of 100% by mass of the fire-resistant raw material compound, the effect of residual expansion becomes insufficient, and when it exceeds 20% by mass, the corrosion resistance is lowered.

珪石としては、珪石れんが等の耐火物の原料として通常使用されているもので、天然で採掘された原料を使用することができ、SiO含有率が95質量%以上のものを好適に使用することができる。なお、珪石中においてSiOは石英として含有されている。 As the silica stone, it is usually used as a raw material for refractories such as silica stone bricks, and naturally mined raw materials can be used, and those having a SiO 2 content of 95% by mass or more are preferably used. be able to. In addition, SiO 2 is contained as quartz in silica stone.

アルミナ質原料は、溶銑中のスラグに対して耐食性に優れるため使用し、具体的には耐火原料配合物100質量%中に占める割合で45質量%以上80質量%の含有率で使用する。その含有率が45質量%未満では耐食性が不十分となり、80質量%を超えると耐熱衝撃性が低下する。
アルミナ質原料としては、バンケツ、ボーキサイト、ムライト、焼結アルミナ、及び電融アルミナから選択される1種又は2種以上を好適に使用することができる。具体的には、バンケツはAl含有率が80質量%以上のものを、ボーキサイトはAl含有率が85質量%以上のものを、ムライトはAl含有率が65質量%以上のものを、焼結アルミナはAl含有率が95質量%以上のものを、電融アルミナはAl含有率が95質量%以上のものを、それぞれ好適に使用することができる。
これらのアルミナ質原料は、使用される溶銑鍋の操業条件に応じて選択することができ、単独あるいは複数のアルミナ質原料を併用して使用することができる。また、焼結アルミナや電融アルミナよりも不純物の多いバンケツやボーキサイトを使用する場合には、珪石あるいはろう石の使用量を少なくすることで耐食性の低下を抑制することができる。
なお、アルミナ質原料は、微粒(粒度1mm未満)から粗粒(粒度1mm以上)までの全粒度範囲で使用することができる。
The alumina-based raw material is used because it has excellent corrosion resistance against slag in hot metal. Specifically, it is used at a content of 45% by mass or more and 80% by mass in the proportion of 100% by mass of the fire-resistant raw material mixture. If the content is less than 45% by mass, the corrosion resistance becomes insufficient, and if it exceeds 80% by mass, the thermal shock resistance is lowered.
As the alumina raw material, one or more selected from banquet, bauxite, mullite, sintered alumina, and fused alumina can be preferably used. Specifically, banquets have an Al 2 O 3 content of 80% by mass or more, bauxite has an Al 2 O 3 content of 85% by mass or more, and mulite has an Al 2 O 3 content of 65% by mass. % Or more, sintered alumina having an Al 2 O 3 content of 95% by mass or more, and fused alumina having an Al 2 O 3 content of 95% by mass or more are preferably used. Can be done.
These alumina raw materials can be selected according to the operating conditions of the hot metal pot to be used, and can be used alone or in combination of a plurality of alumina raw materials. Further, when banquets or bauxite having more impurities than sintered alumina or fused alumina are used, deterioration of corrosion resistance can be suppressed by reducing the amount of silica stone or pyrophyllite used.
The alumina raw material can be used in the entire particle size range from fine particles (particle size less than 1 mm) to coarse particles (particle size 1 mm or more).

黒鉛は、耐熱衝撃性を確保するために使用し、具体的には耐火原料配合物100質量%中に占める割合で5質量%以上20質量%以下の含有率で使用する。その含有率が5質量%未満では耐熱衝撃性が不十分となり、20質量%を超えると稼働中の強度発現が抑制され、内部亀裂の発生や耐摩耗性の低下を生じ、また、れんがの熱伝導性が上昇し溶銑温度の低下を招く。
黒鉛としては、鱗状黒鉛等、耐火物の原料として通常使用されているものを使用することができ、粒度0.5mm未満のものを好適に使用することができる。
Graphite is used to ensure heat impact resistance, and specifically, it is used at a content of 5% by mass or more and 20% by mass or less in a proportion of 100% by mass of the fireproof raw material compound. If the content is less than 5% by mass, the thermal shock resistance becomes insufficient, and if it exceeds 20% by mass, the strength development during operation is suppressed, internal cracks occur, wear resistance is lowered, and the heat of bricks is reduced. Conductivity increases and the hot metal temperature drops.
As the graphite, those usually used as a raw material for refractories such as scaly graphite can be used, and those having a particle size of less than 0.5 mm can be preferably used.

アルミニウム及び/又はアルミニウム合金は酸化防止及び強度付与のために使用し、具体的には耐火原料配合物100質量%中に占める割合で0.3質量%以上4質量%の含有率で使用する。その含有率が0.3質量%未満では酸化防止及び強度付与の効果が十分には得られず、4質量%を超えると過度の焼結効果により耐熱衝撃性の低下を生じ、亀裂・剥離の懸念が増大する。
これらアルミニウム、アルミニウム合金、及び後述するシリコン等のその他の金属としても、耐火物の原料として通常使用されているものを使用することができ、粒度0.1mm未満のものを好適に使用することができる。なお、アルミニウム合金としてはアルミニウムマグネシウム合金、アルミニウムシリコン合金等が挙げられる。
Aluminum and / or aluminum alloy is used for antioxidant and strength imparting, and specifically, it is used at a content of 0.3% by mass or more and 4% by mass in the proportion of 100% by mass of the fireproof raw material compound. If the content is less than 0.3% by mass, the effects of antioxidant and strength imparting cannot be sufficiently obtained, and if it exceeds 4% by mass, the thermal shock resistance is lowered due to the excessive sintering effect, and cracks and peeling occur. Concerns grow.
As these aluminum, aluminum alloy, and other metals such as silicon described later, those usually used as raw materials for refractories can be used, and those having a particle size of less than 0.1 mm can be preferably used. it can. Examples of the aluminum alloy include an aluminum magnesium alloy and an aluminum silicon alloy.

一方、ろう石は石英を含有するため、これを使用すると残存膨張が得られるが、珪石よりもその効果は小さいため基本的には使用しなくてもよい。ただし、珪石単独使用の場合は600℃付近、及び1300℃付近で急激な膨張を生じる場合があり、急激な膨張による亀裂発生を避けるため、ろう石を珪石と併用することで緩やかな膨張に調整することが可能になる。したがって、溶銑鍋の操業条件に応じて、粒度1mm以上5mm未満のろう石を耐火原料配合物100質量%中に占める割合で10質量%以下含有(使用)することができる。ただし、粒度1mm以上5mm未満のろう石を含有(使用)する場合、粒度1mm以上5mm未満の珪石との合量が20質量%以下となるようにする。
ろう石としても、耐火物の原料として通常使用されているものを使用することができ、その粒度は珪石と同様に1mm以上5mm未満のものを好適に使用することができる。なお、ろう石には熱処理した焼ろう石もあるが、本発明では熱処理を行わないものを使用する。
On the other hand, since pyrophyllite contains quartz, residual expansion can be obtained by using it, but its effect is smaller than that of silica stone, so basically it is not necessary to use it. However, when silica stone is used alone, rapid expansion may occur at around 600 ° C and around 1300 ° C, and in order to avoid cracks due to rapid expansion, pyrophyllite is used in combination with silica stone to adjust to gentle expansion. It becomes possible to do. Therefore, depending on the operating conditions of the hot metal pot, pyrophyllite having a particle size of 1 mm or more and less than 5 mm can be contained (used) in an amount of 10% by mass or less in 100% by mass of the fireproof raw material mixture. However, when pyrophyllite having a particle size of 1 mm or more and less than 5 mm is contained (used), the total amount with silica stone having a particle size of 1 mm or more and less than 5 mm is 20% by mass or less.
As the pyrophyllite, those usually used as a raw material for refractories can be used, and those having a particle size of 1 mm or more and less than 5 mm can be preferably used as in the case of silica stone. Although some pyrophyllite is heat-treated, the present invention uses one that is not heat-treated.

本発明の耐火原料配合物には、アルミニウム及び/又はアルミニウム合金を使用しているため酸化防止効果を有しているが、さらに酸化防止効果を高めたい場合、あるいは耐熱衝撃性を高めたい場合には、炭化珪素を耐火原料配合物100質量%中に占める割合で20質量%以下の含有率で使用することができる。その含有率が20質量%を超えると稼働面付近の過度の焼結を生じやすくなることから構造的スポーリングの懸念が高くなり、また、稼働時にCO雰囲気中の反応で分解生成するシリカの影響で耐食性低下への懸念も生じる。
炭化珪素としては、SiC含有率が85質量%以上のもので、粒度0.3mm未満のものを好適に使用することができる。
Since aluminum and / or an aluminum alloy is used in the fire-resistant raw material compound of the present invention, it has an antioxidant effect, but when it is desired to further enhance the antioxidant effect or when it is desired to enhance the thermal shock resistance. Can be used at a content of 20% by mass or less in proportion to 100% by mass of the fireproof raw material compound. If the content exceeds 20% by mass, excessive sintering near the operating surface is likely to occur, raising concerns about structural spalling, and the effect of silica decomposed and generated by the reaction in the CO atmosphere during operation. There is also concern about a decrease in corrosion resistance.
As the silicon carbide, one having a SiC content of 85% by mass or more and a particle size of less than 0.3 mm can be preferably used.

なお、本発明の耐火原料配合物には、上記以外で耐火物に汎用されている耐火原料として、アルミニウム又はアルミニウム合金以外の金属(例えばシリコン)、炭化ホウ素、ガラス粉末、マグネシア、カーボンブラック及びピッチ粉末のうち1種又は2種以上を耐火原料配合物100質量%中に占める割合で、合量として5質量%以下の含有率で使用することができる。 In addition, in the refractory raw material compound of the present invention, metals other than aluminum or aluminum alloy (for example, silicon), boron carbide, glass powder, magnesia, carbon black and pitch are used as refractory raw materials commonly used for refractory materials other than the above. One or more of the powders can be used in a proportion of 100% by mass of the refractory raw material mixture, and the total amount can be 5% by mass or less.

本発明の溶銑鍋用れんがは、上記の耐火原料配合物にフェノール樹脂等の有機バインダーを添加して混練し、成形後に熱処理することで得られる。ここで、有機バインダーは成形後及び熱処理後の強度を得るため、さらには使用中の受熱によってカーボンボンドを形成するため等の公知の目的で使用し、一般的な不焼成れんがで使用されている公知な有機バインダーを混練時に製造条件に合わせて一般的な割合で添加することができる。具体的には耐火原料配合物100質量に対して外掛けで1質量%以上5質量%以下の範囲とすることができる。同様に熱処理温度も通常の有機バインダーを使用した不焼成れんがの公知の熱処理温度の範囲内であれば問題なく採用することができる。具体的には160℃以上800℃以下とすることができる。
そして、この溶銑鍋用れんがをライニングすることで、本発明の溶銑鍋を得ることができる。
The brick for hot metal pot of the present invention can be obtained by adding an organic binder such as phenol resin to the above-mentioned fire-resistant raw material compound, kneading it, and heat-treating it after molding. Here, the organic binder is used for known purposes such as to obtain strength after molding and heat treatment, and further to form a carbon bond by receiving heat during use, and is used in general non-fired bricks. A known organic binder can be added at the time of kneading in a general ratio according to the production conditions. Specifically, it can be in the range of 1% by mass or more and 5% by mass or less by externally covering 100% by mass of the fireproof raw material compound. Similarly, the heat treatment temperature can be adopted without any problem as long as it is within the range of the known heat treatment temperature for non-fired bricks using a normal organic binder. Specifically, the temperature can be 160 ° C. or higher and 800 ° C. or lower.
Then, by lining this brick for hot metal pot, the hot metal pot of the present invention can be obtained.

表1及び表2に示すそれぞれの耐火原料配合物に、有機バインダーとしてフェノール樹脂を耐火原料配合物100質量に対して外掛けで3質量%添加して、混練後にフリクションプレスで230×114×100mmのれんが形状に成形し、250℃で熱処理することで各実施例及び各比較例のれんがを得た。
なお、表1及び表2において、電融アルミナ及び焼結アルミナはAl含有率が97質量%、バンケツはAl含有率が82質量%、ボーキサイトはAl含有率が87質量%、電融ムライトはAl含有率が66質量%のものを使用し、珪石はSiO含有率が97質量%のものを使用した。また、ろう石としてはAl含有率が17質量%の低アルカリろう石を使用し、炭化珪素としてはSiC含有率が90質量%のものを使用した。さらに、鱗状黒鉛は固定炭素が85質量%のものを、ガラス粉末としては硼珪酸ガラスを、マグネシアはMgO含有率が95質量%の電融マグネシアを、ピッチは軟化点が230度のものを使用した。
To each of the fire-resistant raw material formulations shown in Tables 1 and 2, phenol resin as an organic binder was added in an external amount of 3% by mass with respect to 100 mass of the fire-resistant raw material compound, and after kneading, 230 × 114 × 100 mm was added by a friction press. Brick was formed into a goodwill shape and heat-treated at 250 ° C. to obtain goodwill of each Example and each Comparative Example.
In Tables 1 and 2, fused alumina and sintered alumina have an Al 2 O 3 content of 97% by mass, banquets have an Al 2 O 3 content of 82% by mass, and bauxite has an Al 2 O 3 content. 87% by mass, the fused light used had an Al 2 O 3 content of 66% by mass, and the bauxite used had a SiO 2 content of 97% by mass. Further, as the pyrophyllite, a low alkaline pyrophyllite having an Al 2 O 3 content of 17% by mass was used, and as the silicon carbide, one having a SiC content of 90% by mass was used. Furthermore, scaly graphite uses 85% by mass of fixed carbon, borosilicate glass as the glass powder, magnesia uses fused magnesia with an MgO content of 95% by mass, and the pitch uses a softening point of 230 degrees. did.

得られたれんがについて、見掛気孔率、圧縮強さ、及び残存膨張率を測定するとともに、耐食性及び耐熱衝撃性を評価した。
見掛気孔率は、50×50×50mmの角柱試料を用い、溶媒を白灯油としJIS R 2205に準拠して測定した。圧縮強さは、50×50×50mmの角柱試料を用い、JIS R 2206に準拠して測定した。
残存膨張率は、直径50mm×高さ50mmの円柱試料を用い、0.2MPaの荷重下で1400℃×3時間保持の熱処理前後の試料の高さの変化から測定した。
耐食性は上底45×下底105×高さ60×長さ120mmの台形れんが形状の試料を用い、回転スラグ侵食試験法により、1500℃×1時間侵食を5回繰り返し、試験前後の試料中心線厚さの差異(mm)から侵食量(mm)を求めた。侵食剤としては銑鉄とC/S=1.1の高炉スラグを使用した。表1及び表2において耐食性は比較例4の侵食量(mm)を100として指数で表示した。この指数が小さいほど耐食性に優れるということである。
耐熱衝撃性の評価においては、40×40×190mmの大きさの試料を、1400℃×3時間還元焼成の後、1500℃の溶銑に90秒浸漬後、30秒水冷の熱衝撃を10回繰り返す試験を行い、亀裂・剥落の状態を観察した。表中で、「優」は試験後に亀裂・剥落がなかったもの、「良」は軽微な亀裂・剥落が発生したもの、「可」は中程度の亀裂・剥落が発生したもの、「不可」は大きな亀裂・剥落が発生したものである。
なお、総合的な合否については、残存膨張率が1.20%以上、耐食性指数が100以下、及び耐熱衝撃性が「優」、「良」又は「可」のものを合格、残存膨張率が1.20%未満、耐食性指数が100超、又は耐熱衝撃性が「不可」のものを不合格とした。
With respect to the obtained brick, the apparent porosity, compressive strength, and residual expansion coefficient were measured, and the corrosion resistance and thermal shock resistance were evaluated.
The apparent porosity was measured in accordance with JIS R 2205 using a prismatic sample having a size of 50 × 50 × 50 mm and using white kerosene as a solvent. The compressive strength was measured according to JIS R 2206 using a prismatic sample of 50 × 50 × 50 mm.
The residual expansion rate was measured from the change in the height of the sample before and after the heat treatment held at 1400 ° C. for 3 hours under a load of 0.2 MPa using a cylindrical sample having a diameter of 50 mm and a height of 50 mm.
Corrosion resistance uses a trapezoidal brick-shaped sample of upper base 45 x lower base 105 x height 60 x length 120 mm, and erosion is repeated 5 times at 1500 ° C for 1 hour by the rotary slag erosion test method, and the sample centerline before and after the test. The amount of erosion (mm) was determined from the difference in thickness (mm). Pig iron and blast furnace slag with C / S = 1.1 were used as erosion agents. In Tables 1 and 2, the corrosion resistance is expressed as an index with the erosion amount (mm) of Comparative Example 4 as 100. The smaller this index is, the better the corrosion resistance is.
In the evaluation of thermal shock resistance, a sample having a size of 40 × 40 × 190 mm is reduced and fired at 1400 ° C. × 3 hours, immersed in hot metal at 1500 ° C. for 90 seconds, and then water-cooled for 30 seconds is repeated 10 times. A test was conducted and the state of cracks and peeling was observed. In the table, "excellent" means that there was no crack or peeling after the test, "good" means that there was a slight crack or peeling, "OK" means that there was a moderate crack or peeling, and "impossible". Is a large crack / peeling.
As for the overall pass / fail, those with a residual expansion coefficient of 1.20% or more, a corrosion resistance index of 100 or less, and a thermal shock resistance of "excellent", "good" or "acceptable" are passed, and the residual expansion rate is Those with less than 1.20%, a corrosion resistance index of more than 100, or a thermal shock resistance of "impossible" were rejected.

なお、見掛気孔率、及び圧縮強度は、れんがの基本的物性の一つであり、れんがの耐食性や耐熱衝撃性に影響を及ぼすことは当業者によく知られており、当業者への参考情報として測定した。 It should be noted that the apparent porosity and the compressive strength are one of the basic physical properties of bricks, and it is well known to those skilled in the art that they affect the corrosion resistance and thermal shock resistance of bricks. Measured as information.

Figure 2021004160
Figure 2021004160

Figure 2021004160
Figure 2021004160

表1において、実施例1から実施例5は、粒度1mm以上5mmの珪石の含有率が異なるものであるが、いずれも本発明の範囲内であり残存膨張率及び耐食性に優れている。なお、実施例4で使用した珪石は、粒度1mm未満の割合が粒度1mm以上5mm未満の珪石との合量を100質量%としたときに20質量%の珪石である。 In Table 1, Examples 1 to 5 have different contents of silica stone having a particle size of 1 mm or more and 5 mm, but all of them are within the range of the present invention and are excellent in residual expansion coefficient and corrosion resistance. The silica stone used in Example 4 is 20% by mass when the ratio of the particle size of less than 1 mm to the silica stone having a particle size of 1 mm or more and less than 5 mm is 100% by mass.

これらに対して比較例1は、粒度1mm以上5mm未満の珪石の含有率が2質量%と本発明の下限値を下回っており、残存膨張率が不足する結果となった。また、比較例2は粒度1mm以上5mm未満の珪石の含有率が25質量%と本発明の上限値を上回っており、耐食性が劣る結果となった。
比較例3は、粒度1mm未満の珪石を15質量%使用したものであるが、実施例3と比較して残存膨張率が小さく、耐食性も劣る結果となった。
比較例4は珪石の代わりに粒度1mm以上5mm未満のろう石を使用したものであるが、残存膨張率が不足する結果となった。
比較例5は、ろう石を4質量%含有しているが珪石が3質量%と本発明の下限値を下回っており残存膨張が不足している。
比較例6はアルミナ質原料の含有率が37質量%と本発明の下限値を下回っており、耐食性に劣る結果となり、比較例7はアルミナ質原料の含有率が85質量%と本発明の上限値を上回っており耐熱衝撃性が劣る結果であった。
On the other hand, in Comparative Example 1, the content of silica stone having a particle size of 1 mm or more and less than 5 mm was 2% by mass, which was lower than the lower limit of the present invention, resulting in insufficient residual expansion coefficient. Further, in Comparative Example 2, the content of silica stone having a particle size of 1 mm or more and less than 5 mm was 25% by mass, which exceeded the upper limit of the present invention, resulting in inferior corrosion resistance.
In Comparative Example 3, 15% by mass of silica stone having a particle size of less than 1 mm was used, but the residual expansion coefficient was smaller and the corrosion resistance was inferior as compared with Example 3.
In Comparative Example 4, a pyrophyllite having a particle size of 1 mm or more and less than 5 mm was used instead of silica stone, but the result was that the residual expansion coefficient was insufficient.
Comparative Example 5 contains 4% by mass of pyrophyllite, but 3% by mass of silica stone, which is below the lower limit of the present invention, and the residual expansion is insufficient.
In Comparative Example 6, the content of the alumina raw material was 37% by mass, which was lower than the lower limit of the present invention, resulting in inferior corrosion resistance. In Comparative Example 7, the content of the alumina raw material was 85% by mass, which was the upper limit of the present invention. The result was that the value was exceeded and the thermal shock resistance was inferior.

表2において、実施例6から実施例9は電融アルミナの代わりに焼結アルミナ、バンケツ、ボーキサイト、及び電融ムライトをそれぞれ使用し、かつ粒度1mm以上5mm未満の珪石と粒度1mm以上5mm未満のろう石とを併用するとともにアルミニウムとシリコンを併用したものであるが、残存膨張率及び耐食性に優れる結果となった。 In Table 2, in Examples 6 to 9, sintered alumina, banquet, bauxite, and fused mullite are used instead of the fused alumina, and silica stone having a particle size of 1 mm or more and less than 5 mm and a particle size of 1 mm or more and less than 5 mm are used. Although it was used in combination with pyrophyllite and aluminum and silicon, the results were excellent in residual expansion rate and corrosion resistance.

実施例10は電融アルミナとバンケツとを併用したもの、実施例11は、アルミニウムマグネシウム合金、炭化ホウ素、ピッチ粉末、ガラス、マグネシア、及びカーボンブラックを使用したもの、実施例12及び実施例13はアルミニウムの含有率を変化させたもの、実施例14はアルミニウムとアルミニウムマグネシウム合金を併用したもの、実施例15は炭化珪素の含有率を20質量%と増加したものであるが、いずれも本発明の範囲内であり残存膨張率及び耐食性に優れる結果となった。 Example 10 uses a combination of fused alumina and a banquet, Example 11 uses an aluminum magnesium alloy, boron carbide, pitch powder, glass, magnesia, and carbon black, and Examples 12 and 13 use. The aluminum content was changed, Example 14 was a combination of aluminum and an aluminum magnesium alloy, and Example 15 was an increase in the silicon carbide content to 20% by mass, all of which are of the present invention. The result was within the range and excellent in residual expansion rate and corrosion resistance.

一方、比較例8は、粒度1mm以上5mm未満の珪石と粒度1mm以上5mm未満のろう石との合計が25質量%と本発明の範囲外、比較例9は粒度1mm以上5mm未満のろう石が15質量%と本発明の範囲外でありいずれの場合も耐食性に劣る結果となった。 On the other hand, in Comparative Example 8, the total of silica stone having a particle size of 1 mm or more and less than 5 mm and pyrophyllite having a particle size of 1 mm or more and less than 5 mm was 25% by mass, which is outside the scope of the present invention. It was 15% by mass, which was outside the range of the present invention, and the result was that the corrosion resistance was inferior in each case.

また、比較例10は、アルミニウム及びアルミニウム合金を使用していないため耐酸化性が低下した結果耐食性が低下し、比較例11はアルミニウムの含有率が5質量%と本発明の上限値を上回ったため耐熱衝撃性が低下した。 Further, in Comparative Example 10, since aluminum and an aluminum alloy were not used, the oxidation resistance was lowered, and as a result, the corrosion resistance was lowered. In Comparative Example 11, the aluminum content was 5% by mass, which exceeded the upper limit of the present invention. Thermal impact resistance has decreased.

比較例12は炭化珪素の含有率が25質量%と本発明の上限値を上回っており、耐食性に劣る結果となった。 In Comparative Example 12, the content of silicon carbide was 25% by mass, which exceeded the upper limit of the present invention, resulting in inferior corrosion resistance.

比較例13は黒鉛の含有率が本発明の下限値を下回ったため耐熱衝撃性が低下し、比較例14は黒鉛の含有率が本発明の上限値を上回ったため耐食性が低下する結果となった。 In Comparative Example 13, the graphite content was lower than the lower limit of the present invention, so that the thermal shock resistance was lowered, and in Comparative Example 14, the graphite content was higher than the upper limit of the present invention, so that the corrosion resistance was lowered.

実施例3と比較例4のれんがを溶銑鍋の側壁にライニングして使用したところ、実施例3のれんがをライニングした側壁は、比較例4のれんがをライニングした側壁に比べて、その寿命が約1.4倍になることを確認した。 When the bricks of Example 3 and Comparative Example 4 were lined on the side wall of the hot metal pot and used, the side wall lined with the brick of Example 3 had a longer life than that of the side wall lined with the brick of Comparative Example 4. It was confirmed that it was 1.4 times larger.

Claims (4)

耐火原料配合物に有機バインダーを添加して混練し成形後、熱処理して得られる溶銑鍋用れんがであって、
耐火原料配合物は、粒度1mm以上5mm未満の珪石を5質量%以上20質量%以下、アルミナ質原料を45質量%以上80質量%以下、黒鉛を5質量%以上20質量%以下、アルミニウム及び/又はアルミニウム合金を0.3質量%以上4質量%以下含有すると共に、炭化珪素の含有率が20質量%以下(0を含む)、粒度1mm以上5mm未満のろう石の含有率が10質量%以下(0を含む)であり、
かつ、粒度1mm以上5mm未満のろう石を含有する場合、粒度1mm以上5mm未満の珪石の含有率との合計が20質量%以下である、溶銑鍋用れんが。
Brick for hot metal pots obtained by adding an organic binder to a fire-resistant raw material compound, kneading, molding, and then heat-treating.
The fire-resistant raw material formulation includes 5% by mass or more and 20% by mass or less of silicate having a particle size of 1 mm or more and less than 5 mm, 45% by mass or more and 80% by mass or less of an alumina raw material, 5% by mass or more and 20% by mass or less of graphite, aluminum and /. Alternatively, the content of aluminum alloy is 0.3% by mass or more and 4% by mass or less, the content of silicon carbide is 20% by mass or less (including 0), and the content of brazingite having a particle size of 1 mm or more and less than 5 mm is 10% by mass or less. (Including 0)
In addition, when pyrophyllite having a particle size of 1 mm or more and less than 5 mm is contained, the total content of silica stone having a particle size of 1 mm or more and less than 5 mm is 20% by mass or less.
アルミナ質原料は、バンケツ、ボーキサイト、ムライト、焼結アルミナ、及び電融アルミナから選択される1種又は2種以上である、請求項1に記載の溶銑鍋用れんが。 The brick for hot metal pot according to claim 1, wherein the alumina-based raw material is one or more selected from banquet, bauxite, mullite, sintered alumina, and fused alumina. さらにシリコン、炭化ホウ素、ガラス粉末、マグネシア、カーボンブラック、ピッチ粉末のうち1種又は2種以上を耐火原料配合物100質量%中に占める割合として合量で5質量%以下含有することを特徴とする請求項1又は2に記載の溶銑鍋用れんが。 Further, it is characterized in that one or more of silicon, boron carbide, glass powder, magnesia, carbon black, and pitch powder are contained in a total amount of 5% by mass or less as a ratio in 100% by mass of the fireproof raw material mixture. The brick for hot metal pot according to claim 1 or 2. 請求項1乃至3のいずれか1項に記載の溶銑鍋用れんがをライニングした溶銑鍋。 A hot metal pan lined with the brick for hot metal pan according to any one of claims 1 to 3.
JP2019120191A 2019-06-27 2019-06-27 Bricks for hot metal ladle and hot metal ladle lined with the bricks Active JP7377635B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019120191A JP7377635B2 (en) 2019-06-27 2019-06-27 Bricks for hot metal ladle and hot metal ladle lined with the bricks

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019120191A JP7377635B2 (en) 2019-06-27 2019-06-27 Bricks for hot metal ladle and hot metal ladle lined with the bricks

Publications (2)

Publication Number Publication Date
JP2021004160A true JP2021004160A (en) 2021-01-14
JP7377635B2 JP7377635B2 (en) 2023-11-10

Family

ID=74097779

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019120191A Active JP7377635B2 (en) 2019-06-27 2019-06-27 Bricks for hot metal ladle and hot metal ladle lined with the bricks

Country Status (1)

Country Link
JP (1) JP7377635B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04160066A (en) * 1990-10-20 1992-06-03 Kawasaki Refract Co Ltd Monolithic refractory
JPH0570248A (en) * 1991-04-02 1993-03-23 Harima Ceramic Co Ltd Monolithic refractory for blast-furnace molten iron runner
JPH09278544A (en) * 1996-04-16 1997-10-28 Harima Ceramic Co Ltd Amorphous refractory material for lining in cupola-furnace
JP2018127376A (en) * 2017-02-08 2018-08-16 Jfeスチール株式会社 Refractory brick

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5073791B2 (en) 2010-08-02 2012-11-14 品川リフラクトリーズ株式会社 Alumina-magnesia refractory brick and method for producing the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04160066A (en) * 1990-10-20 1992-06-03 Kawasaki Refract Co Ltd Monolithic refractory
JPH0570248A (en) * 1991-04-02 1993-03-23 Harima Ceramic Co Ltd Monolithic refractory for blast-furnace molten iron runner
JPH09278544A (en) * 1996-04-16 1997-10-28 Harima Ceramic Co Ltd Amorphous refractory material for lining in cupola-furnace
JP2018127376A (en) * 2017-02-08 2018-08-16 Jfeスチール株式会社 Refractory brick

Also Published As

Publication number Publication date
JP7377635B2 (en) 2023-11-10

Similar Documents

Publication Publication Date Title
JP4838619B2 (en) Alumina-silica brick for CDQ
CN109996772B (en) Magnesia carbon brick and its making process
JP2020147477A (en) Method for producing mullite brick
JP2020100511A (en) Method of producing magnesia-carbon brick
JP2011241093A (en) Inner lining pouring material
JP2015081225A (en) High-chromia-enriched castable refractory, precast block using the refractory and waste melting furnace lined with the refractory and/or the block
JP2010235342A (en) Monolithic refractory for blast furnace iron spout
EP2792656B1 (en) Method for producing a silicon carbide whisker-reinforced refractory ceramic composition
JP7041523B2 (en) Magnesia Alumina Carbon Brick
JP6154772B2 (en) Alumina-silicon carbide-carbon brick
JP2545307B2 (en) Blast furnace refractory manufacturing method
JP2021004160A (en) Brick for hot metal ladle, and hot metal ladle lined with the same
JP6266968B2 (en) Blast furnace hearth lining structure
JP2617086B2 (en) Silicon carbide casting material
JP6758147B2 (en) How to make cordierite-containing alumina-silica brick
JP7032084B2 (en) Amorphous refractory
JP2022060911A (en) Method of producing lf-ladle magnesia-carbon brick
JP5663122B2 (en) Castable refractories for non-ferrous metal smelting containers and precast blocks using the same
JP2004508271A (en) Refractory
JP2009242122A (en) Brick for blast furnace hearth and blast furnace hearth lined with the same
JP6583968B2 (en) Refractory brick
JP4700560B2 (en) Manufacturing method for hot repair silica brick
JP2023102168A (en) Method for producing unburned bricks for molten iron vessel
JP6386317B2 (en) Silica brick for hot repair
WO2016208666A1 (en) Furnace bed bricks for molten iron production furnace

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220331

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230119

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20230606

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230801

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20230803

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20230823

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20231003

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231030

R150 Certificate of patent or registration of utility model

Ref document number: 7377635

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150